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Proper holomorphic liftings and new formulas
for the Bergman and Szegő kernels

by

E. H. Youssfi (Marseille)

Abstract. We consider a large class of convex circular domains in Mm1,n1 (C) ×
. . . ×Mmd,nd (C) which contains the oval domains and minimal balls. We compute their
Bergman and Szegő kernels. Our approach relies on the analysis of some proper holomor-
phic liftings of our domains to some suitable manifolds.

1. Introduction. The use of the Bergman projection plays an impor-
tant role in the study of proper holomorphic mappings. See Bell [B] or
Ligocka [L]. In this paper we shall conversely make use of proper holomor-
phic mappings to compute Bergman and Szegő kernels. We consider a large
class of circular domains in Mm1,n1(C) × . . . ×Mmd,nd(C) which contains
the generalized oval domains considered in [D’A1], [D’A2], [FH1] and [FH2]
and the minimal ball introduced in [HP]. We compute their Bergman and
Szegő kernels. Our method consists in associating to a domain in our class
an appropriate proper holomorphic lifting in which good analysis can be de-
veloped. Then we use a suitable operator to deduce the Bergman and Szegő
kernels of the domain from those of its proper holomorphic lifting.

If p and q are two positive integers we denote by Mp,q(C) the pq-dimen-
sional complex vector space of all (p×q)-matrices with complex coefficients.
If Z = (zjk)1≤j≤p;1≤k≤q is an element of Mp,q(C), we set

|Z| :=
( p∑

j=1

q∑

k=1

|zjk|2
)1/2

,

‖Z‖∗ :=
( p∑

j=1

( q∑

k=1

|zjk|2 +
∣∣∣
q∑

k=1

z2
jk

∣∣∣
))1/2

.

Let d be a positive integer and letm = (m1, . . . ,md) and n = (n1, . . . , nd)
be two d-tuples of integers such that mj ≥ 1 and nj ≥ 1 for all j = 1, . . . , d.
Let a = (a1, . . . , ad) ∈ Rd where aj ≥ 1, j = 1, . . . , d, and consider the
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function %(Z) = %a,m,n(Z) defined for Z = (Z(1), . . . , Z(d)) ∈Mm1,n1(C)×
. . .×Mmd,nd(C) by

%(Z) :=
d∑

j=1

‖Z(j)‖2aj∗ ,

and set Ω = Ωa,m,n := {Z ∈Mm1,n1(C)× . . .×Mmd,nd(C) : %(Z) < 1}.
Note that for n = (1, . . . , 1) the domain Ω describes, as a and m vary,

the class of generalized oval domains considered in [D’A1], [D’A2], [FH1]
and [FH2].

Note also that for d = a = m = 1, Ω is just the minimal ball R∗ in Cn
introduced by Hahn and Pflug [HP].

In what follows, we denote by j0 the number of those nj ’s that are equal
to 1. If j0 ≥ 1, we may assume without loss of generality that n1 = . . . =
nj0 = 1 and nj ≥ 2 for j = j0 + 1, . . . , d.

For each s > −1, we set dvs(Z) := (1 − %(Z))sdv(Z), where v denotes
the normalized Lebesgue measure on Ω. Let A2

s(Ω) be the Hilbert space of
all holomorphic functions on Ω which are square integrable with respect to
the measure dvs(Z) and denote by Ks,Ω(Z,W ) its reproducing kernel.

If S is an arbitrary non-empty set, we let Sm denote the set of all finite
multi-sequences t = (tjl)l=1,...,mj ;j=1,...,d where the entries tjl are elements
of S. Let N0 denote the set of all non-negative integers. We use the notation

(1.1) tk :=
d∏

j=1

mj∏

l=1

t
kjl
jl

for k = (kjl)1≤l≤mj ;1≤j≤d ∈ Nm0 and t = (tjl)1≤l≤mj ;1≤j≤d ∈ Cm. We
also consider the action of Cm on itself given for t = (tjl) and u = (ujl),
l = 1, . . . ,mj , j = 1, . . . , d, by

(1.2) tu := (tjlujl)l=1,...,mj ;j=1,...,d, and set t2 := tt.

Consider the differential operator D = D(m,n, a) acting on functions
f(t) for t = (tjl)l=1,...,mj ;j=1,...,d in some region of Cm by

(1.3) (Df)(t) := a1 . . . ad(D1,1 . . .D1,m1) . . . (Dd,1 . . .Dd,md)(f(t)),

where

(Dj,lf)(t) :=





2
(nj − 1)!

(
2tjl

df

dtjl
+ (nj − 1)f(t)

)
if j > j0,

4f(t) if j ≤ j0.

We also consider the differential operator D̃ = D̃(m,n, a) acting on functions
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g(x) for x = (x1, . . . , xd), defined by

(1.4) (D̃g)(x) := D̃1 . . . D̃d
( j0∏

j=1

x
mj−1
j

d∏

j=j0+1

x
mjnj−mj−1
j g(x)

)
,

where

D̃j :=





dmj−1

dx
mj−1
j

if j ≤ j0,

dmjnj−mj−1

dx
mjnj−mj−1
j

if j > j0.

Next, consider the product group Λ := {−1, 1}mj0+1 × . . .× {−1, 1}md .
We shall extend each element ε = (εjl), l = 1, . . . ,mj , j = j0 + 1, . . . , d, of
Λ to an element ε̃ of {−1, 1}m be setting

ε̃jl :=
{

1 if j ≤ j0,
εjl if j > j0.

If f(t) is a smooth function defined on the ball
∑d
j=1

∑mj
l=1 |tjl| < 1,

we consider the function f̃ on the region
∑d
j=1

∑mj
l=1(|tjl| + |ujl|) < 1 in

Cm × Cm by setting

f̃(t, u) :=
∑

ε∈Λ

f(t+ ε̃u)
∏d
j=j0+1

∏mj
l=1 εjlujl

.

Then for each t the partial function f̃(t, ·) is invariant under the group Λ so
that there is a unique function Lf that satisfies

Lf(t, u2) = f̃(t, u).

Moreover, the mapping L : f 7→ Lf is linear.

Remark 1.1. The operator L maps polynomials to polynomials and ra-
tional functions to rational functions. This can be checked directly by in-
duction.

For s ≥ −1, consider the series defined for x = (x1, . . . , xd) ∈ Cd by

Gs(x) := D̃
( ∑

h∈Nd0

Γ
(
s+ 1 +

∑j0
j=1

mj+hj
aj

+
∑d
j=j0+1

mjnj−mj+hj
aj

)
∏j0
j=1 Γ

(mj+hj
aj

)∏d
j=j0+1 Γ

(mjnj−mj+hj
aj

) xh
)
.

We shall see that the series Gs(x) converges for |x| < 1. Finally, we set

(1.5) Rs(t) := Gs

( m1∑

l=1

t1l, . . . ,

md∑

l=1

tdl

)
, Hs(t, u) := (L(DRs))(t, u).

It follows from Lemma 2.2 below that the function Hs(t, u) is well defined
provided the variables t and u satisfy

∑d
j=1

∑mj
l=1(|tjl|+

√
|ujl|) < 1.
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Throughout the paper we use the notation x • y :=
∑p
k=1 xkyk if p is a

positive integer and x = (x1, . . . , xp) and y = (y1, . . . , yp) are two vectors in
Cp. We extend the operation • to a Cm-valued bilinear mapping defined for
Z,W ∈Mm1,n1(C)× . . .×Mmd,nd(C) by setting

Z •W := (Zl(j) •Wl(j))l=1,...,mj ;j=1,...,d

if Z = (Z(1), . . . , Z(d)),W = (W (1), . . . ,W (d)) and

Z(j) =




Z1(j)
...

