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Weighted bounds for variational Fourier series

by

Yen Do (New Haven, CT) and Michael Lacey (Atlanta, GA)

Abstract. For 1 < p < ∞ and for weight w in Ap, we show that the r-variation
of the Fourier sums of any function f in Lp(w) is finite a.e. for r larger than a finite
constant depending on w and p. The fact that the variation exponent depends on w is
necessary. This strengthens previous work of Hunt–Young and is a weighted extension
of a variational Carleson theorem of Oberlin–Seeger–Tao–Thiele–Wright. The proof uses
weighted adaptation of phase plane analysis and a weighted extension of a variational
inequality of Lépingle.

1. Introduction. For a measurable function f on [0, 1], let Sf denote
the maximal Fourier sum:

Sf(x) := sup
n
|(Snf)(x)|, Snf(x) :=

∑
|k|<n

f̂(k)ei2πkx.

Here, f̂(k) =
	1
0 f(x)e−i2πkx dx is the kth Fourier coefficient, and by conven-

tion, Snf = 0 for n ≤ 0. (We use strict inequality |k| < n in the definition
of Sn for the convenience of the transference argument in Section 1.2.)

By the Carleson–Hunt theorem [C, H], S is bounded on Lp for 1 < p <∞,
which leads to a.e. convergence of the Fourier series of functions in Lp. See
also Sjölin [S] for the Walsh case, and [F, LT2] for alternative proofs. More
quantitative information about the convergence rate of Fourier series has
been obtained by Oberlin–Seeger–Tao–Thiele–Wright [OST+], via bounds
on a strengthening of S. To formulate this strengthening of S, we first recall
the r-variation norm of a sequence (an)n∈Z. If 0 < r <∞ then

‖(an)‖V r := sup
M,N0<···<NM

[
|aN0 |r +

M∑
j=1

|aNj − aNj−1 |r
]1/r

,

and for r = ∞ we have ‖(an)‖V∞ = supn |an|. It is clear that if ‖(an)‖V r
is finite for some r < ∞ then (an) is a Cauchy sequence and therefore
is convergent; the finiteness of ‖a‖V r may be considered as a quantitative
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measurement of the convergence rate of (an). The variational strengthening
of S considered in [OST+] is the following operator:

(1.1) S[r]f(x) = sup
M,N0<···<NM

[ M∑
j=1

|SNjf(x)− SNj−1f(x)|r
]1/r

,

and it was shown in [OST+] that, for 1 < p <∞, S[r] is bounded in Lp([0, 1])
if r > max(2, p′).

Convergence of Fourier series in non-Lebesgue settings was also consid-
ered in Hunt–Young [HY], where it was shown that S is bounded on Lp(w)
for any Ap weight w, 1 < p < ∞. See also [GMS] for extensions to more
generalized settings. Recall that a positive a.e. weight w is in Ap if uniformly
over intervals I we have

[w]Ap := sup
I

1

|I|

[ �
I

w(x) dx
][ 1

|I|

�

I

w(x)−1/(p−1) dx

]p−1
<∞.

Our aim in this paper is to strengthen the results of [HY] and [OST+]
by considering weighted estimates for S[r].

Theorem 1.1. Let 1 < p < ∞ and w ∈ Ap. Then there is an R =
R(p, [w]Ap) <∞ such that for all r ∈ (R,∞] we have

(1.2) ‖S[r]f‖Lp([0,1],w) ≤ C‖f‖Lp([0,1],w)
for some constant C depending only on w, p, r.

As remarked above, Theorem 1.1 gives more quantitative information
about the convergence of Fourier series than [HY] (which corresponds to
the endpoint r =∞). Theorem 1.1 follows from

Theorem 1.2. Let 1 < p < ∞ and w ∈ Aq for some q ∈ [1, p). Then
for r > max(2q, pq/(p− q)) we have

(1.3) ‖S[r]f‖Lp([0,1],w) ≤ C‖f‖Lp([0,1],w)
for some constant C depending only on w, p, q, r.

To derive Theorem 1.1 from Theorem 1.2, let 1 < p < ∞ and w ∈ Ap.
Since the Ap condition is an open condition, we have w ∈ Aq for some
1 < q < p (see e.g. [L2]). Then (1.2) follows from applying Theorem 1.2.

We would like to point out that, in the conclusion of Theorem 1.1, the
variation exponent must depend upon w ∈ Ap. Indeed, suppose towards
a contradiction that there is some p ∈ (1,∞) such that (1.2) holds for
every w ∈ Ap and for fixed r ∈ (0,∞). Using the fact that the variation-
norm decreases as r increases, we may assume that r > 1. Then S[r] is
sublinear, and an application of the Rubio de Francia extrapolation theorem
shows that the same inequality (with the same r) would have to hold for w
being the Lebesgue measure and all p ∈ (1,∞), contradicting an example



Weighted bounds for variational Fourier series 155

in [OST+, Section 2]. We also remark that in the Lebesgue setting, when
w ≡ 1 ∈ A1, the range of r in Theorem 1.2 is sharp.

Our proof of Theorem 1.2 extends our previous work in [DL] on a
Walsh–Fourier model of S[r] and at the same time is a weighted exten-
sion of [OST+]. The proof uses two new ingredients: weighted analysis on
the Fourier phase plane, and a weighted extension of a classical variational
inequality of Lépingle (Lemma 5.2). The weighted adaptation of analysis on
the Fourier phase plane in our proof follows closely the adaptation in [DL],
modulo (substantial) technicalities arising from the lack of perfect localiza-
tion of Fourier wave packets. In particular, our approach is different from
the elegant argument in [HY] where a good-λ argument was used to deduce
weighted bounds for S from the Carleson–Hunt theorem. It is not hard to
see that a naive adaptation of the good-λ approach in [HY] does not apply
to the variation-norm Carleson operator. Our approach is inspired by an ar-
gument of Rubio de Francia [RdF], though it is easier to see this inspiration
in the dyadic setting of [DL]. We anticipate that the weighted phase plane
analysis in our proof will be useful in a variety of open problems involving
weighted bounds for multilinear operators with oscillatory nature, where a
naive adaptation of the approach in [HY] seems not applicable (1). It is
interesting to compare our paper with that of Bennett–Harrison [BH].

1.1. Notational conventions. (i) Henceforth, we work on the real

line R, and set f̂(ξ) =
	
f(x)e−i2πxξ dx.

(ii) For any 1 ≤ t <∞ we will denote byMtf the Lt Hardy–Littlewood
maximal function, and by Mt,wf the weighted Lt maximal function

Mt,wf(x) = sup
I:x∈I

(
1

w(I)

�

I

|f(x)|tw(x) dx

)1/t

.

(iii) The dyadic intervals D will play a distinguished role. We denote
by f ] the dyadic sharp maximal function of f , namely

f ](x) := sup
I∈D

1I(x)|I|−1
�

I

∣∣∣f − |I|−1 �
I

f(y) dy
∣∣∣ dx.

All BMO norms, unless otherwise specified, are dyadic BMO norms, namely
‖f‖BMO = ‖f ]‖∞. An important inequality for this paper is the familiar
estimate

(1.4) ‖φ‖Lp(w) ' ‖φ]‖Lp(w), w ∈ Ap.
(iv) For any interval I and c > 0 we denote by cI the interval with length

c|I| and with the same center as I. This should not be confused with c(I)

(1) We would like to point out that Xiaochun Li [L2] has some unpublished results
about weighted estimates for the bilinear Hilbert transform.
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which will denote the center of I. A standard property of an Ap weight w
is that it is doubling: there exists γ = γ(w) such that for any interval I and
any k ≥ 0,

(1.5) w(2kI) ≤ 2γkw(I).

(v) For any set G we denote w(G) =
	
Gw(x) dx.

1.2. Transference to a singular integral form. Using a weighted
variant of a transference argument in [OST+, Appendix A], it is not hard
to see that Theorem 1.2 follows from Theorem 1.3 stated below. Here, we
define

(1.6) C[r]f(x) := sup
K,N0<···<NK

( K∑
j=1

∣∣∣ Nj�

Nj−1

f̂(ξ)ei2πxξ dξ
∣∣∣r)1/r.

Theorem 1.3. Let 1 < p < ∞ and w ∈ Aq for some q ∈ [1, p). Then
for r > max

(
2q, pq

p−q
)

we have

(1.7) ‖C[r]f‖Lp(R,w) ≤ C‖f‖Lp(R,w)
for some constant C depending only on w, p, q, r.

For the reader’s convenience, we include details of the transference ar-
gument.

For any K ≥ 1 and m ≥ 1, let Im,K be the set of all non-decreasing

sequences of length K+1 in {0, . . . ,m}. For each such sequence ~N = (N0 ≤
· · · ≤ NK) we construct the variation sum

(1.8) S ~Nf =
( K∑
j=1

|SNjf − SNj−1f |r
)1/r

.

Since the set Im,K is bigger when m or K is larger, by two applications of
the monotone convergence theorem it suffices to show that∥∥∥ sup

~N∈Im,K
S ~Nf

∥∥∥
Lp([0,1],w)

≤ C‖f‖Lp([0,1],w),

where the implicit constant is uniform over m and K. Let σ = w1−p′ . Then
the above inequality has the following equivalent dual form: for f defined
on [0, 1] and for g defined on [0, 1]× Im × {1, . . . ,K} (we will write g ~N,j(x)

to denote g(x, ~N, j)),

(1.9)

1�

0

f(x)
∑

~N∈Im,K

K∑
j=1

[(SNj − SNj−1)g ~N,j ](x) dx

≤ C‖f‖Lp([0,1],w)
∥∥∥ ∑
~N∈Im,K

( K∑
j=1

|g ~N,j |
r′
)1/r′∥∥∥

Lp′ ([0,1],σ)
.
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To prove (1.9), we may assume without loss of generality that f and g ~N,j
are trigonometric polynomials for any ~N ∈ Im and 1 ≤ j ≤ K.

For any N ≥ 0 let CN be the Fourier multiplier operator on L2(R) whose
symbol is the characteristic function of {−(N − 1/3) ≤ ξ ≤ N − 1/3} (by

definition CN ≡ 0 if N < 1/3). Let δ(x) = e−πx
2

and δM (x) = δ(x/M).

By standard transference theory (see e.g. [SW, p. 261]), for any integer
N and any 1-periodic trigonometric polynomials P , Q we have

1�

0

P (x)SNQ(x) dx = lim
M→∞

1

M

�

R

P (x)δM/αCN (δM/βQ)(x) dx,

for any α, β ∈ (0, 1) such that α2 + β2 = 1. We take α = β = 1/
√

2. It
follows that the left hand side of (1.9) is the same as

lim
M→∞

1

M

�

R

f(x)δM/α(x)
∑
~N∈Im

K∑
j=1

[(CNj − CNj−1)(δM/βg ~N,j)](x) dx.

