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Regularized cosine existence
and uniqueness families for

second order abstract Cauchy problems

by

Jizhou Zhang (Shanghai)

Abstract. Let Ci (i = 1, 2) be two arbitrary bounded operators on a Banach space.
We study (C1,C2)-regularized cosine existence and uniqueness families and their rela-
tionship to second order abstract Cauchy problems. We also prove some of their basic
properties. In addition, Hille–Yosida type sufficient conditions are given for the exponen-
tially bounded case.

Introduction. Let X be a Banach space with norm ‖ · ‖, and B(X) be
the set of all bounded operators from X into itself. Consider a well-posed
abstract Cauchy problem of the second order

(0.1)





d2

dt2
u(t, x, y) = Au(t, x, y), t ∈ R,

u(0, x, y) = x,
d

dt
u(0, x, y) = y,

or

(0.2)





d2

dt2
v(t, x, y) = Av(t, x, y) + x+ ty, t ∈ R,

v(0, x, y) = 0,
d

dt
v(0, x, y) = 0,

where A is a closed linear operator on X. It is well known that (0.1) or
(0.2) is governed by a strongly continuous operator cosine function (see [12,
13]). Cosine families have received less attention than strongly continuous
semigroups, partly because (0.1) may be rewritten as a first order abstract
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Cauchy problem




d

dt
u(t, x) =

[
0 1
A 0

]
u(t, x) (t ≥ 0),

u(0, x) = x,

so that one may discuss semigroups generated by
[ 0 1
A 0

]
. However, this matrix

reduction is not always successful; it is sometimes necessary to leave (0.1)
as a second order problem and sometimes it is simpler to work with a cosine
family generated by A rather than the semigroup generated by

[ 0 1
A 0

]
. We

know that many partial differential operators in Lp(Rn) such as the Laplace
operator ∆ with maximal distributional domain do not generate a strongly
continuous cosine function unless n = 1, 1 ≤ p < ∞ or n ≥ 2 and p = 2
(see [8]). Recently, two new cosine functions of operators, i.e., regularized
cosine functions (see [3, 4, 11, 16]) and integrated cosine functions (see [2,
10, 15, 18]) have been extensively studied. The goal of these generalizations
is to apply operator theory to second order Cauchy problems where unique
solutions exist for a nontrivial set of initial data which is not equal to the
entire domain of A. Numerous examples where regularized or integrated
cosine functions may be applied directly, but strongly continuous cosine
functions may not, appear in [2–4, 10, 16]. However, there are limitations
to both regularized and integrated cosine functions. There exist operators
which generate neither a regularized nor an integrated semigroup (see [5–7,
14]). Likewise, there exist operators which generate neither a regularized nor
an integrated cosine function (see [15] and Example 3.1 below).

A good generalization of strongly continuous cosine functions should
satisfy the following. When unique solutions of (0.1) or (0.2) exist for a
nontrivial set of initial data, they should be accessible through this family
of operators, without any renorming or constructions of new Banach spaces.
On the other hand, it should bring benefits analogous to those of strongly
continuous cosine functions.

The motivation for this paper comes from deLaubenfels’ paper [5] where
a pair of families of operators is defined, one of which yields uniqueness,
while the other yields existence of solutions of the first order abstract Cauchy
problem. In this paper, we also present a pair of families of operators that we
believe will have the desired properties mentioned in the previous paragraph,
a C1-existence family, which yields a solution of (0.2) for all x inR(C1), and
a C2-uniqueness family, which yields uniqueness of any solutions of (0.1) or
(0.2) (see Definitions 1.1, 1.3–1.5). The operator C2 must be bounded and
injective, the only requirement on C1 is that it be bounded. Intuitively,
the C1-regularized cosine existence family is cosh(t

√
A)C1 and the C2-

regularized cosine uniqueness family is C2 cosh(t
√
A). When C1 = C2, and
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commutes with A, then cosh(t
√
A)C1 = C2 cosh(t

√
A) is a C2-regularized

cosine function.
The paper is organized as follows. We first give in Section 1 the definition

of (C1,C2)-regularized cosine existence and uniqueness families, and their
relationship to (0.1) and (0.2). We also prove some of their basic properties.
In Section 2 we obtain Hille–Yosida type sufficient conditions for generating
exponentially bounded C1-regularized cosine existence families. Finally, we
give two examples in Section 3.