Zmj (j)


 , W (j) =




W1(j)
...

Wmj (j)


 .

We shall establish the following

Theorem A. For each s > −1, the weighted Bergman kernel of Ω =
Ωa,m,n is given by the formula

Ks,Ω(Z,W ) =
1

vs(Ω)
· Hs(t, u)
Hs(0, 0)

, Z,W ∈ Ω,

where t = Z •W and u = (Z • Z)(W •W ). The latter product is understood
in the sense of (1.2).

Remark 1.2. 1) As a consequence of Theorem A, we obtain an explicit
formula for the weighted Bergman kernel for oval domains (see [D’A1]) and
the minimal ball (see [OPY] and [MY]).

2) Using the same argument as in [FH1] and [FH2], we can rewrite (1.5)
in terms of the Appel hypergeometric function in several variables so that
by Remark 1.1, the Bergman kernel K0,Ω(Z,W ) is a rational fraction if
1/a1, . . . , 1/ad are positive integers.

Let ∂Ω denote the boundary ofΩ. Each Z∈Mm1,n1(C)×. . .×Mmd,nd(C),
Z 6= 0, can be written uniquely in the form

(1.6) Z = Z(r,W ) := (r1/a1W (1), . . . , r1/adW (d))

where r is a positive number and W = (W (1), . . . ,W (d)) ∈ ∂Ω. This
parametrization of Mm1,n1(C)× . . .×Mmd,nd(C) induces a boundary mea-
sure σ on ∂Ω given by the formula

�

Mm1,n1 (C)×...×Mmd,nd
(C)

f(Z) dv(Z)

=
∞�

0

r−1+2
∑d
j=1 mjnj/aj

�

∂Ω

f(Z(r,W )) dσ(W ) dr

for all compactly supported continuous functions f on Mm1,n1(C) × . . . ×
Mmd,nd(C).
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We denote by A(Ω) the space of all continuous functions f on the closure
Ω of Ω such that f is holomorphic on Ω. We define the Szegő kernel of Ω
to be the kernel function SΩ : Ω ×Ω → C that satisfies the following:

1) SΩ(·,W ) is holomorphic on Ω for all W ∈ Ω,
2) SΩ(Z,W ) = SΩ(W,Z) for all Z,W ∈ Ω,
3) for all f ∈ A(Ω) we have

f(Z) =
�

∂Ω

SΩ(Z,W )f(W ) dσ(W ).

One of the main purposes of this paper is to compute the Szegő kernel
SΩ(Z,W ). More precisely, we shall prove the following

Theorem B. The Szegő kernel of Ω is given by the formula

SΩ(Z,W ) =
1

σ(∂Ω)
· H−1(t, u)
H−1(0, 0)

, Z,W ∈ Ω,

where t = Z •W and u = (Z • Z)(W •W ). The latter product is understood
in the sense of (1.2).

Corollary C. The Szegő kernel of B∗ is given by the formula

SB∗(z, w) =
1

2n3σ(∂B∗)

×
∑[(n−1)/2]
k=0

(
n

2k+1

)
xn−2k−2yk[2nx− (n− 1− 2k)(x2 − y)]

(x2 − y)n

where x = 1− z • w, y = z • z w • w and [(n− 1)/2] is the greatest integer
smaller than or equal to (n− 1)/2.

For each s > −1 and p ≥ 1, let Lps(Ω) the Banach space of all functions on
Ω which are Lp-integrable with respect to the measure

∏d
j=j0+1

∏mj
l=1 |Zl(j)

• Zl(j)|(p−2)/2dvs(Z). We denote by Ap
s(Ω) the space of all holomorphic

functions on Ω which are in the space Lps(Ω), and Hp(Ω) the Hardy space
with respect to the measure σ on the boundary of Ω. We shall show that the
spaces Ap

s(Ω) and Hp(Ω) furnished respectively with the norms of Lps(Ω)
and Lp(∂Ω, σ) are Banach spaces.

2. Some integral and summation formulas. We use the notations
of Section 1. We let m = (m1, . . . ,md), n = (n1, . . . , nd) and a = (a1, . . . , ad)
be as in the introduction. We set

Ea,m :=
{
t ∈ ]0,∞[m :

d∑

j=1

[ mj∑

l=1

t2jl

]aj
< 1
}
,
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∂Ea,m :=
{
t ∈ ]0,∞[m :

d∑

j=1

[ mj∑

l=1

t2jl

]aj
= 1
}
.

Each t = (tjl) ∈ ]0,∞[m can be written in the form t = t(r, u) := (r1/ajujl)
where r ∈ ]0,∞[ and u = (ujl) ∈ ∂Ea,m. Thus the canonical volume form
dt = ∧dj=1 ∧

mj
l=1 dtjl on Rm induces a boundary volume form φ on ∂Ea,m

given by the formula

(2.1)
�

]0,∞[n

f(t) dt =
�

]0,∞[×∂Ea,m
r−1+

∑d
j=1 mj/ajf(t(r, u)) dr ∧ φ(u).

If k = (kjl) ∈ Nm0 and j ∈ {1, . . . , d}, set

k(j) := (kj1, . . . , kjmj ), |k(j)| :=
mj∑

l=1

kjl, |k| :=
d∑

j=1

|k(j)|.

For s > −1, let χs(t) := (1−∑d
j=1[

∑mj
l=1 t

2
jl]
aj )s. Then we have the following

Lemma 2.1. For each s > −1, and k ∈ Nm0 , we have

�

Ea,m
χs(t)

j0∏

j=1

mj∏

l=1

t
1+2kjl
jl

d∏

j=j0+1

mj∏

l=1

t
2nj−3+2kjl
jl dt

=
Γ (s+ 1)

∏j0
j=1 Γ

(mj+|k(j)|
aj

)∏d
j=j0+1 Γ

(mjnj−mj+|k(j)|
aj

)

2|m|a1 . . . adΓ
(
s+ 1 +

∑j0
j=1

mj+|k(j)|
aj

+
∑d
j=j0+1

mjnj−mj+|k(j)|
aj

)

×
j0∏

j=1

k(j)!
Γ (mj + |k(j)|)

d∏

j=j0+1

∏mj
l=1 Γ (nj − 1 + kjl)

Γ (mjnj −mj + |k(j)|) ,

and

�

∂Ea,m

j0∏

j=1

mj∏

l=1

t
1+2kjl
jl

d∏

j=j0+1

mj∏

l=1

t
2nj−3+2kjl
jl φ(t)

=

∏j0
j=1 Γ

(mj+|k(j)|
aj

)∏d
j=j0+1 Γ

(mjnj−mj+|k(j)|
aj

)

2|m|−1a1 . . . adΓ
(∑j0

j=1
mj+|k(j)|

aj
+
∑d
j=j0+1

mjnj−mj+|k(j)|
aj

)

×
j0∏

j=1

k(j)!
Γ (mj + |k(j)|)

d∏

j=j0+1

∏mj
l=1 Γ (nj − 1 + kjl)

Γ (mjnj −mj + |k(j)|) .

Proof. To prove the first part of the lemma we use integration in polar
coordinates in several variables and Lemma 1 of [D’A2]. The second part
follows from the first one and identity (2.1).
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If p is a non-negative integer and q is a positive integer, let

N(p, q) :=
(2p+ q − 1)(p+ q − 2)!

p!(q − 1)!
,

with the understanding that N(0, 1) := 2.

