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On the geometry of proportional quotients of lm1

by

Piotr Mankiewicz (Warszawa) and
Stanisław J. Szarek (Paris and Cleveland)

Abstract. We compare various constructions of random proportional quotients of
lm1 (i.e., with the dimension of the quotient roughly equal to a fixed proportion of m as
m → ∞) and show that several of those constructions are equivalent. As a consequence
of our approach we conclude that the most natural “geometric” models possess a number
of asymptotically extremal properties, some of which were hitherto not known for any
model.

1. Introduction. The geometry of random quotients and subspaces of
finite-dimensional Banach spaces (or equivalently, random projections and
sections of convex bodies) has been studied by several authors (cf., e.g.,
[S1], [Mi2], [MiS], [G], [S2], [M2], [Bo], [MT2], [MT4]). Typical results in
this direction can be rephrased as the following dichotomy (or rather a 0-1
law):

Given a geometric property of normed spaces, either a vast majority of
quotients (or subspaces) of a fixed dimension of a given Banach space enjoy
that property , or a similar vast majority strongly violate it.

Examples of such properties include having a “well-bounded” basis con-
stant, volume ratio or the Banach–Mazur distance to a Hilbert space, to
name a few.

Results of this type require introduction of a measure on quotients (or
subspaces) with respect to which the “vast majority” is to be meant. There
are two different ways of imposing such a measure, even if the differences
may seem to be unessential. The first one, which we call geometric, is based
on introducing a suitable scalar product on the space X in question (usually
induced by one of the classical ellipsoids connected with the unit ball of X),
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which leads to the Haar measure on the Grassmann manifold of kernels of the
quotient maps (or the subspaces). The geometric approach is arguably most
natural; one of its desirable features is that the results obtained refer directly
to the intrinsic geometry of the underlying space X (cf., e.g., [Mi1], [K],
[FKP], [S1], [Mi2], [MiS]). The other approach, which we call probabilistic,
stems from the ground-breaking result of Gluskin on the diameters of the
Minkowski compacta and is based on introducing on quotients (or subspaces)
of the space X a suitable probability, usually given by some random matrix.
The main advantage of this method lies in the fact that by an appropriate
choice of the probability structure it is possible to exploit tools such as
independence, which greatly simplifies arguments. This approach has led a
number of authors to some very strong, often asymptotically optimal results
for which, till very recently, no counterparts in the geometric setting have
been known (cf. [G], [S2], [S4], [M2]). For more information on the subject
we refer the reader to [MT3].

The distinction between the two approaches is admittedly not very clear-
cut. On the one hand, the Grassmann manifold endowed with the normal-
ized Haar measure becomes a probability space. On the other hand, con-
sidering as the quotient map, e.g., an n ×m (with n < m) random matrix
whose entries are independent identically distributed (i.i.d.) Gaussian ran-
dom variables leads to a random n-dimensional normed space which has
the same distribution as that given by the geometric model (if one iden-
tifies isometric spaces). This follows from the fact that the distribution of
such a random matrix does not change if we compose it on the right (or,
for that matter, on the left) with an orthogonal matrix, and so the dis-
tribution of the kernels of the random quotients (which do determine the
quotients up to isometry) on the corresponding Grassmannian is invari-
ant under the action of the orthogonal group, hence the same as the one
given by the Haar measure. However, the proofs of the strongest results
mentioned above would not, in general, carry over to this particular prob-
abilistic model. For example, in some probabilistic constructions, the basis
constant of a typical proportional quotient of lm1 was of the maximal or-
der (i.e.,

√
m; see [S2]). An analogous result (our Corollary 2.3) was not

known in the geometric setting. In the opposite direction, it is not dif-
ficult to deduce from [S4] that in the geometric setting the Dvoretzky–
Rogers factorization constant of an n-dimensional quotient of l2n1 is greater
than or equal to c(n/logn)1/10, for a “vast majority” of n-dimensional
quotients, where c > 0 is a numerical constant. On the other hand, it is
quite obvious that in some probabilistic settings, like those in [G] or [S2],
a “vast majority” of such quotients admit Dvoretzky–Rogers factorization
bounded by, say, 2. Thus the two methods have led to quite different con-
clusions.
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The aim of the present paper is to show that the differences between
the two approaches described at the beginning of the previous paragraph
are essentially technical and that most of known asymptotically optimal
results for the proportional quotients of lm1 in the probabilistic setting remain
valid in the geometric context. In particular, the historically first (to our
knowledge) family of random n-dimensional quotients of l2n1 from [FKP] does
a posteriori have such extremal properties. Our arguments use, in particular,
a technique developed in [MT4] to study the behavior of Banach–Mazur
distances between random projections of arbitrary symmetric convex bodies.