It follows from Theorem 1.3 that the analogue of (1.9) for CN ’s holds, thus
the above limit is bounded above by

(1.10) C lim sup
M→∞

1

M
‖fδM/α‖Lp(R,w)

∥∥∥δM/β

∑
~N∈Im,K

( K∑
j=1

|g ~N,j |
r′
)1/r′∥∥∥

Lp′ (R,σ)
.

Since w ∈ Aq ⊂ Ap, we have σ = w1−p′ ∈ Ap′ and in particular both w
and σ are doubling weights. On the other hand, it follows from exponential
decay of δ that, for any doubling measure µ and any 1 < q < ∞ and any
1-periodic function h,

sup
M≥1

1

M1/q
‖δMh‖Lq(R,µ) ≤ C‖h‖Lq([0,1],µ).

In view of this observation, (1.9) follows immediately from (1.10).

We take up the proof of Theorem 1.3 below.

2. Discretization. In this section we reduce the task of proving (1.7)
to proving similar bounds on model operators. Consider absolute constants
C2 ∈ [1,∞) and C3 ∈ (0, C2) and C2,1, C2,2, C1 ∈ [C2,∞). Constants with
these properties are called admissible.

2.1. Tiles and bitiles. In this paper, a tile is a dyadic rectangle of
area 1, which we will write p = Ip×ωp and refer to Ip as the spatial interval
and ωp as the frequency interval of p. By a bitile P we mean a rectangle
IP ×ωP that contains (as subsets) two tiles P1 and P2 such that they share



158 Y. Do and M. Lacey

the same (dyadic) spatial interval IP and

supC2ωP1 ≤ inf C2ωP2 , |ωP | ≤ C1(|ωP1 |+ |ωP2 |),
ωP = convex hull(C2,1ωP1 ∪ C2,2ωP2).

The classical setting (see e.g. [LT2]) when a bitile is a dyadic rectangle of
area 2 is the special case of our general setting when C2 = C2,1 = C2,2 =
C1 = 1.

We say that two bitiles P and P ′ are disjoint if they are disjoint in
the phase plane. Denote by ω̃P the convex hull of C2ωP1 ∪ C2ωP2 , clearly
ω̃P ⊂ ωP . In this paper, whenever we talk about a bitile collection it shall
be assumed that the implicit constants above are the same for any two
bitiles.

2.2. Fourier wave packets. For every tile p = Ip × ωp, a function φp
is called a Fourier packet adapted to p if supp(φ̂p) ⊂ C3ωp, furthermore for
any N > 0 and n ≥ 0 we have (for some CN,n depending only on N and n)

(2.1)

∣∣∣∣ dndxnφp(x)

∣∣∣∣ ≤ CN,n 1

|Ip|1/2+n

(
1 +
|x− c(Ip)|
|Ip|

)−(N+n)

;

here recall that c(Ip) denotes the center of Ip. In a family of Fourier packets,
we will assume that the implicit constants involved are uniform.

2.3. Discretization and the model operators. For any r ∈ [1,∞)
and any finite collection P of bitiles, let

Cr,Pf := sup
K,N0<···<NK

( K∑
j=1

∣∣∣ ∑
P∈P
〈f, φP1〉φP11{Nj−1 6∈ωP , Nj∈ωP2}

∣∣∣r)1/r.
A symmetric variant of Cr,P can be obtained by changing the limiting con-
dition involving Nj , Nj−1 in the above definition to {Nj−1 ∈ ωP1 , Nj 6∈ ωP }.

Without loss of generality, we assume in the rest of the paper that 2q <
r < ∞ and q ∈ (1,∞). Via a discretization argument in [OST+], which
we summarize below, Theorem 1.3 follows from the theorem below and its
symmetric variant (whose proof is completely analogous).

Theorem 2.1. There is a constant C <∞ independent of f and P such
that

(2.2) ‖Cr,Pf‖Lp(w) ≤ C‖f‖Lp(w)
for any finite collection P of bitiles and any p ∈ (q,∞) such that 1/p <
1/q − 1/r.

Discretization. We sketch the main ideas of our weighted adaptation of
the discretization argument in [OST+, Section 3]. For each interval (a, b)
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with non-dyadic endpoints, let J be the collection of maximal dyadic inter-
vals in (a, b) such that dist(J, a),dist(J, b) ≥ |J |. It is not hard to see that
J partitions (a, b), and the ratio between two adjacent elements of J is at
most 2. By direct examination, it follows that there are O(1) possible mu-
tually exclusive scenarios involving relative locations of J inside (a, b), and
these scenarios are characterized by the following information:

• whether J is the left or right child or its dyadic parent,
• the distance from a to J , which could be arbitrarily large,
• the distance from b to J , which could be arbitrarily large.

More specifically, we may divide J into O(1) disjoint subsets of the following
type: If m,n, k are bounded positive integers and “side” is “left” or “right”
then we denote by Jk,m,n,side the set of all dyadic intervals J such that J is
the “side” child of its dyadic parent, and a ∈ Jlow(k,m) and b ∈ Jhigh(k, n).

• If k = 1 then Jlow = J − (m+ 1)|J | and Jhigh = |J |+ (n+ 1)|J |.
• If k = 2 then Jlow = J − (m+ 1)|J | and Jhigh = [sup J + n|J |,∞).
• If k = 3 then Jlow = (−∞, inf J −m|J |] and Jhigh = |J |+ (n+ 1)|J |.

The following example of such a partition was given in [OST+]; we in-
clude this example for the convenience of the reader. Below are the values
of (k,m, n, side):

{(1, 2, 1, left), (1, 2, 2, left), (1, 3, 1, left), (1, 3, 2, left), (2, 1, 1, left),

(2, 1, 1, right), (2, 2, 1, right), (3, 4, 1, left), (3, 3, 1, right), (3, 4, 2, left)}.

Since the relative ratios between adjacent intervals in J are bounded
by 2, we may construct nonnegative L∞ normalized bump functions ϕJ
such that 1(a,b)(ξ) =

∑
J∈J ϕJ(ξ), furthermore ϕJ is supported inside a 1+c

dilation of J for each J ∈ J, where the absolute constant c > 0 can be
taken arbitrarily small. By using a standard Fourier sampling theorem for
the Schwartz band-limited function F−1(f̂(ξ)

√
ϕJ) (cf. [T2]) we can easily

decompose

f̂(ξ)ϕJ(ξ) =
∑

|I|=1/(2L|J |)

〈f, φI×J〉φ̂I×J(ξ)

for some positive integer L = O(1) where φ̂I×J(ξ) := |I|1/2
√
ϕJ(ξ)e−2πic(I)ξ.

Note that the frequency support of φI×J is inside a 1 + c dilation of J with
c > 0 that can be chosen small. Furthermore, it is clear that the collections of
functions (φI×J : |I| = 2−L|J |−1) can be decomposed (2) into O(1) families
of Fourier wave packets adapted to the tiles in the phase plane.

(2) This decomposition ensures that there is only one wave packet associated with
each dyadic rectangle of area 1.
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Let Pside denote the collection of all dyadic rectangles of area 2−L whose
frequency interval is the “side” child of its parent. Then

b�

a

ei2πxξ f̂(ξ) dξ =
3∑

k=1

∑
m,n,side

∑
p∈Pside

〈f, φp〉φp(x)1{a∈Lp(k,m), b∈Up(k,n)},

where the intervals Lp(k,m) and Up(k, n) are the Jlow and Jhigh of J = ωp.
Now, under the assumption that f is Schwartz, it is no loss of generality

to assume that the sequence (N0 < · · · < NK) (used in the definition of C[r])
does not contain endpoints of dyadic intervals. Performing the above parti-
tion on every (Nj−1, Nj), it then follows from the triangle inequality that

C[r]f ≤
∑

m,n,side

C1,m,n,sidef(x) + C2,m,n,sidef(x) + C3,m,n,sidef(x)

with

Ck,m,n,sidef(x)

:= sup
K,(Nj)

( K∑
j=1

∣∣∣ ∑
p∈Pside

〈f, φp〉φp(x)1{Nj−1∈Lp(k,m), Nj∈Up(k,m)}

∣∣∣r)1/r
for k = 1, 2, 3. It is not hard to see that for each 1 ≤ m,n = O(1), we can
bound C3,m,nf(x) by a sum of OL(1) operators of the same nature as Cr,P,
with appropriate choice of admissible constants C1, C2, C2,1, C2,2 and C3.
Similarly, C2,m,nf(x) can be bounded by a symmetric variant of Cr,P. Since
any interval [a, b) can be written as (−∞, b) \ (−∞, a), it is not hard to see
that C1,m,nf(x) can be controlled by two operators of the same nature as
C3,m,nf(x). Thus, Theorem 1.3 follows from Theorem 2.1. This completes
the discretization step.

Below we set up a linearized variant of Cr,P. By duality in `r, to show
(2.2) it suffices consider the following operator (we omit the dependence on
r for simplicity):

(CPf)(x) =

K(x)∑
j=1

∑
P∈P
〈f, φP1〉φP1(x)1{Nj−1(x)6∈ωP , Nj(x)∈ωP2}dj(x);

here K : R→ Z+, N0(x) < · · · < NK(x) and {dj} are measurable functions,
with

|d1(x)|r′ + · · ·+ |dK(x)(x)|r′ = 1.

For each bitile P , let dP (x) be 0 unless there exists a (clearly unique) j such
that Nj−1(x) 6∈ ωP and Nj(x) ∈ ωP2 , in which case we set dP (x) = dj(x).
For a function g, we note that 〈CPf, gw〉 = BP(f, g), where

BP(f, g) :=
∑
P∈P
〈f, φP1〉〈φP1 dP , gw〉.
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We say that G′ ⊂ G is a major subset if w(G′) > w(G)/2 and we say
G′ has full measure if w(G′) = w(G). Via a standard restricted weak-type
interpolation argument [MTT1, Section 2], Theorem 2.1 follows from the
following proposition:

Proposition 2.2. Let F , G be such that w(F ), w(G) <∞. Then there

are major subsets of F and G, denoted respectively by F̃ and G̃, such that:

(i) at least one subset has full measure, and
(ii) for any |f | ≤ 1

F̃
and |g| ≤ 1

G̃
and any finite collection of bitiles P

we have

(2.3) BP(f, g) ≤ Cw(F )1/pw(G)1−1/p

for all p ∈ (q,∞) such that 1/p < 1/q − 1/r.

In the rest of the paper, we will prove Proposition 2.2.

3. Decomposition of bitile collections. Without loss of generality
we may assume the following separation conditions:

(S1) The ratio dist(ωP1 , ωP2)/|ωP1 | is constant over P ∈ P
(S2) For any two bitiles P and P ′, if ωP ∩ωP ′ 6= ∅ and |IP | = |IP ′ | then

ωP = ωP ′ .
(S3) For any two bitiles P and P ′, if |IP | > |IP ′ | then |ωP | < |ωP ′1 |/K0

for some large absolute constant K0 that will be chosen in the proof.
(The choice of K0 is refined a bounded number of times below.)