Lemma 2.2. Let Rs be the function given by (1.5) and let

C(k, s) :=

∏d
j=1

∏mj
l=1N(kjl, nj)

�
Ea,m χs(t)

∏j0
j=1

∏mj
l=1 t

1+2kjl
jl

∏d
j=j0+1

∏mj
l=1 t

2nj−3+2kjl
jl dt

D(k) :=

∏d
j=1

∏mj
l=1N(kjl, nj)

�
∂Ea,m

∏j0
j=1

∏mj
l=1 t

1+2kjl
jl

∏d
j=j0+1

∏mj
l=1 t

2nj−3+2kjl
jl φ(t)

.

Then
∑

k∈Nm0

C(k, s)tk =
(DRs)(t)
Γ (s+ 1)

,
∑

k∈Nm0

D(k)tk =
(DR−1)(t)

2
.

Proof. First observe that in view of Lemma 2.1 we have

C(k, s) =
2|m|a1 . . . adΓ

(
s+ 1 +

∑j0
j=1

mj+|k(j)|
aj

+
∑d
j=j0+1

mjnj−mj+|k(j)|
aj

)

Γ (s+ 1)
∏j0
j=1 Γ

(mj+|k(j)|
aj

)∏d
j=j0+1 Γ

(mjnj−mj+|k(j)|
aj

)

×
j0∏

j=1

2mj
Γ (mj + |k(j)|)

k(j)!

×
d∏

j=j0+1

(
Γ (mjnj −mj + |k(j)|)

((nj − 1)!)mjk(j)!

mj∏

l=1

(2kjl + nj − 1)
)
,

Therefore,

Γ (s+ 1)
∑

k∈Nm0

C(k, s)tk =
∑

h∈Nd0

C ′(h, s)
∑

|k(j)|=hj
C ′′(h, k, s)tk,

where

C ′(h, s) =
Γ
(
s+ 1 +

∑j0
j=1

mj+hj
aj

+
∑d
j=j0+1

mjnj−mj+hj
aj

)
∏j0
j=1 Γ

(mj+hj
aj

)∏d
j=j0+1 Γ

(mjnj−mj+hj
aj

)

×
j0∏

j=1

Γ (mj + hj)
hj !

d∏

j=j0+1

Γ (mjnj −mj + hj)
hj !

,
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C ′′(h, k, s) = 2|m|
j0∏

j=1

aj2mjhj !
k(j)!

×
d∏

j=j0+1

(
ajhj !

((nj − 1)!)mjk(j)!

mj∏

l=1

(2kjl + nj − 1)
)
.

This fact, combined with the multinomial theorem, yields

∑

|k(j)|=hj
C ′′(h, k, s)tk = D

( d∏

j=1

( mj∑

l=1

tjl

)hj)

and thus

∑

k∈Nm0

C(k, s)tk =
1

Γ (s+ 1)
D
(
u
( m1∑

l=1

t1l, . . . ,

md∑

l=1

tdl

))
,

where u is the function in d variables x = (x1, . . . , xd) defined by

u(x) :=
∑

h∈Nd0

C ′(h, s)xh.

Now setting

v(x) :=
∑

h∈Nd0

Γ
(
s+ 1 +

∑j0
j=1

mj+hj
aj

+
∑d
j=j0+1

mjnj−mj+hj
aj

)
∏j0
j=1 Γ

(mj+hj
aj

)∏d
j=j0+1 Γ

(mjnj−mj+hj
aj

) xh,

we see that u(x) = (D̃v)(x) = Gs(x). This proves the first equality in the
lemma. The proof of the second equality follows in an analogous manner.

3. Preparatory results. First assume that d = 1 and let m = m1

and n = n1 be positive integers. In this case, for z, ξ ∈ Cn+1, we have
z • ξ =

∑n+1
l=1 zlξl. Let

Hn := {z ∈ Cn+1 \ {0} : z • z = 0} for n ≥ 2,

H1 := {(z, iz) : z ∈ C \ {0}}.

We set Γn := {z ∈ Hn : |z| = 1}. Then O(n + 1,R) acts transitively on Γn
and thus there is a unique O(n+ 1,R)-invariant probability measure µn on
Γn induced by the Haar measure of O(n+ 1,R).

If k and l are two non-negative integers with k 6= l and if f and g are
holomorphic polynomials on Cn+1 such that f is k-homogeneous and g is
l-homogeneous, then for all ξ ∈ Hn we have the identities
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(3.1)





�

Γn

f(w)(ξ • w)k dµn(w) =
f(ξ)

N(k, n)
,

�

Γn

f(w)g(w)dµn(w) = 0.

The latter formulas were established [I], [W] and [MY] for n ≥ 2. For n = 1,
they can be checked by direct computation since in this case we have Γ1 ={(√

2
2 ζ, i

√
2

2 ζ
)

: ζ ∈ S1
}

and the measure µ1 is given by

(3.2) dµ1

(√
2

2
ζ, i

√
2

2
ζ

)
=
dt

2π
for ζ = eit, t ∈ [0, 2π].

As observed in [OPY], when n ≥ 2, there is a unique (up to a multiplicative
constant) SO(n + 1,C)-invariant holomorphic form αn on Hn given in the
open charts Uj = {z ∈ Hn : zj 6= 0} by

αn(z) = (n+ 1)
(−1)j−1

zj
dz1 ∧ . . . ∧ d̂zj ∧ . . . ∧ dzn+1.

We set α1(z) := dz1. It was proved in [MY] that the form αn(z) ∧ αn(z)
contracted with the vector field z 7→ z induces an SO(n + 1,R)-invariant
(2n− 1)-volume form ωn on Γn defined by

ωn(z)(X) := iz(αn ∧ αn)(X) = (αn(z) ∧ αn(z))(z,X)

for all elements X of the (2n−1)-fold tangent space to Γn at z. Furthermore,
a little calculation shows that both forms αn ∧ αn and ωn are also S1-
invariant. In addition, if ωn(Γn) :=

�
Γn
ωn(ξ), then the measure µn and the

forms αn and ωn are related by the formula
�

Hn
f(z)αn(z) ∧ αn(z) =

�

]0,∞[×Γn
t2n−3f(tξ) dt ∧ ωn(ξ)(3.3)

= ωn(Γn)
∞�

0

t2n−3
�

Γn

f(tξ) dµn(ξ) dt,

which holds for all compactly supported C∞-functions f on Hn. This for-
mula, combined with the fact that the forms αn∧αn and ωn are S1-invariant,
implies that the measure µn is also S1-invariant, and hence S1 ·SO(n+1,R)-
invariant.

Lemma 3.1. Let k, l ∈ Z be such that k 6= l. Assume that f and g are
two holomorphic functions on Hn such that f is k-homogeneous and g is
l-homogeneous. Then

�

Γn

f(w)g(w) dµn(w) = 0.

Proof. We distinguish two cases.
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First assume n ≥ 2. Notice that in this case the complex space X :=
Hn ∪ {0} is normal. In fact, 0 is the only singular point of X, and this
singularity is normal in view of [Wh, Theorem 1B(d), p. 251]. Therefore,
both f and g are holomorphic on X so that by homogeneity fg vanishes
identically for k < 0 or l < 0. This, combined with (3.1), shows that the
lemma holds for n ≥ 2.

It remains to prove the lemma for n = 1. In this case H1 = {(z, iz) :
z ∈ C \ {0}}. Since the function z 7→ f(z, iz) is holomorphic on C \ {0}
and k-homogeneous, it has the form czk where c is a constant. Similarly, the
function z 7→ g(z, iz) must be of the form c′zl where c′ is some constant.
Using this fact and (3.2), a little computing shows that the lemma holds
also for n = 1.

