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Proper holomorphic liftings and new formulas
for the Bergman and Szeg6 kernels

by

E. H. Youssr1 (Marseille)

Abstract. We consider a large class of convex circular domains in Mpm, n, (C) x
.. X Mmy ny(C) which contains the oval domains and minimal balls. We compute their
Bergman and Szeg6 kernels. Our approach relies on the analysis of some proper holomor-
phic liftings of our domains to some suitable manifolds.

1. Introduction. The use of the Bergman projection plays an impor-
tant role in the study of proper holomorphic mappings. See Bell [B] or
Ligocka [L]. In this paper we shall conversely make use of proper holomor-
phic mappings to compute Bergman and Szegé kernels. We consider a large
class of circular domains in My, », (C) x ... X My, »,(C) which contains
the generalized oval domains considered in [D’A1], [D’A2], [FH1] and [FH2]
and the minimal ball introduced in [HP]. We compute their Bergman and
Szegd kernels. Our method consists in associating to a domain in our class
an appropriate proper holomorphic lifting in which good analysis can be de-
veloped. Then we use a suitable operator to deduce the Bergman and Szeg6
kernels of the domain from those of its proper holomorphic lifting.

If p and ¢ are two positive integers we denote by M), ,(C) the pg-dimen-
sional complex vector space of all (p x ¢)-matrices with complex coefficients.
If Z = (zjr)1<j<p;i<k<q is an element of M, ,(C), we set

|Z| = (zp:zq: ’ij’2)1/27

j=1k=1
p q q 1/2
2 2
120 = (D2 (D el + | 2o 2%)))
j=1 k=1 k=1

Let d be a positive integer and let m = (my,...,mg) andn = (n1,...,nq)
be two d-tuples of integers such that m; > 1andn; > 1forallj=1,...,d.
Let a = (ay,...,aq) € R? where a; > 1, j = 1,...,d, and consider the
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162 E. H. Youssfi

function o(Z) = 0a,m,n(Z) defined for Z = (Z(1),...,Z(d)) € My, n, (C) x
oo X My, 0, (C) by

d
o(2) =312,

and set 2 = Q4 mn :={Z € My n, (C) x ... X My, 0, (C) : 0(Z) < 1}.
Note that for n = (1,...,1) the domain {2 describes, as a and m vary,
the class of generalized oval domains considered in [D’Al], [D’A2], [FH1]
and [FH2|.
Note also that for d = a = m = 1, {2 is just the minimal ball R, in C"
introduced by Hahn and Pflug [HP].

In what follows, we denote by jo the number of those n;’s that are equal
to 1. If jo > 1, we may assume without loss of generality that ny = ... =
nj, =1land n; > 2 for j =jo+1,...,d.

For each s > —1, we set dvs(Z) := (1 — o(Z))*dv(Z), where v denotes
the normalized Lebesgue measure on §2. Let AZ%(£2) be the Hilbert space of
all holomorphic functions on {2 which are square integrable with respect to
the measure dvs(Z) and denote by Ks o(Z, W) its reproducing kernel.

If S is an arbitrary non-empty set, we let S™ denote the set of all finite
multi-sequences t = (tjl)l:17,,,7mj .j=1,....d Where the entries t;; are elements
of S. Let Ny denote the set of all non-negative integers. We use the notation

d mj

(1.1) tt =TT T

j=11=1

for k = (kji)i<i<min<i<a € Ny and ¢ = (tji)i<i<m;n<j<a € C™. We
also consider the action of C™ on itself given for t = (¢;;) and u = (uj;),
I=1,...,mj,j=1,....d, by

(1.2) tu := (tﬂu]’l)lzl,m,mj;j:Lm,d, and set t? = tt.

Consider the differential operator D = D(m,n,a) acting on functions
f(t) for t = (tj1)i=1,....m;:j=1,....a in some region of C"™ by

(13) (Df)(t) =ay... ad(Dl’l .. ~D1,m1) . (Dd,l .. ~Dd,md)(f(t))u

where

2 df o
(D f)(t) == m(%ﬂ@ + (nj — 1)f(t)> if 7> jo,

4f(t) if 7 < jo.

We also consider the differential operator D= 5(m, n,a) acting on functions
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g(z) for = (x1,...,24), defined by

Jo d
(1.4) (Dg)(z) := 51"'§d(HmTj_l 11 x;wnj—mj-lg(m))

Jj=Jjo+1
where

dmi—t e

RO if 5 < jo,
~ €T
Dj = J

dmjnjfmjfl

if 5 > jo.

dﬂjmjnjimjil

Next, consider the product group A := {—1,1}™jo+1 x ... x {—1,1}"4.
We shall extend each element € = (¢j;), L =1,...,mj, j =jo+1,...,d, of
A to an element £ of {—1,1}™ be setting

~ . 1 lfj S jO?
ST Ve it § > o
If f(t) is a smooth function defined on the ball Z?Zl Sl < 1,

we consider the function f on the region 2?21 S (It + ujl) < 1in
C™ x C™ by setting

~ f(t+¢eu)
fltu) = — )
e;l H;l:jo-u [[,2 ejiug

Then for each t the partial function f(¢,-) is invariant under the group A so
that there is a unique function L£f that satisfies

Ef(t7u2) = ]A{(tv U)
Moreover, the mapping £ : f — Lf is linear.

REMARK 1.1. The operator £ maps polynomials to polynomials and ra-
tional functions to rational functions. This can be checked directly by in-
duction.