Our main technical result, Theorem 2.1, states that in the geometric
setting a vast majority of n-dimensional quotients Y of lb(1+δ)nc

1 have the
property that for all sufficiently nontrivial operators (i.e. for (κn, 1)-mixing
operators, see the paragraph containing (2.1) for a definition) in L(Y ) the
norms ‖Tx‖Y are greater than c

√
n for at least δn extreme points of the

unit ball of Y , with c = c(κ, δ) > 0 depending on κ and δ only. This
immediately implies that the basis constants for such quotients are greater
than c(1/2, δ)

√
n/2 (cf. Corollary 2.3). Another application of this theorem

says that for such Y ’s and for an arbitrary sufficiently nontrivial compact
group of operators G ⊂ L(Y ) one has

Average
�

G

‖Tx‖X dhG(T ) ≥ c′√n,

where the average is taken over all extreme points of the unit ball of Y ,
hG stands for the normalized Haar measure on G and c′ depends on some
parameters describing how nontrivial the group G is. Finally, note that these
estimates are slightly better (by a logarithmic factor) than those previously
known even for the probabilistic case [M2].

2. Main results. We shall use standard notation of local theory of
Banach spaces (cf., e.g., [T]). For m ∈ N, {ei}mi=1 will stand for the standard
unit vector basis in the Euclidean space Rm while ‖ · ‖p (for p ∈ [1,∞]) will
denote the lp-norm. For a Banach space X = (Rm, ‖ ·‖X) we shall denote by
BX its unit ball; in the special case of X = lmp := (Rm, ‖ · ‖p), we will write
simply Bm

p . In what follows we shall identify Banach spaces with their unit
balls, e.g., the norm of a linear operator T acting between the spaces whose
unit balls are, respectively, U and V may be denoted by ‖T : U → V ‖ and
the space of such operators endowed with that norm by L(U, V ).

For n,m ∈ N with n < m, Gm,n is the Grassmann manifold of n-
dimensional (linear) subspaces of Rm endowed with the (unique) normal-
ized measure hm,n invariant with respect to the action of the orthogo-
nal group Om. For E ∈ Gm,n, set BE := PE(Bm

1 ), where PE stands for
the orthogonal projection onto E. Denote by ‖ · ‖BE the norm induced
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on E by BE and let XE := (E, ‖ · ‖BE ). Obviously, each such XE is
an n-dimensional quotient of lm1 (specifically XE = lm1 /E

⊥) and its unit
ball is BE = symconv{ui(E) | i = 1, . . . ,m}, where ui(E) := PE(ei) for
i = 1, . . . ,m. We shall refer to these quotients—with measure induced by
hm,n—as to (the family of) geometric quotients of lm1 . We point out that in
addition to the normed space structure (which depends only on the kernel
of the quotient map, E⊥), this representation endows E with a Euclidean
structure inherited from Rm.

If K ⊂ Rn, let ext(K) denote the set of extreme points of K. Clearly,
for every E ∈ Gm,n, ext(BE) = ext(PE(Bm

1 )) ⊂ {±ui(E) | i = 1, . . . ,m}.
Recall that for a Hilbert space H, k ≤ dimH/2 and β > 0 an operator

T ∈ L(H) is said to be (k, β)-mixing if there exists a subspace E ⊂ H with
dimE ≥ k such that

dist(Tx,E) = ‖PE⊥Tx‖2 ≥ β‖x‖2 for every x ∈ E,(2.1)

where PE⊥ stands for the orthogonal projection of H onto E⊥. The set of
all (k, β)-mixing operators in L(Rn) will be denoted by Mixn(k, β).