Now consider the general case d ≥ 1 and let m = (m1, . . . ,md) and
n = (n1, . . . , nd) be as in the introduction. If Z = (Z(1), . . . , Z(d)) ∈
Mm1,n1+1(C) × . . . × Mmd,nd+1(C) and t = (tjl) ∈ Cm, then for each
j = 1, . . . , d and each l = 1, . . . ,mj set (t �Z)l(j) := tjlZl(j), where Zl(j) is
the lth row of Z(j). Then we define (t �Z)(j) to be the mj× (nj + 1)-matrix
whose lth row is (t � Z)l(j) and put

t � Z := ((t � Z)(1), . . . , (t � Z)(d)).

If k ∈ Zm, then a function f : Mm1,n1+1(C) × . . . ×Mmd,nd+1(C) → C is
said to be k-homogeneous if f(t � Z) = tkf(Z) for all t ∈ (C \ {0})m. Here
the power tk is understood in the sense of (1.1).

We denote by Hm,n the
∑d
j=1 mjnj-dimensional complex submanifold

consisting of all Z = (Z(1), . . . , Z(d)) ∈ Mm1,n1+1(C)× . . .×Mmd,nd+1(C)
such that for each j = 1, . . . , d all the rows Zl(j), l = 1, . . . ,mj , of the matrix
Z(j) are elements of Hnj . We also denote by Γm,n the (2

∑d
j=1 mjnj−|m|)-

dimensional real submanifold of Hm,n consisting of all Z = (Z(1), . . . , Z(d))
∈ Hm,n such that for each j = 1, . . . , d all the rows Zl(j), l = 1, . . . ,mj , of
the matrix Z(j) are elements of Γnj . Then the mapping (t,W ) 7→ Z = t �W
is a diffeomorphism from ]0,∞[m × Γm,n onto Hm,n.

The form

Θ(Z) := ∧dj=1 ∧
mj
l=1 αnj (Zl(j)) ∧ αnj (Zl(j))

is a volume form on Hm,n which is (S1)m-invariant under the action of (S1)m

on Hm,n given by the mapping (t, Z) 7→ t � Z from (t, Z) ∈ (S1)m × Hm,n
onto Hm,n.

Using the coordinates Z = t �W , where t ∈ ]0,∞[m with tjl := |Zl(j)|
and W ∈ Γm,n, and applying (3.3) we see that

(3.4) Θ(Z) =
j0∏

j=1

mj∏

l=1

tjl

d∏

j=j0+1

mj∏

l=1

t
2nj−3
jl dt ∧ ωm,n(W )
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where dt = ∧dj=1∧
mj
l=1 dtjl is the canonical volume form on Rm and ωm,n(W )

is the volume form on Γm,n given by

ωm,n(W ) = ∧dj=1 ∧
mj
l=1 ωnj (Wl(j)).

Now fix a = (a1, . . . , ad) with a1 ≥ 1, . . . , ad ≥ 1, and set

M :=
{
Z = (Z(1), . . . , Z(d)) ∈ Hm,n :

d∑

j=1

|Z(j)|2aj < 1
}
,

∂M :=
{
Z = (Z(1), . . . , Z(d)) ∈ Hm,n :

d∑

j=1

|Z(j)|2aj = 1
}
.

Then the mapping (t,W ) 7→ Z = t �W is a diffeomorphism from Ea,m×Γm,n
onto M and from ∂Ea,m × Γm,n onto ∂M.

Let φ(t) denote the volume form on ∂Ea,m given by (2.1) and consider
the volume form ϑ on ∂M given in the coordinates Z = t �W by

(3.5) ϑ(Z) :=
j0∏

j=1

mj∏

l=1

tjl

d∏

j=j0+1

mj∏

l=1

t
2nj−3
jl φ(t) ∧ ωm,n(W ).

The form ϑ induces a probability measure µ on ∂M given for all continuous
functions f on ∂M by

(3.6)
�

∂M
f(W ) dµ(W ) =

1
ϑ(∂M)

�

∂M
f(W )ϑ(W ),

where
ϑ(∂M) :=

�

∂M
ϑ.

Lemma 3.2. For any C∞-function f on Hm,n we have
�

Hm,n
f(Z)Θ(Z) =

�

]0,∞[×∂M
{r−1+2[

∑j0
j=1

mj
aj

+
∑d
j=j0+1

mjnj−mj
aj

]

× f(r1/a1W (1), . . . , r1/adW (d))} dr ∧ ϑ(W )

= ϑ(∂M)
�

]0,∞[×∂M
{r−1+2[

∑j0
j=1

mj
aj

+
∑d
j=j0+1

mjnj−mj
aj

]

× f(r1/a1W (1), . . . , r1/adW (d))} dµ(W ) dr,

provided that the integrals make sense.

Proof. Follows from (2.1), (3.4), (3.5) and (3.6).

If k ∈ Nm0 , let Pk(Hm,n) be the space of all restrictions to Hm,n of k-
homogeneous holomorphic polynomials onMm1,n1+1(C)×. . .×Mmd,nd+1(C).
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Lemma 3.3. Let k = (kjl) and k′ = (k′jl) be two elements of Zm. Sup-
pose that f and g are holomorphic on Hm,n, f is k-homogeneous and g is
k′-homogeneous. Let s > −1.

(1) If k 6= k′, then
�

M
f(W )g(W )dΘs(W ) =

�

∂M
f(W )g(W )dϑ(W ) = 0.

(2) If k ∈ Nm0 and f ∈ Pk(Hm,n), then for all Z ∈ Hm,n we have

f(Z) = C(k, s)
�

M
f(W )(Z •W )k

(
1−

d∑

j=1

|W (j)|2aj
)s
Θ(W )

= D(k)
�

∂M
f(W )(Z •W )k dϑ(W ),

where C(k, s) and D(k) are given in Lemma 2.2.

Proof. We may assume that s = 0. For k ∈ Zm, let Λk denote the set
of all β = (βjl) with βjl ∈ Znj and |βjl| = kjl for all j = 1, . . . , d and
l = 1, . . . ,mj . Observe that the space Pk(Hm,n) is the linear span of the
monomials

fβ(Z) :=
d∏

j=1

mj∏

l=1

Zl(j)βjl , where β ∈ Λk.

Therefore, it suffices to prove the lemma for f = fβ and g = gβ′ where
β ∈ Λk, β′ ∈ Λk′ .

Since k 6= k′ there are j ∈ {1, . . . , d} and l ∈ {1, . . . ,mj} such that
βjl 6= β′jl so that by Lemma 3.1 we see that

�

Γnj

Wl(j)βjlWl(j)β
′
jl ωnj (Wl(j)) = 0.

Therefore,

�

M
fβ(W ) gβ′(W )Θ(W ) =

�

Ea,m
tk+k′

j0∏

j=1

tjl

d∏

j=j0+1

mj∏

l=1

t
2nj−3
jl dt

×
d∏

j=1

mj∏

l=1

�

Γnj

Wl(j)βjlWl(j)β
′
jl ωnj (Wl(j))

= 0.

Now by Lemma 3.2 we see that
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�

∂M
fβ(W ) gβ′(W )ϑ(W )

=

�
M fβ(W ) gβ′(W )Θ(W )

� 1
0 r
−1+2[

∑j0
j=1

mj
aj

+ |k(j)|+|k′(j)|
2aj

+
∑d
j=j0+1

mjnj−mj
aj

+ |k(j)|+|k′(j)|
2aj

]
dr

= 0.

To prove part (2), observe by (3.1) and (3.3) that if β ∈ Λk, then

�

Γnj

Wl(j)βjl(Zl(j) •Wl(j))kjlωnj (Wl(j)) = Zl(j)βjl

�
Γnj

ωnj

N(kjl, nj)
.

This shows that

�

Γm,n

fβ(W )(Z •W )kωm,n(W ) = fβ(Z)

�
Γm,n

ωm,n
∏d
j=1

∏mj
l=1N(kjl, nj)

.