Remark 3.1. First, we will require that K0 > 2/(C2 − C3). This means
that for any 1 ≤ i ≤ 2, if C3ωPi ∩ C3ωP ′i 6= ∅ and |IP | > |IP ′ | then
ωP ⊂ C2ωP ′i .

3.1. Trees. In this paper, a finite collection T of bitiles is a tree if there
exists a dyadic interval IT and a real number ξT such that for any P ∈ T
we have

IP ⊂ IT and ωT :=

[
ξT −

1

2|IT |
, ξT +

1

2|IT |

)
⊂ ω̃P .

We will refer to IT as the top interval of T . Similarly, ξT and ωT will be
referred to as the top frequency and the top frequency interval of T .

We say that T is 2-overlapping if ξT ∈ C2ωP2 for every P ∈ T , and we
say that T is 2-lacunary if ξT 6∈ C2ωP2 for every P ∈ T .

It is clear that any tree can be split into two trees, one of each type.
Furthermore, the union of two trees with the same (IT , ξT ) is a tree and we
may use the pair (IT , ξT ) for the new tree. If these two trees are 2-lacunary
then the new tree is also 2-lacunary.
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Remark 3.2. By further requiring that K0 > C3/(2C1 + 1) in the sepa-
ration assumption (S3), we obtain the following properties (cf. Remark 3.1).
Let T be a tree and let P, P ′ ∈ T be two different bitiles.

• If |IP | = |IP ′ | then IP ∩ IP ′ = ∅.
• If T is 2-overlapping and |IP | > |IP ′ | then ωP ∩ C3ωP ′1 = ∅.
• If T is 2-lacunary and |IP | > |IP ′ | then ωP ∩ C3ωP ′2 = ∅.

Remark 3.3. If there is a dyadic interval J such that for every P ∈ T
we have IP ⊂ J then we can decompose T into O(1) subtrees, each tree has
J as top interval (the top frequencies of these subtrees are not necessarily
the same, but they are O(1/|J |) away from the original ξT ). Essentially, this
is because we would have |ω̃P | ≥ 2/|J | and then one can always partition T
into two desired trees depending on the relative position of ξT in ω̃P .

3.2. Tile norms. Below, for any collection Q of bitiles we denote

SQf(x) :=

[∑
P∈Q

|〈f, φP1〉|2

|IP |
1IP

]1/2
.

Definition 3.4 (Size). The size of a collection P of bitiles is

size(P) := sup
T⊂P

w(IT )−1/2‖ST f‖L2(w).

The supremum is over all 2-overlapping trees T ⊂ P.

It is clear that for w ≡ 1 one recovers the standard definition of size
(cf. [LT1]). For any interval I, let

χ̃I(x) =

[
1 +

(
x− c(I)

|I|

)2]−1/2
.

Note that if J ⊂ I then χ̃J ≤ Cχ̃I , and this estimate will be used implicitly
in future estimates.

Definition 3.5 (Density). Recall the definition of the functions dj
from (2.3). Fix a large constant D ∈ (0,∞). The density of a collection
P of bitiles is defined to be

density(P) := sup
T

(
1

w(IT )

�
χ̃DIT |g|

r′
∑

j:Nj∈ωT

|dj |r
′
w

)1/r′

,

where the supremum is over nonempty trees T ⊂ P.

Choose D to be very large depending on w, p, q, r in the proof of Propo-
sition 2.2 in Section 6 (see also the proof of Lemma 3.15). All the implicit
constants are allowed to depend on D.
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When the elements of P are disjoint in the phase plane, the follow-
ing improved notion of density is more useful in future estimates; see also
Lemma 4.2.

Definition 3.6 (Improved density). The improved density of a collec-
tion P of bitiles is defined to be

d̃ensity(P) := sup
P∈P

(
1

w(IP )

�
χ̃DIP |g|

r′
∑

j:Nj∈ωP2

|dj |r
′
w

)1/r′

.

It is clear that d̃ensity(P) ≤ C density(P) for any P.

3.3. Decomposition by size. We have the following size bound:

Lemma 3.7. Assume w ∈ Aq. Then for any N > 0 there is a constant
C = C(N, q, w) <∞ such that for any P,

size(P) ≤ C sup
P∈P

(
1

w(IP )

�
|f |qχ̃NIPw

)1/q

.

The main ingredient in the proof of Lemma 3.7 is the following John–
Nirenberg characterization of size, which is a standard result in the Lebesgue
setting (see e.g. [MTT3]). The proof of the Lebesgue case of this characteri-
zation extends smoothly to the weighted setting (see [DL, Lemma 3.5]); we
omit the details.

Lemma 3.8. For any 1 < p <∞ and any collection P we have

sup
T⊂P

1

w(IT )1/p
‖ST f‖Lp(w) ∼p sup

T⊂P

1

w(IT )
‖ST f‖L1,∞(w),

the suprema being over all 2-overlapping trees.

Proof of Lemma 3.7 using Lemma 3.8. By decomposing T into smaller
subtrees (using Remark 3.3), we may assume that IT = IP for some P ∈ T .
Thus, it suffices to show that

‖ST f‖Lq(w) ≤ C‖fχ̃NIT ‖Lq(w).

But w ∈ Aq, hence ‖ST f‖Lq(w) . ‖(ST f)]‖Lq(w). Therefore it suffices to
show that for any N <∞ we have

(3.1) (ST f)] ≤ CM1(fχ̃
N
IT

).

For any dyadic interval J let

cJ =

( ∑
P∈T :J⊂IP

|〈f, φP1〉|2

|IP |

)1/2

.
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Then

1

|J |

�

J

|ST f(x)− cJ | dx ≤
(

1

|J |

�

J

|ST f(x)2 − c2J | dx
)1/2

=
1

|J |1/2

∥∥∥∥( ∑
P∈T : IP(J

|〈f, φP1〉|2
1IP
|IP |

)1/2∥∥∥∥
2

.

Using the known Lebesgue case of Lemma 3.7 (see e.g. [MTT3, Lemma 6.8]),
we obtain

1

|J |

�

J

|ST f(x)− cJ | dx ≤ C sup
P∈T : IP(J

1

|IP |

�
|f(x)|χ̃IP (x)N+4 dx

≤ C inf
x∈J∩IT

M1(fχ̃
N
IT

)(x),

and (3.1) follows immediately.

We remark that the following bound was proved in the above proof of
Lemma 3.7:

Corollary 3.9. Assume w ∈ Aq. Then for any 2-overlapping tree T
and any N > 0 we have

‖ST f‖BMO ≤ CN inf
x∈IT
M1(fχ̃

N
IT

)(x);

here we use the dyadic BMO norm.

For convenience, in the rest of the paper we say that a collection T of
2-overlapping trees is well-separated if the following conditions are satisfied:

(i) If T, T ′ ∈ T are two different trees, and P ∈ T and P ′ ∈ T ′ and
|IP | > |IP ′ |, then either C3ωP1 ∩ C3ωP ′1 = ∅ or IP ′ ∩ IT = ∅.

(ii) If P, P ′ ∈
⋃
T∈T T are two different bitiles with |IP | = |IP ′ | then

IP × C3ωP1 and IP ′ × C3ωP ′1 are disjoint.

Lemma 3.10. Let P be a collection of bitiles with size bounded above by
2α for some α > 0. Then we can find a collection T of trees such that:

• The bitile collection P−
⋃
T∈T T has size less than α.

• If another tree collection T′ covers
⋃
T∈T T then for some C =

C(w) <∞ we have

(3.2)
∑
T∈T

w(IT ) ≤ C
∑
T ′∈T′

w(IT ′).

• If q0 ∈ (q,∞) then there exists β = β(p, w, q, q0) < ∞ such that for
any k ≥ 0 and for any 1 ≤ p <∞ we have

(3.3)
∥∥∥∑
T∈T

12kT

∥∥∥
Lp(w)

≤ C2βkα−2q0‖f‖2q0
L2pq0 (w)

.

Here C = C(p, w, q, q0) <∞.
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Proof. For convenience let aP = 〈f, φP1〉. We follow the standard algo-
rithm from [LT2]. If size(P) ≥ α then there exists a nonempty 2-overlapping
tree T2 ⊂ P such that ‖ST2f‖L2(w) ≥ α2w(IT2). We select such a tree with

minimal value of ξT2 (3), and let T be the maximal tree in P with top data
(IT2 , ξT2). We then remove from P the bitiles in T and repeat this argument
until the remaining collection of bitiles has size less than α. We obtain a
collection T of trees such that

• P−
⋃
T∈T T has size less than α;

• each T ∈ T contains a 2-overlapping subtree T2 such that

(3.4) w(IT ) ≤ Cα−2‖ST2f‖2L2(w) = Cα−2
∑
P∈T2

|aP |2
w(IP )

|IP |
.

It then follows from a standard geometrical consideration that the tree col-
lection T2 := {T2 : T ∈ T} is well-separated when the constant K0 in (S3)
is chosen sufficiently large (see also Remark 3.1). We omit the details.

Proof of (3.2). Assume that T′ covers Q :=
⋃
T∈T T , without loss of

generality we can assume
⋃
T ′∈T′ T

′ = Q. Let Q2 =
⋃
T∈T T2. It follows

from (3.4) that

(3.5)
∑
T∈T

w(IT ) ≤ Cα−2
∑
P∈Q2

|aP |2
w(IP )

|IP |
.

Now, divide each T ′ ∈ T′ into three trees,

T ′0 = {P ∈ T ′ : inf C2ωP1 ≤ ξT ′ < supC3ωP1},
T ′1 = {P ∈ T ′ : supC3ωP1 ≤ ξT ′ < inf C2ωP2},
T ′2 = {P ∈ T ′ : ξT ′ ∈ C2ωP2}.

Clearly, T ′2 is 2-overlapping. Since size(P) ≤ Cα, we have

(3.6)
∑
P∈T ′2

|〈f, φP1〉|2
w(IP )

|IP |
= ‖ST ′2f‖

2
L2(w) ≤ Cα

2w(IT ′).

On the other hand, since T2 is well-separated, the rectangles

IP × [inf C2ωP1 , supC3ωP1), P ∈ Q2,

are pairwise disjoint in the phase plane. This implies that the bitiles of
T ′0 ∩Q2 are spatially disjoint (as their frequency intervals overlap). Thus,

(3.7)
∑

P∈T ′0∩Q2

|〈f, φP1〉|2
w(IP )

|IP |
≤

∑
P∈T ′0∩Q2

size({P})2w(IP ) ≤ Cα2w(IT ′).

(3) To be more careful, one can fix a top frequency for each of these trees, and then
select one tree (there are only finitely many of them) whose top frequency is minimal.
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Next, we show that T ′1 ∩ Q2 can be grouped into O(1) collections of
2-overlapping trees whose top intervals are disjoint. Together with the given
assumption on the size of P, this would imply

(3.8)
∑

P∈T ′1∩Q2

|〈f, φP1〉|2
w(IP )

|IP |
≤ Cα2ω(IT ′).