1. (C1,C2)-regularized cosine families and their basic proper-
ties. We shall write D(A) for the domain of the linear operator A, R(A)
for its range and R(λ,A) for its resolvent. In the following, we first give the
definition of a (C1,C2)-regularized cosine existence and uniqueness family
{C1(t), C2(t)}t∈R. Then we study the basic properties of the generator and
the relationship with (0.1) or (0.2) as well as the Laplace transform.

Definition 1.1. A strongly continuous family {C1(t), C2(t)}t∈R of pairs
of bounded operators on X is called a mild (C1,C2)-regularized cosine ex-
istence and uniqueness family on X if

(a) Ci(0) = Ci for i = 1, 2;

(b) C2 is injective;

(c) 2C2(t)C1(s) = C2[C1(t+ s) + C1(t− s)]
= [C2(t+ s) + C2(t− s)]C1, ∀t, s ∈ R.

Since C2 is injective, one can define the generator A of the family
{C1(t), C2(t)}t∈R by

(1.1)





Ax = C−1
2 C ′′2 (0)x,

D(A) = {x ∈ X | C ′′2 (t)x exists, and

is equal to C2(t)C−1
2 C ′′2 (0)x, ∀t ∈ R}

or equivalently



Ax = C−1

2 lim
h→0

2
h2 {C2(h)x−C2x},

D(A) = {x ∈ X | the limit exists and is in R(C2)}.
Remark 1.2. It is obvious that C1(t) is equal to C2(t) when C1(t) is a

C1-regularized cosine function, and A is its generator when C1 is equal to
C2 and commutes with C1(t) and C2(t) for all t ∈ R. Intuitively, we may
write that C1(t) = cosh(t

√
A)C1, C2(t) = C2 cosh(t

√
A), respectively.

In the following, we will denote the C1-resolvent set of A by

%C1(A) = {λ | λ− A is injective and R(C1) ⊆ R(λ− A)}
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and
%C1(A) = {λ | λ− A is injective and R(C1) ⊆ R(λ− A)}.

Definition 1.3. Suppose A is closable. A strongly continuous family
{C1(t)}t∈R ⊂ B(X) of operators is an exponentially bounded (resp. mild)
C1-regularized cosine existence family for A if t 7→ C1(t)x ∈ C(R, [D(A)])
(resp.

� t
0(t− s)C1(s)x ds ∈ D(A), t 7→ A(

� t
0(t− s)C1(s)x ds) ∈ C(R,X)) for

all x ∈ D(A) (resp. x ∈ X) and t ∈ R, and there exist M,ω > 0 such that
(ω2,∞) ⊆ %C1(A), ‖AC1(t)‖ (resp. ‖C1(t)‖) ≤Meω|t|, and

(1.2) R(λ2, A)C1x = λ−1
∞�

0

e−λtC1(t)x dt for all x ∈ X and λ > ω.

Definition 1.4. A strongly continuous family {C2(t)}t∈R ⊂ B(X) of
operators is an exponentially bounded C2-regularized cosine uniqueness fam-
ily for A if C2 is injective and there exist M,ω > 0 such that ‖C2(t)‖ ≤
Meω|t| for all t ∈ R and

(1.3) C2x = λ−1
∞�

0

e−λtC2(t)(λ2 − A)x dt for all x ∈ D(A) and λ > ω.

Definition 1.5. Suppose that C1 ∈ B(X).