For s > —1, consider the series defined for x = (x1,...,24) € C? by
Jo mj+h; d mjin;—m;+h;
o (m) o 5( Z F(S + 1+ ijl a; + Ej:j0+1 a; )xh>
s T j mj+h; d mjinj—m;+h;
Jo F( Jaj J)H [‘( CAL L7 J)

heNd j=1 j=jo+1 2,

We shall see that the series G4(z) converges for |z| < 1. Finally, we set
ma md

(15)  Rs(t) = GS<Ztll, . thl), H,(t,u) := (L(DR,))(t,w).
=1 =1

It follows from Lemma 2.2 below that the function H,(t, u) is well defined
provided the variables ¢ and u satisfy Z?Zl S (] + Tugl) < 1.
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Throughout the paper we use the notation x e y := > 7_, xpy, if pis a
positive integer and x = (z1,...,xp) and y = (y1,...,yp) are two vectors in
CP. We extend the operation e to a C™-valued bilinear mapping defined for
Z,W € My, i, (C) x ... X My, 1, (C) by setting

Z oW :=(Zi(j) @ Wi(4))i=1,....m,j=1,....d
it Z=(ZQ),...,Z(d),W = (W(1),...,W(d)) and
Z1(j) Wi(5)
Zm,; (J) Win; (4)

We shall establish the following

THEOREM A. For each s > —1, the weighted Bergman kernel of 2 =
24 m.n s given by the formula

1 Hq(t,u)
Ksol(Z,W)= : , LW e
W)= @) 5G00) -

wheret = Z o« W andu = (Z o Z)(W e W). The latter product is understood
in the sense of (1.2).

REMARK 1.2. 1) As a consequence of Theorem A, we obtain an explicit
formula for the weighted Bergman kernel for oval domains (see [D’A1]) and
the minimal ball (see [OPY] and [MY]).

2) Using the same argument as in [FH1] and [FH2], we can rewrite (1.5)
in terms of the Appel hypergeometric function in several variables so that
by Remark 1.1, the Bergman kernel Ky o(Z, W) is a rational fraction if
1/ay,...,1/a4 are positive integers.

Let 042 denote the boundary of £2. Each Z € M, », (C)X... XMy, n,(C),
Z # 0, can be written uniquely in the form
(1.6) Z=Z(r,W) = (r/aw(1),...,rYeW(d))

where r is a positive number and W = (W(1),...,W(d)) € 0f2. This
parametrization of M,,, »,(C) X ... x Mp,, »,(C) induces a boundary mea-
sure o on J{2 given by the formula

| 1(Z)dv(2)
My ,nq (C)X ... X My, 0y (C)
= [ rie2ia /e {0 p(Z(r, W) do(W) dr
0 082

for all compactly supported continuous functions f on M, »,(C) x ... x
Mmdvnd ((C)
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_ We denote by A({2) the space of all continuous functions f on the closure
{2 of {2 such that f is holomorphic on (2. We define the Szegd kernel of {2
to be the kernel function Sy, : {2 x {2 — C that satisfies the following:
1) Sq(-, W) is holomorphic on §2 for all W € 2,
2) Sp(Z, W) =8p(W,Z) for all Z,W € {2,
3) for all f € A(S2) we have
£(2) =\ Sa(Z W) f(W)do(W).
a0
One of the main purposes of this paper is to compute the Szeg6 kernel
So(Z,W). More precisely, we shall prove the following
THEOREM B. The Szegd kernel of (2 is given by the formula
1 H,1 (t, u)
(002) H-1(0,0)’

wheret = Z ¢ W andu = (Z o Z)(W e W). The latter product is understood
in the sense of (1.2).

Sa(Z,W) = — Z,W e 0,

COROLLARY C. The Szegd kernel of B, is given by the formula

1
SB* (27 lU) = 27’L30'(8B*)
T (o )an Ry e — (n - 1 - 2 — )

(2 —y)"
wherex =1—zew,y=zezwew and [(n— 1)/2] is the greatest integer
smaller than or equal to (n —1)/2.

For each s > —1 and p > 1, let L?(2) the Banach space of all functions on
2 which are LP-integrable with respect to the measure H;l: o1 | JHERVAIE))
o 7,(5)|®P=2/2dv,(Z). We denote by AP(£2) the space of all holomorphic
functions on {2 which are in the space L?(§2), and HP({2) the Hardy space
with respect to the measure ¢ on the boundary of 2. We shall show that the
spaces AP(2) and HP(§2) furnished respectively with the norms of LE(2)
and LP(0f2,0) are Banach spaces.

2. Some integral and summation formulas. We use the notations
of Section 1. We let m = (mq,...,mq),n = (n1,...,nq) and a = (a1, ...,aq)
be as in the introduction. We set

m;

Eq,m = {t €10, 00[™ : Z [Zt?l]% < 1},

j=1 i=1
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d

OB = {t el 3 [So2] " = 1).
=1

Jj=1

Each t = (t;;) € ]0,00[™ can be written in the form ¢ = t(r,u) := (r*/%u;)
where r € ]0,00[ and u = (uj;) € OEq,,. Thus the canonical volume form
dt = /\;’»l:1 /\?;jl dt; on R™ induces a boundary volume form ¢ on JE, ,
given by the formula

(2.1) [ rwyae= [ il p (1 u)) dr A ).

10,00[™ 10,00[X OEq,m

If k= (kj) e Ng* and j € {1,...,d}, set
my d
kG) = (e k) RG] = D ke, k=) k()]
=1 j=1

For s > —1, let xs(t) := (1 Z] Do t2 ,]%)%. Then we have the following

LEMMA 2.1. For each s > —1, and k € Ng*, we have

Jjo Mmj

1+2k;; on; —342k;;
P TIIT 1T LI
Ea,m j=1li=1 Jj=jo+1l=1
j m;+lk mjn;—m;+|k(j
B F(S—l—l) §0:1[‘( g a‘J (J)‘)H] JO+1F( FALY] ajJ ‘ (J)‘)
- m m]‘ k mjnj—mj—f—k i
2l ‘al...adf(s+1+2;(’:1%—f—zj:jo_i_l %)
1-|-k?jl)
>< -
HFmJ"Hk ] 1]_I+1Fm3n1 mJ‘Hk( )’
and
1+2k;; 2n; 3+2k1
S HHt ) GOt
OBq pm j=11=1 j=jo+11=1
j m;+|k()] mgin; —m;+|k()]|
_ ;0:11—»( aj . )H] ]0+1F( aj ’ )
2\7”\*1&1 . ..adF(Zg-O:l mJJ;—lf(j)l + Z;l:jo.H mjnjir:]%jﬂk(j)l)

d
ﬁ H [L2 Ty — 1+ ki)
iy Llmy +\k( ) L(mjng —m; + k(7))

Proof. To prove the first part of the lemma we use integration in polar
coordinates in several variables and Lemma 1 of [D’A2|. The second part
follows from the first one and identity (2.1). m
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If p is a non-negative integer and ¢ is a positive integer, let

2p+g-1)p+gq—2)!
pl(g—1)! ’

with the understanding that N(0,1) := 2.