Let M be the set of elements of T ′1∩Q2 with maximal spatial intervals. The
grouping of elements in T ′1 ∩Q2 can be done as follows:

• Any element P ∈ M can be viewed as one 2-overlapping tree, and
we place these single-element trees in to the first tree collection.
• For any P ∈M , we show below that we can place every P ′ ∈ T ′1∩Q2

such that IP ′ ( IP in O(1) trees sharing the top interval IP .

Since the intervals IP , P ∈ M , are disjoint, it remains to show that if
P ′ ∈ T ′1 ∩Q2 and IP ′ ( IP then

(3.9) inf C2ωP ′2 < supC2ωP2 < supC2ωP ′2 .

Indeed, since |ωP ′2 | = 1/|IP ′ | ≥ 2/|IP | it follows from (3.8) that we may take
−1/(2|IP |) + supC2ωP2 or 1/(2|IP |) + supC2ωP2 as the top frequency for
these trees.

To see the first inequality in (3.9), we assume (towards a contradiction)
that supC2ωP2 ≤ inf C2ωP ′2 . By the selection algorithm, the 2-overlapping
tree S ∈ T2 that contains P must be selected before the 2-overlapping tree
S′ of P ′. Now, by definition of T ′1 we have

[supC3ωP1 , inf C2ωP2) ∩ [supC3ωP ′1 , inf C2ωP ′2) 6= ∅
(they both contain ξT ′). On the other hand, by ensuring the constant K0

is sufficiently large in the separation assumption (S3), we achieve that ωP ⊂
convex hull(C2ωP ′1 ∩C2ωP ′2). But then P ′ must be cleared out as part of the
maximal tree with the same top data as S, leading to a contradiction. This
proves the first half of (3.9).

To see the second inequality in (3.9), as before exploit the fact that

[supC3ωP1 , inf C2ωP2) ∩ [supC3ωP ′1 , inf C2ωP ′2) 6= ∅.
By ensuring the constant K0 in the separation assumption (S3) is sufficiently
large, we have |ωP ′2 | ≥ |ωP2 |. As a consequence, if supC2ωP2 ≥ supC2ωP ′2
then the interval [supC3ωP1 , inf C2ωP2) will be above inf C2ωP ′2 , contra-
dicting the nonempty intersection. This completes the proof of (3.9) and
hence (3.8).

Finally, collecting inequalities (3.6)–(3.8), we obtain∑
P∈T ′

|〈f, φP1〉|2
w(IP )

|IP |
≤ Cα2w(IT ′).

Summing over T ′ ∈ T′ and using (3.5), we obtain the desired estimate (3.2).
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Proof of (3.3). Fix k and let

N [k] :=
∑
T∈T

12kIT .

It suffices to show the following good lambda estimate: given any L ∈ (0,∞)
there exists c0 ∈ (0,∞) and c ∈ (0,∞) such that

(3.10) w({N [k] > λ} ∩ E[k]
λ ) ≤ 1

L
w({N [k] > λ/4}),

where

(3.11) E
[k]
λ := {M2q,wf ≤ c2−c0kαλ1/(2q0)}.

Indeed, choosing L sufficiently large (depending on p ∈ [1,∞)) and applying
a standard bootstrapping argument, we obtain∥∥∥∑

T∈T
1IT

∥∥∥
Lp(w)

≤ C2O(k)α−2q0‖M2q,w(f)‖2q0
L2pq0 (w)

≤ C2O(k)α−2q0‖f‖2q0
L2pq0 (w)

,

as desired. Here we have used the fact thatM1,w is bounded from Lt(w)→
Lt(w) for any 1 < t < ∞ and any positive weight w; note that we always
have 2pq0 > 2q.

To prove (3.10), we use the following estimate which follows from (the
remark after) Lemma 3.11 below: for any dyadic interval I and q0 ∈ (q,∞),

w({N [k]
I > λ/4})≤C2O(k)α−2qλ−q/q0w(I)

[
inf
x∈I
M2q,w(fχ̃NI )(x)

]2q
(3.12)

where

N
[k]
I :=

∑
T∈T: IT⊂I

1IT .

Let I be the collection of all maximal dyadic intervals of {N [k] > λ/4}. We

apply (3.12) to elements of I that intersect E
[k]
λ . Let I be one such interval;

then it follows from the maximality of I that {N [k] > λ} ∩ I is a subset of

{N [k]
I > λ/4}. Thus,

w({N [k] > λ} ∩ I) ≤ C2O(k)[α−2qλ−q/q0w(I)][c2−c0kαλ1/(2q0)]2q

and by choosing c sufficiently small and c0 sufficiently large we obtain

w({N [k] > λ} ∩ I) ≤ Cc2qw(I) ≤ w(I)

L
.

Summing the above estimates over all I ∈ I that intersect E
[k]
λ , we arrive
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at (3.10):

w({N [k] > λ} ∩ E[k]
λ ) ≤

∑
I∈I: I∩E[k]

λ 6=∅

w({N [k] > λ} ∩ I)

≤ 1

L

∑
I∈I

w(I) =
1

L
w({N [k] > λ/4}).

Lemma 3.11. Let I be an interval and let T be a well-separated collection
of 2-overlapping trees such that for any T ∈ T we have IT ⊂ I, and

(3.13) w(IT ) ≤ Cα−2‖ST f‖L2(w).

Then for any q0 ∈ (q,∞) and N > 0 there is C = C(q0, w,N) < ∞ such
that

w({N [k] > λ}) ≤ C2O(k)[α−1λ−1/(2q0)‖fχ̃NI ‖L2q(w)]
2q,(3.14)

where

N [k] :=
∑
T∈T

12kIT .(3.15)

The implicit constant in O(k) depends on w and q.

Remark 3.12. As a consequence of (3.14), we obtain

(3.16) w({N [k] > λ}) ≤ C2O(k)w(I)
[
α−1λ−1/(2q0) inf

x∈I
M2q,w(fχ̃NI )(x)

]2q
.

Proof of Lemma 3.11. Since N [k] is integer-valued, without loss of gen-
erality we may assume λ ≥ 1/2. We estimate

(3.17) w({N [k] > λ}) ≤
∑
l≥0

w({2lλ < N [k] ≤ 2l+1λ})

and it is not hard to see that

(3.18) w({2lλ < N [k] ≤ 2l+1λ}) ≤ w({N [k]
l > 2lλ})

where

N
[k]
l :=

∑
T∈Tl

12kIT and Tl := {T ∈ T : 2kIT 6⊂ {N [k] > 2l+1λ}}.

Write Nl for N
[0]
l ; clearly Nl ≤ N

[k]
l for k ≥ 0. We first show that

(3.19) ‖Nl‖∞ ≤ 2l+1λ.

Indeed, take any x, and let Tx = {T ∈ Tl : x ∈ IT }. Clearly,

Nl(x) ≤
∑
T∈Tx

12kIT .

Since the collection of top intervals of elements of Tx is nested, there is one
minimal element. Note that if I1 ⊂ I2 are two intervals then for k ≥ 0 we
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have 2kI1 ⊂ 2kI2. Therefore the intervals 2kIT with T ∈ Tx are also nested
and the minimal of them contains a point y ∈ {N [k] ≤ 2l+1λ} by definition
of Tl. Therefore,

Nl(x) ≤ N [k](y) ≤ 2l+1λ,

completing the proof of (3.19).
Now, denote Pl =

⋃
T∈Tl T and as usual

SPlf =

( ∑
P∈Pl

|〈f, φP1〉|2
1IP
|IP |

)1/2

.

It follows from (3.13), (1.5), and Hölder’s inequality that

(3.20) α2q‖N [k]
l ‖L1(w) ≤ C2γk‖SPlf‖

2q
L2q(w)

.

For N large let fI = fχ̃I . The key estimate in our proof of (3.14) is

Claim 3.13. For any s ∈ (0, 1) and δ > 0 there is C = C(ε, s,N) < ∞
such that

(3.21) (SPlf)] ≤ C‖Nl‖δ∞(M2fI + [αM2(N
1/2
l )]s(M2fI)

1−s).

Now we show (3.14) using the above claim. It follows from (3.20), (3.21),
and the assumption w ∈ Aq that

α‖N [k]
l ‖

1/(2q)
L1(w)

≤ C2O(k)‖(SPlf)]‖L2q(w)

≤ C2O(k)‖Nl‖δ∞(‖fI‖L2q(w) + [α‖N1/2
l ‖L2q(w)]

s‖fI‖1−sL2q(w)
)

≤C2O(k)(‖Nl‖δ∞‖fI‖L2q(w) + ‖Nl‖δ+s(1/2−1/2q)∞ αs‖Nl‖
s/(2q)
L1(w)

‖fI‖1−sL2q(w)
).

The numbers δ > 0 and s > 0 will be chosen very close to 0. Consequently,
after bootstrapping, it follows that for any ε > 0,

α‖N [k]
l ‖

1/(2q)
L1(w)

≤ C2O(k)‖Nl‖ε/(2q)∞ ‖fI‖L2q(w).

Therefore, it follows from the bound ‖Nl‖∞ ≤ 2l+1λ of (3.19) that

w({N [k]
l > 2lλ}) ≤ C2O(k)2−l(1−ε)α−2qλ−1+εw(I)

[
inf
x∈I
M2q,wf(x)

]2q
.

Choosing ε > 0 very small allows for summation over l ≥ 0 of the above
estimate. Using (3.17) and (3.18), we obtain the desired estimate (3.14).

Proof of Claim 3.13. Fix any dyadic J . For any T ∈ Tl let TJ :=
{P ∈ T : IP ⊂ J}, and by decomposing TJ into O(1) subtrees we may
assume that TJ is a tree with a new top interval IT ∩ J for every T ∈ Tl. It
suffices to show that for any x ∈ J ,

(3.22)
1

|J |1/2
∥∥∥( ∑

T∈Tl

|STJf |
2
)1/2∥∥∥

L2
≤ the value at x of RHS of (3.21).
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By Lemma 3.14 belov, for any 0 < s ≤ 1 there is C = Cs <∞ such that

(3.23)
( ∑
T∈Tl

‖STJf‖
2
2

)1/2
≤ C‖f‖2 + Cαs‖N1/2

l ‖
s
L2(J)‖f‖

1−s
2 .

Here we have used the fact that for any P ∈ P,

|aP |
|IP |1/2

=

(
1

w(IP )

�
|aP |2

1IP
|IP |

w(x) dx

)1/2

≤ α.

Since for any P ∈ TJ we have IP ⊂ I ∩ J , it follows from Corollary 3.9 that

(3.24) ‖STJf‖BMO ≤ C inf
x∈I∩J

M1(fχ̃
N
I∩J)(x).