(a) We shall say that (0.1) is C1-well-posed if it has a unique solution
u for every pair (x, y) ∈ C1D(A) × C1D(A) and there exists a continuous
g : R→ R such that

‖u(t,C1x,C1y)‖ ≤ g(t)(‖x‖+ |t| · ‖y‖) for all t ∈ R.
(b) We shall say that (0.2) is C1-well-posed if it has a unique solution v

for all x, y ∈ R(C1), and there exists a continuous g : R→ R such that
∥∥∥∥
d2v

dt2
(t,C1x,C1y)

∥∥∥∥ ≤ g(t)(‖x‖+ |t| · ‖y‖) for all t ∈ R.

(c) (0.1) (or (0.2)) is called C1-exponentially well-posed if there exist a
unique exponentially bounded solution of (0.1) (or (0.2)) and M,ω > 0 such
that g(t) = Meω|t| for all t ∈ R in (a) (or (b)).

We start with some basic properties of (C1,C2)-regularized cosine fam-
ilies.

Theorem 1.6. Suppose that A generates a (C1,C2)-regularized cosine
family {C1(t), C2(t)}t∈R. Then

(a) A is closed ;
(b) C1(t) = C1(−t);
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(c)
� t
0(t− s)C1(s)x ds ∈ D(A) for all t ∈ R and x ∈ X, and

(1.4) A

t�

0

(t− s)C1(s)x ds = C1(t)x−C1x;

(d) R(C1) ⊂ D(A);
(e) if ‖Ci(t)‖ ≤ Meω|t| for some ω > 0 and t ∈ R, i = 1, 2, then

(ω2,∞) ⊂ %C1(A) and (1.2) and (1.3) hold.

Proof. (a) By (1.1), we have

C ′′2 (t)x = C2(t)Ax for x ∈ D(A) and t ∈ R.

Let {xn}∞n=1 ⊂ D(A), xn → x and Axn → y as n → ∞. Then C2(t)xn
converges to C2(t)x and C2(t)Axn converges to C2(t)y uniformly on compact
sets. The strong continuity of C2(t) now implies that C ′′2 (t)x exists, and is
equal to C2(t)y for all t ∈ R. This implies that x ∈ D(A) and therefore
Ax = y, as desired.

(b) follows from Definition 1.1(c).

(c) Let y =
� t
0(t − s)C1(s)x ds for all x ∈ X and t ∈ R. Then, for any

h > 0, we have

2h−2(C2(h)y −C2y) = C2h
−2

t�

0

(t− s)(C1(s+ h) + C1(s− h)− 2C1(s))x ds

= C2

[
h−1

( t+h�

h

−
t−h�

−h

)
C1(s)x ds

+ h−2
( t+h�

t

+
t−h�

t

)
(t− s)C1(s)x ds

− h−2
( h�

0

+
−h�

0

)
(t− s)C1(s)x ds

]
,

which converges to C2(C1(t)x−C1x) as h→ 0. Thus y ∈ D(A) and Ay =
C1(t)x−C1x, i.e., (1.4) holds.

(d) follows from (c), since

t�

0

(t− s)C1(s)x ds ∈ D(A), C1x = 2 lim
h→0

h−2
h�

0

(h− s)C1(s)x ds

for any x ∈ X.



136 J. Z. Zhang

(e) Since ‖Ci(t)‖ ≤ Meω|t| (i = 1, 2) for all t ∈ R, we define Li(λ) ∈
B(X) (i = 1, 2) by

Li(λ)x ≡ λ−1
∞�

0

e−λtCi(t)x dt for x ∈ X and λ > ω.