N(p,q) =

LEMMA 2.2. Let Ry be the function given by (1.5) and let

d m;
Hj:l [1,2) N(kji, ny)

O T T ™ T T
D) 1= Hj L IT2 N (kg ny) .
(T § i ) L t]f%ﬂ TTj o T2 57 ()
Then

Z C(k,s)tk _ (DRS)(t) Z D(k)tk _ (DRfl)(t)

keNg I(s+1) kENT: 2
Proof. First observe that in view of Lemma 2.1 we have

2lay . agl (s + 1+ Yoo, MG | s iG]

aj

j m;+|k(j d min;—m;+|k(j
(s + 1) [[2, D () [ (mam=ma RO

aj aj

C(k,s) =

I'(m; + |k
XHQmJ Ty + )

(mjn; —m; + |k(5)]) —
<0 ( (n; — D)™ k()] lr[fQ’“ﬂ*"j‘”)’

Jj=Jjo+1
Therefore,
P(s+1) Y Clk,s)th = > C'(h,s) Y C"(hk, )tk
keNg: heNg |k(3)=h;
where

Jo  myth; d min;—m;+h;
I(s+1+ j=1 a4, t 2 i—jot a; )

C'(h,s) =

i VD) Ty D (Pmm2)
d
o ﬁ F(mj—l—hj) H F(mjnj—mj+hj)
h;! h;! ’
j=1 J j=jo+1 J
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J |
C"(h, k, s) = 2!m! H %

m;

a;h;!
X H < = 1) )mjk(j)!H(ijl+nj_1)>'

Jj=Jjo+1 =1

This fact, combined with the multinomial theorem, yields

S kst = f[ (itﬂ)hj)

k(3)|=h; j=1 " I=1

and thus

1

(, D(u( > tu, ta)),
2 Ok = 7 Z” Z‘”
eNg =1

where w is the function in d variables x = (z1,...,24) defined by

= Z C'(h,s)z"

heNg

Now setting

j mj;+h; d m;n;—m;+h;
o(@) = Z F(s +A1 + ;021 Jaj i 4 Zj:joJrl %) o
Jo F(m.a'+hj) Hd p(mjna'*mfrhj) ’

heNg =1 a j=jo+1 a

we see that u(z) = (Dv)(x) = G4(x). This proves the first equality in the
lemma. The proof of the second equality follows in an analogous manner. m

3. Preparatory results. First assume that d = 1 and let m = m;
and n = n; be positive integers. In this case, for z,& € C"*!, we have

zef= Z”+1 21€;. Let
H, :={zcC"™'\{0}:2e2=0} forn>2,
H; :={(z,iz) : z € C\ {0}}.

We set I, := {z € H,, : |z| = 1}. Then O(n + 1,R) acts transitively on I,
and thus there is a unique O(n + 1, R)-invariant probability measure p,, on
I, induced by the Haar measure of O(n + 1,R).

If £ and [ are two non-negative integers with k = [ and if f and g are
holomorphic polynomials on C**! such that f is k-homogeneous and g is
[-homogeneous, then for all £ € H,, we have the identities
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| f(w)(€ o @) dppn(w) =
(3.1) In
S F(w)g(w) dpin (w) = 0.

The latter formulas were established [I], [W] and [MY] for n > 2. For n =1,
they can be checked by direct computation since in this case we have I} =

{(‘/TEC,Z'\@C) 1 (€ Sl} and the measure p; is given by
(3.2) d,ul(\/_C,ZL_C) d—; for ¢ = €', t € [0,2n].

As observed in [OPY], when n > 2, there is a unique (up to a multiplicative
constant) SO(n + 1, C)-invariant holomorphic form «,, on H,, given in the
open charts U; = {z € H,, : z; # 0} by
-1y

j
We set a1(z) := dz;. It was proved in [MY] that the form «,(z) A @, (2)
contracted with the vector field z — z induces an SO(n + 1,R)-invariant
(2n — 1)-volume form w,, on I3, defined by

wn (2)(X) 1= iz(an Aan)(X) = (an(z) ATn(2))(2, X)

for all elements X of the (2n—1)-fold tangent space to I, at z. Furthermore,
a little calculation shows that both forms «, A @, and w, are also S'-
invariant. In addition, if w, (13,) := { . wn(§), then the measure p,, and the
forms «,, and w, are related by the formula

(33) | f@an) ATa(z) = | ) dt Awa()

an(z) =(n+1) dzl/\.../\c?z\j/\.../\dznﬂ.

H,, 10,00[x Iy,
= wn(Fn) | 2778 | £(88) dpn (€) dt,
0 I,

which holds for all compactly supported C*°-functions f on H,. This for-
mula, combined with the fact that the forms o, A@,, and w,, are S'-invariant,
implies that the measure y,, is also S'-invariant, and hence S'-SO(n+1, R)-
invariant.

LEMMA 3.1. Let k,l € Z be such that k # l. Assume that f and g are
two holomorphic functions on H, such that f is k-homogeneous and g is
[-homogeneous. Then

| f(w)g(w) dpu (w) = 0.

Proof. We distinguish two cases.
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First assume n > 2. Notice that in this case the complex space X :=
H,, U {0} is normal. In fact, 0 is the only singular point of X, and this
singularity is normal in view of [Wh, Theorem 1B(d), p. 251]. Therefore,
both f and g are holomorphic on X so that by homogeneity fg vanishes
identically for & < 0 or | < 0. This, combined with (3.1), shows that the
lemma holds for n > 2.

