# Proper holomorphic liftings and new formulas for the Bergman and Szegő kernels 

by<br>E. H. Youssfi (Marseille)


#### Abstract

We consider a large class of convex circular domains in $M_{m_{1}, n_{1}}(\mathbb{C}) \times$ $\ldots \times M_{m_{d}, n_{d}}(\mathbb{C})$ which contains the oval domains and minimal balls. We compute their Bergman and Szegő kernels. Our approach relies on the analysis of some proper holomorphic liftings of our domains to some suitable manifolds.


1. Introduction. The use of the Bergman projection plays an important role in the study of proper holomorphic mappings. See Bell [B] or Ligocka [L]. In this paper we shall conversely make use of proper holomorphic mappings to compute Bergman and Szegő kernels. We consider a large class of circular domains in $M_{m_{1}, n_{1}}(\mathbb{C}) \times \ldots \times M_{m_{d}, n_{d}}(\mathbb{C})$ which contains the generalized oval domains considered in [D'A1], [D'A2], [FH1] and [FH2] and the minimal ball introduced in [HP]. We compute their Bergman and Szegő kernels. Our method consists in associating to a domain in our class an appropriate proper holomorphic lifting in which good analysis can be developed. Then we use a suitable operator to deduce the Bergman and Szegő kernels of the domain from those of its proper holomorphic lifting.

If $p$ and $q$ are two positive integers we denote by $M_{p, q}(\mathbb{C})$ the $p q$-dimensional complex vector space of all $(p \times q)$-matrices with complex coefficients. If $Z=\left(z_{j k}\right)_{1 \leq j \leq p ; 1 \leq k \leq q}$ is an element of $M_{p, q}(\mathbb{C})$, we set

$$
\begin{aligned}
|Z| & :=\left(\sum_{j=1}^{p} \sum_{k=1}^{q}\left|z_{j k}\right|^{2}\right)^{1 / 2} \\
\|Z\|_{*} & :=\left(\sum_{j=1}^{p}\left(\sum_{k=1}^{q}\left|z_{j k}\right|^{2}+\left|\sum_{k=1}^{q} z_{j k}^{2}\right|\right)\right)^{1 / 2} .
\end{aligned}
$$

Let $d$ be a positive integer and let $m=\left(m_{1}, \ldots, m_{d}\right)$ and $n=\left(n_{1}, \ldots, n_{d}\right)$ be two $d$-tuples of integers such that $m_{j} \geq 1$ and $n_{j} \geq 1$ for all $j=1, \ldots, d$. Let $a=\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{R}^{d}$ where $a_{j} \geq 1, j=1, \ldots, d$, and consider the

2000 Mathematics Subject Classification: 32A25, 32H35.
function $\varrho(Z)=\varrho_{a, m, n}(Z)$ defined for $Z=(Z(1), \ldots, Z(d)) \in M_{m_{1}, n_{1}}(\mathbb{C}) \times$ $\ldots \times M_{m_{d}, n_{d}}(\mathbb{C})$ by

$$
\varrho(Z):=\sum_{j=1}^{d}\|Z(j)\|_{*}^{2 a_{j}},
$$

and set $\Omega=\Omega_{a, m, n}:=\left\{Z \in M_{m_{1}, n_{1}}(\mathbb{C}) \times \ldots \times M_{m_{d}, n_{d}}(\mathbb{C}): \varrho(Z)<1\right\}$.
Note that for $n=(1, \ldots, 1)$ the domain $\Omega$ describes, as $a$ and $m$ vary, the class of generalized oval domains considered in [D'A1], [D'A2], [FH1] and [ FH 2 ].

Note also that for $d=a=m=1, \Omega$ is just the minimal ball $\mathbb{R}_{*}$ in $\mathbb{C}^{n}$ introduced by Hahn and Pflug [HP].

In what follows, we denote by $j_{0}$ the number of those $n_{j}$ 's that are equal to 1 . If $j_{0} \geq 1$, we may assume without loss of generality that $n_{1}=\ldots=$ $n_{j_{0}}=1$ and $n_{j} \geq 2$ for $j=j_{0}+1, \ldots, d$.

For each $s>-1$, we set $d v_{s}(Z):=(1-\varrho(Z))^{s} d v(Z)$, where $v$ denotes the normalized Lebesgue measure on $\Omega$. Let $\mathcal{A}_{s}^{2}(\Omega)$ be the Hilbert space of all holomorphic functions on $\Omega$ which are square integrable with respect to the measure $d v_{s}(Z)$ and denote by $\mathcal{K}_{s, \Omega}(Z, W)$ its reproducing kernel.

If $\mathbb{S}$ is an arbitrary non-empty set, we let $\mathbb{S}^{m}$ denote the set of all finite multi-sequences $t=\left(t_{j l}\right)_{l=1, \ldots, m_{j} ; j=1, \ldots, d}$ where the entries $t_{j l}$ are elements of $\mathbb{S}$. Let $\mathbb{N}_{0}$ denote the set of all non-negative integers. We use the notation

$$
\begin{equation*}
t^{k}:=\prod_{j=1}^{d} \prod_{l=1}^{m_{j}} t_{j l}^{k_{j l}} \tag{1.1}
\end{equation*}
$$

for $k=\left(k_{j l}\right)_{1 \leq l \leq m_{j} ; 1 \leq j \leq d} \in \mathbb{N}_{0}^{m}$ and $t=\left(t_{j l}\right)_{1 \leq l \leq m_{j} ; 1 \leq j \leq d} \in \mathbb{C}^{m}$. We also consider the action of $\mathbb{C}^{m}$ on itself given for $t=\left(t_{j l}\right)$ and $u=\left(u_{j l}\right)$, $l=1, \ldots, m_{j}, j=1, \ldots, d$, by

$$
\begin{equation*}
t u:=\left(t_{j l} u_{j l}\right)_{l=1, \ldots, m_{j} ; j=1, \ldots, d,}, \quad \text { and set } \quad t^{2}:=t t . \tag{1.2}
\end{equation*}
$$

Consider the differential operator $\mathcal{D}=\mathcal{D}(m, n, a)$ acting on functions $f(t)$ for $t=\left(t_{j l}\right)_{l=1, \ldots, m_{j} ; j=1, \ldots, d}$ in some region of $\mathbb{C}^{m}$ by

$$
\begin{equation*}
(\mathcal{D} f)(t):=a_{1} \ldots a_{d}\left(\mathcal{D}_{1,1} \ldots \mathcal{D}_{1, m_{1}}\right) \ldots\left(\mathcal{D}_{d, 1} \ldots \mathcal{D}_{d, m_{d}}\right)(f(t)), \tag{1.3}
\end{equation*}
$$

where

$$
\left(\mathcal{D}_{j, l} f\right)(t):= \begin{cases}\frac{2}{\left(n_{j}-1\right)!}\left(2 t_{j l} \frac{d f}{d t_{j l}}+\left(n_{j}-1\right) f(t)\right) & \text { if } j>j_{0}, \\ 4 f(t) & \text { if } j \leq j_{0} .\end{cases}
$$

We also consider the differential operator $\widetilde{\mathcal{D}}=\widetilde{\mathcal{D}}(m, n, a)$ acting on functions
$g(x)$ for $x=\left(x_{1}, \ldots, x_{d}\right)$, defined by

$$
\begin{equation*}
(\widetilde{\mathcal{D}} g)(x):=\widetilde{\mathcal{D}}_{1} \ldots \widetilde{\mathcal{D}}_{d}\left(\prod_{j=1}^{j_{0}} x_{j}^{m_{j}-1} \prod_{j=j_{0}+1}^{d} x_{j}^{m_{j} n_{j}-m_{j}-1} g(x)\right), \tag{1.4}
\end{equation*}
$$

where

$$
\widetilde{\mathcal{D}}_{j}:= \begin{cases}\frac{d^{m_{j}-1}}{d x_{j}^{m_{j}-1}} & \text { if } j \leq j_{0} \\ \frac{d^{m_{j} n_{j}-m_{j}-1}}{d x_{j}^{m_{j} n_{j}-m_{j}-1}} & \text { if } j>j_{0}\end{cases}
$$

Next, consider the product group $\Lambda:=\{-1,1\}^{m_{j_{0}+1}} \times \ldots \times\{-1,1\}^{m_{d}}$. We shall extend each element $\varepsilon=\left(\varepsilon_{j l}\right), l=1, \ldots, m_{j}, j=j_{0}+1, \ldots, d$, of $\Lambda$ to an element $\widetilde{\varepsilon}$ of $\{-1,1\}^{m}$ be setting

$$
\widetilde{\varepsilon}_{j l}:= \begin{cases}1 & \text { if } j \leq j_{0}, \\ \varepsilon_{j l} & \text { if } j>j_{0} .\end{cases}
$$

If $f(t)$ is a smooth function defined on the ball $\sum_{j=1}^{d} \sum_{l=1}^{m_{j}}\left|t_{j l}\right|<1$, we consider the function $\tilde{f}$ on the region $\sum_{j=1}^{d} \sum_{l=1}^{m_{j}}\left(\left|t_{j l}\right|+\left|u_{j l}\right|\right)<1$ in $\mathbb{C}^{m} \times \mathbb{C}^{m}$ by setting

$$
\widetilde{f}(t, u):=\sum_{\varepsilon \in A} \frac{f(t+\widetilde{\varepsilon} u)}{\prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}} \varepsilon_{j l} u_{j l}} .
$$

Then for each $t$ the partial function $\tilde{f}(t, \cdot)$ is invariant under the group $\Lambda$ so that there is a unique function $\mathcal{L} f$ that satisfies

$$
\mathcal{L} f\left(t, u^{2}\right)=\tilde{f}(t, u)
$$

Moreover, the mapping $\mathcal{L}: f \mapsto \mathcal{L} f$ is linear.
Remark 1.1. The operator $\mathcal{L}$ maps polynomials to polynomials and rational functions to rational functions. This can be checked directly by induction.

For $s \geq-1$, consider the series defined for $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{C}^{d}$ by

$$
G_{s}(x):=\widetilde{\mathcal{D}}\left(\sum_{h \in \mathbb{N}_{0}^{d}} \frac{\Gamma\left(s+1+\sum_{j=1}^{j_{0}} \frac{m_{j}+h_{j}}{a_{j}}+\sum_{j=j_{0}+1}^{d} \frac{m_{j} n_{j}-m_{j}+h_{j}}{a_{j}}\right)}{\prod_{j=1}^{j_{0}} \Gamma\left(\frac{m_{j}+h_{j}}{a_{j}}\right) \prod_{j=j_{0}+1}^{d} \Gamma\left(\frac{m_{j} n_{j}-m_{j}+h_{j}}{a_{j}}\right)} x^{h}\right) .
$$

We shall see that the series $G_{s}(x)$ converges for $|x|<1$. Finally, we set

$$
\begin{equation*}
R_{s}(t):=G_{s}\left(\sum_{l=1}^{m_{1}} t_{1 l}, \ldots, \sum_{l=1}^{m_{d}} t_{d l}\right), \quad H_{s}(t, u):=\left(\mathcal{L}\left(\mathcal{D} R_{s}\right)\right)(t, u) . \tag{1.5}
\end{equation*}
$$

It follows from Lemma 2.2 below that the function $H_{s}(t, u)$ is well defined provided the variables $t$ and $u$ satisfy $\sum_{j=1}^{d} \sum_{l=1}^{m_{j}}\left(\left|t_{j l}\right|+\sqrt{\left|u_{j l}\right|}\right)<1$.

Throughout the paper we use the notation $x \bullet y:=\sum_{k=1}^{p} x_{k} y_{k}$ if $p$ is a positive integer and $x=\left(x_{1}, \ldots, x_{p}\right)$ and $y=\left(y_{1}, \ldots, y_{p}\right)$ are two vectors in $\mathbb{C}^{p}$. We extend the operation $\bullet$ to a $\mathbb{C}^{m}$-valued bilinear mapping defined for $Z, W \in M_{m_{1}, n_{1}}(\mathbb{C}) \times \ldots \times M_{m_{d}, n_{d}}(\mathbb{C})$ by setting

$$
Z \bullet W:=\left(Z_{l}(j) \bullet W_{l}(j)\right)_{l=1, \ldots, m_{j} ; j=1, \ldots, d}
$$

if $Z=(Z(1), \ldots, Z(d)), W=(W(1), \ldots, W(d))$ and

$$
Z(j)=\left(\begin{array}{c}
Z_{1}(j) \\
\vdots \\
Z_{m_{j}}(j)
\end{array}\right), \quad W(j)=\left(\begin{array}{c}
W_{1}(j) \\
\vdots \\
W_{m_{j}}(j)
\end{array}\right)
$$

We shall establish the following
Theorem A. For each $s>-1$, the weighted Bergman kernel of $\Omega=$ $\Omega_{a, m, n}$ is given by the formula

$$
\mathcal{K}_{s, \Omega}(Z, W)=\frac{1}{v_{s}(\Omega)} \cdot \frac{H_{s}(t, u)}{H_{s}(0,0)}, \quad Z, W \in \Omega
$$

where $t=Z \bullet \bar{W}$ and $u=(Z \bullet Z)(\overline{W \bullet W})$. The latter product is understood in the sense of (1.2).