Then, for any x ∈ X, by integration by parts, we have

L1(λ)x = λ

∞�

0

e−λt
( t�

0

(t− s)C1(s)x ds
)
dt for x ∈ X and λ > ω,

which implies that L1(λ)x ∈ D(A). Since A is closed and
� t
0 (t−s)C1(s)x ds ∈

D(A) for all t ∈ R and x ∈ X, we may deduce that

AL1(λ)x = λ

∞�

0

e−λt
(
A

t�

0

(t− s)C1(s)x ds
)
dt

= λ

∞�

0

e−λt(C1(t)x−C1x) dt = λ2L1(λ)x−C1x

for x ∈ X and λ > ω. Thus (λ2 − A)L1(λ)x = C1x. Similarly, for any
x ∈ D(A), we have

L2(λ)Ax = λ−1
∞�

0

e−λtC2(t)Axdt = λ−1
∞�

0

e−λtC ′′2 (t)x dt

= λ

∞�

0

e−λtC2(t)x dt−C2x

and therefore L2(λ)(λ2 − A)x = C2x, i.e., (1.3) holds. Note that C2 is
injective. Thus we see that λ2 − A is also injective. This and the previous
identity (λ2 − A)L1(λ)x = C1x (x ∈ X) imply that (ω2,∞) ⊂ %C1(A) and
(1.2) holds.

Theorem 1.7. Let S1(t) =
� t
0 C1(s) ds. Suppose that {C1(t), C2(t)}t∈R

is a (C1,C2)-regularized cosine existence and uniqueness family generated
by A. Then

(a) all solutions of (0.1) and (0.2) are unique;
(b) (0.2) is C1-well-posed ;
(c) (0.1) is C1-well-posed if u ∈ C(R, [D(A)]× [D(A)]) for every x, y ∈

D(A), where u(t,C1x,C1y) = C1(t)x+ S1(t)y.

Proof. (a) Suppose that u is a solution of (0.1) or (0.2) with x = y = 0.
Then, for all t, s ∈ R, we have

d

ds

( t−s�

0

C2(r) dr u′(s) + C2(t− s)u(s)
)

= 0.
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Integrating this equality from 0 to t yields C2u(t) = C2(t)u(0) = 0. Note
that C2 is injective. It follows that u(t) = 0 for all t ∈ R and this completes
the proof.

(b) By Theorem 1.6(a), (c), we see that v(t,C1x, 0) =
� t
0(t− s)C1(s)x ds

is the unique solution of (0.2) with y = 0 and with x replaced by C1x. Hence,
the strong continuity of {C1(t)}t∈R and the Banach–Steinhaus theorem im-
ply that (0.2) is C1-well-posed.

(c) For every x, y ∈ D(A), by Theorem 1.6(c), we have

(1.5) u(t,C1x,C1y)

= C1(t)x+ S1(t)y + A

t�

0

(t− s)(u(s,C1x,C1y)− S1(s)y) ds

= C1x+ C1ty + A

t�

0

(t− s)u(s,C1x,C1y) ds.

Since A is closed, (1.5) and the hypothesis imply that u(t,C1x,C1y) ∈
D(A), and t 7→ Au(t,C1x,C1y) is continuous. Thus, by (a), u is the unique
solution of (0.1). From the strong continuity of C1(t), we see that (0.1) is
C1-well-posed.

Theorem 1.8. Suppose that {Ci(t)}t∈R ⊆ B(X) (i = 1, 2) are strongly
continuous families. Then the following are equivalent.

(a) {C1(t), C2(t)}t∈R is a mild (C1,C2)-regularized cosine existence and
uniqueness family generated by an extension of A.

(b)
� t
0(t − s)C1(t)x ds ∈ D(A) for all x ∈ X and t ∈ R, with C1(t)x −

C1x = A
� t
0(t− s)C1(t)x ds, C2(0) = C2, and C ′′2 (t)x exists and is equal to

C2(t)Ax for all x ∈ D(A) and t ∈ R.

If ‖Ci(t)‖ ≤Meω|t|(i = 1, 2) for some ω > 0, they are also equivalent to

(c) t 7→ C1(t)x is a continuous map from R into [D(A)] for all x ∈ D(A),
(ω2,∞) ⊂ %C1(A), and (1.2) and (1.3) hold.