It remains to prove the lemma for n = 1. In this case H; = {(z,iz2) :
z € C\ {0}}. Since the function z — f(z,iz) is holomorphic on C \ {0}
and k-homogeneous, it has the form cz* where ¢ is a constant. Similarly, the
function z + g(z,iz) must be of the form ¢/2! where ¢’ is some constant.
Using this fact and (3.2), a little computing shows that the lemma holds
alsoforn=1. =

Now consider the general case d > 1 and let m = (my,...,mg) and
n = (ni,...,nq) be as in the introduction. If Z = (Z(1),...,Z(d)) €
My 41(C) X oo X My, na+1(C) and t = (t;;) € C™, then for each
j=1,...,dand each [ =1,...,m; set (t.Z)(j) :=t;Z;(j), where Z;(j) is
the [th row of Z(j). Then we deﬁne (t.Z)(j) to be the m; x (n; +1)-matrix
whose Ith row is (t+ Z);(j) and put

t.Z = ((t.2)(1),...,(t. 2)(d)).

If £ € Zy,, then a function f : My, ny+1(C) X ..o X My, ny+1(C) — Cis
said to be k-homogeneous if f(t.Z) = tFf(Z) for all t € (C\ {0})™. Here
the power t* is understood in the sense of (1.1).

We denote by H,, , the Z j—1 mjn;-dimensional complex submanifold
consisting of all Z = (Z(l), s Z(d) € My g +1(C) X oo X Moy 1y+1(C)
such that for each j = 1,...,d all the rows Z;(j),l =1,... ,mj, of the matrix
Z(j) are elements of H,,;. We also denote by I}, , the (2 Z;l:l mjin; —|m|)-
dimensional real submanifold of H,, ,, consisting of all Z = (Z(1),...,Z(d))
€ H,y, , such that for each j = 1,...,d all the rows Z;(j),l = 1,...,m;, of
the matrix Z(j) are elements of I’ . Then the mapping (t, W) — Z =t.W
is a diffeomorphism from |0, 00" x I}, , onto Hyy, 4.

The form

O(Z) = Ny N2y o, (Z1(5)) A o, (Z1(7))
is a volume form on H,, ,, which is (S!)™-invariant under the action of (S!)™
on H,, ,, given by the mapping (t, Z) — t. Z from (t,Z) € (S)™ x H,,
onto H,, 5.

Using the coordinates Z = ¢. W, where t € ]0,00[™ with ¢;; := |Zi(5)]
and W € I, ,,, and applying (3.3) we see that

Jo mj

(3.4) =TI1]tn H Hﬁ’” St A Wi (W)

j=1l=1 Jj=jo+1lli=1
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where dt = /\?:1 A2 dtji is the canonical volume form on R™ and wy, (W)
is the volume form on I, ,, given by

wm,n(W) = /\d =1 /\l 1 Wn; (Wi(5))-

Now fix a = (ay,...,aq) with a; > 1,...,a4 > 1, and set

d
M := {Z = (Z(1).., 2(d)) € By = 312G < 1},

d
OM := {Z = (Z(1)..... 2(d)) € By Y12 = 1}.

Then the mapping (¢, W) — Z = t.W is a diffeomorphism from E, ,,, X I, »,
onto M and from 0E, ,, x I}, ,, onto OM.

Let ¢(t) denote the volume form on 0E, ,, given by (2.1) and consider
the volume form ¥ on OM given in the coordinates Z =t. W by

(3.5) HHtﬂ H Hﬁ”ﬂ £) A Wi (W),

j=11=1 J=jgo+1l=1

The form 9 induces a probability measure u on OM given for all continuous
functions f on OM by

(36) | SOV auW) = 5 | FOVOOD).
oM oM
where
9(OM) = | .
oM

LEMMA 3.2. For any C*°-function f on H,, , we have

| fze@) = | R e T
H'rn,n ]0,oo[><8M
x f(rY/aw @), ..., rYew (d))} dr AI(W)
=dM) | {r ot L g T
10,00[x OM
x frt/ W (), ... 9 W (d))} du(W) dr,
provided that the integrals make sense.
Proof. Follows from (2.1), (3.4), (3.5) and (3.6). m

If k € NI*, let P*(H,,.,) be the space of all restrictions to H,, , of k-
homogeneous holomorphic polynomials on My, n,+1(C)x. .. XMy, n,+1(C).
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LEMMA 3.3. Let k = (kji1) and k' = (k};) be two elements of Zy,. Sup-
pose that f and g are holomorphic on Hy, ,,, f is k-homogeneous and g is
k’-homogeneous. Let s > —1.

(1) If k #K, then

| f(W)gWyde.(w) = | f(W)g(W)do(w) = o.
M oM

(2) If k€ NJ* and f € P*(H,p..), then for all Z € H,, ., we have

d
1(2) = Clh,s) | FW)(Z e W)F (1= 32 W () ) ow)
M j=1
=D(k) | f(W)(Z e W)* d(W),
oM
where C(k,s) and D(k) are given in Lemma 2.2.

Proof. We may assume that s = 0. For k € Z,,, let A denote the set
of all § = (B;;) with 85 € Z™ and |Bj| = kj for all j = 1,...,d and
I =1,...,m;. Observe that the space P¥(H,, ) is the linear span of the

monomials
m;

d
f5(2) = T[] 2()%, where 5 € Ay.

Therefore, it suffices to prove the lemma for f = fg and g = gg where
B € A, B € Apr.

Since k # k' there are j € {1,...,d} and [ € {1,...,m;} such that
Bji # B3}, so that by Lemma 3.1 we see that

[ W)™ W) wn, (Wi()) = 0.

F”Lj
Therefore,
Sfﬂ(W)QB/(W) @(W _ S thrk Htl H Hthg 3
M Ea,m = J=jo+1l=1
d mj
X H S )Pt Wz( )i wn; (Wi(4))
j=1l=1T1,

=0.