This fact, combined with (3.4), implies that

�

M
fβ(W )

(
1−

d∑

j=1

|W (j)|2aj
)s

(Z •W )kΘ(W )

=
�

Ea,m
χs(t)

j0∏

j=1

mj∏

l=1

t
1+2kjl
jl

d∏

j=j0+1

mj∏

l=1

t
2nj−3+2kjl
jl dt

×
�

Γm,n

fβ(W )(Z •W )kωm,n(W )

=
fβ(Z)
C(k, s)

.

Thus by Lemma 3.2 we have
�

∂M
fβ(W )(Z •W )kϑ(W )

=

�
M fβ(W )(1−∑d

j=1 |W (j)|2aj )s(Z •W )kΘ(W )
� 1
0 r
−1+2[

∑j0
j=1

mj+|k(j)|
aj

+
∑d
j=j0+1

mjnj−mj+|k(j)|
aj

]
(1− r2)s dr

=
fβ(Z)
D(k)

.

4. The Bergman and Szegő kernels of M. For s > −1 set

Θs(Z) :=
(

1−
d∑

j=1

|Z(j)|2aj
)s
Θ(Z).
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We denote by Lps(M) the space of holomorphic functions that satisfy

‖f‖p
Lps(M) =

( �

M
|f(Z)|pΘs(Z)

)1/p
<∞,

and by Ap
s(M) the subspace of Lps(M) consisting of holomorphic functions

on M. Using local coordinates in M, it is easy to see that for each compact
set A in M, there is a positive constant C = C(s, p, n) such that

(4.1) sup
Z∈A
|g(Z)| ≤ C‖g‖Ap

s(M)

for all g ∈ Ap
s(M). This shows that Ap

s(M) is a Banach space.
For p ≥ 1, denote by Hp(M) the Hardy space of M. This is the space of

all those holomorphic functions f on M that satisfy

‖f‖Hp := sup
0<r<1

{ �

∂M
|f(r1/a1W (1), . . . , r1/adW (d))|p dµ(W )

}1/p
<∞.

We shall see below that Hp(M) can be identified with a closed subspace of
Lp(∂M, µ) and thus is a Banach space.

Proposition 4.1. If f ∈ A2
s(M) then there exists a multi-sequence

{fk}k∈Nm of holomorphic polynomials such that fk ∈ Pk(M) and

f(Z) =
∑

k∈Nm0

fk(Z)

where the series is convergent uniformly on compact sets of the domain
Bm,n,a in Mm1,n1+1(C)× . . .×Mmd,nd+1(C) given by

Bm,n,a :=
{
Z ∈Mm1,n1+1(C)× . . .×Mmd,nd+1(C) :

d∑

j=1

|Z(j)|2aj < 1
}
.

Proof. Step 1. First note that if n1 ≥ 2, . . . , nd ≥ 2, then the conclusion
of the proposition holds for any holomorphic function f on M. Indeed, set

X =
d⋂

j=1

mj⋂

l=1

{Z ∈ Bm,n,a : Zl(j) • Zl(j) = 0}.

Then X is a complex space which is the zero set of the
∑d
j=1 mj holomorphic

functions gjl(Z) = Zl(j) • Zl(j), l = 1, . . . ,mj , j = 1, . . . , d, in Bm,n,a.
Moreover, X is of constant dimension

∑d
j=1 mjnj and its set of singular

points is

X× =
d⋂

j=1

mj⋂

l=1

{(Z(1), . . . , Z(d)) ∈ Bm,n,a : Zl(j) = 0}
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and for each point Z ∈ X× we have dimZ X× ≤ −2 +
∑d
j=1 mjnj so that by

[Wh, Theorem 1B(d′), p. 251] we see that Z is a normal singular point in X.
On the other hand, the set of regular points of X is precisely the manifold
M and of course consists of normal points. It follows that X is a normal
complex space. By the second Riemann removable singularity theorem (see
[KK, pp. 307]) every holomorphic function f onM can be extended uniquely
to a holomorphic function f̃ in X. Since Bm,n,a is a domain of holomorphy
the proposition follows from the Oka–Cartan Theorem B.

Step 2. Consider now the situation where j0 ≥ 1. If Z ∈ Hm,n is fixed
and if r = (rjl)l=1,...,mj ;j=1,...,d is a finite sequence of positive numbers we
set

∆m,n := {λ = (λjl) ∈ Cm : 0 < |λjl| ≤ rjl}.
We choose the rjl’s sufficiently small so that for all λ ∈ ∆m,n we have
λ�Z ∈M. Then λ 7→ λ�Z maps continuously∆m,n intoM and is holomorphic
on the interior of ∆m,n. Consider the function

ϕZ(λ) := f(λ � Z), λ ∈ ∆m,n.

The function ϕZ has a Laurent series expansion of the form

ϕZ(λ) =
∑

k∈Zm
fk(Z)λk

where fk : Hm,n → C is a k-homogeneous holomorphic function which is
independent of the choice of r = (rjl)l=1,...,mj ;j=1,...,d. Indeed, fk is given
only in terms of f by

(4.3) fk(Z) =
1

(2iπ)|m|
�

{|λjl|=rjl:l=1,...,mj ; j=1,...,d}
f(λ � Z)

∏

j,l

dλjl

λ
kjl+1
jl

.

In particular, if Z ∈M, then we can choose rjl = 1 so that by (4.3) we have

|fk(Z)| ≤ 1
(2iπ)|m|

�

(S1)m

|f(λ � Z)|
d∏

j=1

mj∏

l=1

dλjl
λjl

.

This implies that if f ∈ A2
s(M), then

�

M
|fk(Z)|2Θs(Z) ≤ 1

(2iπ)|m|
�

(S1)m

�

M
|f(λ � Z)|2Θs(Z)

d∏

j=1

mj∏

l=1

dλjl
λjl

=
�

M
|f(Z)|2Θs(Z).

where the latter equality holds because Θs is (S1)m-invariant. If we choose
rjl ∈ ]0, 1[ sufficiently small so that λ�Z ∈M for all λ ∈ ∆m,n and Z ∈ Γm,n,
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then we have
j0∏

j=1

mj∏

l=1

rjl�

0

u
2kjl+1
jl dujl

d∏

j=j0+1

mj∏

l=1

rjl�

0

u
2|nj |+2kjl−3
jl dujl

�

Γm,n

|fk(W )|2ωm,n(W )

=
�

{λ�W :λ∈∆m,n,Z∈Γm,n}
|fk(Z)|2Θ(Z) ≤ (1 + 2|s|)

�

M
|f(Z)|2Θs(Z) <∞.

This shows that if fk does not vanish identically on Hm,n, then

j0∏

j=1

mj∏

l=1

rjl�

0

u
2kjl+1
jl dujl <∞,

which in turn implies that kjl ≥ 0 provided nj = 1. If we fix j0 variables
Z(1), . . . , Z(j0) ∈ H1, then the function gk : (Z(j0 + 1), . . . , Z(d)) 7→
fk(Z(1), . . . , Z(d)) is holomorphic on the manifold Hnj0+1 × . . .×Hnd . Now
the same reasoning as in Step 1 implies that gk is the restriction of a holo-
morphic function in the domain in Mmj0+1,nj0+1+1(C)× . . .×Mmd,nd+1(C)
consisting of all elements (Z(j0 + 1), . . . , Z(d)) that satisfy

d∑

j=j0+1

|Z(j)|2aj <
(

1−
j0∑

j=1

|Z(j)|2aj
)1/2

.