Proof. (a)⇒(b). This is immediate from Theorem 1.6(c) and the defini-
tion of the generator.

(b)⇒(a). We first prove that C2C1(t) = C2(t)C1 for all t ∈ R. For any
x ∈ X and r, t ∈ R,

(1.6)
d

dr

[
C2(t− r)

r�

0

(r − u)C1(u)x du
]

= −
t−r�

0

C2(u)C1(r)x du+
t−r�

0

C2(u)C1x du+ C2(t− r)
r�

0

C1(u)x du.
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Integrate (1.6) in r from 0 to t to obtain

C2

t�

0

(t− u)C1(u)x du = −
t�

0

t−r�

0

C2(u)C1(r)x du dr(1.7)

+
t�

0

t−r�

0

C2(u)C1x du dr

+
t�

0

r�

0

C2(t− r)C1(u)x du dr.

Since
t�

0

r�

0

C2(t− r)C1(u)x du dr =
t�

0

t�

u

C2(t− r)C1(u)x dr du

=
t�

0

t−r�

0

C2(u)C1(r)x du dr,

(1.7) implies that

C2

t�

0

(t− u)C1(u)x du =
t�

0

t−r�

0

C2(u)C1x du dr.

Differentiating the above equality two times in t, we get

(1.8) C2C1(t) = C2(t)C1.

Likewise, we may prove the following fact:

(1.9) v(t) = A

t�

0

(t− r)v(r) dr (t ∈ R) ⇒ v(t) = 0 (t ∈ R),

where v ∈ C(R,X). For s, t ∈ R and x ∈ X, by (1.4) we have

(1.10) A

t�

0

(t− r)C2(s)C1(r)x dr = C2(s)C1(t)x− C2(s)C1x.

Now (1.4) and a simple computation show that

(1.11) A

t�

0

(t− r)C2[C1(r + s) + C1(r − s)]x dr

= C2(C1(t+ s) + C1(t− s))x− 2C2(s)C1(t)x.

for s, t ∈ R and x ∈ X. By (1.8)–(1.11), we have the equality 2C2(s)C1(t) =
C2(C1(t+ s) + C1(t− s)). Thus (a) is proved.

(b)⇒(c). This is exactly the same as the proof of Theorem 1.6(e).
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(c)⇒(a). Since for all x ∈ X and λ > ω,
∞�

0

e−λtC2C1(t)x dt = C2λR(λ2, A)C1x =
∞�

0

e−λtC2(t)C1x dt,

from the uniqueness of the Laplace transform it follows that C2C1(t) =
C2(t)C1 (t ∈ R).

To prove that 2C2(s)C1(t) = C2(C1(t + s) + C1(t − s)) for all t, s ∈ R,
we shall also use the Laplace transform. For µ > λ > ω and x ∈ X, we have

(1.12)
∞�

0

e−µs
∞�

0

e−λtC2C1(t+ s)x dt ds

=
∞�

0

e−µs
∞�

s

e−λ(r−s)C2C1(r)x dr ds

=
∞�

0

e−µs
(
eλsC2λR(λ2, A)C1x−

s�

0

e−λreλsC2C1(r)x dr
)
ds

=
1

µ− λ C2λR(λ2, A)C1x−C2

∞�

0

e−(µ−λ)s
s�

0

e−λrC1(r)x dr ds

=
1

µ− λ C2λR(λ2, A)C1x−C2

∞�

0

1
µ− λ e

−(µ−λ)re−λrC1(r)x dr

=
C2

µ− λ (λR(λ2, A)C1x− µR(µ2, A)C1x)

=
C2

µ− λ (LλC1x− LµC1x),

where Lλ = λR(λ2, A). Similarly, we obtain
∞�

0

e−µs
s�

0

e−λtC2C1(s− t)x dt ds =
C2

λ+ µ
LµC1x,(1.13)