Now by Lemma 3.2 we see that
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\ fs(W) gg (W) 0(W)

oM
_ fu Fo(W) gor (W) O(V) .
o Sl T_HQ[Z;;o J_;'_\k(J)H’\k,(JH_i_EJ o jnjj*mur\k<j>|2+a\jk’<j>\}dr e
0
To prove part (2), observe by (3.1) and (3.3) that if § € Ay, then
P — 8 S . Wny
%% NZi(g) e Wi(7)) ' wn, (Wi(g Z Jlji.
| W)™ (Z1(5) @ W) hn, (W) = ZiH™ =5

r, j

This shows that

. SF wm,n
WYZ o W)rw,, ,(W) = f3(Z mn )
Féyﬂfﬁ( ) ) Wi (W) = fa( )H;?:lH}”’;qN(kﬂ,nj)

This fact, combined with (3.4), implies that

S (I—Z\W 12%) (Z o W)FO(W)

Jo Mmj

S HHtlJerﬂ H Ht2nJ73+2kﬂ dt
Ea,m Jj=1ll=1 j=jo+11=1
x N fa(W)(Z e W)rwpmn(W)
Fm,n
_ Js(2)
C(k,s)

Thus by Lemma 3.2 we have
V fs(W)(Z e W)ro(W)

oM
S o (W) (1 = 325, (W (5)12%)%(Z « W)kO(W)
(1] 71+2[210 "Lz+|]k(1) +EJ o ma”i"ﬂ';ﬂ-%(])\}(l_TQ)S i
_fs2)
D(k) -

4. The Bergman and Szegd kernels of M. For s > —1 set

= (1- Z|z ) 0(2).
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We denote by L?(M) the space of holomorphic functions that satisfy

» B » 1/p
110 = (§1£(2)P04(2)) T < o0,
M
and by AP(M) the subspace of L?(M) consisting of holomorphic functions
on M. Using local coordinates in M, it is easy to see that for each compact
set A in M, there is a positive constant C' = C(s,p,n) such that

(4.1) sup |g(Z)| < Cllg]
ZeA

AL (M)

for all g € AZ(M). This shows that AP (M) is a Banach space.
For p > 1, denote by HP(M) the Hardy space of M. This is the space of
all those holomorphic functions f on M that satisfy

/
Fllser = sup { § 15w, ..oeaw@n duw)} " < oo.
0<r<1 oM

We shall see below that H?(M) can be identified with a closed subspace of
LP(OM, 1) and thus is a Banach space.

PROPOSITION 4.1. If f € A2(M) then there exists a multi-sequence
{fx}renm of holomorphic polynomials such that fr € PF(M) and

f(2)="> (2
kENg

where the series is convergent uniformly on compact sets of the domain
Brina 0 My ny4+1(C) X oo X My, ny4+1(C) given by

d
Bm,n,a = {Z S Mm17n1+1((c> XX Mmdmd-f-l((c) : Z ’Z(j)‘zaj < 1}'
j=1

Proof. Step 1. First note that if ny > 2,...,ng > 2, then the conclusion
of the proposition holds for any holomorphic function f on M. Indeed, set

d myj

X = ﬂ ﬂ{Z €Brna: Zi(j) @ Zi(j) = 0}

j=11=1

Then X is a complex space which is the zero set of the Z?:l m; holomorphic
functions g;(Z) = Zi(j) ® Zi(4), L = 1,....,mj, j = 1,....d, in By, nq.
Moreover, X is of constant dimension Z;izl m;n; and its set of singular
points is
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and for each point Z € X* we have dimyz X* < -2+ Z;l:l m;n; so that by
[Wh, Theorem 1B(d’), p. 251] we see that Z is a normal singular point in X.
On the other hand, the set of regular points of X is precisely the manifold
M and of course consists of normal points. It follows that X is a normal
complex space. By the second Riemann removable singularity theorem (see
[KK, pp. 307]) every holomorphic function f on M can be extended uniquely
to a holomorphic function fin X. Since B, o is a domain of holomorphy
the proposition follows from the Oka—Cartan Theorem B.

Step 2. Consider now the situation where jo > 1. If Z € H,, ,, is fixed
and if r = (le)lzl,...,mj;j:l,...,d is a finite sequence of positive numbers we
set

Amm = {)\ = ()\jl) eC™:0< |>\jl| < le}.

We choose the rj;’s sufficiently small so that for all A € A,,, we have
AZ € M. Then A — A.Z maps continuously A,, , into M and is holomorphic
on the interior of A,, ,. Consider the function

SOZ(A) = f()"Z)’ )\eAm,n-
The function ¢z has a Laurent series expansion of the form
=) (2N
k€L,

where f : H,,,, — C is a k-homogeneous holomorphic function which is
independent of the choice of r = (rj1)i=1,...m;;j=1,...,a- Indeed, fy is given
only in terms of f by

1 d)\jl
{INjil=rji:l=1,...om;; j=1,...,d} 3,0 gl
In particular, if Z € M, then we can choose r; = 1 so that by (4.3) we have
d my
dA; L
DN < o § PO TTTT S
(2im) Aji
(st)ym j=11=1
This implies that if f € A%(M), then
d m
1 dAji
\1£1(2)176.(2) < Qi) V' lira.z)Pe.z HH ~
i) , Aji
M (S1ym M j=11=1

=V If(2)Pes(2).
M

where the latter equality holds because O is (S!)™-invariant. If we choose
rj1 € |0, 1] sufficiently small so that \.Z € M for all A € A, ,, and Z € I}, »,
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then we have

Jo ™j Tji mj Tji

HH S 2k31+1 ]l H H S 2|nJ|+2le 3d i S |fk(W)|2wm,n(W)
j=11=1 0 j=jo+11i=1 0 Iun
= | 11(Z)1?0(2) < (142N) | |£(2)P64(2) < o.
{AWINEA, 10, ZEm n} M

This shows that if f;, does not vanish identically on H,, ,, then

Jo Mj Tl

HH S 2kﬂ+1 du, < oo,

j=1l=1 0

which in turn implies that k;; > 0 provided n; = 1. If we fix jo variables
Z(1),...,Z(jo) € Hi, then the function gr : (Z(jo+1),...,2(d)) —
fe(Z(1),..., Z(d)) is holomorphic on the manifold H,, ,, X ... x H,,. Now
the same reasoning as in Step 1 implies that g is the restriction of a holo-
morphic function in the domain in Mm10+1’n10+1+1((C) X oo X My ny+1(C)
consisting of all elements (Z(jo + 1),...,Z(d)) that satisfy

d
> 12G)P < (1 —Z|Z N
Jj=jo+1
Now by homogeneity of g we see that gi vanishes identically provided that

kji < 0 for some j, [. This proves that f;, vanishes identically for k € Z,, \N{".
By the Parseval equality we see that if Z € M, then
d mj
1 dXj;
)P = — A —.
> P = G | 2R T[T

keN™ (s1ym j=1li=1

The homogeneity of the polynomials fi and the Cauchy—Schwarz inequality
now show that the series ), -ym |fx(Z)| converges uniformly on compact
subsets of M, which completes the proof of the proposition. =

THEOREM 4.2. The weighted Bergman kernel of A%(M) is given by the
formula

(DR)(Z o« W)
I'is+1) ~
where Ry is the function defined in (1.5).