Now by homogeneity of gk we see that gk vanishes identically provided that
kjl < 0 for some j, l. This proves that fk vanishes identically for k ∈ Zm\Nm0 .
By the Parseval equality we see that if Z ∈M, then

∑

k∈Nm
|fk(Z)|2 =

1
(2iπ)|m|

�

(S1)m

|f(λ � Z)|2
d∏

j=1

mj∏

l=1

dλjl
λjl

.

The homogeneity of the polynomials fk and the Cauchy–Schwarz inequality
now show that the series

∑
k∈Nm |fk(Z)| converges uniformly on compact

subsets of M, which completes the proof of the proposition.

Theorem 4.2. The weighted Bergman kernel of A2
s(M) is given by the

formula

Ks,M(Z,W ) =
(DRs)(Z •W )

Γ (s+ 1)
,

where Rs is the function defined in (1.5).

Proof. Putting together Proposition 4.1 and the identities in Lemma 3.3,
we obtain

A2
s(M) =

⊕

k∈Nd0

Pk(M)
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where the direct sum is orthogonal with respect to the inner product of
A2
s(M). Thus each f ∈ A2

s(M) is the sum of a series of holomorphic poly-
nomials fk ∈ Pk(M), k ∈ Nm0 . Let C(s, k) be the coefficients appearing in
Lemma 2.2. By Lemma 3.3 we have

f(Z) =
∑

k∈Nm0

fk(Z) =
∑

k∈Nm0

C(s, k)
�

M
(Z •W )kfk(W )Θs(W )

=
�

M

( ∑

k∈Nm0

C(s, k)(Z •W )k
)
f(W )Θs(W ).

Thus

Ks,M(Z,W ) =
∑

k∈Nm0

C(s, k)(Z •W )k =
1

Γ (s+ 1)
(DRs)(Z •W )

where the latter equality holds in view of Lemma 2.2.

Theorem 4.3. The Szegő kernel of M is given by the formula

SM(Z,W ) =
1
2

(DR−1)(Z •W ).

Proof. We use the same argument as in the proof of Theorem 4.2.

5. An operator between function spaces on M and function
spaces on Ω. If Z = (Z(1), . . . , Z(d)) ∈Mm1,n1+1(C)×. . .×Mmd,nd+1(C),
let F (Z) = (W (1), . . . ,W (d)) be the element ofMm1,n1(C)×. . .×Mmd,nd(C)
where W (j) is the (mj × nj)-matrix obtained from Z(j) by deleting the
(nj + 1)th column. Then

%(F (Z)) =
d∑

j=

|Z(j)|2aj .

Set

V0 :=
d⋃

j=1

mj⋃

l=1

{W ∈Mm1,n1(C)× . . .×Mmd,nd(C) : Wl(j) = 0}.

Then F is a proper holomorphic mapping of degree 2|m| which induces a
proper mapping (denoted again by F ) from M onto Ω \ V0 and from ∂M
onto ∂Ω \ V0. In addition, the branching locus W of F is given by

W =
d⋃

j=1

mj⋃

l=1

{Z ∈ Hm,n : Qjl(Z) = 0},

where Qjl(Z) is the (nj + 1)th component of the row Zl(j) of the matrix
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Z(j). In addition, the image F (W) is given by

F (W) =
d⋃

j=1

mj⋃

l=1

{W ∈ Ω \ V0 : Wl(j) •Wl(j) = 0}.

We set V := F (W) ∪ V0 =
⋃d
j=1

⋃mj
l=1{W ∈ Ω : Wl(j) •Wl(j) = 0}.

The mapping F has card(Λ) local inverses (Uε)ε∈Λ, where the local in-
verse mapping Uε, ε = (εjl) ∈ Λ, is defined locally for Z = (Z(1), . . . , Z(d))
∈ Ω \ V by

Uε(Z) := (W (1), . . . ,W (d))

where W (j) is the (mj × (nj + 1))-matrix whose rows are given in terms of
the rows Zl(j) and ε by

Wl(j) :=
{

(Zl(j), iεjl
√
Zl(j) • Zl(j)) if j > j0,

(Zl(j), iZl(j)) if j ≤ j0.

Let dV (z) := dz1 ∧ dz1 ∧ . . .∧ dznj ∧ dznj be the canonical volume form on
Cnj . Then the canonical volume form on Mm1,n1(C) × . . . ×Mmd,nd(C) is
given by

dV (Z) := ∧dj=1 ∧
mj
l=1 dV (Zl(j)).

In addition, a little computing shows that

(5.1) U∗ε (Θ) =

∏d
j=j0+1(1 + nj)2mj

∏d
j=j0+1

∏mj
l=1 |Zl(j) • Zl(j)|

dV (Z).

Let Σ be the set of all boundary points Z = (Z(1), . . . , Z(d)) ∈ ∂Ω with

Z(j) =




Z1(j)
...

Zmj (j)




such that Zl(j) • Zl(j) 6= 0 for all l = 1, . . . ,mj , j = 1, . . . , d. A little
computing shows that Σ is a smooth submanifold of Mm1,n1(C) × . . . ×
Mmd,nd(C). Using the parametrization (1.5) we see that the form dV (Z)
induces a volume form η on Σ by the formula

(5.2) dV (Z) = r−1+2
∑d
j=1 mjnj/ajdr ∧ η.

In addition, we have
�

Σ

f(W )η(W ) =
�

∂Ω

f(W ) dσ(W )

for all compactly supported continuous functions f on ∂Ω.
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Lemma 5.1. For each ε ∈ Λ we have

U∗ε (ϑ) =

∏d
j=j0+1(1 + nj)2mj

∏d
j=j0+1

∏mj
l=1 |Zl(j) • Zl(j)|

η.

Proof. We use the polar decompositions of dV (Z) and Θ given respec-
tively by (5.2) and Lemma 3.2.

If f : Ω → C is a measurable function and if Z ∈ M, we define the
operator T by

(5.3) (Tf)(Z) :=
d∏

j=j0+1

mj∏

l=1

Qjl(Zl)(f ◦ F )(Z).

Lemma 5.2. If f is an integrable compactly supported function on Ω\V,
then for p ≥ 1 the operator

Tp :=
(

card(Λ)
d∏

j=j0+1

(nj + 1)2mj
)−1/p

T

satisfies the identities

�

M
|(Tpf)(Z)|pΘ(Z) =

�

Ω

|f(W )|p
d∏

j=j0+1

mj∏

l=1

|Wl(j) •Wl(j)|(p−2)/2dv(W )

�

∂M
|(Tpg)(Z)|p dµ(Z) =

�

∂Ω

|g(W )|p
d∏

j=j0+1

mj∏

l=1

|Wl(j) •Wl(j)|(p−2)/2dσ(W ),

for all f in Lp(Ω,
∏d
j=j0+1

∏mj
l=1 |Zl(j) • Zl(j)|(p−2)/2dv(Z) and all g in

Lp(∂Ω,
∏d
j=j0+1

∏mj
l=1 |Wl(j) •Wl(j)|(p−2)/2dσ(W ).

Proof. Using a partition of unity we may assume that f is compactly
supported in Ω \ V and all the local inverses (Uε)ε∈Λ of F are defined on a
neighborhood of the support of f. Therefore,

�

M
|(Tf)(Z)|pΘ(Z) =

�

M

∣∣∣
d∏

j=j0+1

mj∏

l=1

Qjl(Z)(f ◦ F )(Z)
∣∣∣
p

Θ(Z)

=
�

M\W

∣∣∣
d∏

j=j0+1

mj∏

l=1

Qjl(Z)(f ◦ F )(Z)
∣∣∣
p

Θ(Z)

=
∑

ε∈Λ

�

Ω\V

∣∣∣
d∏

j=j0+1

mj∏

l=1

iεjl
√
Wl(j) •Wl(j) f(W )

∣∣∣
p

U∗ε (Θ)(W )
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= card(Λ)
d∏

j=1

(nj + 1)2mj
�

Ω\V

|f(W )|p
∏d
j=j0+1

∏mj
l=1 |Wl(j) •Wl(j)|(p−2)/2

dv(W )

by (5.1). The second equality can be proved in an analogous manner.