∞�

0

e−µs
∞�

s

e−λtC2C1(t− s)x dt ds =
C2

λ+ µ
LλC1x,(1.14)

∞�

0

e−µs
∞�

0

e−λt2C2(t)C1(s)x dt ds = 2C2LλLµC1x.(1.15)

Note that C1(t) = C1(−t). A simple calculation shows that

(1.16) 2LλLµ =
1

λ+ µ
(LλC1 + LµC1)− 1

λ− µ (LλC1 − LµC1).
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Combining (1.12)–(1.16) with the uniqueness of the Laplace transform, we
see that 2C2(t)C1(s) = C2(C1(t + s) + C1(t − s)). Thus {C1(t), C2(t)}t∈R
is a mild (C1,C2)-regularized cosine existence and uniqueness family. Also,
by (b), C ′′2 (t)x = C2(t)Ax for all x ∈ D(A). This implies that an extension
of A generates {C1(t), C2(t)}t∈R.

If we permit only exponentially bounded solutions of (0.1) or (0.2), then
a C1-regularized cosine existence family is sufficient to guarantee uniqueness
and C1-exponential well-posedness.

Theorem 1.9. Suppose A is closable, ω ∈ R. Then there is a mild C1-
regularized cosine existence family {C1(t)}t∈R for A such that ‖C1(t)‖ ≤
Meω|t| if and only if

(a) (ω2,∞) ⊆ %C1(A), and
(b) (0.2) is C1-exponentially well-posed.

Proof. Suppose that {C1(t)}t∈R is a mild C1-regularized cosine existence
family for A. Then, by Definition 1.3, (a) is obvious.

For x ∈ X and λ > ω, we have

λ2
∞�

0

e−λtA
( t�

0

(t− s)(C1(s)x+ S1(s)y) ds
)
dt

= A

∞�

0

e−λtC1(t)
(
x+

1
λ
y

)
dt

= λ(A− λ2 + λ2)R(λ2, A)C1

(
x+

1
λ
y

)

= λ3R(λ2, A)C1

(
x+

1
λ
y

)
− λC1

(
x+

1
λ
y

)

= λ2
∞�

0

e−λt(C1(t)x+ S1(t)y − (C1x+ C1ty)) dt.

This implies that

C1(t)x+ S1(s)y = A

t�

0

(t− s)(C1(s)x+ S1(s)y) ds+ C1x+ C1ty

so that V (t,C1x,C1y) =
� t
0(t−s)(C1(s)x+S1(s)y) ds is the desired solution

of (0.2).
To prove the uniqueness, suppose that u′′(t) = Au(t), u(0) = u′(0) = 0,

and u is exponentially bounded. Let α > 0 and λ > ω sufficiently large. A
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direct calculation shows that

(λ2 − A)
( α�

0

e−λtu(t) dt
)

=
α�

0

(λ2 − A)e−λtu(t) dt = e−λα(u′(α) + λu(α)).

Since A is closed and u is exponentially bounded, we see that
� ∞
0 e−λtu(t) dt

∈ D(A) and (λ2−A)
� ∞
0 e−λtu(t) dt = 0 for λ > ω. Note that λ2−A is injec-

tive. We find that u(t) ≡ 0, as desired. Thus the exponential boundedness
of {C1(t)}t∈R leads to the C1-exponential well-posedness of (0.2).

Suppose that (a) and (b) hold. Let C1(t)x ≡ d2

dt2V (t,C1x, 0). Then
{C1(t)}t∈R is a strongly continuous family of bounded operators with� t
0(t− s)C1(s)x ds ∈ D(A) and

A
( t�

0

(t− s)C1(s)x ds
)

= C1(t)x−C1x for x ∈ X and t ∈ R.