Ksm(Z,W) =

Proof. Putting together Proposition 4.1 and the identities in Lemma 3.3,

we obtain
M) = @ PHm
keNg
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where the direct sum is orthogonal with respect to the inner product of
A2%(M). Thus each f € A2(M) is the sum of a series of holomorphic poly-
nomials fr € P¥(M), k € Ni*. Let C(s, k) be the coefficients appearing in
Lemma 2.2. By Lemma 3.3 we have

F(Z2)="3" w(Z)="Y Cls,k) {(Z « W)* fi(W)O5 (W)
keNg keNg M
=§ (X Cls )z e W) ) F(W)EL(W).
M keND
Thus
_ 1 _
Keaa(Z:W) = 32 Clss)(Z 0 )" = 1 =5 (DR)(Z o )

keNg

where the latter equality holds in view of Lemma 2.2. =

THEOREM 4.3. The Szegd kernel of M is given by the formula
1 -
Sm(Z, W) = E(DR_l)(Z o WW).

Proof. We use the same argument as in the proof of Theorem 4.2. m

5. An operator between function spaces on M and function
spaceson 2. If Z = (Z(1),...,Z(d)) € My, n,+1(C) x ... X My, na+1(C),
let F(Z) = (W(1),...,W(d)) be the element of M, », (C)x... XMy, n,(C)
where W (j) is the (m; X n;)-matrix obtained from Z(j) by deleting the
(n; + 1)th column. Then

d
o(F(2)) = 312,

Set
d mj

Vo := [ (J{W € My, 0, (C) X ... X My 1, (C) : Wi(j) = 0}

j=11=1

Then F is a proper holomorphic mapping of degree 2!/™! which induces a
proper mapping (denoted again by F') from M onto 2\ Vo and from M
onto 92\ Vy. In addition, the branching locus W of F' is given by

d mj

W= JU{Z € Hpn: Qu(2) =0},

j=11=1

where @Q;;(Z) is the (n; + 1)th component of the row Z;(j) of the matrix
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Z(j). In addition, the image F(W) is given by

d mj
P(W) = (W € 2\ Vo : Wi(j) e Wi(j) = 0}.
=11=1
We set V= F(W) U Vo = UL, U {W € 2: Wi(j) ® Wi(j) = 0}.

The mapping F' has card(A) local inverses (Uc)zea, where the local in-
verse mapping Ue, € = (1) € A, is defined locally for Z = (Z(1),...,Z(d))
€ 2\V by

UAZ) = V(1) W (@)
where W (j) is the (m; x (n; 4+ 1))-matrix whose rows are given in terms of
the rows Z;(j) and € by

Wi(j) = { (Zi1(4), e/ Zi(G) ® Zu(g)) it 5 > Jo,

(Z1(5),12Z1(j)) if 7 < jo.
Let dV(z) := dzy ANdZ1 A ... Ndzp; N dZy,, be the canonical volume form on
C™i. Then the canonical volume form on M,,, »,(C) x ... x My, »,(C) is
given by

dV(2) := Ny N2y AV (Z(5)).
In addition, a little computing shows that
d .
[T jo i1 (L +mny)*m
d m . .
]._[j:j0+1 L2 12:(5) » Zi(5)]
Let X be the set of all boundary points Z = (Z(1),...,Z(d)) € 92 with

(5.1) U*(0) = av(2).

Z1(7)
Z(j) = ;
Zm; (7)
such that Z;(j) @ Z;(j) # 0 forall l = 1,...,m;, j = 1,...,d. A little
computing shows that X is a smooth submanifold of M,,, »,(C) x ... x

My, ,.n,(C). Using the parametrization (1.5) we see that the form dV(Z)
induces a volume form 7n on X' by the formula

(5.2) dV(Z) = 142 Y4y myn;/a; dr A .

In addition, we have

VW )n(w) = § f(W)do(W)
X ofn

for all compactly supported continuous functions f on 9f2.
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LEMMA 5.1. For each € € A we have
d .
IT—jo (1 + n;)>m .
d v ) ;
Hj:j0+1 szl 1Z1(7) ® Z1(7)]

Proof. We use the polar decompositions of dV(Z) and © given respec-
tively by (5.2) and Lemma 3.2. =

UZ(9) =

If f: 2 — C is a measurable function and if Z € M, we define the
operator 1" by

d my
(5.3) T)(2)= [] [Iewz)(seF)(2).

j=Jjo+11=1

LEMMA 5.2. If f is an integrable compactly supported function on 2\V,
then for p > 1 the operator

d 1/
T, —(card(/l) I1 (nj+1)2mﬂ) P
Jj=jo+1

satisfies the identities

V@ (@2)rez) = S W) H H\Wz Wi(j)| P~ 2du(W)

M J J0+1l 1

V I(To)(2) P du(2) = | |g(W)[? H H!Wz(j)°Wz(j)\(p*2)/2dU(W),
oM s Jj=Jjo+1l1l=1

for all f in LP(£2, H;l:joJrl 12, 1Z1(5) o Zi(5)|P=2/2dv(Z) and all g in
L0, TTj— o 11 T2 IWi(5) @ Wi(5)| @ =2 2da (W),
Proof. Using a partition of unity we may assume that f is compactly

supported in 2\ V and all the local inverses (U.).ca of F are defined on a
neighborhood of the support of f. Therefore,