Remark 1.2. 1) As a consequence of Theorem A, we obtain an explicit formula for the weighted Bergman kernel for oval domains (see [D'A1]) and the minimal ball (see [OPY] and [MY]).
2) Using the same argument as in [FH1] and [FH2], we can rewrite (1.5) in terms of the Appel hypergeometric function in several variables so that by Remark 1.1, the Bergman kernel $\mathcal{K}_{0, \Omega}(Z, W)$ is a rational fraction if $1 / a_{1}, \ldots, 1 / a_{d}$ are positive integers.

Let $\partial \Omega$ denote the boundary of $\Omega$. Each $Z \in M_{m_{1}, n_{1}}(\mathbb{C}) \times \ldots \times M_{m_{d}, n_{d}}(\mathbb{C})$, $Z \neq 0$, can be written uniquely in the form

$$
\begin{equation*}
Z=Z(r, W):=\left(r^{1 / a_{1}} W(1), \ldots, r^{1 / a_{d}} W(d)\right) \tag{1.6}
\end{equation*}
$$

where $r$ is a positive number and $W=(W(1), \ldots, W(d)) \in \partial \Omega$. This parametrization of $M_{m_{1}, n_{1}}(\mathbb{C}) \times \ldots \times M_{m_{d}, n_{d}}(\mathbb{C})$ induces a boundary measure $\sigma$ on $\partial \Omega$ given by the formula

$$
\begin{aligned}
& \int_{M_{m_{1}, n_{1}}(\mathbb{C}) \times \ldots \times M_{m_{d}, n_{d}}(\mathbb{C})} f(Z) d v(Z) \\
&= \int_{0}^{\infty} r^{-1+2 \sum_{j=1}^{d} m_{j} n_{j} / a_{j}} \int_{\partial \Omega} f(Z(r, W)) d \sigma(W) d r
\end{aligned}
$$

for all compactly supported continuous functions $f$ on $M_{m_{1}, n_{1}}(\mathbb{C}) \times \ldots \times$ $M_{m_{d}, n_{d}}(\mathbb{C})$.

We denote by $\mathcal{A}(\Omega)$ the space of all continuous functions $f$ on the closure $\bar{\Omega}$ of $\Omega$ such that $f$ is holomorphic on $\Omega$. We define the Szegő kernel of $\Omega$ to be the kernel function $\mathcal{S}_{\Omega}: \Omega \times \bar{\Omega} \rightarrow \mathbb{C}$ that satisfies the following:

1) $\mathcal{S}_{\Omega}(\cdot, W)$ is holomorphic on $\Omega$ for all $W \in \bar{\Omega}$,
2) $\mathcal{S}_{\Omega}(Z, W)=\overline{\mathcal{S}_{\Omega}(W, Z)}$ for all $Z, W \in \Omega$,
3) for all $f \in \mathcal{A}(\Omega)$ we have

$$
f(Z)=\int_{\partial \Omega} \mathcal{S}_{\Omega}(Z, W) f(W) d \sigma(W)
$$

One of the main purposes of this paper is to compute the Szegő kernel $\mathcal{S}_{\Omega}(Z, W)$. More precisely, we shall prove the following

Theorem B. The Szegő kernel of $\Omega$ is given by the formula

$$
\mathcal{S}_{\Omega}(Z, W)=\frac{1}{\sigma(\partial \Omega)} \cdot \frac{H_{-1}(t, u)}{H_{-1}(0,0)}, \quad Z, W \in \Omega
$$

where $t=Z \bullet \bar{W}$ and $u=(Z \bullet Z)(\overline{W \bullet W})$. The latter product is understood in the sense of (1.2).

Corollary C. The Szegő kernel of $\mathbb{B}_{*}$ is given by the formula

$$
\begin{aligned}
\mathcal{S}_{\mathbb{B}_{*}}(z, w)= & \frac{1}{2 n^{3} \sigma\left(\partial \mathbb{B}_{*}\right)} \\
& \times \frac{\sum_{k=0}^{[(n-1) / 2]}\binom{n}{2 k+1} x^{n-2 k-2} y^{k}\left[2 n x-(n-1-2 k)\left(x^{2}-y\right)\right]}{\left(x^{2}-y\right)^{n}}
\end{aligned}
$$

where $x=1-z \bullet \bar{w}, y=z \bullet z \overline{w \bullet w}$ and $[(n-1) / 2]$ is the greatest integer smaller than or equal to $(n-1) / 2$.

For each $s>-1$ and $p \geq 1$, let $L_{s}^{p}(\Omega)$ the Banach space of all functions on $\Omega$ which are $L^{p}$-integrable with respect to the measure $\prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}} \mid Z_{l}(j)$ - $\left.Z_{l}(j)\right|^{(p-2) / 2} d v_{s}(Z)$. We denote by $\mathcal{A}_{s}^{p}(\Omega)$ the space of all holomorphic functions on $\Omega$ which are in the space $L_{s}^{p}(\Omega)$, and $\mathcal{H}^{p}(\Omega)$ the Hardy space with respect to the measure $\sigma$ on the boundary of $\Omega$. We shall show that the spaces $\mathcal{A}_{s}^{p}(\Omega)$ and $\mathcal{H}^{p}(\Omega)$ furnished respectively with the norms of $L_{s}^{p}(\Omega)$ and $L^{p}(\partial \Omega, \sigma)$ are Banach spaces.
2. Some integral and summation formulas. We use the notations of Section 1. We let $m=\left(m_{1}, \ldots, m_{d}\right), n=\left(n_{1}, \ldots, n_{d}\right)$ and $a=\left(a_{1}, \ldots, a_{d}\right)$ be as in the introduction. We set

$$
\mathbb{E}_{a, m}:=\{t \in] 0, \infty\left[^{m}: \sum_{j=1}^{d}\left[\sum_{l=1}^{m_{j}} t_{j l}^{2}\right]^{a_{j}}<1\right\}
$$

$$
\partial \mathbb{E}_{a, m}:=\{t \in] 0, \infty\left[^{m}: \sum_{j=1}^{d}\left[\sum_{l=1}^{m_{j}} t_{j l}^{2}\right]^{a_{j}}=1\right\}
$$

Each $\left.t=\left(t_{j l}\right) \in\right] 0, \infty\left[^{m}\right.$ can be written in the form $t=t(r, u):=\left(r^{1 / a_{j}} u_{j l}\right)$ where $r \in] 0, \infty\left[\right.$ and $u=\left(u_{j l}\right) \in \partial \mathbb{E}_{a, m}$. Thus the canonical volume form $d t=\wedge_{j=1}^{d} \wedge_{l=1}^{m_{j}} d t_{j l}$ on $\mathbb{R}^{m}$ induces a boundary volume form $\phi$ on $\partial \mathbb{E}_{a, m}$ given by the formula

$$
\begin{equation*}
\int_{] 0, \infty\left[^{n}\right.} f(t) d t=\int_{] 0, \infty\left[\times \partial \mathbb{E}_{a, m}\right.} r^{-1+\sum_{j=1}^{d} m_{j} / a_{j}} f(t(r, u)) d r \wedge \phi(u) \tag{2.1}
\end{equation*}
$$

If $k=\left(k_{j l}\right) \in \mathbb{N}_{0}^{m}$ and $j \in\{1, \ldots, d\}$, set

$$
k(j):=\left(k_{j 1}, \ldots, k_{j m_{j}}\right), \quad|k(j)|:=\sum_{l=1}^{m_{j}} k_{j l}, \quad|k|:=\sum_{j=1}^{d}|k(j)|
$$

For $s>-1$, let $\chi_{s}(t):=\left(1-\sum_{j=1}^{d}\left[\sum_{l=1}^{m_{j}} t_{j l}^{2}\right]^{a_{j}}\right)^{s}$. Then we have the following
Lemma 2.1. For each $s>-1$, and $k \in \mathbb{N}_{0}^{m}$, we have

$$
\begin{aligned}
\int_{\mathbb{E}_{a, m}} \chi_{s}(t) & \prod_{j=1}^{j_{0}} \prod_{l=1}^{m_{j}} t_{j l}^{1+2 k_{j l}} \prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}} t_{j l}^{2 n_{j}-3+2 k_{j l}} d t \\
= & \frac{\Gamma(s+1) \prod_{j=1}^{j_{0}} \Gamma\left(\frac{m_{j}+|k(j)|}{a_{j}}\right) \prod_{j=j_{0}+1}^{d} \Gamma\left(\frac{m_{j} n_{j}-m_{j}+|k(j)|}{a_{j}}\right)}{2^{|m|} a_{1} \ldots a_{d} \Gamma\left(s+1+\sum_{j=1}^{j_{0}} \frac{m_{j}+|k(j)|}{a_{j}}+\sum_{j=j_{0}+1}^{d} \frac{m_{j} n_{j}-m_{j}+|k(j)|}{a_{j}}\right)} \\
& \times \prod_{j=1}^{j_{0}} \frac{k(j)!}{\Gamma\left(m_{j}+|k(j)|\right)} \prod_{j=j_{0}+1}^{d} \frac{\prod_{l=1}^{m_{j}} \Gamma\left(n_{j}-1+k_{j l}\right)}{\Gamma\left(m_{j} n_{j}-m_{j}+|k(j)|\right)},
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{\partial \mathbb{E}_{a, m}} \prod_{j=1}^{j_{0}} \prod_{l=1}^{m_{j}} t_{j l}^{1+2 k_{j l}} \prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}} t_{j l}^{2 n_{j}-3+2 k_{j l}} \phi(t) \\
&= \frac{\prod_{j=1}^{j_{0}} \Gamma\left(\frac{m_{j}+|k(j)|}{a_{j}}\right) \prod_{j=j_{0}+1}^{d} \Gamma\left(\frac{m_{j} n_{j}-m_{j}+|k(j)|}{a_{j}}\right)}{2^{|m|-1} a_{1} \ldots a_{d} \Gamma\left(\sum_{j=1}^{j_{0}} \frac{m_{j}+|k(j)|}{a_{j}}+\sum_{j=j_{0}+1}^{d} \frac{m_{j} n_{j}-m_{j}+|k(j)|}{a_{j}}\right)} \\
& \times \prod_{j=1}^{j_{0}} \frac{k(j)!}{\Gamma\left(m_{j}+|k(j)|\right)} \prod_{j=j_{0}+1}^{d} \frac{\prod_{l=1}^{m_{j}} \Gamma\left(n_{j}-1+k_{j l}\right)}{\Gamma\left(m_{j} n_{j}-m_{j}+|k(j)|\right)} .
\end{aligned}
$$

Proof. To prove the first part of the lemma we use integration in polar coordinates in several variables and Lemma 1 of [D'A2]. The second part follows from the first one and identity (2.1).

If $p$ is a non-negative integer and $q$ is a positive integer, let

$$
N(p, q):=\frac{(2 p+q-1)(p+q-2)!}{p!(q-1)!}
$$

with the understanding that $N(0,1):=2$.
Lemma 2.2. Let $R_{s}$ be the function given by (1.5) and let

$$
\begin{aligned}
C(k, s) & :=\frac{\prod_{j=1}^{d} \prod_{l=1}^{m_{j}} N\left(k_{j l}, n_{j}\right)}{\int_{\mathbb{E}_{a, m}} \chi_{s}(t) \prod_{j=1}^{j_{0}} \prod_{l=1}^{m_{j}} t_{j l}^{1+k_{j l}} \prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}} t_{j l}^{2 n_{j}-3+2 k_{j l}} d t} \\
D(k) & :=\frac{\prod_{j=1}^{d} \prod_{l=1}^{m_{j}} N\left(k_{j l}, n_{j}\right)}{\int_{\partial \mathbb{E}_{a, m}} \prod_{j=1}^{j_{0}} \prod_{l=1}^{m_{j}} t_{j l}^{1+2 k_{j l}} \prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}} t_{j l}^{2 n_{j}-3+2 k_{j l}} \phi(t)} .
\end{aligned}
$$

Then

$$
\sum_{k \in \mathbb{N}_{0}^{m}} C(k, s) t^{k}=\frac{\left(\mathcal{D} R_{s}\right)(t)}{\Gamma(s+1)}, \quad \sum_{k \in \mathbb{N}_{o}^{m}} D(k) t^{k}=\frac{\left(\mathcal{D} R_{-1}\right)(t)}{2} .
$$