Lemma 5.3. For each p ≥ 1 and s > −1, let Eps(M) and Rp(M) denote
respectively the images of Ap

s(Ω) and Hp(Ω) under the operator T. Then

(1) Eps(M) is a closed subspace of Ap
s(M) and Tp is a unitary operator

from Ap
s(Ω) onto Eps(M). In particular , Ap

s(Ω) is a Banach space. Moreover ,
T is surjective if and only if n1 = . . . = nd = 1.

(2) Rp(M) is a closed subspace of Hp(M) and Tp is a unitary operator
from Hp(Ω) onto Rp(M). In particular , Hp(Ω) is a Banach space. More-
over , T is surjective if and only if n1 = . . . = nd = 1.

Proof. To establish (1), observe by Lemma 5.2 that Tp is a unitary oper-
ator from Ap

s(Ω) onto Eps(M). We now show that Eps(M) is a closed subspace
of Ap

s(M). If D is a compact set in Ω \ V, then E = F−1(D) is a compact
subset of M since F is proper. Therefore by (4.1) there is a positive constant
C ′ such that

(5.4) sup
Z∈D
|f(Z)| ≤ C ′‖Tf‖Ap

s(M)

for all f ∈ Ap
s(Ω). These estimates imply that if g is in the closure of Eps(M)

then g is holomorphic in M and there exists f ∈ Lps(Ω) such that f is
holomorphic on Ω \V and g = Tf . Notice that Ω∩V is an analytic set in Ω.
Since g is holomorphic inM it follows from (5.4) that f ∈ L2

loc(Ω). Therefore,
f can be extended holomorphically to Ω, and thus g = Tf ∈ Eps(M). This
proves that Eps(M) is closed in Lps(M). Finally, observe that Ap

s(M) is the
closure of all the polynomials. However, Eps(M) contains all the polynomials
if and only if n1 = . . . = nd = 1. This shows that Eps(M) = Ap

s(M) if and
only if n1 = . . . = nd = 1 and thus the proof of (1) is complete.

To prove (2), let g ∈ Rp(M). Then there is a sequence {fq}q∈N0 ⊂ Hp(Ω)
such that (Tpfq)q converges to g in Hp(M). By Lemma 3.2 we see that
(Tpfq)q converges to g in A

p
0(M). By (1), there is f̃ ∈ A

p
0(Ω) such that

g = Tf. In virtue of (5.4) we see that fq converges to f pointwise on Ω \V.
On the other hand, by Lemmas 3.2 and 5.2 we see that {fq} is bounded in
Hp(Ω) and thus f ∈ Hp(Ω). This proves that Rp(M) is a closed subspace of
Hp(M). Furthermore, these spaces are equal if and only if Rp(M) contains
all the polynomials, but this occurs if and only if n1 = . . . = nd = 1.

Lemma 5.4. Let Bs,M : L2
s(M)→ A2

s(M) be the weighted Bergman pro-
jection with respect to the volume form (1−∑d

j=1 |Z(j)|2aj )sΘ(Z). Then

(5.5) Bs,M ◦ T = T ◦Bs,Ω
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where Bs,Ω : L2
s(Ω) → A2

s(Ω) is the weighted Bergman projection with re-
spect to the measure dvs(W ).

Proof. We first observe that the lemma holds for holomorphic functions.
Indeed, if f ∈ A2

s(Ω) then Tf ∈ A2
s(M) and thus (5.5) holds at f . Next, we

show that (5.5) also holds when f is orthogonal to holomorphic functions.
If W = (W (1), . . . ,W (d)) ∈Mm1,n1(C)× . . .×Mmd,nd(C) let wjlp be the

entry of the matrix W (j) corresponding to the lth row and pth column. Let
∂jlp := ∂/∂wjlp be the holomorphic derivative with respect to the variable
wjlp and set

Fs = {(1− %2)−s∂jlpg : g ∈ C∞0 (Ω \ V),

j = 1, . . . , d; l = 1, . . . ,mj ; p = 1, . . . , nj}
where C∞0 (Ω \V) denotes the space of all C∞-functions with compact sup-
port in Ω \ V.

Now let h ∈ L2
s(M) be a holomorphic function and let g ∈ C∞0 (Ω \ V)

be such that all the local inverses (Uε) are defined on a neighborhood of the
support of g. Then we have

(5.6)
�

M
h(Z)T

(
1

(1− %2)s
∂jlpg

)
Θs(Z)

=
∑

ε∈Λ

�

Ω\V

(f ◦ Uε)(W )
∏d
j=j0+1

∏mj
l=1(Qjl ◦ Uε)(W )

∂jlpg(W ) dvs(W ) = 0

where the latter equality holds by integration by parts. Therefore,〈
h, T

(
1

(1− %2)s
∂jlpg

)〉

L2
s(M)

= 0

and thus

(5.7) (Bs,M ◦ T )
(

1
(1− %(s)2)s

· ∂g

∂wjlp

)
= 0.

If now g is an arbitrary C∞-function with compact support in Ω \ V, then
using a partition of unity we see that (5.7) holds at g. This shows that the
space Fs is contained in the orthogonal complement A2

s(Ω)⊥ of A2
s(Ω) in

L2
s(Ω). It remains to show that Fs is dense in A2

s(Ω)⊥. Let h ∈ A2
s(Ω)⊥ be

orthogonal to Fs in L2
s(Ω); then for any g ∈ C∞0 (Ω \ V),

�

Ω

h(W ) (∂jlpg)(W ) dv(W ) =
�

Ω

h(W ) (1− %2)−s(∂jlpg)(W )dvs(W ) = 0.

Thus h satisfies the Cauchy–Riemann equations on Ω \ V (in the sense of
distributions). Therefore h is holomorphic in Ω \ V. Since h ∈ L2

s(Ω), it
is also locally in L2(Ω). It follows from [Ra, E.3.2, p. 40] that h extends
holomorphically across V in Ω. Hence h ≡ 0.
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Lemma 5.5. Let SM : L2(∂M) → H2(∂M) be the Szegő projection with
respect to the measure µ. Then

(5.8) SM ◦ T = T ◦ SΩ
where SΩ : L2(∂Ω) → H2(Ω) is the Szegő projection with respect to the
measure σ.

Proof. Clearly, if f ∈ H2(Ω), then (5.8) holds at f. Suppose now that
f is orthogonal to H2(Ω) with respect to the inner product of L2(∂Ω).
Consider the function

f̃(W ) := f

(
W (1)

%1/a1(W )
, . . . ,

W (d)
%1/ad(W )

)
, W ∈ Ω \ V.

Then by Lemmas 3.2 and 5.2 we see that f̃ ∈ L2(Ω) and f̃ is orthogonal to
A2(Ω). By Lemma 5.4, B0,M(T f̃) = (T ◦B0,Ω)(f̃) = 0. This shows that

�

M
h(Z) (T f̃)(Z)Θ(Z) = 0

for all bounded holomorphic functions h on M. In particular, if k ∈ Nm0 ,
then for any h ∈ Pk(M) we have

�

∂M
h(W ) (Tf)(W ) dµ(W ) =

�
M h(Z) (T f̃)(Z)Θ(Z)

∑d
j=1

|k(j)|
aj

+2
∑j0

j=1
mj
aj

+2
∑d

j=j0+1
mjnj
aj

= 0,

showing that Tf is orthogonal to H2(M) and hence (5.8) holds at f.