Interpolate the estimates (3.23) and (3.24) to prove (3.22) using a now-
standard localization argument (see e.g. [LT3]). The idea is to decompose
f =

∑
k≥0 fk where f0 = f1I∩J and fk = f12k(I∩J)\2k−1(I∩J) for k ≥ 1 and

apply (3.23) and (3.24) to fk. More specifically, for p ∈ (2,∞) we have∥∥∥( ∑
T∈Tl

|STJfk|
p
)1/p∥∥∥

p
=
( ∑
T∈Tl

‖STJfk‖
p
p

)1/p
≤
( ∑
T∈Tl

‖STJfk‖
2
2

)1/p
sup
T∈Tl

‖STJfk‖
1−2/p
BMO

≤CN,p2−Nk|I∩J |1/p inf
x∈I∩J

(M2fI(x)+[αM2(N
1/2
l )(x)]2s/p[M2fI(x)]1−2s/p).

Summing over k ≥ 0 we obtain

(3.25)
∥∥∥( ∑

T∈Tl

|STJf |
p
)1/p∥∥∥

p

≤ C|J |1/p inf
x∈J

(M2fI(x) + [αM2(N
1/2
l )(x)]2s/pM2fI(x)1−2s/p).

On the other hand, using Hölder’s inequality we find that

(3.26)
∥∥∥( ∑

T∈Tl

|STJfk|
2
)1/2∥∥∥

p
≤ ‖Nl‖1/2−1/p∞

∥∥∥( ∑
T∈Tl

|STJf |
p
)1/p∥∥∥

p
.

Combining (3.25), (3.26) and Hölder’s inequality yields

1

|J |1/2
∥∥∥( ∑

T∈Tl

|STJf |
2
)1/2∥∥∥

L2
≤ 1

|J |1/p
∥∥∥( ∑

T∈Tl

|STJf |
2
)1/2∥∥∥

Lp

≤ C‖Nl‖1/2−1/p∞ [M2fI(x) + [αM2(
√
N l)(x)]2s/p[M2fI(x)]1−2s/p.

Choosing p > 2 sufficiently close to 2 we get the desired estimate (3.22).
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The following lemma, needed for our proof of Claim 3.13, is contained
implicitly in [T1], where in fact a stronger logarithmic variant was proved
(see also [HL] for a vector- valued generalization).

Lemma 3.14. Let T be a well-separated collection of 2-overlapping trees
and let P =

⋃
T∈T T . Then for any 0 < s ≤ 1 we have

(3.27)
( ∑
P∈P
|〈f, φP1〉|2

)1/2
≤ Cs

(
‖f‖2 +

[
sup
P∈P

|〈f, φP1〉|
|IP |1/2

(∑
T∈T
|IT |

)1/2]s
‖f‖1−s2

)
.

Remark. While any 0 < s < 1 would be enough for applications to the
Lebesgue setting of Carleson theorems (see e.g. [LT2] and [OST+] where
s = 1/3 is used), our applications to Claim 3.13 require arbitrarily small
s > 0. We include a proof of (3.27) (following largely [T1]) below.

Proof of Lemma 3.14. Without loss of generality we may assume
‖f‖2 = 1. Denote

N =
∑
T∈T

1IT , aP = 〈f, φP1〉, A =
( ∑
P∈P
|aP |2

)1/2
, B = sup

P∈P

|aP |
|IP |1/2

.

We then divide P into subcollections Pk, where for any k ≥ 0 we have

Pk =

{
P ∈ P : 2−k−1B <

|aP |
|IP |1/2

≤ 2−kB

}
,

and let P≥k =
⋃
j≥kPj . Using the known special case s = 1/3 of (3.27)

proved in [LT2] (see also [OST+] for a setting similar to the current paper)
for the restriction to P≥k of the tree collection T, we obtain( ∑

P∈P≥k

|aP |2
)1/2

≤ C + C(2−kB)1/3‖N‖1/61 ;

in particular for k ≥ max(0, log2[B(
∑

T∈T |IT |)1/2]) we have

(3.28)
( ∑
P∈P≥k

|aP |2
)1/2

≤ C.

On the other hand, it follows from the definition of Pk that

(3.29)
( ∑
P∈Pk

|aP |2
)1/2

∼ 2−kB
( ∑
P∈Pk

|IP |
)1/2

.

We can also view Pk as a collection of single-bitile trees, which is clearly well-
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separated. Thus again by the known case s = 1/3 of (3.27), it follows that

(3.30)
( ∑
P∈Pk

|aP |2
)1/2

≤ C + C
[
2−kB

( ∑
P∈Pk

|IP |
)1/2]1/3

.

Combining (3.29) and (3.30), we deduce that, for any k ≥ 0,

(3.31)
( ∑
P∈Pk

|aP |2
)1/2

≤ C.

From (3.28) and (3.31) we obtain∑
P∈P
|aP |2 ≤ C + C max(0, log2[B‖N‖

1/2
1 ]).

Using the trivial estimate max(0, log x) ≤ x for any x > 0, we conclude that( ∑
P∈P
|aP |2

)1/2
≤ C(1 + [B‖N‖1/21 ]s)

for any 0 < s ≤ 1, as desired.

3.4. Decomposition by density. Since |g| ≤ 1G, the density of any
collection is bounded above by 1. For the result below, it is important that
the constant D in the definition of density is sufficiently large, much bigger
than the doubling exponent γ of w. We return to this point in the proof.

Lemma 3.15. For any collection P of bitiles and any α > 0 we can find
a collection T of trees such that the density of P−

⋃
T∈T T is bounded above

by α and ∑
T∈T

w(IT ) ≤ Cα−r′w(G)

here r is the variational exponent used in the definition of density.

Remark. This is a weighted extension of [OST+, Proposition 4.4], and
the proof below is adapted from [OST+], which is in turn a variational
adaptation of the standard argument. The variant of Lemma 3.15 with im-

proved density follows immediately, since for any P we have d̃ensity(P) ≤
C density(P).

Proof of Lemma 3.15. If density(P) > α then there is a nonempty tree
T ⊂ P such that

(3.32) ω(IT ) ≤ α−r′
�
χ̃DIT |g|

r′
∑

j:Nj∈ωT

|dj |r
′
w.

We select T such that |IT | is maximal, and then by enlarging T (keeping IT
and ξT ) if necessary we may assume that T is maximal in P with respect
to set inclusion. Let T+ and T− be the maximal trees in P with the same
top interval as T but with top frequencies ξT − 1/(2|IT |) and ξT + 1/(2|IT |)
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respectively. We then remove from P the union of T, T+, T−. Continuing
this selection process, which will stop since P is assumed finite, we obtain
a collection T of trees such that

density
(
P−

⋃
T∈T

(T ∪ T− ∪ T+)
)
≤ α.

We now show that ∑
T∈T

w(IT ) ≤ Cα−r′w(G).

By the selection algorithm, it is not hard to see that for T 6= T ′ in T the
rectangles IT × ωT and IT ′ × ωT ′ are disjoint. Now, it follows from (3.32)
that for any T ∈ T there exists an integer k = k(T ) ≥ 0 such that

(3.33) ω(IT ) ≤ C2−Dkα−r
′

�

2kIT

|g|r′
∑

j:Nj∈ωT

|dj |r
′
w.

We then sort the trees in T according to the value of k(T ). More specifically
for each k ≥ 0 let Tk = {T ∈ T : k(T ) = k}. It suffices to show that

(3.34)
∑
T∈Tk

w(IT ) ≤ Cα−r′2−kw(G).

Fix k. Select a subcollection Sk ⊂ Tk such that the rectangles 2kIS × ωS
with S ∈ Sk are pairwise disjoint, and such that

(3.35)
∑
T∈Tk

ω(IT ) ≤ C
∑
S∈Sk

ω(2k+2IS).

Note that this will imply the desired estimate (3.34). By choosingD > γ+10,
where γ is the doubling exponent for w, it follows from (3.33) and (3.35)
that ∑

T∈Tk

ω(IT ) ≤ C2kγ
∑
S∈Sk

ω(IS)

≤ C2−kα−r
′
�∑

j

∑
S∈Sk

1{(x,Nj(x))∈2kIS×ωS}|dj |
r′ |g|r′w

≤ C2−kα−r
′
�
|g|r′

∑
j

|dj |r
′
w ≤ C2−kw(G).

It remains to select Sk. Assume without loss of generality that Tk is
nonempty. Then we choose S ∈ Tk such that |IS | is maximal and then
remove all T ∈ T if

2kIT × ωT ∩ 2kIS × ωS 6= ∅.
Starting from the remaining collection, we repeat the above selection pro-
cedure until no trees are left. We then let Sk be the collection of selected
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trees. For any S ∈ Sk, let TS denote the collection of trees in T that are
removed after S is selected; to show (3.35) it suffices to show that

(3.36)
∑
T∈TS

1IT ≤ C12k+2IS
.

Note that if T ∈ TS then |IT | ≤ |IS | and 2kIT ∩ 2kIS 6= ∅, so clearly
IT ⊂ 2k+2IS . Also |ωT | ≥ |ωS | and ωT ∩ ωS 6= ∅, so out of any four trees in
TS at least two will have overlapping top frequency intervals. The desired
estimate (3.36) then follows from the fact that the rectangles IT ×ωT (with
T ∈ TS) are disjoint.

4. The tree estimate. In this section we prove several estimates for
the restriction of the (model) Carleson operator to a tree. Lemma 4.1 is
applicable to any tree, while Lemma 4.2 improves the L1 case of Lemma 4.1
when the elements of the underlying tree are disjoint in the phase plane.

Recall that for any bitile collection Q we denote

CQf(x) =
∑
P∈Q
〈f, φP1〉φP1(x)dP (x)

with dP defined as follows: First, (dk)k≥1 and Nk are two sequences of mea-
surable functions of x such that

• For each x there is some integer K = K(x) <∞ such that dk(x) = 0
for k > K, and uniformly over x we have

∑
k≥0 |dk(x)|r′ = 1.

• For any x we have N0(x) < N1(x) < · · · .

Then for each x define dP (x) = 0 unless there exists an index k such that
Nk−1 6∈ ωP and Nk ∈ ωP2 , in which case such an index is unique and we
define dP (x) := dk(x). We note that if P ∈ P then�

χ̃DIP |g|
r′

∑
k:Nk∈ωP2

|dk|r
′
w ≤ Cw(IP ) density({P})r.

The above observation will be used implicitly below.

Lemma 4.1. Let T be a tree. Assume s ∈ [1, r′]. Then there exists some
C = C(s, w) <∞ such that

(4.1) ‖1IT gCT f‖Ls(w) ≤ Cw(IT )1/s size(T ) density(T ),

and furthermore for any N > 0 there exists C = C(N, s, w) <∞ such that,
for any k ≥ 0,

(4.2) ‖12k+1IT \2kIT gCT f‖Ls(w) ≤ C2−Nkw(IT )1/s size(T ) density(T ).