Proof. First observe that in view of Lemma 2.1 we have

$$
\begin{aligned}
C(k, s)= & \frac{2^{|m|} a_{1} \ldots a_{d} \Gamma\left(s+1+\sum_{j=1}^{j_{0}} \frac{m_{j}+|k(j)|}{a_{j}}+\sum_{j=j_{0}+1}^{d} \frac{m_{j} n_{j}-m_{j}+|k(j)|}{a_{j}}\right)}{\Gamma(s+1) \prod_{j=1}^{j_{0}} \Gamma\left(\frac{m_{j}+|k(j)|}{a_{j}}\right) \prod_{j=j_{0}+1}^{d} \Gamma\left(\frac{m_{j} n_{j}-m_{j}+|k(j)|}{a_{j}}\right)} \\
& \times \prod_{j=1}^{j_{0}} 2^{m_{j}} \frac{\Gamma\left(m_{j}+|k(j)|\right)}{k(j)!} \\
& \times \prod_{j=j_{0}+1}^{d}\left(\frac{\Gamma\left(m_{j} n_{j}-m_{j}+|k(j)|\right)}{\left(\left(n_{j}-1\right)!\right)^{m_{j}} k(j)!} \prod_{l=1}^{m_{j}}\left(2 k_{j l}+n_{j}-1\right)\right),
\end{aligned}
$$

Therefore,

$$
\Gamma(s+1) \sum_{k \in \mathbb{N}_{0}^{m}} C(k, s) t^{k}=\sum_{h \in \mathbb{N}_{0}^{d}} C^{\prime}(h, s) \sum_{|k(j)|=h_{j}} C^{\prime \prime}(h, k, s) t^{k},
$$

where

$$
\begin{aligned}
C^{\prime}(h, s)= & \frac{\Gamma\left(s+1+\sum_{j=1}^{j_{0}} \frac{m_{j}+h_{j}}{a_{j}}+\sum_{j=j_{0}+1}^{d} \frac{m_{j} n_{j}-m_{j}+h_{j}}{a_{j}}\right)}{\prod_{j=1}^{j_{0}} \Gamma\left(\frac{m_{j}+h_{j}}{a_{j}}\right) \prod_{j=j_{0}+1}^{d} \Gamma\left(\frac{m_{j} n_{j}-m_{j}+h_{j}}{a_{j}}\right)} \\
& \times \prod_{j=1}^{j_{0}} \frac{\Gamma\left(m_{j}+h_{j}\right)}{h_{j}!} \prod_{j=j_{0}+1}^{d} \frac{\Gamma\left(m_{j} n_{j}-m_{j}+h_{j}\right)}{h_{j}!},
\end{aligned}
$$

$$
\begin{aligned}
C^{\prime \prime}(h, k, s)= & 2^{|m|} \prod_{j=1}^{j_{0}} \frac{a_{j} 2^{m_{j}} h_{j}!}{k(j)!} \\
& \times \prod_{j=j_{0}+1}^{d}\left(\frac{a_{j} h_{j}!}{\left(\left(n_{j}-1\right)!\right)^{m_{j}} k(j)!} \prod_{l=1}^{m_{j}}\left(2 k_{j l}+n_{j}-1\right)\right)
\end{aligned}
$$

This fact, combined with the multinomial theorem, yields

$$
\sum_{|k(j)|=h_{j}} C^{\prime \prime}(h, k, s) t^{k}=\mathcal{D}\left(\prod_{j=1}^{d}\left(\sum_{l=1}^{m_{j}} t_{j l}\right)^{h_{j}}\right)
$$

and thus

$$
\sum_{k \in \mathbb{N}_{0}^{m}} C(k, s) t^{k}=\frac{1}{\Gamma(s+1)} \mathcal{D}\left(u\left(\sum_{l=1}^{m_{1}} t_{1 l}, \ldots, \sum_{l=1}^{m_{d}} t_{d l}\right)\right)
$$

where $u$ is the function in $d$ variables $x=\left(x_{1}, \ldots, x_{d}\right)$ defined by

$$
u(x):=\sum_{h \in \mathbb{N}_{0}^{d}} C^{\prime}(h, s) x^{h}
$$

Now setting

$$
v(x):=\sum_{h \in \mathbb{N}_{0}^{d}} \frac{\Gamma\left(s+1+\sum_{j=1}^{j_{0}} \frac{m_{j}+h_{j}}{a_{j}}+\sum_{j=j_{0}+1}^{d} \frac{m_{j} n_{j}-m_{j}+h_{j}}{a_{j}}\right)}{\prod_{j=1}^{j_{0}} \Gamma\left(\frac{m_{j}+h_{j}}{a_{j}}\right) \prod_{j=j_{0}+1}^{d} \Gamma\left(\frac{m_{j} n_{j}-m_{j}+h_{j}}{a_{j}}\right)} x^{h}
$$

we see that $u(x)=(\widetilde{\mathcal{D}} v)(x)=G_{s}(x)$. This proves the first equality in the lemma. The proof of the second equality follows in an analogous manner.
3. Preparatory results. First assume that $d=1$ and let $m=m_{1}$ and $n=n_{1}$ be positive integers. In this case, for $z, \xi \in \mathbb{C}^{n+1}$, we have $z \bullet \xi=\sum_{l=1}^{n+1} z_{l} \xi_{l}$. Let

$$
\begin{aligned}
& \mathbb{H}_{n}:=\left\{z \in \mathbb{C}^{n+1} \backslash\{0\}: z \bullet z=0\right\} \quad \text { for } n \geq 2 \\
& \mathbb{H}_{1}:=\{(z, i z): z \in \mathbb{C} \backslash\{0\}\}
\end{aligned}
$$

We set $\Gamma_{n}:=\left\{z \in \mathbb{H}_{n}:|z|=1\right\}$. Then $O(n+1, \mathbb{R})$ acts transitively on $\Gamma_{n}$ and thus there is a unique $O(n+1, \mathbb{R})$-invariant probability measure $\mu_{n}$ on $\Gamma_{n}$ induced by the Haar measure of $O(n+1, \mathbb{R})$.

If $k$ and $l$ are two non-negative integers with $k \neq l$ and if $f$ and $g$ are holomorphic polynomials on $\mathbb{C}^{n+1}$ such that $f$ is $k$-homogeneous and $g$ is $l$-homogeneous, then for all $\xi \in \mathbb{H}_{n}$ we have the identities

$$
\left\{\begin{array}{l}
\int_{\Gamma_{n}} f(w)(\xi \bullet \bar{w})^{k} d \mu_{n}(w)=\frac{f(\xi)}{N(k, n)}  \tag{3.1}\\
\int_{\Gamma_{n}} f(w) \overline{g(w)} d \mu_{n}(w)=0
\end{array}\right.
$$

The latter formulas were established [ I ], [W] and [MY] for $n \geq 2$. For $n=1$, they can be checked by direct computation since in this case we have $\Gamma_{1}=$ $\left\{\left(\frac{\sqrt{2}}{2} \zeta, i \frac{\sqrt{2}}{2} \zeta\right): \zeta \in \mathbb{S}^{1}\right\}$ and the measure $\mu_{1}$ is given by

$$
\begin{equation*}
d \mu_{1}\left(\frac{\sqrt{2}}{2} \zeta, i \frac{\sqrt{2}}{2} \zeta\right)=\frac{d t}{2 \pi} \quad \text { for } \zeta=e^{i t}, t \in[0,2 \pi] \tag{3.2}
\end{equation*}
$$

As observed in [OPY], when $n \geq 2$, there is a unique (up to a multiplicative constant) $S O(n+1, \mathbb{C})$-invariant holomorphic form $\alpha_{n}$ on $\mathbb{H}_{n}$ given in the open charts $\mathcal{U}_{j}=\left\{z \in \mathbb{H}_{n}: z_{j} \neq 0\right\}$ by

$$
\alpha_{n}(z)=(n+1) \frac{(-1)^{j-1}}{z_{j}} d z_{1} \wedge \ldots \wedge \widehat{d z_{j}} \wedge \ldots \wedge d z_{n+1}
$$

We set $\alpha_{1}(z):=d z_{1}$. It was proved in [MY] that the form $\alpha_{n}(z) \wedge \bar{\alpha}_{n}(z)$ contracted with the vector field $z \mapsto z$ induces an $S O(n+1, \mathbb{R})$-invariant $(2 n-1)$-volume form $\omega_{n}$ on $\Gamma_{n}$ defined by

$$
\omega_{n}(z)(X):=i_{z}\left(\alpha_{n} \wedge \bar{\alpha}_{n}\right)(X)=\left(\alpha_{n}(z) \wedge \bar{\alpha}_{n}(z)\right)(z, X)
$$

for all elements $X$ of the $(2 n-1)$-fold tangent space to $\Gamma_{n}$ at $z$. Furthermore, a little calculation shows that both forms $\alpha_{n} \wedge \bar{\alpha}_{n}$ and $\omega_{n}$ are also $S^{1}$ invariant. In addition, if $\omega_{n}\left(\Gamma_{n}\right):=\int_{\Gamma_{n}} \omega_{n}(\xi)$, then the measure $\mu_{n}$ and the forms $\alpha_{n}$ and $\omega_{n}$ are related by the formula

$$
\begin{align*}
\int_{\mathbb{H}_{n}} f(z) \alpha_{n}(z) \wedge \bar{\alpha}_{n}(z) & =\int_{] 0, \infty\left[\times \Gamma_{n}\right.} t^{2 n-3} f(t \xi) d t \wedge \omega_{n}(\xi)  \tag{3.3}\\
& =\omega_{n}\left(\Gamma_{n}\right) \int_{0}^{\infty} t^{2 n-3} \int_{\Gamma_{n}} f(t \xi) d \mu_{n}(\xi) d t
\end{align*}
$$

which holds for all compactly supported $C^{\infty}$-functions $f$ on $\mathbb{H}_{n}$. This formula, combined with the fact that the forms $\alpha_{n} \wedge \bar{\alpha}_{n}$ and $\omega_{n}$ are $S^{1}$-invariant, implies that the measure $\mu_{n}$ is also $S^{1}$-invariant, and hence $S^{1} \cdot S O(n+1, \mathbb{R})$ invariant.

Lemma 3.1. Let $k, l \in \mathbb{Z}$ be such that $k \neq l$. Assume that $f$ and $g$ are two holomorphic functions on $\mathbb{H}_{n}$ such that $f$ is $k$-homogeneous and $g$ is l-homogeneous. Then

$$
\int_{\Gamma_{n}} f(w) \overline{g(w)} d \mu_{n}(w)=0
$$

Proof. We distinguish two cases.

First assume $n \geq 2$. Notice that in this case the complex space $\mathbb{X}:=$ $\mathbb{H}_{n} \cup\{0\}$ is normal. In fact, 0 is the only singular point of $\mathbb{X}$, and this singularity is normal in view of [Wh, Theorem 1B(d), p. 251]. Therefore, both $f$ and $g$ are holomorphic on $\mathbb{X}$ so that by homogeneity $f \bar{g}$ vanishes identically for $k<0$ or $l<0$. This, combined with (3.1), shows that the lemma holds for $n \geq 2$.

It remains to prove the lemma for $n=1$. In this case $\mathbb{H}_{1}=\{(z, i z)$ : $z \in \mathbb{C} \backslash\{0\}\}$. Since the function $z \mapsto f(z, i z)$ is holomorphic on $\mathbb{C} \backslash\{0\}$ and $k$-homogeneous, it has the form $c z^{k}$ where $c$ is a constant. Similarly, the function $z \mapsto g(z, i z)$ must be of the form $c^{\prime} z^{l}$ where $c^{\prime}$ is some constant. Using this fact and (3.2), a little computing shows that the lemma holds also for $n=1$.

Now consider the general case $d \geq 1$ and let $m=\left(m_{1}, \ldots, m_{d}\right)$ and $n=\left(n_{1}, \ldots, n_{d}\right)$ be as in the introduction. If $Z=(Z(1), \ldots, Z(d)) \in$ $M_{m_{1}, n_{1}+1}(\mathbb{C}) \times \ldots \times M_{m_{d}, n_{d}+1}(\mathbb{C})$ and $t=\left(t_{j l}\right) \in \mathbb{C}^{m}$, then for each $j=1, \ldots, d$ and each $l=1, \ldots, m_{j}$ set $(t, Z)_{l}(j):=t_{j l} Z_{l}(j)$, where $Z_{l}(j)$ is the $l$ th row of $Z(j)$. Then we define $(t . Z)(j)$ to be the $m_{j} \times\left(n_{j}+1\right)$-matrix whose $l$ th row is $(t, Z)_{l}(j)$ and put

$$
t \cdot Z:=((t \cdot Z)(1), \ldots,(t \cdot Z)(d))
$$

If $k \in \mathbb{Z}_{m}$, then a function $f: M_{m_{1}, n_{1}+1}(\mathbb{C}) \times \ldots \times M_{m_{d}, n_{d}+1}(\mathbb{C}) \rightarrow \mathbb{C}$ is said to be $k$-homogeneous if $f(t, Z)=t^{k} f(Z)$ for all $t \in(\mathbb{C} \backslash\{0\})^{m}$. Here the power $t^{k}$ is understood in the sense of (1.1).