The following theorem, which constitutes our main technical result, de-
scribes the properties of proportional geometric quotients of lm1 in terms of
norms of mixing operators. In a sense, it improves Theorem 1.4 of [S3] (cf.
also Th. 12 in [MT3]).

Theorem 2.1 (Main Technical Result). For every δ>0 and κ∈ (0, 1/2]
there exists c = c(κ, δ) > 0 such that for every β > 0, n ∈ N with n >
max{N0, 8κ−1, 8δ−1} and m = b(1 + δ)nc we have

(2.2) hm,n{E ∈ Gm,n | ext(BE) = {±ui(E) | i = 1, . . . ,m} and

card{i ∈ {1, . . . ,m} | ‖T (ui(E))‖BE ≥ c(κ, δ)β
√
n} ≥ δn/2

for every T ∈ Mixn(κn, β)}
≥ 1− e−n,

where ui(E) = PEei, i = 1, . . . ,m, and N0 = N0(δ, 4) is taken from Fact 3.3.

Remark 2.2. In what follows we shall denote by Am,n,κ the subset of
Gm,n implicitly defined in (2.2). Thus hm,n(Am,n,κ) ≥ 1 − e−n. In fact, by
a suitable modification of the proof of Theorem 2.1 and an appriopriate
choice of c(κ, δ), one can get an estimate on measure of the form 1 − e−An
for an arbitrary preassigned A > 0. The same observation holds true for the
estimate in Theorem 4.1, the “probabilistic” counterpart of Theorem 2.1.

The proof of Theorem 2.1 will be postponed to the last two sections. It
will be based on proving a corresponding statement for a suitably defined
class of Gaussian quotients and showing that both models (i.e., geometric
and Gaussian) are equivalent.
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Since, historically, many classical parameters of Banach spaces were re-
lated to mixing properties of operators (see [MT3, Section 5] for details and
references), Theorem 2.1 has many immediate consequences. A sample such
consequence is the result on basis constants mentioned in the introduction.
Recall that, for a (Schauder) basis (xi) of a normed space X, its basis con-
stant is defined by bc(xi) := sup1≤k<dimX ‖Pk‖, where Pk is the kth partial
sum projection with respect to the basis (xi), and the basis constant of
X is bc(X) := inf bc(xi), with the infimum taken over all bases of X. We
have

Corollary 2.3. In the notation of Theorem 2.1, for any E ∈ Am,n,1/4
and for any basis of X := lm1 /E

⊥,

Ave
x∈ext(BX)

1
n

n∑

k=1

‖Pkx‖X ≥
1
2
c(1/4, δ)

√
n.

In particular , bc(X) ≥ 1
2c(1/4, δ)

√
n.

This follows immediately from Theorem 2.1 and the well-known fact
that a rank k projection on Rn is (min{k, n − k}, 1/2)-mixing (cf., e.g.,
[MT3]).

For a vector space H, we shall denote by G(H) the set of all compact
groups of (linear) operators acting on H and, for G ∈ G(H), the normalized
Haar measure on G will be denoted by hG. We shall say that such a G is
(k, β, p)-mixing for some k ≤ dimH/2, β > 0 and p ∈ (0, 1) if

hG{T ∈ G | T is (k, β)-mixing} ≥ p.
The following consequence of Theorem 2.1 improves the estimate in [M2,

Th. 2.4], and solves Problem 1 therein.

Theorem 2.4. For every δ > 0 and κ ∈ (0, 1/2] there exists c̃ = c̃(κ, δ)
> 0 such that for every β, p > 0, n ∈ N with n > max{N0, 8κ−1, 8δ−1},
m = b(1 + δ)nc, and every subspace E ∈ Am,n,κ we have

Ave
x∈ext(BE)

�

G

‖Tx‖BE dhG(T ) ≥ c̃βp√n

for every (κn, β, p)-mixing group G ∈ G(E).