For λ > ω, let L1(λ) = λ−1
� ∞
0 e−λtC1(t) dt. As in the proof of Theo-

rem 1.6(e), for any x ∈ X, L1(λ)x ∈ D(A), with (λ2 − A)L1(λ)x = C1x.
The hypotheses on A now imply that L1(λ)x = (λ2 − A)−1C1x. Thus our
claim holds.

Similarly, we have the following result.

Theorem 1.10. Suppose that there exists an exponentially bounded C1-
regularized cosine existence family for A. Then (0.1) is C1-exponentially
well-posed.

2. A Hille–Yosida type theorem. In the following, we give Hille–
Yosida characterizations of C1-regularized cosine existence families.

Theorem 2.1. Suppose that A is closed and there exist M,ω ≥ 0 such
that for all λ>ω and n∈N0, R(C1)⊂R((λ− A)n), λ− A is injective and

(2.1) ‖(λ(λ2 − A)−1C1)n‖ ≤ n!M(λ− ω)−n−1.

Then for all µ > ω, there is an exponentially bounded mild (µ2 − A)−1C1-
regularized cosine existence family {C1(t)}t∈R for A.

Proof. Define f : (0,∞) → B(X) by f(λ) = λ(λ2 − A)−1C1. By (2.1)
and Corollary 1.2 of [1], there exists a strong continuous family {S(t)}t≥0

satisfying S(0) = 0 and

lim
h→0

1
h
‖S(t+ h)− S(t)‖ ≤Meωt for t ≥ 0,

which implies that

(2.2) (λ2 − A)−1C1 =
∞�

0

e−λtS(t) dt for λ > ω and t ≥ 0.
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Set Lλ = λ(λ2 − A)−1. Then, for λ > µ > ω, from (2.2) we have

(2.3)
1

µ− λ (LλC1 − LµC1) =
λ− µ+ µ

µ− λ · 1
λ
LλC1 −

1
µ− λ LµC1

= −
∞�

0

e−λtS(t) dt+ µ

∞�

0

1
µ− λ e

−λτS(τ) dτ +
∞�

0

e−(λ−µ)tLµC1 dt

=
∞�

0

e−λt
(
−µ

t�

0

eµ(t−τ)S(τ) dτ − S(t) + eµtµ(µ2 − A)−1C1

)
dt.

Similarly, we obtain

1
λ+ µ

Lµ =
∞�

0

e−λt(e−µtµ(µ2 −A)−1C1) dt,(2.4)

1
λ+ µ

Lλ =
∞�

0

e−(λ+µ)t
(
λ

∞�

0

e−λτS(τ) dτ
)
dt(2.5)

=
∞�

0

e−λt
(
S(t)− µ

t�

0

e−µ(t−τ)S(τ) dτ
)
dt.

By (1.16) and (2.3)–(2.5), we get

(2.6) λ(λ2 −A)−1(µ2 − A)−1C1 =
∞�

0

e−λtC1(t) dt for λ > µ > ω

where C1(t) = −
� t
0 coshµ(t−τ)S(τ) dτ+cosh(µt)(µ2−A)−1C1. It is obvious

that C1(t) is exponentially bounded because S(t) is. We shall simply write
C = (µ2 − A)−1C1. Then from (2.6) we have

λ(λ2 − A)−1C =
∞�

0

e−λtC1(t) dt.

As in the proof of [9, Lemma], we obtain C1(t)x ∈ D(A), AC1(t)x = C1(t)Ax
for x ∈ D(A) and t ≥ 0, and

(2.7) C1(t)x = Cx+
t�

0

(t− τ)C1(τ)Axdτ for x ∈ D(A).

Since A is closed, we have
� t
0(t − τ)C1(τ) dτ ∈ D(A) and C1(t)x − Cx =

A
� t
0(t − τ)C1(τ)x dτ . Thus {C1(t)}t∈R is a mild (µ2 − A)−1C1-regularized

cosine existence family for A.