We denote by $\mathbb{H}_{m, n}$ the $\sum_{j=1}^{d} m_{j} n_{j}$-dimensional complex submanifold consisting of all $Z=(Z(1), \ldots, Z(d)) \in M_{m_{1}, n_{1}+1}(\mathbb{C}) \times \ldots \times M_{m_{d}, n_{d}+1}(\mathbb{C})$ such that for each $j=1, \ldots, d$ all the rows $Z_{l}(j), l=1, \ldots, m_{j}$, of the matrix $Z(j)$ are elements of $\mathbb{H}_{n_{j}}$. We also denote by $\Gamma_{m, n}$ the $\left(2 \sum_{j=1}^{d} m_{j} n_{j}-|m|\right)$ dimensional real submanifold of $\mathbb{H}_{m, n}$ consisting of all $Z=(Z(1), \ldots, Z(d))$ $\in \mathbb{H}_{m, n}$ such that for each $j=1, \ldots, d$ all the rows $Z_{l}(j), l=1, \ldots, m_{j}$, of the matrix $Z(j)$ are elements of $\Gamma_{n_{j}}$. Then the mapping $(t, W) \mapsto Z=t . W$ is a diffeomorphism from $] 0, \infty\left[{ }^{m} \times \Gamma_{m, n}\right.$ onto $\mathbb{H}_{m, n}$.

The form

$$
\Theta(Z):=\wedge_{j=1}^{d} \wedge_{l=1}^{m_{j}} \alpha_{n_{j}}\left(Z_{l}(j)\right) \wedge \overline{\alpha_{n_{j}}\left(Z_{l}(j)\right)}
$$

is a volume form on $\mathbb{H}_{m, n}$ which is $\left(S^{1}\right)^{m}$-invariant under the action of $\left(S^{1}\right)^{m}$ on $\mathbb{H}_{m, n}$ given by the mapping $(t, Z) \mapsto t . Z$ from $(t, Z) \in\left(S^{1}\right)^{m} \times \mathbb{H}_{m, n}$ onto $\mathbb{H}_{m, n}$.

Using the coordinates $Z=t \cdot W$, where $t \in] 0, \infty\left[{ }^{m}\right.$ with $t_{j l}:=\left|Z_{l}(j)\right|$ and $W \in \Gamma_{m, n}$, and applying (3.3) we see that

$$
\begin{equation*}
\Theta(Z)=\prod_{j=1}^{j_{0}} \prod_{l=1}^{m_{j}} t_{j l} \prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}} t_{j l}^{2 n_{j}-3} d t \wedge \omega_{m, n}(W) \tag{3.4}
\end{equation*}
$$

where $d t=\wedge_{j=1}^{d} \wedge_{l=1}^{m_{j}} d t_{j l}$ is the canonical volume form on $\mathbb{R}^{m}$ and $\omega_{m, n}(W)$ is the volume form on $\Gamma_{m, n}$ given by

$$
\omega_{m, n}(W)=\wedge_{j=1}^{d} \wedge_{l=1}^{m_{j}} \omega_{n_{j}}\left(W_{l}(j)\right)
$$

Now fix $a=\left(a_{1}, \ldots, a_{d}\right)$ with $a_{1} \geq 1, \ldots, a_{d} \geq 1$, and set

$$
\begin{array}{r}
\mathbb{M}:=\left\{Z=(Z(1), \ldots, Z(d)) \in \mathbb{H}_{m, n}: \sum_{j=1}^{d}|Z(j)|^{2 a_{j}}<1\right\}, \\
\partial \mathbb{M}:=\left\{Z=(Z(1), \ldots, Z(d)) \in \mathbb{H}_{m, n}: \sum_{j=1}^{d}|Z(j)|^{2 a_{j}}=1\right\} .
\end{array}
$$

Then the mapping $(t, W) \mapsto Z=t$. $W$ is a diffeomorphism from $\mathbb{E}_{a, m} \times \Gamma_{m, n}$ onto $\mathbb{M}$ and from $\partial \mathbb{E}_{a, m} \times \Gamma_{m, n}$ onto $\partial \mathbb{M}$.

Let $\phi(t)$ denote the volume form on $\partial \mathbb{E}_{a, m}$ given by (2.1) and consider the volume form $\vartheta$ on $\partial \mathbb{M}$ given in the coordinates $Z=t \cdot W$ by

$$
\begin{equation*}
\vartheta(Z):=\prod_{j=1}^{j_{0}} \prod_{l=1}^{m_{j}} t_{j l} \prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}} t_{j l}^{2 n_{j}-3} \phi(t) \wedge \omega_{m, n}(W) \tag{3.5}
\end{equation*}
$$

The form $\vartheta$ induces a probability measure $\mu$ on $\partial \mathbb{M}$ given for all continuous functions $f$ on $\partial \mathbb{M}$ by

$$
\begin{equation*}
\int_{\partial \mathbb{M}} f(W) d \mu(W)=\frac{1}{\vartheta(\partial \mathbb{M})} \int_{\partial \mathbb{M}} f(W) \vartheta(W) \tag{3.6}
\end{equation*}
$$

where

$$
\vartheta(\partial \mathbb{M}):=\int_{\partial \mathbb{M}} \vartheta
$$

Lemma 3.2. For any $C^{\infty}-$ function $f$ on $\mathbb{H}_{m, n}$ we have

$$
\begin{aligned}
\int_{\mathbb{H}_{m, n}} f(Z) \Theta(Z)= & \int_{j 0, \infty[\times \partial \mathbb{M}}\left\{r^{-1+2\left[\sum_{j=1}^{j_{0}} \frac{m_{j}}{a_{j}}+\sum_{j=j_{0}+1}^{d} \frac{m_{j} n_{j}-m_{j}}{a_{j}}\right]}\right. \\
& \left.\times f\left(r^{1 / a_{1}} W(1), \ldots, r^{1 / a_{d}} W(d)\right)\right\} d r \wedge \vartheta(W) \\
= & \vartheta(\partial \mathbb{M}) \int_{] 0, \infty[\times \partial \mathbb{M}}\left\{r^{-1+2\left[\sum_{j=1}^{j_{0}} \frac{m_{j}}{a_{j}}+\sum_{j=j_{0}+1}^{d} \frac{m_{j} n_{j}-m_{j}}{a_{j}}\right]}\right. \\
& \left.\times f\left(r^{1 / a_{1}} W(1), \ldots, r^{1 / a_{d}} W(d)\right)\right\} d \mu(W) d r
\end{aligned}
$$

provided that the integrals make sense.
Proof. Follows from (2.1), (3.4), (3.5) and (3.6).
If $k \in \mathbb{N}_{0}^{m}$, let $\mathcal{P}^{k}\left(\mathbb{H}_{m, n}\right)$ be the space of all restrictions to $\mathbb{H}_{m, n}$ of $k$ homogeneous holomorphic polynomials on $M_{m_{1}, n_{1}+1}(\mathbb{C}) \times \ldots \times M_{m_{d}, n_{d}+1}(\mathbb{C})$.

Lemma 3.3. Let $k=\left(k_{j l}\right)$ and $k^{\prime}=\left(k_{j l}^{\prime}\right)$ be two elements of $\mathbb{Z}_{m}$. Suppose that $f$ and $g$ are holomorphic on $\mathbb{H}_{m, n}, f$ is $k$-homogeneous and $g$ is $k^{\prime}$-homogeneous. Let $s>-1$.
(1) If $k \neq k^{\prime}$, then

$$
\int_{\mathbb{M}} f(W) \overline{g(W)} d \Theta_{s}(W)=\int_{\partial \mathbb{M}} f(W) \overline{g(W)} d \vartheta(W)=0 .
$$

(2) If $k \in \mathbb{N}_{0}^{m}$ and $f \in \mathcal{P}^{k}\left(\mathbb{H}_{m, n}\right)$, then for all $Z \in \mathbb{H}_{m, n}$ we have

$$
\begin{aligned}
f(Z) & =C(k, s) \int_{\mathbb{M}} f(W)(Z \bullet \bar{W})^{k}\left(1-\sum_{j=1}^{d}|W(j)|^{2 a_{j}}\right)^{s} \Theta(W) \\
& =D(k) \int_{\partial \mathbb{M}} f(W)(Z \bullet \bar{W})^{k} d \vartheta(W)
\end{aligned}
$$

where $C(k, s)$ and $D(k)$ are given in Lemma 2.2.
Proof. We may assume that $s=0$. For $k \in \mathbb{Z}_{m}$, let $\Lambda_{k}$ denote the set of all $\beta=\left(\beta_{j l}\right)$ with $\beta_{j l} \in \mathbb{Z}^{n_{j}}$ and $\left|\beta_{j l}\right|=k_{j l}$ for all $j=1, \ldots, d$ and $l=1, \ldots, m_{j}$. Observe that the space $\mathcal{P}^{k}\left(\mathbb{H}_{m, n}\right)$ is the linear span of the monomials

$$
f_{\beta}(Z):=\prod_{j=1}^{d} \prod_{l=1}^{m_{j}} Z_{l}(j)^{\beta_{j l}}, \quad \text { where } \beta \in \Lambda_{k}
$$

Therefore, it suffices to prove the lemma for $f=f_{\beta}$ and $g=g_{\beta^{\prime}}$ where $\beta \in \Lambda_{k}, \beta^{\prime} \in \Lambda_{k^{\prime}}$.

Since $k \neq k^{\prime}$ there are $j \in\{1, \ldots, d\}$ and $l \in\left\{1, \ldots, m_{j}\right\}$ such that $\beta_{j l} \neq \beta_{j l}^{\prime}$ so that by Lemma 3.1 we see that

$$
\int_{\Gamma_{n_{j}}} W_{l}(j)^{\beta_{j l}} \overline{W_{l}(j)^{\beta_{j l}^{\prime}}} \omega_{n_{j}}\left(W_{l}(j)\right)=0
$$

Therefore,

$$
\begin{aligned}
\int_{\mathbb{M}} f_{\beta}(W) \overline{g_{\beta^{\prime}}(W)} \Theta(W)= & \int_{\mathbb{E}_{a, m}} t^{k+k^{\prime}} \prod_{j=1}^{j_{0}} t_{j l} \prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}} t_{j l}^{2 n_{j}-3} d t \\
& \times \prod_{j=1}^{d} \prod_{l=1}^{m_{j}} \int_{\Gamma_{n_{j}}} W_{l}(j)^{\beta_{j l}} \overline{W_{l}(j)^{\beta_{j l}^{\prime}}} \omega_{n_{j}}\left(W_{l}(j)\right) \\
= & 0
\end{aligned}
$$

Now by Lemma 3.2 we see that

$$
\begin{aligned}
\int_{\partial \mathbb{M}} f_{\beta}(W) & \overline{g_{\beta^{\prime}}(W)} \vartheta(W) \\
& =\frac{\int_{\mathbb{M}} f_{\beta}(W) \overline{g_{\beta^{\prime}}(W)} \Theta(W)}{\int_{0}^{1} r^{-1+2\left[\sum_{j=1}^{j_{0}} \frac{m_{j}}{a_{j}}+\frac{|k(j)|| | k^{\prime}(j) \mid}{2 a_{j}}+\sum_{j=j_{0}+1}^{d} \frac{m_{j} n_{j}-m_{j}}{a_{j}}+\frac{|k(j)|+\left|k^{\prime}(j)\right| \mid}{2 a_{j}}\right]} d r}=0 .
\end{aligned}
$$

To prove part (2), observe by (3.1) and (3.3) that if $\beta \in \Lambda_{k}$, then

$$
\int_{\Gamma_{n_{j}}} W_{l}(j)^{\beta_{j l}}\left(Z_{l}(j) \bullet \overline{W_{l}(j)}\right)^{k_{j l}} \omega_{n_{j}}\left(W_{l}(j)\right)=Z_{l}(j)^{\beta_{j l}} \frac{\int_{\Gamma_{n_{j}}} \omega_{n_{j}}}{N\left(k_{j l}, n_{j}\right)}
$$

This shows that

$$
\int_{\Gamma_{m, n}} f_{\beta}(W)(Z \bullet \bar{W})^{k} \omega_{m, n}(W)=f_{\beta}(Z) \frac{\int_{\Gamma_{m, n}} \omega_{m, n}}{\prod_{j=1}^{d} \prod_{l=1}^{m_{j}} N\left(k_{j l}, n_{j}\right)}
$$

This fact, combined with (3.4), implies that

$$
\begin{aligned}
& \int_{\mathbb{M}} f_{\beta}(W)\left(1-\sum_{j=1}^{d}|W(j)|^{2 a_{j}}\right)^{s}(Z \bullet \bar{W})^{k} \Theta(W) \\
&= \int_{\mathbb{E}_{a, m}} \chi_{s}(t) \prod_{j=1}^{j_{0}} \prod_{l=1}^{m_{j}} t_{j l}^{1+2 k_{j l}} \prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}} t_{j l}^{2 n_{j}-3+2 k_{j l}} d t \\
& \times \int_{\Gamma_{m, n}} f_{\beta}(W)(Z \bullet \bar{W})^{k} \omega_{m, n}(W) \\
&= \frac{f_{\beta}(Z)}{C(k, s)}
\end{aligned}
$$