Proof. The argument is straightforward, but we will include it for com-
pleteness. Let κ ∈ (0, 1/2]. Fix an arbitrary (κn, β, p)-mixing compact group
G ⊂ L(Rn) and let

Bκ,β = {T ∈ G | T ∈Mixn(κn, β)}.
Then, by Theorem 2.1, for every E ∈ Am,n,κ we have
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Ave
x∈ext(BE)

�

G

‖Tx‖BE dhG(T ) = (2m)−1
�

G

∑

x∈ext(BE)

‖Tx‖BE dhG(T )

≥ (2m)−1
�

Bκ,β

∑

x∈ext(BE)

‖Tx‖BE dhG(T )

≥ (2m)−1
�

Bκ,β

δnc(κ, δ)β
√
ndhG(T )

≥ δn

2b(1 + δ)nc c(κ, δ)βp
√
n,

and the theorem follows from (2.2) with c̃(κ, δ) = δc(κ, δ)/(2(1 + δ)).

Now we shall present several applications of Theorem 2.4 to the situa-
tions where the mixing properties of the groups involved follow from their
algebraic properties, and are independent of the choice of the inner product
on the space itself. The first one will concern estimates for compact groups
of operators which act irreducibly on a “large” subspace while the second
will provide estimates for random unconditional constants for a “typical”
proportional quotient of lm1 . (We leave to the interested reader the even
more direct applications to questions like those considered in [S3].)

Recall that a compact group of operators G ⊂ L(H) (2 < dimH < ∞)
is said to act irreducibly on H if any S ∈ L(H) satisfying ST = TS for
all T ∈ G is of the form S = λ IdH for some λ ∈ R. We shall say that a
compact group G ⊂ L(H) acts r-irreducibly for some r ≤ dimH if there
exists a G-invariant linear subspace F ⊂ H with dimF ≥ r such that the
group GF := {T|F | T ∈ G} ⊂ L(F ) acts irreducibly on F .

The first application of Theorem 2.4 generalizes [M2, Theorem 3.2].

Theorem 2.5. For every % ∈ (0, 1), δ > 0, n > max{N0, 160%−1, 8δ−1},
m = b(1 + δ)nc, every linear subspace E ∈ An,m,%/20 and every compact
group of operators G ⊂ L(E) acting %n-irreducibly on E we have

sup
‖x‖BE=1

�

G

‖Tx‖BE dhG(T ) ≥ Ave
x∈ext(BE)

�

G

‖Tx‖BE dhG(T )(2.3)

≥ 1
20
c̃(%/20, δ)

√
n,

where c̃(·, ·) is taken from Theorem 2.4.

Proof. Clearly, it suffices to prove the second inequality in (2.3). By
Theorem 2.4, that inequality will follow if we show that every compact
group G ⊂ L(E) acting %n-irreducibly on E is (%n/20, 1/4, 1/5)-mixing. To
this end, fix such a group G and let F be a G-invariant subspace of E with
dimF ≥ %n such that GF , the restriction of G to F , acts irreducibly on F .
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Then

hG{T ∈ G | T is (%n/20, 1/4)-mixing}
≥ hG{T ∈ G | T|F is (%n/20, 1/4)-mixing}
= hGF {S ∈ GF | S is (%n/20, 1/4)-mixing} ≥ 1/5,

the equality following from the invariance of the Haar measures involved
and the last inequality from irreducibility of GF combined with [M2, Th.
3.1]; it remains to compare the first and the last lines.

Recall that the symmetric constant sym(X) for a finite-dimensional
space X = (X, ‖ · ‖X) is defined by

sym(X) := inf
G

sup
T∈G
‖T‖ = inf

G
sup
‖x‖X=1

sup
T∈G
‖Tx‖X ,

where the infimum is taken over all compact groups of operators G ⊂ L(X)
acting irreducibly on X. Since the geometry of a quotient of a Banach space
depends on the kernel of the quotient map only, one can easily deduce from
Theorem 2.5 a generalization of the main result of [M1].

Corollary 2.6. Let n, δ, m and c̃ be as in Theorem 2.4. Then, for
every E ∈ Am,n,1/20,

sym(lm1 /E
⊥) ≥ 1

20 c̃(n/20, δ)
√
n.