JlIrnzrez) = || [ Tex0en)

M j=jo+1lli=1

d m; ,
| | I Texomz)| e

M\W  j=jo+1I=1

o(2)

d mj p
=3 § | I TTiev/WaG) s W) £w)| vz (@)(w)

€A O\V j=jo+1I=1
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d
: FW)[P
= card(A) | [ (n; +1)2™ _ : |
J’l_[l ’ QS\V Hj:joﬂ [LZ) Wi(5) e Wi(5)| (=272

by (5.1). The second equality can be proved in an analogous manner. m

LEMMA 5.3. For each p > 1 and s > —1, let EP(M) and RP(M) denote
respectively the images of APL(§2) and HP(§2) under the operator T. Then

dv(W)

(1) EP(M) is a closed subspace of AL(M) and T, is a unitary operator
from AR(£2) onto EE(M). In particular, AP(§2) is a Banach space. Moreover,
T is surjective if and only if n1 = ... =ng = 1.

(2) RP(M) is a closed subspace of HP(M) and T}, is a unitary operator
from HP(£2) onto RP(M). In particular, HP(§2) is a Banach space. More-
over, T 1is surjective if and only if ny = ... =ng = 1.

Proof. To establish (1), observe by Lemma 5.2 that T}, is a unitary oper-
ator from AP ({2) onto EP(M). We now show that E2(M) is a closed subspace
of AP(M). If D is a compact set in 2\ V, then E = F~!(D) is a compact
subset of M since F' is proper. Therefore by (4.1) there is a positive constant
C’ such that

(5.4) sup |f(Z)] < C'||Tf]
zeD

AL (M)

for all f € AP(£2). These estimates imply that if g is in the closure of EF (M)
then ¢ is holomorphic in M and there exists f € L?({2) such that f is
holomorphic on 2\ V and g = T'f. Notice that 2NV is an analytic set in (2.
Since g is holomorphic in M it follows from (5.4) that f € L2 (£2). Therefore,
f can be extended holomorphically to (2, and thus g = T'f € EP(M). This
proves that EP(M) is closed in LP(M). Finally, observe that A?(M) is the
closure of all the polynomials. However, E2(M) contains all the polynomials
if and only if n; = ... = ng = 1. This shows that £?(M) = A?(M) if and
only if ny = ... =ng =1 and thus the proof of (1) is complete.

To prove (2), let g € RP(M). Then there is a sequence { f,}qen, C HP(£2)
such that (T}, f,), converges to g in HP(M). By Lemma 3.2 we see that
(T, f,)q converges to g in AB(M). By (1), there is f € AP(£2) such that
g =Tf. In virtue of (5.4) we see that f, converges to f pointwise on {2\ V.
On the other hand, by Lemmas 3.2 and 5.2 we see that {f;} is bounded in
HP(2) and thus f € HP(S2). This proves that RP (M) is a closed subspace of
HP(M). Furthermore, these spaces are equal if and only if RP(M) contains
all the polynomials, but this occurs if and only if ny =...=ng=1. =

LEMMA 5.4. Let Bsy : L2(M) — A%(M) be the weighted Bergman pro-
jection with respect to the volume form (1 — 2?21 |Z(§)]?%)*O(Z). Then

(5.5) BeyoT =To By
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where Bs o @ L2(2) — A2(02) is the weighted Bergman projection with re-
spect to the measure dvs(W).

Proof. We first observe that the lemma holds for holomorphic functions.
Indeed, if f € A%(£2) then Tf € A%(M) and thus (5.5) holds at f. Next, we
show that (5.5) also holds when f is orthogonal to holomorphic functions.

EW=W(@),...,W(d)) € Mpm, n, (C) x...X My, n,(C) let wj;, be the
entry of the matrix W (j) corresponding to the [th row and pth column. Let
Ojip = 0/0wjip be the holomorphic derivative with respect to the variable
wjip and set

Fe={(1-0") g : g € C7(R\ V),

j=1...,d;l=1,....mj;p=1,...,n;}
where C§°(£2\ V) denotes the space of all C*°-functions with compact sup-
port in 2\ V.

Now let h € L?(M) be a holomorphic function and let g € C°(£2\ V)
be such that all the local inverses (U.) are defined on a neighborhood of the
support of g. Then we have

(5.6) |n(2) T(ﬁaﬂ@ 0.(2)

M
_ S (foUs)(W)
e€A O\V H;‘l:joﬂ H;ijl(le o Us)(W)
where the latter equality holds by integration by parts. Therefore,

1
h,T(ial g)> _0
< L= """ ) ) Lo quy
and thus

1 g
(5.7) (BspmoT) <(1 EPNBEIE aﬂ)ﬂp) 0.
If now g is an arbitrary C'*°-function with compact support in 2\ V, then
using a partition of unity we see that (5.7) holds at g. This shows that the
space F is contained in the orthogonal complement A2(£2)+ of A%(£2) in
L2(£2). Tt remains to show that F is dense in A2(2)1. Let h € A2(£2)* be
orthogonal to F, in L2(£2); then for any g € C§°(2\ V),

§ (W) (9jp9) (W) do(W) = § h(W) (1 = 02) =5 (@j19) (W) dus (W) = 0.

ajlpg(W) dvs(W) =0

Thus h satisfies the Cauchy-Riemann equations on 2\ V (in the sense of
distributions). Therefore h is holomorphic in £\ V. Since h € L2(2), it
is also locally in L?(£2). It follows from [Ra, E.3.2, p. 40] that h extends
holomorphically across V in (2. Hence h =0. =
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LEMMA 5.5. Let Sy : L?*(OM) — H2(OM) be the Szegd projection with
respect to the measure . Then

(5.8) SmoT =ToSg

where Sgq @ L2(02) — H?(82) is the Szegd projection with respect to the
measure o.

Proof. Clearly, if f € H?(£2), then (5.8) holds at f. Suppose now that

f is orthogonal to H?({2) with respect to the inner product of L2(0f2).
Consider the function
~ W (1 W(d

Fon) =1 (smn W

o/ (W) """ pl/aa(W
Then by Lemmas 3.2 and 5.2 we see that fE L?(£2) and fis orthogonal to

A?%(£2). By Lemma 5.4, Bom(Tf) = (T o By )(f) = 0. This shows that

)>, Wen\V.