Thus by Lemma 3.2 we have

$$
\begin{aligned}
\int_{\partial \mathbb{M}} f_{\beta}(W) & (Z \bullet \bar{W})^{k} \vartheta(W) \\
& =\frac{\int_{\mathbb{M}} f_{\beta}(W)\left(1-\sum_{j=1}^{d}|W(j)|^{2 a_{j}}\right)^{s}(Z \bullet \bar{W})^{k} \Theta(W)}{\int_{0}^{1} r^{-1+2\left[\sum_{j=1}^{j_{0}} \frac{m_{j}+|k(j)|}{a_{j}}+\sum_{j=j_{0}+1}^{d} \frac{m_{j} n_{j}-m_{j}+|k(j)|}{a_{j}}\right]}\left(1-r^{2}\right)^{s} d r} \\
& =\frac{f_{\beta}(Z)}{D(k)}
\end{aligned}
$$

4. The Bergman and Szegő kernels of $\mathbb{M}$. For $s>-1$ set

$$
\Theta_{s}(Z):=\left(1-\sum_{j=1}^{d}|Z(j)|^{2 a_{j}}\right)^{s} \Theta(Z)
$$

We denote by $L_{s}^{p}(\mathbb{M})$ the space of holomorphic functions that satisfy

$$
\|f\|_{L_{s}^{p}(\mathbb{M})}^{p}=\left(\int_{\mathbb{M}}|f(Z)|^{p} \Theta_{s}(Z)\right)^{1 / p}<\infty
$$

and by $\mathcal{A}_{s}^{p}(\mathbb{M})$ the subspace of $L_{s}^{p}(\mathbb{M})$ consisting of holomorphic functions on $\mathbb{M}$. Using local coordinates in $\mathbb{M}$, it is easy to see that for each compact set $\mathbb{A}$ in $\mathbb{M}$, there is a positive constant $C=C(s, p, n)$ such that

$$
\begin{equation*}
\sup _{Z \in \mathbb{A}}|g(Z)| \leq C\|g\|_{\mathcal{A}_{s}^{p}(\mathbb{M})} \tag{4.1}
\end{equation*}
$$

for all $g \in \mathcal{A}_{s}^{p}(\mathbb{M})$. This shows that $\mathcal{A}_{s}^{p}(\mathbb{M})$ is a Banach space.
For $p \geq 1$, denote by $\mathcal{H}^{p}(\mathbb{M})$ the Hardy space of $\mathbb{M}$. This is the space of all those holomorphic functions $f$ on $\mathbb{M}$ that satisfy

$$
\|f\|_{\mathcal{H}^{p}}:=\sup _{0<r<1}\left\{\int_{\partial \mathbb{M}}\left|f\left(r^{1 / a_{1}} W(1), \ldots, r^{1 / a_{d}} W(d)\right)\right|^{p} d \mu(W)\right\}^{1 / p}<\infty
$$

We shall see below that $\mathcal{H}^{p}(\mathbb{M})$ can be identified with a closed subspace of $L^{p}(\partial \mathbb{M}, \mu)$ and thus is a Banach space.

Proposition 4.1. If $f \in \mathcal{A}_{s}^{2}(\mathbb{M})$ then there exists a multi-sequence $\left\{f_{k}\right\}_{k \in \mathbb{N}^{m}}$ of holomorphic polynomials such that $f_{k} \in \mathcal{P}^{k}(\mathbb{M})$ and

$$
f(Z)=\sum_{k \in \mathbb{N}_{0}^{m}} f_{k}(Z)
$$

where the series is convergent uniformly on compact sets of the domain $\mathbb{B}_{m, n, a}$ in $M_{m_{1}, n_{1}+1}(\mathbb{C}) \times \ldots \times M_{m_{d}, n_{d}+1}(\mathbb{C})$ given by

$$
\mathbb{B}_{m, n, a}:=\left\{Z \in M_{m_{1}, n_{1}+1}(\mathbb{C}) \times \ldots \times M_{m_{d}, n_{d}+1}(\mathbb{C}): \sum_{j=1}^{d}|Z(j)|^{2 a_{j}}<1\right\}
$$

Proof. Step 1. First note that if $n_{1} \geq 2, \ldots, n_{d} \geq 2$, then the conclusion of the proposition holds for any holomorphic function $f$ on $\mathbb{M}$. Indeed, set

$$
\mathbb{X}=\bigcap_{j=1}^{d} \bigcap_{l=1}^{m_{j}}\left\{Z \in \mathbb{B}_{m, n, a}: Z_{l}(j) \bullet Z_{l}(j)=0\right\}
$$

Then $\mathbb{X}$ is a complex space which is the zero set of the $\sum_{j=1}^{d} m_{j}$ holomorphic functions $g_{j l}(Z)=Z_{l}(j) \bullet Z_{l}(j), l=1, \ldots, m_{j}, j=1, \ldots, d$, in $\mathbb{B}_{m, n, a}$. Moreover, $\mathbb{X}$ is of constant dimension $\sum_{j=1}^{d} m_{j} n_{j}$ and its set of singular points is

$$
\mathbb{X}^{\times}=\bigcap_{j=1}^{d} \bigcap_{l=1}^{m_{j}}\left\{(Z(1), \ldots, Z(d)) \in \mathbb{B}_{m, n, a}: Z_{l}(j)=0\right\}
$$

and for each point $Z \in \mathbb{X}^{\times}$we have $\operatorname{dim}_{Z} \mathbb{X}^{\times} \leq-2+\sum_{j=1}^{d} m_{j} n_{j}$ so that by [Wh, Theorem $\left.1 \mathrm{~B}\left(\mathrm{~d}^{\prime}\right), \mathrm{p} .251\right]$ we see that $Z$ is a normal singular point in $\mathbb{X}$. On the other hand, the set of regular points of $\mathbb{X}$ is precisely the manifold $\mathbb{M}$ and of course consists of normal points. It follows that $\mathbb{X}$ is a normal complex space. By the second Riemann removable singularity theorem (see [KK, pp. 307]) every holomorphic function $f$ on $\mathbb{M}$ can be extended uniquely to a holomorphic function $\tilde{f}$ in $\mathbb{X}$. Since $\mathbb{B}_{m, n, a}$ is a domain of holomorphy the proposition follows from the Oka-Cartan Theorem B.

Step 2. Consider now the situation where $j_{0} \geq 1$. If $Z \in \mathbb{H}_{m, n}$ is fixed and if $r=\left(r_{j l}\right)_{l=1, \ldots, m_{j} ; j=1, \ldots, d}$ is a finite sequence of positive numbers we set

$$
\Delta_{m, n}:=\left\{\lambda=\left(\lambda_{j l}\right) \in \mathbb{C}^{m}: 0<\left|\lambda_{j l}\right| \leq r_{j l}\right\}
$$

We choose the $r_{j l}$ 's sufficiently small so that for all $\lambda \in \Delta_{m, n}$ we have $\lambda . Z \in \mathbb{M}$. Then $\lambda \mapsto \lambda . Z$ maps continuously $\Delta_{m, n}$ into $\mathbb{M}$ and is holomorphic on the interior of $\Delta_{m, n}$. Consider the function

$$
\varphi_{Z}(\lambda):=f(\lambda . Z), \quad \lambda \in \Delta_{m, n}
$$

The function $\varphi_{Z}$ has a Laurent series expansion of the form

$$
\varphi_{Z}(\lambda)=\sum_{k \in \mathbb{Z}_{m}} f_{k}(Z) \lambda^{k}
$$

where $f_{k}: \mathbb{H}_{m, n} \rightarrow \mathbb{C}$ is a $k$-homogeneous holomorphic function which is independent of the choice of $r=\left(r_{j l}\right)_{l=1, \ldots, m_{j} ; j=1, \ldots, d}$. Indeed, $f_{k}$ is given only in terms of $f$ by

$$
\begin{equation*}
f_{k}(Z)=\frac{1}{(2 i \pi)^{|m|}} \int_{\left\{\left|\lambda_{j l}\right|=r_{j l}: l=1, \ldots, m_{j} ; j=1, \ldots, d\right\}} f(\lambda \cdot Z) \prod_{j, l} \frac{d \lambda_{j l}}{\lambda_{j l}^{k_{j l}+1}} \tag{4.3}
\end{equation*}
$$

In particular, if $Z \in \mathbb{M}$, then we can choose $r_{j l}=1$ so that by (4.3) we have

$$
\left|f_{k}(Z)\right| \leq \frac{1}{(2 i \pi)^{|m|}} \int_{\left(S^{1}\right)^{m}}|f(\lambda . Z)| \prod_{j=1}^{d} \prod_{l=1}^{m_{j}} \frac{d \lambda_{j l}}{\lambda_{j l}}
$$

This implies that if $f \in \mathcal{A}_{s}^{2}(\mathbb{M})$, then

$$
\begin{aligned}
\int_{\mathbb{M}}\left|f_{k}(Z)\right|^{2} \Theta_{s}(Z) & \leq \frac{1}{(2 i \pi)^{|m|}} \int_{\left(S^{1}\right)^{m}} \int_{\mathbb{M}}|f(\lambda \cdot Z)|^{2} \Theta_{s}(Z) \prod_{j=1}^{d} \prod_{l=1}^{m_{j}} \frac{d \lambda_{j l}}{\lambda_{j l}} \\
& =\int_{\mathbb{M}}|f(Z)|^{2} \Theta_{s}(Z) .
\end{aligned}
$$

where the latter equality holds because $\Theta_{s}$ is $\left(S^{1}\right)^{m}$-invariant. If we choose $\left.r_{j l} \in\right] 0,1\left[\right.$ sufficiently small so that $\lambda . Z \in \mathbb{M}$ for all $\lambda \in \Delta_{m, n}$ and $Z \in \Gamma_{m, n}$,
then we have

$$
\begin{aligned}
\prod_{j=1}^{j_{0}} & \prod_{l=1}^{m_{j}} \int_{0}^{r_{j l}} u_{j l}^{2 k_{j l}+1} d u_{j l} \prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}} \int_{0}^{r_{j l}} u_{j l}^{2\left|n_{j}\right|+2 k_{j l}-3} d u_{j l} \int_{\Gamma_{m, n}}\left|f_{k}(W)\right|^{2} \omega_{m, n}(W) \\
& =\int_{\left\{\lambda . W: \lambda \in \Delta_{m, n}, Z \in \Gamma_{m, n}\right\}}\left|f_{k}(Z)\right|^{2} \Theta(Z) \leq\left(1+2^{|s|}\right) \int_{\mathbb{M}}|f(Z)|^{2} \Theta_{s}(Z)<\infty .
\end{aligned}
$$

This shows that if $f_{k}$ does not vanish identically on $\mathbb{H}_{m, n}$, then

$$
\prod_{j=1}^{j_{0}} \prod_{l=1}^{m_{j}} \int_{0}^{r_{j l}} u_{j l}^{2 k_{j l}+1} d u_{j l}<\infty
$$

which in turn implies that $k_{j l} \geq 0$ provided $n_{j}=1$. If we fix $j_{0}$ variables $Z(1), \ldots, Z\left(j_{0}\right) \in \mathbb{H}_{1}$, then the function $g_{k}:\left(Z\left(j_{0}+1\right), \ldots, Z(d)\right) \mapsto$ $f_{k}(Z(1), \ldots, Z(d))$ is holomorphic on the manifold $\mathbb{H}_{n_{j_{0}+1}} \times \ldots \times \mathbb{H}_{n_{d}}$. Now the same reasoning as in Step 1 implies that $g_{k}$ is the restriction of a holomorphic function in the domain in $M_{m_{j_{0}+1}, n_{j_{0}+1}+1}(\mathbb{C}) \times \ldots \times M_{m_{d}, n_{d}+1}(\mathbb{C})$ consisting of all elements $\left(Z\left(j_{0}+1\right), \ldots, Z(d)\right)$ that satisfy

$$
\sum_{j=j_{0}+1}^{d}|Z(j)|^{2 a_{j}}<\left(1-\sum_{j=1}^{j_{0}}|Z(j)|^{2 a_{j}}\right)^{1 / 2}
$$

Now by homogeneity of $g_{k}$ we see that $g_{k}$ vanishes identically provided that $k_{j l}<0$ for some $j, l$. This proves that $f_{k}$ vanishes identically for $k \in \mathbb{Z}_{m} \backslash \mathbb{N}_{0}^{m}$. By the Parseval equality we see that if $Z \in \mathbb{M}$, then

$$
\sum_{k \in \mathbb{N}^{m}}\left|f_{k}(Z)\right|^{2}=\frac{1}{(2 i \pi)^{|m|}} \int_{\left(S^{1}\right)^{m}}|f(\lambda \cdot Z)|^{2} \prod_{j=1}^{d} \prod_{l=1}^{m_{j}} \frac{d \lambda_{j l}}{\lambda_{j l}}
$$

The homogeneity of the polynomials $f_{k}$ and the Cauchy-Schwarz inequality now show that the series $\sum_{k \in \mathbb{N}^{m}}\left|f_{k}(Z)\right|$ converges uniformly on compact subsets of $\mathbb{M}$, which completes the proof of the proposition.