Moreover

Ave
x∈ext(lm1 /E⊥)

�

G

‖Tx‖lm1 /E⊥ dhG(T ) ≥ 1
20 c̃(n/20, δ)

√
n

for every compact group G acting irreducibly on lm1 /E
⊥.

The “moreover” part of Corollary 2.6 provides affirmative answers to
Problems 2 and 3 in [M2].

Before passing to the next application of Theorem 2.4, recall that for an
n-dimensional Banach space X the random unconditional constant ruc(X)
is defined as follows (cf. [BKPS], see also [M2]). For every basis {xi}ni=1 of
X with dual functionals {x∗i }ni=1 set

G{xi}ni=1
:=
{
T ∈ L(X)

∣∣∣T =
n∑

i=1

εix
∗
i (·)xi for some (εi) ∈ {−1, 1}n

}
.

Clearly, G{xi}ni=1
is group-isomorphic to Zn2 and its Haar measure hG{xi}ni=1

is the normalized counting measure. We set

ruc(X) := inf sup
‖x‖X=1

�

G{xi}ni=1

‖Tx‖X dhG{xi}ni=1
(T ),

where the infimum is taken over all bases {xi}ni=1 of X.
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The following fact is an easy consequence of Theorem 2.4 above and of
Theorem 3.3 in [M2], and provides an affirmative answer to Problem 4 in the
latter. It also strengthens a result from [B] concerning random unconditional
constants of quotients of lm1 .

Theorem 2.7. There exists p0 > 0 such that for any δ > 0, any n ∈ N
with n > max{N0, 32, 8δ−1}, m = b(1+δ)nc and any E ∈ Am,n,1/20 we have

Ave
x∈ext(lm1 /E⊥)

�

G{xi}ni=1

‖Tx‖lm1 /E⊥ dhG{xi}ni=1
(T ) ≥ p0c̃(1/4, δ)

√
n

for every basis {xi}ni=1 in lm1 /E
⊥, where c̃(1/4, δ) is taken from Theorem 2.4.

In particular , for any such E,

ruc(lm1 /E
⊥) ≥ p0c̃(1/4, δ)

√
n.

3. Gaussian quotients. Let (Ω,P) be a (sufficiently nontrivial) proba-
bility space. For a fixed m ∈ N, we shall denote by Gm = Gm(ω) a (random)
m×m matrix with independent Gaussian N(0, 1/m)-distributed entries. We
shall often think of Gm as a random linear operator on Rm. Consequently,
the columns of Gm

hi = hi(ω) := Gm(ei), 1 ≤ i ≤ m,
are independent Gaussian N(0,m−1 IdRm)-distributed vectors in Rm.

If m,n ∈ N with n ≤ m, we shall identify Rn with the subspace of Rm
spanned by the first n vectors of the basis {ei}mi=1. Moreover, for a subset
S ⊂ {1, . . . ,m}, we shall denote by RS the linear subspace spanned by
{ei | i ∈ S}, and Pn (resp., PS) will stand for the orthogonal projection
from Rm onto Rn (resp., RS).

Since the (normalized) Haar measure on Gm,n is induced by the (nor-
malized) Haar measure on the orthogonal group Om, the distribution of the
family of n-dimensional geometric quotients of lm1 , i.e., PE(Bm

1 ), E ∈ Gm,n,
is the same as the distribution of the family PnU(Bm

1 ), U ∈ Om (recall
that quotients depend, up to isometry, on the kernels of the quotient maps
only; the identification U ∗PnU = PE then does the job). Since the matrices
Gm behave in many respects similarly to (random) orthogonal matrices (cf.,
e.g., [S5, Lemma 2.4] for a statement and some proofs and references), this
suggests calling PnGm(Bm

1 ) the family of n-dimensional Gaussian quotients
of lm1 . The random quotient maps Γn,m = Γn,m(ω) := PnGm(ω), ω ∈ Ω, are
exactly the n ×m random matrices with i.i.d. Gaussian entries mentioned
in the introduction, and it can be readily verified (in many ways) that the
distribution of their kernels is uniform in Gm,m−n. Accordingly, the distribu-
tion of the Gaussian quotients lm1 /kerΓn,m (as Banach spaces) with respect
to P is the same as that of the geometric ones with respect to hm,n.
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Define
gi(ω) = Γn,m(ei) = Pnhi(ω)

for ω ∈ Ω and i = 1, . . . ,m and set

Bn,m,ω = Γn,m(ω)(Bm
1 ) = symconv{gi(ω) | i = 1, . . . ,m}.