For k ∈ Nm0 , let Πk,M (resp. Πk,Ω) denote the orthogonal projection
from H2(M) (resp. H2(Ω)) onto Pk(M) (resp. Pk(Ω)). We denote by I the
element k of Nm0 such that all the components kjl, j ≥ j0 + 1, of k are equal
to 1 and the remaining components are equal to 0.

Lemma 5.6. The following diagram commutes:

L2(∂Ω) H2(Ω) Pk(Ω)

L2(∂M) H2(M) Pk+I(M)

T

��

SΩ //

T

��

Πk,Ω //

T

��
SM // Πk+I,M //

Proof. In view of Lemma 5.5 it is sufficient to prove that the diagram

H2(Ω) H2(M)

Pk(Ω) Pk+I(M)

Πk,Ω

��

T //

Πk+I,M
��

T //
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commutes. To do so, note that if f ∈ Pk(Ω), then Tf ∈ Pk+I(M) and thus

Πk,Ωf = f and Πk+I,MTf = Tf,

showing that (T ◦ Πk,Ω)(f) = (Πk+I,M ◦ T )(f). On the other hand, if
f ∈ H2(Ω) is orthogonal to Pk(Ω) with respect to the inner product of
H2(Ω), then Πk,Ωf = 0 and thus (T ◦ Πk,Ω)(f) = 0. Moreover, if we ex-
pand f in the form f =

∑
l∈Nm0 \{k} fl, where fl ∈ Pl(Ω), then we have

Tf =
∑
l∈Nm0 \{k} Tfl. Since for all l ∈ Nm0 \ {k} the polynomial Tfl is or-

thogonal to Pk+I(M) with respect to the inner product of H2(M) we see
that Πk+I,MTf = 0. This completes the proof of the lemma.

Proof of Theorem A. Let W ∈ Ω \V and choose an open neighborhood
OW of W so that OW ⊂ Ω \ V and all the local inverses {Uε}ε∈Λ are well
defined in OW . In view of Remark 6.1.4 in [JP], there is a C∞-function
ϕ : Mm1,n1(C)× . . .×Mmd,nd(C)→ [0,∞[ such that suppϕ ⊂ OW and

(5.9) f(W ) =
�

Ω

f(Z)ϕ(Z) dv(Z) =
�

Ω

(1− %2(Z))−sf(Z)ϕ(Z) dvs(Z)

for any holomorphic function f in OW . Therefore,

Ks,Ω(·,W ) = Bs,Ω

(
ϕ

(1− %2)s

)
.

Let U := UI be the local inverse of F corresponding to ε = I. If Z ∈ Ω \ V,
then in view of (5.1), for Z ∈M,

d∏

j=j0+1

mj∏

l=1

(Qjl ◦ U)(Z)Ks,Ω(Z,W ) = (T ◦Bs,Ω)
(

ϕ

(1− %2)s

)
(U(Z))

= (Bs,M ◦ T )
(

ϕ

(1− %2)s

)
(U(Z))

=
�

M

d∏

j=j0+1

mj∏

l=1

(QjlX)
(ϕ ◦ F )(X)

(1−∑d
j=1 |X(j)|2aj )s

Ks,M(U(Z),X)Θs(X)

=
d∏

j=j0+1

(nj + 1)2mj
∑

ε∈Λ

�

Ω\V
ϕ(Y )

Ks,M(U(Z), Uε(Y ))
∏d
j=j0+1

∏mj
l=1(Qjl ◦ Uε)(Y )

dv(Y )

=
d∏

j=j0+1

(nj + 1)2mj
∑

ε∈Λ

Ks,M(U(Z), Uε(W ))
∏d
j=j0+1

∏mj
l=1(Qjl ◦ Uε)(W )

,

where the latter equality holds because of (5.9). This shows that



184 E. H. Youssfi

Ks,Ω(Z,W )

=
d∏

j=j0+1

(nj + 1)2mj
∑

ε∈Λ

Ks,M(U(Z), Uε(W ))
∏d
j=j0+1

∏mj
l=1[(Qjl ◦ U)(Z) (Qjl ◦ Uε)(W )]

.

Setting t := Z • W and u := (Qjl ◦ U)(Z) (Qjl ◦ U)(W ) and applying
Theorem 4.2 we see that for each ε ∈ Λ we have

Ks,M(U(Z), Uε(W ))
∏d
j=j0+1

∏mj
l=1[(Qjl ◦ U)(Z) (Qjl ◦ Uε)(W )]

=
Rs(t+ εu)

∏d
j=j0+1

∏mj
l=1 εjlujl

,

from which the theorem follows because u2 = (Z • Z) (W •W ).

Proof of Theorem B. We use the same notations as in the proof of The-
orem B. Let W ∈ ∂Ω \ V. Using the coordinates (1.5) we choose r0 > 0
sufficiently small so that the subset

OW := {Z(r,X) : r ∈ ]1− r0, 1 + r0[, |W −X| < r0, X ∈ ∂Ω}
is contained in Mm1,n1(C) × . . . × Mmd,nd(C) \ V and the local inverses
{Uε}ε∈Λ are well defined in OW . As in the proof of Theorem A there is a
C∞-function ϕ : Mm1,n1(C) × . . . ×Mmd,nd(C) → [0,∞[ with support in
OW and

f(W ) =
�

OW
f(Z)ϕ(Z) dv(Z)

for any holomorphic function f in OW . If k ∈ Nm0 , we set

ψk(X) :=
1+r0�

1−r0
r−1+

∑d
j=1 |k(j)|/aj+2

∑d
j=1 mjnj/ajϕ(Z(r,X)) dr, X ∈ ∂Ω.

Then suppψk ⊂ OW ∩ ∂Ω. In addition, by integration in polar coordinates
we see that

(5.10) f(W ) =
�

∂Ω

f(X)ψk(X) dσ(X)

for all f ∈ Pk(Mm1,n1(C)× . . .×Mmd,nd(C)). Therefore,

Πk,Ω(SΩ(·,W )) = (Πk,Ω ◦ SΩ)(ψk).

Recalling that U is the local inverse of F corresponding to ε = I and applying
Lemma 5.6 we see that if Z ∈ Ω \ V then

d∏

j=j0+1

mj∏

l=1

(Qjl ◦ U)(Z)Πk,Ω(SΩ(·,W ))(Z) = (T ◦Πk,Ω ◦ SΩ)(ψk)(U(Z))
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= (Πk+I,M ◦ SM ◦ T )(ψk)(U(Z))

=
�

∂M

d∏

j=j0+1

mj∏

l=1

(Qjl(X)(ψk ◦ F )(X)Sk+I,M(U(Z),X) dµ(X)

=
d∏

j=j0+1

(nj + 1)2mj
∑

ε∈Λ

�

∂Ω\V
ψk(Y )

Sk+I,M(U(Z), Uε(Y ))
∏d
j=j0+1

∏mj
l=1(Qjl ◦ Uε)(Y )

dσ(Y )

=
d∏

j=j0+1

(nj + 1)2mj
∑

ε∈Λ

Sk+I,M(U(Z), Uε(W ))
∏d
j=j0+1

∏mj
l=1(Qjl ◦ Uε)(W )

,

where the latter equality holds because of (5.10). This shows that

Sk,Ω(Z,W )

=
d∏

j=j0+1

(nj + 1)2mj
∑

ε∈Λ

Sk+I,M(U(Z), Uε(W ))
∏d
j=j0+1

∏mj
l=1[(Qjl ◦ U)(Z) (Qjl ◦ Uε)(W )]

.

This completes the proof.

Finally, Corollary C can be proved using Theorem B and the same cal-
culation as in the proof of [OPY, Theorem, pp. 222–223].
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