Theorem 4.2. The weighted Bergman kernel of $\mathcal{A}_{s}^{2}(\mathbb{M})$ is given by the formula

$$
\mathcal{K}_{s, \mathbb{M}}(Z, W)=\frac{\left(\mathcal{D} R_{s}\right)(Z \bullet \bar{W})}{\Gamma(s+1)}
$$

where $R_{s}$ is the function defined in (1.5).
Proof. Putting together Proposition 4.1 and the identities in Lemma 3.3, we obtain

$$
\mathcal{A}_{s}^{2}(\mathbb{M})=\bigoplus_{k \in \mathbb{N}_{0}^{d}} \mathcal{P}^{k}(\mathbb{M})
$$

where the direct sum is orthogonal with respect to the inner product of $\mathcal{A}_{s}^{2}(\mathbb{M})$. Thus each $f \in \mathcal{A}_{s}^{2}(\mathbb{M})$ is the sum of a series of holomorphic polynomials $f_{k} \in \mathcal{P}^{k}(\mathbb{M}), k \in \mathbb{N}_{0}^{m}$. Let $C(s, k)$ be the coefficients appearing in Lemma 2.2. By Lemma 3.3 we have

$$
\begin{aligned}
f(Z) & =\sum_{k \in \mathbb{N}_{0}^{m}} f_{k}(Z)=\sum_{k \in \mathbb{N}_{0}^{m}} C(s, k) \int_{\mathbb{M}}(Z \bullet \bar{W})^{k} f_{k}(W) \Theta_{s}(W) \\
& =\int_{\mathbb{M}}\left(\sum_{k \in \mathbb{N}_{0}^{m}} C(s, k)(Z \bullet \bar{W})^{k}\right) f(W) \Theta_{s}(W)
\end{aligned}
$$

Thus

$$
\mathcal{K}_{s, \mathbb{M}}(Z, W)=\sum_{k \in \mathbb{N}_{0}^{m}} C(s, k)(Z \bullet \bar{W})^{k}=\frac{1}{\Gamma(s+1)}\left(\mathcal{D} R_{s}\right)(Z \bullet \bar{W})
$$

where the latter equality holds in view of Lemma 2.2.
Theorem 4.3. The Szegő kernel of $\mathbb{M}$ is given by the formula

$$
\mathcal{S}_{\mathbb{M}}(Z, W)=\frac{1}{2}\left(\mathcal{D} R_{-1}\right)(Z \bullet \bar{W})
$$

Proof. We use the same argument as in the proof of Theorem 4.2.
5. An operator between function spaces on $\mathbb{M}$ and function spaces on $\Omega$. If $Z=(Z(1), \ldots, Z(d)) \in M_{m_{1}, n_{1}+1}(\mathbb{C}) \times \ldots \times M_{m_{d}, n_{d}+1}(\mathbb{C})$, let $F(Z)=(W(1), \ldots, W(d))$ be the element of $M_{m_{1}, n_{1}}(\mathbb{C}) \times \ldots \times M_{m_{d}, n_{d}}(\mathbb{C})$ where $W(j)$ is the $\left(m_{j} \times n_{j}\right)$-matrix obtained from $Z(j)$ by deleting the $\left(n_{j}+1\right)$ th column. Then

$$
\varrho(F(Z))=\sum_{j=}^{d}|Z(j)|^{2 a_{j}} .
$$

Set

$$
\mathbb{V}_{0}:=\bigcup_{j=1}^{d} \bigcup_{l=1}^{m_{j}}\left\{W \in M_{m_{1}, n_{1}}(\mathbb{C}) \times \ldots \times M_{m_{d}, n_{d}}(\mathbb{C}): W_{l}(j)=0\right\}
$$

Then $F$ is a proper holomorphic mapping of degree $2^{|m|}$ which induces a proper mapping (denoted again by $F$ ) from $\mathbb{M}$ onto $\Omega \backslash \mathbb{V}_{0}$ and from $\partial \mathbb{M}$ onto $\partial \Omega \backslash \mathbb{V}_{0}$. In addition, the branching locus $\mathbb{W}$ of $F$ is given by

$$
\mathbb{W}=\bigcup_{j=1}^{d} \bigcup_{l=1}^{m_{j}}\left\{Z \in \mathbb{H}_{m, n}: Q_{j l}(Z)=0\right\}
$$

where $Q_{j l}(Z)$ is the $\left(n_{j}+1\right)$ th component of the row $Z_{l}(j)$ of the matrix
$Z(j)$. In addition, the image $F(\mathbb{W})$ is given by

$$
F(\mathbb{W})=\bigcup_{j=1}^{d} \bigcup_{l=1}^{m_{j}}\left\{W \in \Omega \backslash \mathbb{V}_{0}: W_{l}(j) \bullet W_{l}(j)=0\right\}
$$

We set $\mathbb{V}:=F(\mathbb{W}) \cup \mathbb{V}_{0}=\bigcup_{j=1}^{d} \bigcup_{l=1}^{m_{j}}\left\{W \in \Omega: W_{l}(j) \bullet W_{l}(j)=0\right\}$.
The mapping $F$ has card $(\Lambda)$ local inverses $\left(U_{\varepsilon}\right)_{\varepsilon \in \Lambda}$, where the local inverse mapping $U_{\varepsilon}, \varepsilon=\left(\varepsilon_{j l}\right) \in \Lambda$, is defined locally for $Z=(Z(1), \ldots, Z(d))$ $\in \Omega \backslash \mathbb{V}$ by

$$
U_{\varepsilon}(Z):=(W(1), \ldots, W(d))
$$

where $W(j)$ is the $\left(m_{j} \times\left(n_{j}+1\right)\right)$-matrix whose rows are given in terms of the rows $Z_{l}(j)$ and $\varepsilon$ by

$$
W_{l}(j):= \begin{cases}\left(Z_{l}(j), i \varepsilon_{j l} \sqrt{Z_{l}(j) \bullet Z_{l}(j)}\right) & \text { if } j>j_{0} \\ \left(Z_{l}(j), i Z_{l}(j)\right) & \text { if } j \leq j_{0}\end{cases}
$$

Let $d V(z):=d z_{1} \wedge d \bar{z}_{1} \wedge \ldots \wedge d z_{n_{j}} \wedge d \bar{z}_{n_{j}}$ be the canonical volume form on $\mathbb{C}^{n_{j}}$. Then the canonical volume form on $M_{m_{1}, n_{1}}(\mathbb{C}) \times \ldots \times M_{m_{d}, n_{d}}(\mathbb{C})$ is given by

$$
d V(Z):=\wedge_{j=1}^{d} \wedge_{l=1}^{m_{j}} d V\left(Z_{l}(j)\right)
$$

In addition, a little computing shows that

$$
\begin{equation*}
U_{\varepsilon}^{*}(\Theta)=\frac{\prod_{j=j_{0}+1}^{d}\left(1+n_{j}\right)^{2 m_{j}}}{\prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}}\left|Z_{l}(j) \bullet Z_{l}(j)\right|} d V(Z) \tag{5.1}
\end{equation*}
$$

Let $\Sigma$ be the set of all boundary points $Z=(Z(1), \ldots, Z(d)) \in \partial \Omega$ with

$$
Z(j)=\left(\begin{array}{c}
Z_{1}(j) \\
\vdots \\
Z_{m_{j}}(j)
\end{array}\right)
$$

such that $Z_{l}(j) \bullet Z_{l}(j) \neq 0$ for all $l=1, \ldots, m_{j}, j=1, \ldots, d$. A little computing shows that $\Sigma$ is a smooth submanifold of $M_{m_{1}, n_{1}}(\mathbb{C}) \times \ldots \times$ $M_{m_{d}, n_{d}}(\mathbb{C})$. Using the parametrization (1.5) we see that the form $d V(Z)$ induces a volume form $\eta$ on $\Sigma$ by the formula

$$
\begin{equation*}
d V(Z)=r^{-1+2 \sum_{j=1}^{d} m_{j} n_{j} / a_{j}} d r \wedge \eta \tag{5.2}
\end{equation*}
$$

In addition, we have

$$
\int_{\Sigma} f(W) \eta(W)=\int_{\partial \Omega} f(W) d \sigma(W)
$$

for all compactly supported continuous functions $f$ on $\partial \Omega$.

Lemma 5.1. For each $\varepsilon \in \Lambda$ we have

$$
U_{\varepsilon}^{*}(\vartheta)=\frac{\prod_{j=j_{0}+1}^{d}\left(1+n_{j}\right)^{2 m_{j}}}{\prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}}\left|Z_{l}(j) \bullet Z_{l}(j)\right|} \eta
$$

Proof. We use the polar decompositions of $d V(Z)$ and $\Theta$ given respectively by (5.2) and Lemma 3.2.

If $f: \Omega \rightarrow \mathbb{C}$ is a measurable function and if $Z \in \mathbb{M}$, we define the operator $T$ by

$$
\begin{equation*}
(T f)(Z):=\prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}} Q_{j l}\left(Z_{l}\right)(f \circ F)(Z) \tag{5.3}
\end{equation*}
$$

Lemma 5.2. If $f$ is an integrable compactly supported function on $\Omega \backslash \mathbb{V}$, then for $p \geq 1$ the operator

$$
T_{p}:=\left(\operatorname{card}(\Lambda) \prod_{j=j_{0}+1}^{d}\left(n_{j}+1\right)^{2 m_{j}}\right)^{-1 / p} T
$$

satisfies the identities

$$
\begin{aligned}
\int_{\mathbb{M}}\left|\left(T_{p} f\right)(Z)\right|^{p} \Theta(Z) & =\int_{\Omega}|f(W)|^{p} \prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}}\left|W_{l}(j) \bullet W_{l}(j)\right|^{(p-2) / 2} d v(W) \\
\int_{\partial \mathbb{M}}\left|\left(T_{p} g\right)(Z)\right|^{p} d \mu(Z) & =\int_{\partial \Omega}|g(W)|^{p} \prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}}\left|W_{l}(j) \bullet W_{l}(j)\right|^{(p-2) / 2} d \sigma(W),
\end{aligned}
$$

for all $f$ in $L^{p}\left(\Omega, \prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}}\left|Z_{l}(j) \bullet Z_{l}(j)\right|^{(p-2) / 2} d v(Z)\right.$ and all $g$ in $L^{p}\left(\partial \Omega, \prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}}\left|W_{l}(j) \bullet W_{l}(j)\right|^{(p-2) / 2} d \sigma(W)\right.$.

Proof. Using a partition of unity we may assume that $f$ is compactly supported in $\Omega \backslash \mathbb{V}$ and all the local inverses $\left(U_{\varepsilon}\right)_{\varepsilon \in \Lambda}$ of $F$ are defined on a neighborhood of the support of $f$. Therefore,

$$
\begin{aligned}
\int_{\mathbb{M}}|(T f)(Z)|^{p} \Theta(Z) & =\int_{\mathbb{M}}\left|\prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}} Q_{j l}(Z)(f \circ F)(Z)\right|^{p} \Theta(Z) \\
& =\int_{\mathbb{M} \backslash \mathbb{W}}\left|\prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}} Q_{j l}(Z)(f \circ F)(Z)\right|^{p} \Theta(Z) \\
& =\sum_{\varepsilon \in \Lambda} \int_{\Omega \backslash \mathbb{V}}\left|\prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}} i \varepsilon_{j l} \sqrt{W_{l}(j) \bullet W_{l}(j)} f(W)\right|^{p} U_{\varepsilon}^{*}(\Theta)(W)
\end{aligned}
$$

$$
=\operatorname{card}(\Lambda) \prod_{j=1}^{d}\left(n_{j}+1\right)^{2 m_{j}} \int_{\Omega \backslash \mathbb{V}} \frac{|f(W)|^{p}}{\prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}}\left|W_{l}(j) \bullet W_{l}(j)\right|^{(p-2) / 2}} d v(W)
$$

by (5.1). The second equality can be proved in an analogous manner.
Lemma 5.3. For each $p \geq 1$ and $s>-1$, let $\mathcal{E}_{s}^{p}(\mathbb{M})$ and $\mathcal{R}^{p}(\mathbb{M})$ denote respectively the images of $\mathcal{A}_{s}^{p}(\Omega)$ and $\mathcal{H}^{p}(\Omega)$ under the operator $T$. Then
(1) $\mathcal{E}_{s}^{p}(\mathbb{M})$ is a closed subspace of $\mathcal{A}_{s}^{p}(\mathbb{M})$ and $T_{p}$ is a unitary operator from $\mathcal{A}_{s}^{p}(\Omega)$ onto $\mathcal{E}_{s}^{p}(\mathbb{M})$. In particular, $\mathcal{A}_{s}^{p}(\Omega)$ is a Banach space. Moreover, $T$ is surjective if and only if $n_{1}=\ldots=n_{d}=1$.
(2) $\mathcal{R}^{p}(\mathbb{M})$ is a closed subspace of $\mathcal{H}^{p}(\mathbb{M})$ and $T_{p}$ is a unitary operator from $\mathcal{H}^{p}(\Omega)$ onto $\mathcal{R}^{p}(\mathbb{M})$. In particular, $\mathcal{H}^{p}(\Omega)$ is a Banach space. Moreover, $T$ is surjective if and only if $n_{1}=\ldots=n_{d}=1$.