Corollary 2.2. Suppose that A is closed , x ∈ D(A) and there exist
M,ω > 0 and µ > ω such that (µ2−A)x ∈ R((λ2−A)n) for all λ > ω and
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n ∈ N0, λ2 − A is injective for all λ > ω and

‖(λ(λ2 −A)−1)(n)(µ2 − A)x‖ ≤ Mn!
(λ− ω)n+1 for λ > ω and n ∈ N0.

Then (0.2) has a unique exponentially bounded solution.

The proof of Corollary 2.2 is similar to that of Corollary 5.6 of [5] and
we omit it.

3. Examples. In the following, we give a simple example of an operator
that does not generate a C-regularized cosine function for any C. However, it
does generate a (C1,C2)-regularized cosine existence and uniqueness family.
The example is similar to Example 7.1 of [5] (or see [17]).

Example 3.1. Let

X ≡ {continuous f : R→ C satisfying lim
|x|→∞

f(x)ex
2

= 0}.

Then X, endowed with the norm ‖f‖ ≡ supx∈R |f(x)ex
2 |, is a Banach space.

Let

A =
d2

dx2 (A has maximal domain in X),

(C1f)(x) = e−x
2
f(x), C2 ≡ C1,

and let

(C1(t)f)(x) ≡ 1
2

(e−(x+t)2
f(x+ t) + e−(x−t)2

f(x− t)),

(C2(t)f)(x) ≡ 1
2
e−x

2
(f(x+ t) + f(x− t)).

Then it is straightforward to show that (C1(t), C2(t)) is a (C1,C2)-regular-
ized cosine existence and uniqueness family generated by A. However, there
is no C such that A generates a C-regularized cosine function. This is shown
by Lemmas 7.2 and 7.3 of [5] and the relation between the regularized semi-
group and regularized cosine function (see [18]).

Example 3.2. Suppose that X1 and X2 are Banach spaces, and Gi (i =
1, 2) is the generator of a strongly continuous cosine function {Si(t)}t∈R with
‖Si(t)‖ = o(eωi|t|) on Xi for i = 1, 2. Then there exists an exponentially
bounded mild C1-regularized cosine existence family and a C2-regularized
cosine uniqueness family on X1 ×X2 for A where

A =
[
G1 0
0 G2

]
, C1 =

[
I 0
0 (s2 −G2)−1

]
, C2 =

[
(s2 −G1)−1 0

0 I

]

for s > max{ω1, ω2}.
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Proof. Set

C1(t) =
[
S1(t) 0

0 S2(t)(s2 −G2)−1

]
, C2(t) =

[
(s2 −G1)−1S1(t) 0

0 S2(t)

]
.

By our assumption, we have

(λ2 −Gi)−1x = λ−1
∞�

0

e−λtSi(t)x dt (x ∈ Xi, i = 1, 2),

for λ > max{ω1, ω2} and λ2 ∈ %(G1) ∩ %(G2). It follows that

(λ2 − A)−1 =
[

(λ2 −G1)−1 0
0 (λ2 −G2)−1

]
.

Then a calculation shows that

(λ2 − A)−1C1x = λ−1
∞�

0

e−λtC1(t)x dt (x ∈ X1 ×X2).

It is obvious that λ2−A is closable and λ2−A is injective for λ2 ∈ %(G1)∩
%(G2). In addition, it is well known that

� t
0(t − s)Si(t)x ds ∈ D(Gi) for

x ∈ Xi. Then
� t
0(t−s)C1(s)x ds ∈ D(A) and A

� t
0(t−s)C1(s)x ds ∈ C(R,X)

for x ∈ X1 × X2 and t ∈ R. Thus {C1(t)}t∈R is an exponentially bounded
C1-regularized cosine existence family for A.

Using the same method, we may prove that {C2(t)}t∈R is an exponen-
tially bounded C2-regularized cosine uniqueness family for A.
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