Remark. As a consequence, for any s ∈ [1, r′] we obtain

(4.3) ‖gCT f‖Ls(w) ≤ Cw(IT )1/s size(T ) density(T ).
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Proof of Lemma 4.1. By Hölder’s inequality and using the doubling
property of w it suffices to show (4.1) and (4.2) for s = r′, which will
be assumed in the rest of the proof. By dividing T into two subtrees if nec-
essary, we can assume that the tree is either 2-overlapping or 2-lacunary.
We will return to this distinction below.

Proof of (4.1). We will prove a stronger estimate, where the restric-
tion 1IT is not required. Let J be the set of maximal dyadic intervals such
that

IP 6⊂ 3J

for any P ∈ T . It is not hard to see that J partitions R. Let

(4.4) TJ := {P ∈ T : |IP | ≤ C4|J |}

for some absolute constant C4 ≥ 4 to be chosen later. The left hand side
of (4.1) (with s = r′ now) is bounded above by A+B where

A :=
(∑
J∈J

�

J

|gCTJf |
r′w
)1/r′

,(4.5)

B :=
(∑
J∈J

�

J

|gCT\TJf)|r′w
)1/r′

.(4.6)

To bound A, we fix J ∈ J and first estimate the contribution of each P ∈ TJ :( �

J

|gC{P}f |r
′
w
)1/r′

≤ CN
|〈f, φP1〉|
|IP |1/2

( �
|1Jgχ̃N+D

IP
dP |r

′
w
)1/r′

≤ Cw(IP )1/r
′
size({P}) density({P}) sup

y∈J
χ̃IP (y)N .

From the triangle inequality, it follows that

(4.7)
( �

J

|gCTJf |
r′w
)1/r′

≤ C size(T ) density(T )
∑
P∈TJ

w(IP )1/r
′
(

1 +
dist(J, IP )

|IP |

)−4N
.

By the A∞ property of w there exists a constant β0 > 0 such that if I ⊂ I ′
are two intervals then

w(I)

w(I ′)
≤ C

(
|I|
|I ′|

)β0
.

Without loss of generality, we may choose the doubling constant γ in (1.5)
to be large enough such that γ > β0.

For any P ∈ TJ we can find an interval K of length comparable to
|IP |+ |J |+ dist(J, IP ) that contains both IP and J . Since |IP | = O(|J |) we
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can choose K to be a dilation of J . We then have

w(IP )

w(J)
=
w(IP )

w(K)

w(K)

w(J)
≤ C

(
|IP |
|K|

)β0( |K|
|J |

)γ
= C

(
|IP |
|J |

)β0( |K|
|J |

)γ−β0
≤ C

(
|IP |
|J |

)β0(
1 +

dist(J, IP )

|J |

)γ−β0
≤ C

(
|IP |
|J |

)β0(
1 +

dist(J, IP )

|IP |

)γ−β0
.

Therefore by choosing N sufficiently large it follows from (4.7) that( �

J

|gCTJf |
r′w
)1/r′

≤C size(T ) density(T )
∑
P∈TJ

(
|IP |
|J |

)β0/r′
w(J)1/r

′
(

1 +
dist(J, IP )

|IP |

)−3N
=C size(T ) density(T )w(J)1/r

′ ∑
k≥−1

∑
|IP |=2−k|J |

2−kβ0/r
′
(

1+
dist(J, IP )

|IP |

)−3N
.

Using the fact that 3J does not contain any IP , P ∈ TJ , and the fact that
elements of TJ of the same size are spatially disjoint, it is not hard to bound
the last display by

≤ C size(T ) density(T )w(J)1/r
′
(

1 +
dist(J, IT )

|IT |

)−2N
Thus, we can bound A by

A ≤ C size(T ) density(T )

(∑
J∈J

w(J)

(
1 +

dist(J, IT )

|IT |

)−2Nr′)1/r′

.

Note that by definition 3J does not contain IT . It follows that for any x ∈ J ,

1 +
dist(J, IT )

|IT |
∼ 1 +

|x− c(IT )|
|IT |

.

Choosing N large and using disjointness of J ’s, we obtain∑
J∈J

w(J)

(
1 +

dist(J, IT )

|IT |

)−2Nr′
≤ C

�
χ̃NITw ≤ Cw(IT ).

Consequently, we have

A ≤ Cw(IT )1/r
′
size(T ) density(T ).

To bound B, let FJ =
⋃
T∈T\TJ ωP2 . We first show that

(4.8)
�

J

|g|r′
∑

j:Nj∈FJ

|dj |r
′
w ≤ Cw(J)[density(T )]r

′
.
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We construct O(1) nonempty subtrees of T such that FJ is contained inside
the union of the frequency intervals of these trees. The top interval of each
such subtree will be of length ∼ |J | and will be contained in some O(1)
dilation of J . Clearly, (4.8) follows as a consequence of this construction.

To construct these trees, first we construct their (common) top inter-
val J0. Let π(J) be the dyadic parent of J . Then we can find Q ∈ T such
that IQ ⊂ 3π(J), therefore we can select a dyadic interval J0 such that

IQ ⊂ J0 ⊂ 3π(J), |J0| ≥ |J |.

Now, note that by dividing T into three trees if necessary, we may assume
without loss of generality that only one of the following scenarios happens:

(i) ξT ∈ ωP2 for every P ∈ T , or
(ii) ξT < inf ωP2 for every P ∈ T , or

(iii) ξT ≥ supωP2 for every P ∈ T .

In each of these scenarios, one tree will be constructed. The desired tree
has only one element Q and has top data (J0, ω0), and ω0 is constructed
below: it will be shown that

(4.9) FJ ⊂ ω0 ⊂ ω̃Q.

We note that by choosing C4 large in the definition (4.4) we can ensure that
for any P ∈ T \ TJ we have |ωP | < 1/|J0|. Furthermore, if C2 > 1 we can
also ensure that |ωP | < (C2 − 1)|J0|/2.

If (i) is satisfied, we let ω0 be the dyadic interval of length 1/|J0| contain-
ing ξT . It is clear that for any P ∈ T \ TJ we have ωP2 ⊂ ω0 and ω0 ⊂ ωQ2 ,
and (4.9) follows immediately.

If (ii) is satisfied, we let ω0 = [ξT , ξT + 1/|J0|). Since for any P ∈ T \ TJ
we have |ωP | < |ω0| < |ωQ2 |, it follows that we always have ωP2 ⊂ ω0 ⊂ ω̃Q,
as desired.

If (iii) is satisfied, we let ω0 = [ξT − 1/|J0|, ξT ), and argue as for (ii).

This completes the proof of (4.8).

Now we return to our task of estimating B. We remark that any J ∈ J
that contributes to B must satisfy |J | < |IT |/C4 ≤ |IT |/4, therefore J ⊂ 3IT .
We now consider two cases:

Case 1: T is 2-lacunary. By ensuring that the constant K0 in the sepa-
ration assumption (S3) is sufficiently large, it follows that for P, P ′ ∈ T with
|IP | > |IP ′ | we have ωP2 ⊂ ωP ′ . Since {Nj(x)} is an increasing sequence for
every x, it follows from a geometrical consideration that for each x there is at
most one m and such that dP (x) 6= 0 for some P ∈ T with |IP | = 2m. Here
it is important that the limiting condition reads {Nj−1 6∈ ωP , Nj ∈ ωP2}.
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Now, uniformly over m we have∑
P∈T : |IP |=2m

(
1 +
|x− c(IP )|
|IP |

)−2
= O(1).

It then follows from (4.8) that

‖1JgCT\TJf‖Lr′ (w) ≤ C sup
P∈T

|〈f, φP1〉|
|IP |1/2

( �

J

|g|r′ sup
k:Nk∈ωT0

|dj |r
′
w
)1/r′

≤ C size(T ) density(T )w(J)1/r
′
.

Consequently, we obtain the desired estimate:

B ≤ C
(∑
J∈J

w(J)
)1/r′

size(T ) density(T )

≤ Cw(IT )1/r
′
size(T ) density(T ).

Case 2: T is 2-overlapping. We estimate pointwise

|CT\TJf(x)|

≤
(∑

j

∣∣∣ ∑
P∈T\TJ :Nj−1 /∈ωP , Nj∈ωP2

〈f, φP1〉φP1

∣∣∣r)1/r( ∑
j:Nj∈ωT0

|dk(x)|r′
)1/r′

.

Therefore

(4.10) ‖1JgCT\TJf‖Lr′ (w)

≤ Cw(J)1/r
′
density(T ) sup

x∈J

(∑
j

∣∣∣ ∑
P∈T\TJ :Nj−1 /∈ωP , Nj∈ωP2

〈f, φP1〉φP1

∣∣∣r)1/r.
Note that for any P the frequency support of φP1 is contained inside C3ωP1 =
(1 − c)C2ωP1 for c = 1 − C3/C2 ∈ (0, 1), which is uniform over P ’s. Recall
that T is a 2-overlapping tree and the relative positions of the tiles in each
bitile are uniform over P.

Now, by choosing the constant K in the separation assumption (S3) to
be sufficiently large, we can find a lacunary family of smooth Littlewood–
Paley projection operators Πn such that: Πn is a smooth Fourier multiplier
operator whose symbol is supported in {|ξ| = O(2n)}, and furthermore
(thanks to separation) ΠnΠk = Πk for any n < k and φP1 = (Πn−Πn−1)φP1

for n = log2 |IP |.
It follows that for any x ∈ J we can bound(∑

k

∣∣∣ ∑
P∈T\TJ :Nk−1 /∈ωP , Nk∈ωP2

〈f, φP1〉φP1

∣∣∣r)1/r
≤ sup

K,n0<···<nK<O(1)−log2 |J |

( K∑
j=1

|(Πnj −Πnj−1)gT |r
)1/r

.
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where gT :=
∑

P∈T 〈f, φP1〉φP1 . The last display can be continued as

= sup
K,n0<···<nK<O(1)−log2 |J |

( K∑
j=1

|Πlog2 |J |(Πnj −Πnj−1)gT |r
)1/r

≤MJ

(
sup

K,n0<···<nK

( K∑
j=1

|ΠnjgT −Πnj−1gT |r
)1/r)

,

using Minkowski’s inequality and standard arguments. Here, MJ denotes
the following local maximal operator:

MJf = sup
I: J⊂I

1

|I|

�

I

|f |.

For simplicity we denote by ‖gT ‖V r the variational expression inside MJ in
the above estimate. Recall that all the J such that T \ TJ are disjoint and
contained in 3IT . Thus, it follows from (4.10) and the above estimate that

B ≤ C density(T )
(∑
J∈J

w(J)MJ(‖gT ‖V r)r
′
)1/r′

≤ C density(T )‖13ITM(‖gT ‖V r)‖Lr′ (w)
≤ C density(T )w(IT )1/r

′−1/(2q)‖M(‖gT ‖V r)‖L2q(w),

since r′ < 2 < 2q. Using w ∈ Aq ⊂ A2q and Lemma 5.2 below, we obtain

B ≤ C density(T )w(IT )1/r
′−1/(2q)‖gT ‖L2q(w).