Proof. To establish (1), observe by Lemma 5.2 that $T_{p}$ is a unitary operator from $\mathcal{A}_{s}^{p}(\Omega)$ onto $\mathcal{E}_{s}^{p}(\mathbb{M})$. We now show that $\mathcal{E}_{s}^{p}(\mathbb{M})$ is a closed subspace of $\mathcal{A}_{s}^{p}(\mathbb{M})$. If $D$ is a compact set in $\Omega \backslash \mathbb{V}$, then $E=F^{-1}(D)$ is a compact subset of $\mathbb{M}$ since $F$ is proper. Therefore by (4.1) there is a positive constant $C^{\prime}$ such that

$$
\begin{equation*}
\sup _{Z \in D}|f(Z)| \leq C^{\prime}\|T f\|_{\mathcal{A}_{s}^{p}(\mathbb{M})} \tag{5.4}
\end{equation*}
$$

for all $f \in \mathcal{A}_{s}^{p}(\Omega)$. These estimates imply that if $g$ is in the closure of $\mathcal{E}_{s}^{p}(\mathbb{M})$ then $g$ is holomorphic in $\mathbb{M}$ and there exists $f \in L_{s}^{p}(\Omega)$ such that $f$ is holomorphic on $\Omega \backslash \mathbb{V}$ and $g=T f$. Notice that $\Omega \cap \mathbb{V}$ is an analytic set in $\Omega$. Since $g$ is holomorphic in $\mathbb{M}$ it follows from (5.4) that $f \in L_{\mathrm{loc}}^{2}(\Omega)$. Therefore, $f$ can be extended holomorphically to $\Omega$, and thus $g=T f \in \mathcal{E}_{s}^{p}(\mathbb{M})$. This proves that $\mathcal{E}_{s}^{p}(\mathbb{M})$ is closed in $L_{s}^{p}(\mathbb{M})$. Finally, observe that $\mathcal{A}_{s}^{p}(\mathbb{M})$ is the closure of all the polynomials. However, $\mathcal{E}_{s}^{p}(\mathbb{M})$ contains all the polynomials if and only if $n_{1}=\ldots=n_{d}=1$. This shows that $\mathcal{E}_{s}^{p}(\mathbb{M})=\mathcal{A}_{s}^{p}(\mathbb{M})$ if and only if $n_{1}=\ldots=n_{d}=1$ and thus the proof of (1) is complete.

To prove (2), let $g \in \mathcal{R}^{p}(\mathbb{M})$. Then there is a sequence $\left\{f_{q}\right\}_{q \in \mathbb{N}_{0}} \subset \mathcal{H}^{p}(\Omega)$ such that $\left(T_{p} f_{q}\right)_{q}$ converges to $g$ in $\mathcal{H}^{p}(\mathbb{M})$. By Lemma 3.2 we see that $\left(T_{p} f_{q}\right)_{q}$ converges to $g$ in $\mathcal{A}_{0}^{p}(\mathbb{M})$. By (1), there is $\widetilde{f} \in \mathcal{A}_{0}^{p}(\Omega)$ such that $g=T f$. In virtue of (5.4) we see that $f_{q}$ converges to $f$ pointwise on $\Omega \backslash \mathbb{V}$. On the other hand, by Lemmas 3.2 and 5.2 we see that $\left\{f_{q}\right\}$ is bounded in $\mathcal{H}^{p}(\Omega)$ and thus $f \in \mathcal{H}^{p}(\Omega)$. This proves that $\mathcal{R}^{p}(\mathbb{M})$ is a closed subspace of $\mathcal{H}^{p}(\mathbb{M})$. Furthermore, these spaces are equal if and only if $\mathcal{R}^{p}(\mathbb{M})$ contains all the polynomials, but this occurs if and only if $n_{1}=\ldots=n_{d}=1$.

Lemma 5.4. Let $B_{s, \mathbb{M}}: L_{s}^{2}(\mathbb{M}) \rightarrow \mathcal{A}_{s}^{2}(\mathbb{M})$ be the weighted Bergman projection with respect to the volume form $\left(1-\sum_{j=1}^{d}|Z(j)|^{2 a_{j}}\right)^{s} \Theta(Z)$. Then

$$
\begin{equation*}
B_{s, \mathbb{M}} \circ T=T \circ B_{s, \Omega} \tag{5.5}
\end{equation*}
$$

where $B_{s, \Omega}: L_{s}^{2}(\Omega) \rightarrow \mathcal{A}_{s}^{2}(\Omega)$ is the weighted Bergman projection with respect to the measure $d v_{s}(W)$.

Proof. We first observe that the lemma holds for holomorphic functions. Indeed, if $f \in \mathcal{A}_{s}^{2}(\Omega)$ then $T f \in \mathcal{A}_{s}^{2}(\mathbb{M})$ and thus (5.5) holds at $f$. Next, we show that (5.5) also holds when $f$ is orthogonal to holomorphic functions.

If $W=(W(1), \ldots, W(d)) \in M_{m_{1}, n_{1}}(\mathbb{C}) \times \ldots \times M_{m_{d}, n_{d}}(\mathbb{C})$ let $w_{j l p}$ be the entry of the matrix $W(j)$ corresponding to the $l$ th row and $p$ th column. Let $\partial_{j l p}:=\partial / \partial w_{j l p}$ be the holomorphic derivative with respect to the variable $w_{j l p}$ and set

$$
\begin{aligned}
\mathcal{F}_{s}=\left\{\left(1-\varrho^{2}\right)^{-s} \partial_{j l p} g: g \in\right. & C_{0}^{\infty}(\Omega \backslash \mathbb{V}) \\
& \left.j=1, \ldots, d ; l=1, \ldots, m_{j} ; p=1, \ldots, n_{j}\right\}
\end{aligned}
$$

where $C_{0}^{\infty}(\Omega \backslash \mathbb{V})$ denotes the space of all $C^{\infty}$-functions with compact support in $\Omega \backslash \mathbb{V}$.

Now let $h \in L_{s}^{2}(\mathbb{M})$ be a holomorphic function and let $g \in C_{0}^{\infty}(\Omega \backslash \mathbb{V})$ be such that all the local inverses $\left(U_{\varepsilon}\right)$ are defined on a neighborhood of the support of $g$. Then we have

$$
\begin{align*}
& \int_{\mathbb{M}} h(Z) \overline{T\left(\frac{1}{\left(1-\varrho^{2}\right)^{s}} \partial_{j l p} g\right)} \Theta_{s}(Z)  \tag{5.6}\\
& =\sum_{\varepsilon \in \Lambda} \int_{\Omega \backslash \mathbb{V}} \frac{\left(f \circ U_{\varepsilon}\right)(W)}{\prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}}\left(Q_{j l} \circ U_{\varepsilon}\right)(W)} \overline{\partial_{j l p} g(W)} d v_{s}(W)=0
\end{align*}
$$

where the latter equality holds by integration by parts. Therefore,

$$
\left\langle h, T\left(\frac{1}{\left(1-\varrho^{2}\right)^{s}} \partial_{j l p} g\right)\right\rangle_{L_{s}^{2}(\mathbb{M})}=0
$$

and thus

$$
\begin{equation*}
\left(B_{s, \mathbb{M}} \circ T\right)\left(\frac{1}{\left(1-\varrho(s)^{2}\right)^{s}} \cdot \frac{\partial g}{\partial w_{j l p}}\right)=0 \tag{5.7}
\end{equation*}
$$

If now $g$ is an arbitrary $C^{\infty}$-function with compact support in $\Omega \backslash \mathbb{V}$, then using a partition of unity we see that (5.7) holds at $g$. This shows that the space $\mathcal{F}_{s}$ is contained in the orthogonal complement $\mathcal{A}_{s}^{2}(\Omega)^{\perp}$ of $\mathcal{A}_{s}^{2}(\Omega)$ in $L_{s}^{2}(\Omega)$. It remains to show that $\mathcal{F}_{s}$ is dense in $\mathcal{A}_{s}^{2}(\Omega)^{\perp}$. Let $h \in \mathcal{A}_{s}^{2}(\Omega)^{\perp}$ be orthogonal to $\mathcal{F}_{s}$ in $L_{s}^{2}(\Omega)$; then for any $g \in C_{0}^{\infty}(\Omega \backslash \mathbb{V})$,

$$
\int_{\Omega} h(W) \overline{\left(\partial_{j l p} g\right)(W)} d v(W)=\int_{\Omega} h(W) \overline{\left(1-\varrho^{2}\right)^{-s}\left(\partial_{j l p} g\right)(W)} d v_{s}(W)=0
$$

Thus $h$ satisfies the Cauchy-Riemann equations on $\Omega \backslash \mathbb{V}$ (in the sense of distributions). Therefore $h$ is holomorphic in $\Omega \backslash \mathbb{V}$. Since $h \in L_{s}^{2}(\Omega)$, it is also locally in $L^{2}(\Omega)$. It follows from [Ra, E.3.2, p. 40] that $h$ extends holomorphically across $\mathbb{V}$ in $\Omega$. Hence $h \equiv 0$.

Lemma 5.5. Let $S_{\mathbb{M}}: L^{2}(\partial \mathbb{M}) \rightarrow \mathcal{H}^{2}(\partial \mathbb{M})$ be the Szegó projection with respect to the measure $\mu$. Then

$$
\begin{equation*}
S_{\mathbb{M}} \circ T=T \circ S_{\Omega} \tag{5.8}
\end{equation*}
$$

where $S_{\Omega}: L^{2}(\partial \Omega) \rightarrow \mathcal{H}^{2}(\Omega)$ is the Szegő projection with respect to the measure $\sigma$.

Proof. Clearly, if $f \in \mathcal{H}^{2}(\Omega)$, then (5.8) holds at $f$. Suppose now that $f$ is orthogonal to $\mathcal{H}^{2}(\Omega)$ with respect to the inner product of $L^{2}(\partial \Omega)$. Consider the function

$$
\widetilde{f}(W):=f\left(\frac{W(1)}{\varrho^{1 / a_{1}}(W)}, \ldots, \frac{W(d)}{\varrho^{1 / a_{d}}(W)}\right), \quad W \in \Omega \backslash \mathbb{V} .
$$

Then by Lemmas 3.2 and 5.2 we see that $\tilde{f} \in L^{2}(\Omega)$ and $\tilde{f}$ is orthogonal to $\mathcal{A}^{2}(\Omega)$. By Lemma 5.4, $B_{0, \mathbb{M}}(T \widetilde{f})=\left(T \circ B_{0, \Omega}\right)(\widetilde{f})=0$. This shows that

$$
\int_{\mathbb{M}} h(Z) \overline{(T \tilde{f})(Z)} \Theta(Z)=0
$$

for all bounded holomorphic functions $h$ on $\mathbb{M}$. In particular, if $k \in \mathbb{N}_{0}^{m}$, then for any $h \in \mathcal{P}^{k}(\mathbb{M})$ we have

$$
\int_{\partial \mathbb{M}} h(W) \overline{(T f)(W)} d \mu(W)=\frac{\int_{\mathbb{M}} h(Z) \overline{(T \widetilde{f})(Z)} \Theta(Z)}{\sum_{j=1}^{d} \frac{|k(j)|}{a_{j}}+2 \sum_{j=1}^{j_{0}} \frac{m_{j}}{a_{j}}+2 \sum_{j=j_{0}+1}^{d} \frac{m_{j} n_{j}}{a_{j}}}=0,
$$

showing that $T f$ is orthogonal to $\mathcal{H}^{2}(\mathbb{M})$ and hence (5.8) holds at $f$.
For $k \in \mathbb{N}_{0}^{m}$, let $\Pi_{k, \mathbb{M}}$ (resp. $\Pi_{k, \Omega}$ ) denote the orthogonal projection from $\mathcal{H}^{2}(\mathbb{M})\left(\right.$ resp. $\left.\mathcal{H}^{2}(\Omega)\right)$ onto $\mathcal{P}^{k}(\mathbb{M})$ (resp. $\mathcal{P}^{k}(\Omega)$ ). We denote by $\mathbb{I}$ the element $k$ of $\mathbb{N}_{0}^{m}$ such that all the components $k_{j l}, j \geq j_{0}+1$, of $k$ are equal to 1 and the remaining components are equal to 0 .