We shall need three auxiliary results on Gaussian operators. For the sake
of future references we shall state them in a slightly more general version
than needed in the present argument. In all three facts we shall deal with
tail estimates of the form e−An while in what follows we shall use them for
A = 4 only. The first fact is a direct consequence of Fact 1.5 in [MT4].

Fact 3.1. For every δ,A > 0 there exists c = c(δ,A) such that for every
n ∈ N and m = b(1 + δ)nc we have

P{ω ∈ Ω | |det(Γn,m|RS )|1/n ≥ c(δ,A)

for every S ⊂ {1, . . . ,m} with cardS = n} ≥ 1− e−An.
Proof. Since the columns of Γn,m are identically distributed, hence ex-

changeable, the distribution of |det(Γn,m|RS )| is the same for all
(
m
n

)
subsets

S ⊂ {1, . . . ,m} with cardS = n. Next, specifying S = {1, . . . , n}, we note
that the (random) operator Γn,m|Rn : Rn → Rn has the same distribution as√
n/mGn. It is thus enough to analyze det(Gn) for which, by Fact 1.5 in

[MT4], we have

P{ω ∈ Ω | |det(Gn)|1/n ≥ c0κ
2} ≥ 1− κn

for every κ ∈ (0, 1), where c0 > 0 is a suitable numerical constant. Choosing
κ = e−(1+δ+A) and noting that then

(
m
n

)
κn < e−An, we obtain the required

estimate with c(δ,A) = c0(1 + δ)−1/2e−2(1+δ+A).

For fixed n,m ∈ N with n < m and ω ∈ Ω we write Γn,m(ω) = VωPEω
where PEω is the orthogonal projection onto Eω := kerΓn,m(ω)⊥ and Vω :
Eω → Rn. Note that, with probability 1, dimEω = n. In fact much more is
true: Vω is typically a “good isomorphism” from (Eω, ‖ · ‖2) onto Rn.

Fact 3.2. For every δ,A > 0 there are c′(δ,A) > 0 and C = C(A) such
that

P{ω ∈ Ω | rankVω = n and

c′(δ,A)‖x‖2 ≤ ‖Vωx‖2 ≤ C(A)‖x‖2 for every x ∈ Eω} ≥ 1− e−An

for every n ∈ N and m = b(1 + δ)nc.
Proof. This is essentially Lemma 2.8 in [S4] except for two “cosmetic”

improvements. First, the estimate on the probability there is of the form 1−
e−an for some a > 0. However, a rudimentary modification of the argument
yields a similar estimate with 1− e−An, for any preassigned A > 0. Second,
to replace the constant in the upper estimate for ‖Vωx‖2 by a function
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providing the required tail estimate it suffices to use Theorem 2.11 of [DS].
For an elementary argument leading to the estimate of the probability of
‖Vω‖2 ≤ 12 which is sufficient for our purposes (i.e., for A = 4) we refer the
reader to [MT3].

The last auxiliary result asserts that unit balls of random quotients of
lm1 have “typically” exactly 2m extreme points. It is not central to our
discussion, but we include it as it allows simplifying some of the state-
ments.

Fact 3.3. For every δ,A > 0 there exists N0 = N0(δ,A) > 0 such that

P{ω ∈ Ω | ext(Bn,m,ω) = {±gi(ω) | i = 1, . . . ,m}} ≥ 1− e−An

for every n ≥ N0(δ,A) and m = b(1 + δ)nc.
Proof. This is a simple consequence of several known results. Fix δ,A > 0

and n ∈ N with m = b(1+δ)nc > n. It follows from the definition of the unit
balls Bn,m,ω that ext(Bn,m,ω) ⊂ {±gi(ω) | i = 1, . . . ,m}, and that equality
holds unless one of the gi’s belongs to the symmetric convex hull of n others.
By exchangeability of gi’s, the probability of that event does not exceed

(
m

n

)
(m− n)P{gm(ω) ∈ conv{±gi | 1 ≤ i ≤ n}}.