To show the desired bound for B it remains to show that

‖gT ‖L2q(w) ≤ Cw(IT )1/(2q) size(T ).

Take h to be any function in L(2q)′(w) where (2q)′ denotes the dual exponent
of 2q. Let σ = w−(2q)

′/(2q); since w ∈ Aq ⊂ A2q it is clear that σ ∈ A(2q)′ .
We have

〈gT , wh〉 =
∑
P∈T
〈f, φP1〉〈hw, φP1〉

≤
�(∑

P∈T
|〈f, φP1〉|2

1IP
|IP |

)1/2(∑
P∈T
|〈hw, φP1〉|2

1IP
|IP |

)1/2

dx

≤ ‖ST f‖L2q(w)‖ST (hw)‖L(2q)′ (σ).

Then using the John–Nirenberg characterization of size in Lemma 3.8 and
the estimate (3.1), it is not hard to see that

〈gT , wh〉 ≤ Cw(IT )1/(2q) size(T )‖hw‖L(2q)′ (σ)

= Cw(IT )1/(2q) size(T )‖h‖L(2q)′ (w),

as desired.
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Proof of (4.2). Let g̃ = g12k+1IT \2kIT . Note that it suffices to consider
k ≥ 2. One proceeds as in the above proof of (4.1) with g̃ in place of g. It
suffices to observe that in the proof of (4.1) we do not need to consider (4.6)
for k ≥ 2 since all the J that contribute to this term are contained in 3IT .
Furthermore, any J that contributes to (4.5) satisfies

dist(J, IT )

|IT |
≥ C2k,

therefore in the rest of the proof one could easily introduce a decaying
factor.

Lemma 4.2. Let T be a tree and suppose that any two bitiles of T are
disjoint. Then there exists some C = C(w) <∞ such that

(4.11) ‖gCT f‖L1(w) ≤ Cw(IT ) size(T ) d̃ensity(T ).

Proof. Clearly the elements of T must be spatially disjoint using the
separation assumption on P and the fact that T is a tree. Thus, by the
triangle inequality it suffices to show (4.11) for any single-element tree; but
the improved L1 tree estimate is clear for these trees.

5. Weighted variational inequalities for Littlewood–Paley fam-
ilies. In this section, we prove weighted extensions of a Lépingle inequal-
ity, namely a variational inequality for Littlewood–Paley families [L1, B,
JSW, PX]. Note that the dyadic variant of Lemma 5.2 below was proved
in [DL].

Definition 5.1. Fix absolute constants C ∈ (1,∞) and {CN : N ∈ N},
m ≥ 1. A sequence (fj)j∈Z of functions is a Littlewood–Paley family if each
fj has frequency support inside {C−12−j < |ξ| < C2−j}, and∣∣∣∣ dNdxN fI(x)

∣∣∣∣ ≤ CN2−jN [1 + |x|2−j ]−m.

Lemma 5.2. Let 1 < p <∞, w ∈ Ap and r 6= 2. Let s = min(r, 2). Then
for any Littlewood–Paley family (fj) we have

(5.1)∥∥∥ sup
K,N0<···<NK

( K∑
k=1

∣∣∣ ∑
Nk−1<j≤Nk

fj

∣∣∣r)1/r∥∥∥
Lp(w)

≤ C
∥∥∥(∑

j

|fj |s
)1/s∥∥∥

Lp(w)
.

Proof. Let ∆j be the Littlewood–Paley projection of f into an enlarged
frequency range {(2C)−12−j < |ξ| < 2C · 2−j} such that ∆jfj = fj . It then
suffices to show that for any w ∈ Ap and any family of Littlewood–Paley
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projections (∆j) and any vector-valued function f = (fj)j∈Z we have

(5.2)∥∥∥ sup
K,N0<···<NK

( K∑
k=1

∣∣∣ ∑
Nk−1<j≤Nk

∆jfj

∣∣∣r)1/r∥∥∥
Lp(w)

≤ C
∥∥∥(∑

j

|fj |s
)1/s∥∥∥

Lp(w)
.

Let T f denote the variational operator inside ‖ · ‖Lp(w) on the left hand
side of (5.2). Then it suffices to show the following pointwise bound for the
dyadic sharp maximal function of T f : for any 1 < t <∞,

(5.3) (T f)](x) ≤Mt(f)(x), |f | =
(∑

j

|fj |s
)1/s

,

Indeed, since w ∈ Ap this will imply that

‖T f‖Lp(w) ≤ C‖(T f)]‖Lp(w) ≤ C‖Mt(f)‖Lp(w).
We now take 1 < t < p sufficiently small such that w ∈ Ap/t, and the desired
estimate (5.2) then follows:

‖T f‖Lp(w) ≤ C‖Mt(f)‖Lp(w) ≤ C‖f‖Lp(w).
It remains to show (5.3); we use an argument from [DMT]. Take any

dyadic interval I containing x. Let cj be a constant defined as follows:

cj =

{
|I|−1

	
φj ∗ fj if 2j < 1/|I|,

0 otherwise,

where φj is the corresponding convolution function of ∆j . Further let

cI = sup
K,N0<···<NK

(∑
k

∣∣∣ ∑
Nk−1<j≤Nk

cj

∣∣∣r)1/r.
Then it is not hard to see that∣∣∣ sup

K,N0<···<NK

(∑
k

∣∣∣ ∑
Nk−1<j≤Nk

∆jfj

∣∣∣r)1/r − cI ∣∣∣
≤ sup

K,N0<···<NK

(∑
k

∣∣∣ ∑
Nk−1<j≤Nk

(∆jfj − cj)
∣∣∣r)1/r.

We then decompose

∆jfj − cj = gj + bj

where

(gj , bj) =

{
(0, ∆jfj − cj) if 2j < 1/|I|,
(∆j(fj13I), ∆j(fj1(3I)c)) otherwise.

It is not hard to see that for any y ∈ I we have

|bj(y)| ≤ CM1fj(x) min[(2j |I|)ε, (2j |I|)−ε].
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The parameter ε > 0 here depends on the decay of φj and its derivative.
Now, by Hölder’s inequality and the known Lebesgue case (4) of (5.2), we
have

1

|I|

�

I

sup
K,N0<···<NK

(∑
k

∣∣∣ ∑
Nk−1<j≤Nk

∆jgj

∣∣∣r)1/r
≤ 1

|I|1/t
∥∥∥ sup
K,N0<···<NK

(∑
k

∣∣∣ ∑
Nk−1<j≤Nk

∆jgj

∣∣∣r)1/r∥∥∥
t

≤ C 1

|I|1/t
∥∥∥(∑

j

|gj |s
)1/s∥∥∥

t
≤ 1

|I|1/t
∥∥∥(∑

j

|fj13I |s
)1/s∥∥∥

t
≤Mt(f)(x).

On the other hand,

1

|I|

�

I

sup
K,N0<···<NK

(∑
k

∑
Nk−1<j≤Nk

|bj |r
)1/r

≤ 1

|I|

�

I

∑
j

|bj(y)| dy

≤ C
∑
j

min[(2j |I|)ε, (2j |I|)−ε]M1fj(x)

≤ C sup
j
M1fj(x) ≤ CM1(f)(x) ≤ CMt(f)(x).

6. The main argument and proof of Proposition 2.2. Without
loss of generality assume that w(F ) > 0 and w(G) > 0 and

max(w(F ), w(G)) = 1.

Recall that our aim is to find major subsets of F and G respectively such
that at least one of them has full measure, and if |f | and |g| are supported
inside these sets and bounded above by 1 then

(6.1) BP(f, g) ≤ Cw(F )1/pw(G)1−1/p

for all p ∈ (q,∞) such that 1/r > 1/q−1/p. The major subsets will be chosen
using the weighted maximal function (see its definition in Section 1.1).

Case 1: w(F ) ≤ w(G). We choose F̃ = F and G̃ = G \Ω with

Ω := {M1,w1F > Cw(F )}

and C <∞ sufficiently large such that w(Ω) < 1/2.

Fix q0 ∈ (q,∞) very close to q. We use the following estimate whose
(rather standard) proof is included later:

(4) Note that in the Lebesgue case, (5.2) is equivalent to (5.1) thanks to boundedness
of the vector-valued maximal function; this was observed in [DMT].
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Lemma 6.1. For any η ∈ (2q0/r, 1) there is a positive constant ε =
ε(η, q0, r) such that

(6.2) BP(f, g) ≤ C size(P)1−η density(P)εw(F )η/(2q0).

Furthermore, if the elements of P are disjoint in the phase plane then a stron-

ger variant of (6.2) holds where d̃ensity(P) is used in place of density(P).

Below we show how Lemma 6.1 implies the desired estimate (6.1) us-
ing an argument from [MTT2, MTT3]. We decompose the original P as⋃
k≥0P

[k] where

P[k] =

{
P ∈ P : 2k ≤ 1 +

dist(IP , Ω
c)

|IP |
< 2k+1

}
.

Observe that if P ∈ P[k] then 2k+2IP ∩Ωc 6= ∅. Therefore, using Lemma 3.7
we obtain

(6.3) size(P[k]) ≤ C2O(k)w(F )1/q.

On the other hand, it is not hard to see that

d̃ensity(P[k]) ≤ C2−Dk/2.

Now, observe that if k ≥ 1 then the collection P[k] can be decomposed into
O(1) bitile subcollections, such that for any two P 6= P ′ in a subcollection
we have IP ×ωP ∩ IP ′ ×ωP ′ = ∅. To see this, note that for k ≥ 1 the length
of any nested sequence in {IP : P ∈ P[k]} must be O(1). It then follows
that we can decompose P[k] into O(1) subcollections, in each collection the
spatial intervals IP of two bitiles are either the same or disjoint, and via
another decomposition (to ensure that any two different bitiles sharing the
same spatial interval are far from each other in frequency) we can obtain
O(1) subcollections with the desired properties.

Thus, for the purpose of proving (6.1) we may assume without loss of
generality that for k > k0 the elements of P[k] are disjoint in the phase
plane. For those k we have

BP[k](f, g) ≤ C size(P[k])1−η[d̃ensity(P[k])]εw(F )η/(2q0)

≤ C2−Dεk/2 size(P[k])1−ηw(F )η/(2q0) (since supp(g) ⊂ Ωc)

≤ C2−Dεk/2[2O(k)w(F )1/q]1−ηw(F )η/(2q0).

Choosing D large in the definition of density (certainly D depends on
q, q0, r, w) we obtain

BP[k](f, g) ≤ C2−εkw(F )(1−η)/q+η/(2q0), k > k0.