Lemma 5.6. The following diagram commutes:


Proof. In view of Lemma 5.5 it is sufficient to prove that the diagram

commutes. To do so, note that if $f \in \mathcal{P}^{k}(\Omega)$, then $T f \in \mathcal{P}^{k+\mathbb{I}}(\mathbb{M})$ and thus

$$
\Pi_{k, \Omega} f=f \quad \text { and } \quad \Pi_{k+\mathbb{I}, \mathbb{M}} T f=T f
$$

showing that $\left(T \circ \Pi_{k, \Omega}\right)(f)=\left(\Pi_{k+\mathbb{I}, \mathbb{M}} \circ T\right)(f)$. On the other hand, if $f \in \mathcal{H}^{2}(\Omega)$ is orthogonal to $\mathcal{P}^{k}(\Omega)$ with respect to the inner product of $\mathcal{H}^{2}(\Omega)$, then $\Pi_{k, \Omega} f=0$ and thus $\left(T \circ \Pi_{k, \Omega}\right)(f)=0$. Moreover, if we expand $f$ in the form $f=\sum_{l \in \mathbb{N}_{0}^{m} \backslash\{k\}} f_{l}$, where $f_{l} \in \mathcal{P}^{l}(\Omega)$, then we have $T f=\sum_{l \in \mathbb{N}_{0}^{m} \backslash\{k\}} T f_{l}$. Since for all $l \in \mathbb{N}_{0}^{m} \backslash\{k\}$ the polynomial $T f_{l}$ is orthogonal to $\mathcal{P}^{k+\mathbb{I}}(\mathbb{M})$ with respect to the inner product of $\mathcal{H}^{2}(\mathbb{M})$ we see that $\Pi_{k+\mathbb{I}, \mathbb{M}} T f=0$. This completes the proof of the lemma.

Proof of Theorem $A$. Let $W \in \Omega \backslash \mathbb{V}$ and choose an open neighborhood $\mathcal{O}_{W}$ of $W$ so that $\mathcal{O}_{W} \subset \Omega \backslash \mathbb{V}$ and all the local inverses $\left\{U_{\varepsilon}\right\}_{\varepsilon \in \Lambda}$ are well defined in $\mathcal{O}_{W}$. In view of Remark 6.1.4 in [JP], there is a $C^{\infty}$-function $\varphi: M_{m_{1}, n_{1}}(\mathbb{C}) \times \ldots \times M_{m_{d}, n_{d}}(\mathbb{C}) \rightarrow\left[0, \infty\left[\operatorname{such}\right.\right.$ that $\operatorname{supp} \varphi \subset \mathcal{O}_{W}$ and

$$
\begin{equation*}
f(W)=\int_{\Omega} f(Z) \varphi(Z) d v(Z)=\int_{\Omega}\left(1-\varrho^{2}(Z)\right)^{-s} f(Z) \varphi(Z) d v_{s}(Z) \tag{5.9}
\end{equation*}
$$

for any holomorphic function $f$ in $\mathcal{O}_{W}$. Therefore,

$$
\mathcal{K}_{s, \Omega}(\cdot, W)=B_{s, \Omega}\left(\frac{\varphi}{\left(1-\varrho^{2}\right)^{s}}\right)
$$

Let $U:=U_{\mathbb{I}}$ be the local inverse of $F$ corresponding to $\varepsilon=\mathbb{I}$. If $Z \in \Omega \backslash \mathbb{V}$, then in view of (5.1), for $Z \in \mathbb{M}$,

$$
\begin{aligned}
& \prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}}\left(Q_{j l} \circ U\right)(Z) \mathcal{K}_{s, \Omega}(Z, W)=\left(T \circ B_{s, \Omega}\right)\left(\frac{\varphi}{\left(1-\varrho^{2}\right)^{s}}\right)(U(Z)) \\
&=\left(B_{s, \mathbb{M}} \circ T\right)\left(\frac{\varphi}{\left(1-\varrho^{2}\right)^{s}}\right)(U(Z)) \\
&=\int_{\mathbb{M} 1} \prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}}\left(Q_{j l} X\right) \frac{(\varphi \circ F)(X)}{\left(1-\sum_{j=1}^{d}|X(j)|^{2 a_{j}}\right)^{s}} \mathcal{K}_{s, \mathbb{M}}(U(Z), X) \Theta_{s}(X) \\
&=\prod_{j=j_{0}+1}^{d}\left(n_{j}+1\right)^{2 m_{j}} \sum_{\varepsilon \in \Lambda} \int_{\Omega \backslash \mathbb{V}} \varphi(Y) \frac{\mathcal{K}_{s, \mathbb{M}}\left(U(Z), U_{\varepsilon}(Y)\right)}{\overline{\prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}}\left(Q_{j l} \circ U_{\varepsilon}\right)(Y)}} d v(Y) \\
& \quad=\prod_{j=j_{0}+1}^{d}\left(n_{j}+1\right)^{2 m_{j}} \sum_{\varepsilon \in \Lambda} \frac{\mathcal{K}_{s, \mathbb{M}}\left(U(Z), U_{\varepsilon}(W)\right)}{\overline{\prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}}\left(Q_{j l} \circ U_{\varepsilon}\right)(W)}},
\end{aligned}
$$

where the latter equality holds because of (5.9). This shows that

$$
\begin{aligned}
& \mathcal{K}_{s, \Omega}(Z, W) \\
& =\prod_{j=j_{0}+1}^{d}\left(n_{j}+1\right)^{2 m_{j}} \sum_{\varepsilon \in \Lambda} \frac{\mathcal{K}_{s, \mathbb{M}}\left(U(Z), U_{\varepsilon}(W)\right)}{\prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}}\left[\left(Q_{j l} \circ U\right)(Z) \overline{\left(Q_{j l} \circ U_{\varepsilon}\right)(W)}\right]} .
\end{aligned}
$$

Setting $t:=Z \bullet \bar{W}$ and $u:=\left(Q_{j l} \circ U\right)(Z) \overline{\left(Q_{j l} \circ U\right)(W)}$ and applying Theorem 4.2 we see that for each $\varepsilon \in \Lambda$ we have

$$
\frac{\mathcal{K}_{s, \mathbb{M}}\left(U(Z), U_{\varepsilon}(W)\right)}{\prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}}\left[\left(Q_{j l} \circ U\right)(Z) \overline{\left(Q_{j l} \circ U_{\varepsilon}\right)(W)}\right]}=\frac{R_{s}(t+\varepsilon u)}{\prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}} \varepsilon_{j l} u_{j l}}
$$

from which the theorem follows because $u^{2}=(Z \bullet Z) \overline{(W \bullet W)}$.
Proof of Theorem B. We use the same notations as in the proof of Theorem B. Let $W \in \partial \Omega \backslash \mathbb{V}$. Using the coordinates (1.5) we choose $r_{0}>0$ sufficiently small so that the subset

$$
\mathcal{O}_{W}:=\{Z(r, X): r \in] 1-r_{0}, 1+r_{0}\left[,|W-X|<r_{0}, X \in \partial \Omega\right\}
$$

is contained in $M_{m_{1}, n_{1}}(\mathbb{C}) \times \ldots \times M_{m_{d}, n_{d}}(\mathbb{C}) \backslash \mathbb{V}$ and the local inverses $\left\{U_{\varepsilon}\right\}_{\varepsilon \in \Lambda}$ are well defined in $\mathcal{O}_{W}$. As in the proof of Theorem A there is a $C^{\infty}$-function $\varphi: M_{m_{1}, n_{1}}(\mathbb{C}) \times \ldots \times M_{m_{d}, n_{d}}(\mathbb{C}) \rightarrow[0, \infty[$ with support in $\mathcal{O}_{W}$ and

$$
f(W)=\int_{\mathcal{O}_{W}} f(Z) \varphi(Z) d v(Z)
$$

for any holomorphic function $f$ in $\mathcal{O}_{W}$. If $k \in \mathbb{N}_{0}^{m}$, we set

$$
\psi_{k}(X):=\int_{1-r_{0}}^{1+r_{0}} r^{-1+\sum_{j=1}^{d}|k(j)| / a_{j}+2 \sum_{j=1}^{d} m_{j} n_{j} / a_{j}} \varphi(Z(r, X)) d r, \quad X \in \partial \Omega
$$

Then $\operatorname{supp} \psi_{k} \subset \mathcal{O}_{W} \cap \partial \Omega$. In addition, by integration in polar coordinates we see that

$$
\begin{equation*}
f(W)=\int_{\partial \Omega} f(X) \psi_{k}(X) d \sigma(X) \tag{5.10}
\end{equation*}
$$

for all $f \in \mathcal{P}^{k}\left(M_{m_{1}, n_{1}}(\mathbb{C}) \times \ldots \times M_{m_{d}, n_{d}}(\mathbb{C})\right)$. Therefore,

$$
\Pi_{k, \Omega}\left(\mathcal{S}_{\Omega}(\cdot, W)\right)=\left(\Pi_{k, \Omega} \circ S_{\Omega}\right)\left(\psi_{k}\right)
$$

Recalling that $U$ is the local inverse of $F$ corresponding to $\varepsilon=\mathbb{I}$ and applying Lemma 5.6 we see that if $Z \in \Omega \backslash \mathbb{V}$ then

$$
\prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}}\left(Q_{j l} \circ U\right)(Z) \Pi_{k, \Omega}\left(S_{\Omega}(\cdot, W)\right)(Z)=\left(T \circ \Pi_{k, \Omega} \circ S_{\Omega}\right)\left(\psi_{k}\right)(U(Z))
$$

$$
\begin{aligned}
& =\left(\Pi_{k+\mathbb{1}, \mathbb{M}} \circ S_{\mathbb{M}} \circ T\right)\left(\psi_{k}\right)(U(Z)) \\
& =\int_{\partial \mathbb{M}} \prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}}\left(Q_{j l}(X)\left(\psi_{k} \circ F\right)(X) \mathcal{S}_{k+\mathbb{I}, \mathbb{M}}(U(Z), X) d \mu(X)\right. \\
& =\prod_{j=j_{0}+1}^{d}\left(n_{j}+1\right)^{2 m_{j}} \sum_{\varepsilon \in \Lambda} \int_{\partial \Omega \backslash \mathbb{V}} \psi_{k}(Y) \frac{\mathcal{S}_{k+\mathbb{I}, \mathbb{M}}\left(U(Z), U_{\varepsilon}(Y)\right)}{\overline{\prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}}\left(Q_{j l} \circ U_{\varepsilon}\right)(Y)}} d \sigma(Y) \\
& =\prod_{j=j_{0}+1}^{d}\left(n_{j}+1\right)^{2 m_{j}} \sum_{\varepsilon \in \Lambda} \frac{\mathcal{S}_{k+\mathbb{I}, \mathbb{M}}\left(U(Z), U_{\varepsilon}(W)\right)}{\overline{\prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}}\left(Q_{j l} \circ U_{\varepsilon}\right)(W)}},
\end{aligned}
$$

where the latter equality holds because of (5.10). This shows that
$\mathcal{S}_{k, \Omega}(Z, W)$

$$
=\prod_{j=j_{0}+1}^{d}\left(n_{j}+1\right)^{2 m_{j}} \sum_{\varepsilon \in \Lambda} \frac{\mathcal{S}_{k+\mathbb{I}, \mathbb{M}}\left(U(Z), U_{\varepsilon}(W)\right)}{\prod_{j=j_{0}+1}^{d} \prod_{l=1}^{m_{j}}\left[\left(Q_{j l} \circ U\right)(Z) \overline{\left(Q_{j l} \circ U_{\varepsilon}\right)(W)}\right]} .
$$

This completes the proof.
Finally, Corollary C can be proved using Theorem B and the same calculation as in the proof of [OPY, Theorem, pp. 222-223].

## References

[B] S. R. Bell, Proper holomorphic mappings and the Bergman projection, Duke Math. J. 48 (1981), 167-175.
[D'A1] J. P. D'Angelo, A note on the Bergman kernel, ibid. 45 (1978), 259-265.
[D'A2] -, An explicit computation of the Bergman kernel function, J. Geom. Anal. 4 (1994), 23-34.
[FH1] G. Francsics and N. Hanges, The Bergman kernel of complex ovals and multivariable hypergeometric functions, J. Funct. Anal. 142 (1996), 494-510.
[FH2] —, 一, Asymptotic behavior of the Bergman kernel and hypergeometric functions, in: Contemp. Math. 205, Amer. Math. Soc., 1997, 79-92.
[HP] K. T. Hahn and P. Pflug, On a minimal complex norm that extends the real euclidian norm, Monatsh. Math. 105 (1988), 107-112.
[I] K. Ii, On Bargmann-type transform and a Hilbert space of holomorphic functions, Tôhoku Math. J. 38 (1986), 57-69.
[KK] L. Kaup and B. Kaup, Holomorphic Functions of Several Variables, de Gruyter, 1983.
[L] E. Ligocka, The Hölder continuity of the Bergman projection and proper holomorphic mappings, Studia Math. 80 (1984), 89-107.
[MY] G. Mengotti and E. H. Youssfi, The weighted Bergman projection and related theory on the minimal ball, Bull. Sci. Math. 123 (1999), 501-525.
[OPY] K. Oeljeklaus, P. Pflug and E. H. Youssfi, The Bergman kernel of the minimal ball and applications, Ann. Inst. Fourier (Grenoble) 47 (1997), 915-928.
[Ra] R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer, 1986.
[W] R. Wada, On the Fourier-Borel transformation of analytic functionals on the complex sphere, Tôhoku Math. J. 38 (1986), 417-432.
[Wh] H. Whitney, Complex Analytic Varieties, Addison-Wesley, Reading, MA, 1972.

LATP
U.M.R. C.N.R.S. 6632, CMI

Université de Provence
39 Rue F. Joliot-Curie
13453 Marseille Cedex 13, France
E-mail: youssfi@gyptis.univ-mrs.fr