\n(z2)(Tf)(2z)6(z)=0

for all bounded holomorphic functions A on M. In particular, if £ € N,
then for any h € P¥(M) we have

GaYE7a) _ §u M(2) (T])(2)e(2) _
a§wh(W) T = Yo Bl oy Miigyid T "

showing that T'f is orthogonal to H{?(M) and hence (5.8) holds at f. m

For k € N, let Il (resp. IIi ) denote the orthogonal projection
from H2(M) (resp. H?(§2)) onto P¥(M) (resp. P¥(£2)). We denote by I the
element k& of Ni* such that all the components kj;, j > jo + 1, of k are equal
to 1 and the remaining components are equal to 0.

LEMMA 5.6. The following diagram commuites:

L2(09) =32~ 3¢2(0) 25 k()

(R
L2(OM) —2 = 52 (M) ZEHL phH )
Proof. In view of Lemma 5.5 it is sufficient to prove that the diagram

H2(2) ——= (M)

Hk,.ol H}cHMl

Pk (£2) —L> PHHI(0)
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commutes. To do so, note that if f € P¥(§2), then Tf € P**1(M) and thus

Iy of =f and IHpuTf=TF,

showing that (T o IIy o)(f) = (g41m © T)(f). On the other hand, if
f € H?(R2) is orthogonal to P*(£2) with respect to the inner product of
H2(02), then Iy of = 0 and thus (T o 1) o)(f) = 0. Moreover, if we ex-
pand f in the form f = ZleNgL\{k} fi, where f; € P!(£2), then we have
Tf = ZleNa"\{k} T f;. Since for all | € N§* \ {k} the polynomial T'f; is or-
thogonal to P*+(M) with respect to the inner product of H?(M) we see
that II;4y1m7' f = 0. This completes the proof of the lemma. m

Proof of Theorem A. Let W € 2\ V and choose an open neighborhood
Ow of W so that Oy C 2\ V and all the local inverses {U.}.ca are well
defined in Ow. In view of Remark 6.1.4 in [JP], there is a C*°-function
@ My, 0y (C) X .o X My, 0, (C) — [0, 00] such that supp ¢ C Ow and

(5.9)  fW) = [ f(2)e(2)do(Z) = § (1 = *(2))"* /(2)(Z) dvs(Z)

2 02

for any holomorphic function f in Oyy. Therefore,

Ks.o(-,W) = Bs.g <ﬁ)

Let U := Uy be the local inverse of I corresponding to e = 1. If Z € 2\ 'V,
then in view of (5.1), for Z € M,

d m;
T TI(@1 0 U)(Z)Kan(ZW) = (To B, g) (LQ) U(2))

j=jor1i=1 (1-¢?)
— (BooT) (ﬁ) v (2)
HZS
- j:fo[ﬂ(nj RS H:K+M1(%S:Z<)QU1(V?§ G

where the latter equality holds because of (5.9). This shows that
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Ks.o(Z,W)
- o, Ko (U(2),U(W))
= nj +1)7m - .
jgﬂ( " ) eze;l H;‘l:jo—f—l 1:]1[(le © U)(Z) (le © Ue)(W)]

Setting t := Z e W and u := (Qj, 0 U)(Z) (Qj o U)(W) and applying
Theorem 4.2 we see that for each € € A we have

Ksm(U(Z),U:(W)) B Rs(t + cu)

1700 [ 0(Qu 0 UNZ) @0 U)W T s II 0wt

from which the theorem follows because u? = (Z ¢ Z) (W ¢ W). =

Proof of Theorem B. We use the same notations as in the proof of The-
orem B. Let W € 062\ V. Using the coordinates (1.5) we choose 79 > 0
sufficiently small so that the subset

Ow ={Z(r,X):r €]l =71, 1+ 10, [W - X| <1, X €002}

is contained in M, n, (C) x ... X My, 5, (C) \ V and the local inverses
{Uc:}eea are well defined in Oy . As in the proof of Theorem A there is a
C*-function ¢ : My, n, (C) x ... X My, 0, (C) — [0,00] with support in
Ow and

fW) = § [(Z)e(2)dv(2)

Ow
for any holomorphic function f in Oy . If k € N, we set

1+To
Ve(X) = | TR RO a2 mini e (7, X)) dr, X € 092,

177‘0

Then supp ¥ C Ow N Of2. In addition, by integration in polar coordinates
we see that

(5.10) V) = | f(X)e(X) do(X)

of2
for all f € P¥(M,, n, (C) X ... X My, 5, (C)). Therefore,
Iy 0(Sa(W)) = (k0 0 So) (k).

Recalling that U is the local inverse of F' corresponding to € = [ and applying
Lemma 5.6 we see that if Z € 2\ V then

d mj
I TI@QioU)(2) Mk 0(Sa(- W))(Z) = (T o I} q 0 So) (i) (U(Z))

Jj=jo+1lli=1



Proper holomorphic liftings 185

= (g41m 0 Sw o T) (Y1) (U(2))

d m;
= | I TI@i(X)(k o F)(X)Skirma(U(Z), X) dpu(X)
oM j=jo+11=1
d

o Srm(U(2),U:(Y))
= (nj +1)7 V(YY) ’ do(Y)
jEI+1 aze;l 8(§\V ' H?:jo-‘,-l H;iji(le o Ue)(Y)
d

e Sk+im(U(Z), U (W))
T ey S0
j=jo+1 g€/ Hj:j0+1 [[21(QjoU)(W)
where the latter equality holds because of (5.10). This shows that

Sk,0(Z,W)
d

A Sk+1m(U(2),U:(W))
= (nj +1)>™ v —
jlj_OI+1 ’ EGZA Hj:jo-u [ [(Qji o U)(Z) (Qjr o Us)(W)]
This completes the proof. m

Finally, Corollary C can be proved using Theorem B and the same cal-
culation as in the proof of [OPY, Theorem, pp. 222-223].
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