Next, for any fixed values of g1, . . . , gn, the conditional probability

P{gm(ω) ∈ conv{gi | 1 ≤ i ≤ n} | gi(ω) = ai for 1 ≤ i ≤ n}

≤ en/2 vol(conv{±ai | i ≤ n})
volBn

2

by [MT3, Fact 1(iv)]. Further, by Fact 3.2, we have ‖gi(ω)‖2 ≤ C(2A) for
1 ≤ i ≤ n on a subset Ω′ ⊂ Ω with P(Ω′) ≥ 1−e−2An. For ω ∈ Ω′ it follows
just from the Hadamard inequality that

vol(conv{±ai | i ≤ n}) ≤
(2C(2A))n

n!
.

Combining the last three formulae with the estimate on P(Ω′), the formula
for volBn

2 and the Stirling formula yields Fact 3.3.

4. The Gaussian version of the Main Technical Result. The fol-
lowing is a restatement of the “geometric” Theorem 2.1 for the “probabilis-
tic” family of Gaussian quotients of lm1 . Let Ω0 ⊂ Ω denote the intersection
of the sets considered in Facts 3.1–3.3 for A = 4. Then we have

Theorem 4.1. For every δ > 0 and κ ∈ (0, 1/2] there exists c′ =
c′(κ, δ) > 0 such that for every β > 0, n ∈ N with n > max{N0, 8κ−1, 8δ−1}
and m = b(1 + δ)nc we have
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P{ω ∈ Ω0 | card{i ∈ {1, . . . ,m} | ‖T (gi(ω)‖Bn,m,ω ≥ c′β
√
n} ≥ δn/2

for every T ∈ Mixn(κn, β)} ≥ 1− e−n,
where gi(ω) = Γn,mei for i ∈ {1, . . . ,m} and N0 = N0(δ, 4) is taken from
Fact 3.3.

In the present section we will explain why Theorems 2.1 and 4.1 are
(essentially) equivalent. The rather formal argument is based on Fact 3.2.
Then we will reduce the proof of Theorem 4.1 to Proposition 4.2, which will
be shown in the next section.

Proof of Theorem 4.1 ⇒ Theorem 2.1. Fix n, δ and κ as in Theorem
4.1. Due to the uniform distribution of the kernels of Γn,m and by the
uniqueness of the normalized Haar measure we have, for every Borel subset
A ⊂ Gm,m−n,

P{ω ∈ Ω | kerΓn,m(ω) ∈ A} = hm,m−n(A)(4.1)

= hm,n{E ∈ Gm,n | E⊥ ∈ A}.
Let Ωn,m,κ be the set of ω’s appearing in Theorem 4.1 and let

B̃n,m,κ := {F ∈ Gm,m−n | F = kerΓn,m(ω) for some ω ∈ Ωn,m,κ}
and Bn,m,κ := {E ∈ Gm,n | E⊥ ∈ B̃n,m,κ}. Thus, by (4.1), we have

hm,n(Bn,m,κ) = hm,m−n(B̃n,m,κ) ≥ P(Ωn,m,κ) ≥ 1− e−n.
Hence it is enough to show that every E ∈ Bn,m,κ satisfies the second con-
dition in Theorem 2.1 with some fixed c(κ, δ) > 0. (The first condition
concerning the extreme points is automatically satisfied since the equality
ext(Bn,m,ω) = {±gi(ω) | i = 1, . . . ,m} is implicit in the definition of Ω0,
hence in that of Bn,m,κ.) To this end, fix an arbitrary E ∈ Bn,m,κ and pick
ω0 ∈ Ωn,m,κ with