On the other hand for 0 ≤ k < k0 disjointness may not be available, and
we only have density(P[k]) = O(1), but since k0 = O(1) we also have
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size(P[k]) = O(w(F )1/q) from (6.3). Using a similar argument to that pre-
sented before, we obtain

BP[k](f, g) ≤ Cw(F )(1−η)/q+η/(2q0), k ≤ k0.
Thus, summing the above estimates over k ≥ 0 we obtain

BP(f, g) ≤ Cw(F )(1−η)/q+η/(2q0).

For any p such that
1

p
<

1

q
− 1

r

we can choose q0 sufficiently close to q and η sufficiently close to 2q0/r
(keeping 1 > η > 2q0/r and q0 > q) such that

(1− η)/q + η/(2q0) > 1/p.

The desired estimate (6.1) now follows immediately, using w(F ) ≤ 1:

BP(f, g) ≤ Cw(F )1/p.

Proof of Lemma 6.1. We only show the general case when P is arbi-
trary. An analogous argument is used in the case when any two elements of
P are disjoint in the phase plane, and the estimate is in terms of the im-
proved density. The main difference is the use of the improved tree estimate
(Lemma 4.2) in place of the standard tree estimate (Lemma 4.1).

For convenience, we denote S1 = size(P), E1 = w(F )1/(2q0) and D1 =
density(P). Using Lemma 3.10 and Lemma 3.15 we can decompose P =⋃
n∈ZPn where each Pn is the union of trees from a tree collection Tn such

that∑
T∈Tn

w(IT ) ≤ C2n, size(Pn) ≤ C2−n/(2q0)E1, density(Pn) ≤ 2−n/r
′
.

The tree estimate (4.3) (applied with L1 norm) then shows

BP(f, g) ≤ C
∑
n∈Z

∑
T∈Tn

w(IT ) size(T ) density(T )

≤ C
∑
n∈Z

2n min(S1, 2
−n/(2q0)E1) min(D1, 2

−n/r′).

It follows that for α, β ∈ [0, 1] we have

BP(f, g) ≤ CS1D1

∑
n∈Z

min(1, 2−n/(2q0)E1S
−1
1 )α min(1, 2−n/r

′
D−11 )β

≤ CS1D1

∑
n∈Z

2n min(1, 2−nK(E1/S1)
αD−β1 ),

where

K :=
α

2q0
+
β

r′
.
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Under the assumption r > 2q we can choose q0 > q such that r > 2q0. Then
we can find α, β ∈ [0, 1] such that

(6.4)
α

2q0
+
β

r′
> 1.

We thus obtain a two-sided geometric series which is bounded above by its
largest term. Thus

BP(f, g) ≤ CS1D1(E1/S1)
α/KD

−β/K
1 = CS

1−α/K
1 E

α/K
1 D

1−β/K
1 .

Let η = α/K; we have η ∈ (2q0/r, 1) and in fact varying α, β ∈ [0, 1]
respecting the condition (6.4) we can obtain any value of η in (2q0/r, 1).
Furthermore

ε := 1− β

K
= 1− r′

(
1− η

2q0

)
=

r′

2q0

(
η − 2q0

r

)
> 0,

giving the desired estimate (6.2). This completes the proof of Lemma 6.1.

Case 2: w(F ) > w(G). We will choose G̃ = G and F̃ = F \Ω where

Ω := {M1,w1G > Cw(G)}

with C < ∞ sufficiently large such that w(Ω) < 1/2. We will use the
following estimate, whose proof is included later:

Lemma 6.2. Suppose that density(P) ≤ Mw(G)1/r
′

for some M ≥ 1.
Then for any p <∞ there exists a constant δ = δ(p, q, w, r) > 0 such that

(6.5) BP(f, g) ≤ CM size(P)δw(G)1/p
′−1/r′ .

Now we show how Lemma 6.2 implies the desired estimate (6.1). Decom-
pose P into

⋃
h≥0P

[h] where

P[h] =

{
P ∈ P : 2h ≤ 1 +

dist(IP , Ω
c)

|IP |
< 2h+1

}
.

We verify that

(6.6) density(P[h]) ≤ C2O(h)
[

sup
x∈Ωc

(M1,w1G)(x)
]1/r′

≤ C2O(h)w(G)1/r
′
;

here the implicit constant in O(h) depends on the doubling exponent γ of w.
Indeed, let T be any nonempty tree in P[h]. It is clear that

1 +
dist(IT , Ω

c)

|IT |
≤ 2h+1.

We then enlarge IT by a factor of O(2h) to obtain an interval J such that
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J ∩Ωc 6= ∅; clearly w(J) ≤ C2O(h)w(IT ) and therefore(
1

w(IT )

�
χ̃DIT |g|

r′w

)1/r′

≤ C2O(h)
[

inf
x∈J
M1,w1G(x)

]1/r′
,

from which the estimate (6.6) follows immediately.

On the other hand, since supp(f) ⊂ Ωc, it follows from Lemma 3.7 that

size(P[h]) ≤ CN2−Nh

for any N > 0. Take N very large in the above estimate; then (6.5) and (6.6)
imply that

BP[h](f, g) ≤ C2−hw(G)1/r
′
w(G)1/p

′−1/r′ = C2−hw(G)1/p
′
,

and (6.1) now follows from summing these estimates over h ≥ 0.

Proof of Lemma 6.2. Fix q0 ∈ (q,∞). Using Lemmas 3.10 and 3.15, we
can decompose P =

⋃
n∈ZPn where Pn is the union of trees from a tree

collection Tn such that∑
T∈Tn

w(IT )≤ 2n, size(Pn)≤C2−n/2q0 , density(Pn)≤C2−n/r
′
w(G)1/r

′
.

We use Lemma 3.10 again and decompose Pn =
⋃
m≥0Pn,m where Pn,m is

the union of trees from a tree collection Tn,m such that

size(Pn,m) ≤ C2−(n+m)/(2q0),∑
T∈Tn,m

w(IT ) ≤ C
∑
T∈Tn

w(IT ) ≤ C2n,

∥∥∥ ∑
T∈Tn,m

12kIT

∥∥∥
Lp(w)

≤ C2O(k)2n+mw(F )1/p = C2O(k)2n+m.

In particular, it follows from the doubling property of w that∥∥∥ ∑
T∈Tn,m

12kIT

∥∥∥
L1(w)

≤ C2γk2n.

Consequently, by interpolation, for any 1 < p <∞ and any ε > 0 we have

(6.7)
∥∥∥ ∑
T∈Tn,m

12kIT

∥∥∥
Lp−ε(w)

≤ C2O(k)2m/p
′
2n.

Here, the implicit constant in O(k) may depend on p, ε, w. For convenience,

for any k ≥ 0 let N
[k]
n,m denote the counting function

N [k]
n,m =

∑
T∈Tn,m

12kIT .

Decomposing 1 = 1IT +
∑

k≥0(12k+1IT
− 12kIT ) for each T and applying
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Hölder’s inequality, we obtain

BPn,m(f, g) ≤ C
∑
k≥−1

Bk(n,m)

where

B−1(n,m) :=
�
(N [0]

n,m)1/r
( ∑
T∈Tn,m

|1IT gCT f |
r′
)1/r′

w dx,

Bk(n,m) :=
�
(N [k+1]

n,m −N [k]
n,m)1/r

( ∑
T∈Tn,m

|12k+1IT \2kIT gCT f |
r′
)1/r′

w dx

for k ≥ 0.

Estimate for
∑

n,mB−1(n,m). Fix p < ∞ very large and ε > 0 very
small, such that in particular p − ε > r. Apply Hölder’s inequality to ob-
tain

B−1(n,m) ≤ C‖(N [0]
n,m)1/r‖Lp−ε(w)

∥∥∥( ∑
T∈Tn,m

|1IT gCT f |
r′
)1/r′∥∥∥

L(p−ε)′ (w)
.

By (6.7), the first factor can be rewritten as∥∥∥ ∑
T∈Tn,m

1IT

∥∥∥1/r
L(p−ε)/r(w)

≤ C2n/r2(1/r−1/p)m

since p− ε > r. The second factor is supported inside supp(g) ⊂ G, thus it
can be bounded above by

Cw(G)
1

(p−ε)′−
1
r′
∥∥∥( ∑

T∈Tn,m

|1IT gCT f |
r′
)1/r′∥∥∥

Lr′ (w)

= Cw(G)
1

(p−ε)′−
1
r′
( ∑
T∈Tn,m

‖1IT gCT f‖
r′

Lr′ (w)

)1/r′
.

Using the tree estimate (4.1), we can bound the above expression by

Cw(G)
1

(p−ε)′−
1
r′
[ ∑
T∈Tn,m

w(IT )
]1/r′

size(Pn,m) density(Pn,m)

≤ Cw(G)
1

(p−ε)′−
1
r′
[
2
n
r′
][

2
−(n+m)( 1

2q0
−δ)

size(P)δ
]

×min(2−n/r
′
w(G)1/r

′
,Mw(G)1/r

′
).

Here δ ∈ (0, 1/(2q0)) is very small and will be specified later.
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Since M ≥ 1, it follows that∑
m≥0

B−1(m,n)

≤ CMw(G)
1

(p−ε)′ size(P)δ
∑
m≥0

2
n
r
+( 1

r
− 1
p
)m+ n

r′−(n+m)( 1
2q0
−δ)

min(2−n/r
′
, 1).

Since r > 2q we can always choose q0 > q such that r > 2q0, and then
choose δ > 0 depending on q0, r and such that

1

r
−
(

1

2q0
− δ
)
< 0,

which implies 1/r − 1/p− 1/(2q0) + δ < 0. Therefore the above summation
over m ≥ 0 converges, and∑

n

∑
m≥0

B−1(m,n) ≤ CMw(G)
1

(p−ε)′ size(P)δ
∑
n∈Z

2
n( 1
r
− 1

2q0
+δ)

min(1, 2
n
r′ ).

Since
1

r
− 1

2q0
< 0 <

1

r
− 1

2q0
+

1

r′

we can refine our previous choice of δ = δ(q0, r) > 0 such that the above
estimate of

∑
n

∑
m≥0B−1(m,n) remains a two-sided geometric series. It

follows that ∑
n

∑
m≥0

B−1(m,n) ≤ CMw(G)
1

(p−ε)′ size(P)δ.

Since we can choose p <∞ arbitrarily large and since w(G) ≤ 1, it follows
that ∑

n

∑
m≥0

B−1(m,n) ≤ CMw(G)1/p
′
size(P)δ

for any p <∞.

Estimate for
∑

n,mBk(n,m). The argument is similar to the above esti-

mate for the sum of B−1(n,m), with the following difference: we will collect
some power 2k, and we will gain the decay factor 2−Nk from the tree es-
timate (4.2) where N could be chosen arbitrarily large. We obtain, via a
similar argument and by choosing N large enough, the estimate∑

n

∑
m≥0

Bk(m,n) ≤ C2−kMw(G)1/p
′
size(P)δ

for any p <∞.

Summing over k ≥ −1, we obtain the desired estimate (6.5). This com-
pletes the proof of Lemma 6.2.
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