Eω0 = kerΓn,m(ω0)⊥ = E

and a (κn, β)-mixing operator T ∈ L(E). Consider the operator T ′ =
Vω0TV

−1
ω0

: Rn → Rn, where Vω0 is the operator from Fact 3.2. It fol-
lows directly from the definition of mixing operators and Fact 3.2 that
T ′ ∈Mixn(κn, c′(δ)β/5). Hence, by Theorem 4.1,

card{i ∈ {1, . . . ,m} | ‖T ′gi(ω)‖Bn,m,ω ≥ c(κ, δ)β
√
n} ≥ δn/2,

where c(κ, δ) = c′(δ)c′(κ, δ)/5. The proof is completed by observing that
since

gi(ω0) = Γn,m(ω0)(ei) = Vω0PE(ei) = Vω0ui(E)

for every i = 1, . . . ,m, the map Vω0 is an isometry from (E, ‖ · ‖BE ) onto
(Rn, ‖ · ‖Bn,m,ω0

) and therefore ‖T ′gi(ω0)‖Bn,m,ω0
= ‖Tui(E)‖BE .
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The proof that Theorem 2.1 ⇒ Theorem 4.1 (with a small loss in the
coefficient in the exponent) goes along the same lines and is left to the
reader. However, if both theorems are considered in the version proposed in
Remark 2.2, then they are formally equivalent (i.e., the equivalence follows
from “general principles,” with Fact 3.2 being the only “technical result”
used).

In what follows, to avoid excessive use of indices we shall fix n, δ and
m satisfying the hypotheses of the Theorem, and write Bω (resp., ‖ · ‖ω)
instead of Bn,m,ω (resp., ‖ · ‖Bn,m,ω).

Observe that since Mixn(κn, β) ⊂ Mixn(κ′n, β) for every 0 < κ′ < κ ≤
1/2 and β > 0, without any loss of generality we may and will assume that
κ ≤ δ. Also, due to the homogeneity of the norm it suffices to prove Theorem
4.1 for β = 1.

For d ∈ N we set Sd = {1, . . . , d} and S̃ = {n+ 1, . . . , n+ bκn/4c}. For
ω ∈ Ω we let R(ω) be the orthogonal projection in Rn with kerR(ω) =
lin{gi(ω) | i ∈ S̃}. Theorem 4.1 is a consequence of the following

Proposition 4.2. For every δ > 0 and κ ∈ (0, 1/2] there exists c′ =
c′(κ, δ) such that

P{ω ∈ Ω0 | there exists T ∈ Mixn(κn, 1) such that

R(ω)Tgi ∈ c′
√
nR(ω)Bω for every i ∈ Sk} ≤ (21+δe)−n

2
,

where k := n+ bκn/4c.
Proof of Theorem 4.1. Denote by S the family of all n+ bκn/4c-element

subsets of Sm and, for every S ∈ S, set

AS = {ω ∈ Ω0 | there exists T ∈Mixn(κn, 1) such that

‖Tgi‖Bω ≤ c′
√
n for every i ∈ S}.

Proposition 4.2 says that P(AS̃) ≤ (21+δe)−n
2
. On the other hand, the

exchangeability of gi’s implies that P(AS) is the same for all S ∈ S. Thus

P
( ⋃

S∈S
AS
)
≤ (21+δe)−n

2
cardS < e−n

2
.(4.2)

Let Ω1 be the set of ω’s considered in Theorem 4.1. We claim that

Ω0 \Ω1 ⊂
⋃

S∈S
AS.(4.3)

Indeed, let ω ∈ Ω0 \Ω1. Then

card{i ∈ Sm | ‖Tgi‖Bω > c′
√
n} ≤ bδn/2c

for some T ∈ Mixn(κn, 1). Since κ ≤ δ, it follows that b(1+ δ)nc−bδn/2c ≥
n + bκn/4c. Hence there exists S ∈ S such that ‖Tgi‖Bω ≤ c′(κ, δ)

√
n for

every i ∈ S, which means that ω ∈ AS . Hence, by (4.2), (4.3) and Facts
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3.1–3.3, we get (for n > 1)

P(Ω1) = P(Ω0)−P(Ω0 \Ω1) ≥ 1− 3e−4n − e−n2
> 1− e−n.

5. Proof of Proposition 4.2. In order to make the argument smoother,
we shall assume as we may that

(Ω,P) = (Ω1,P1)× (Ω2,P2)× (Ω3,P3)
and we shall write ω = (ω1, ω2, ω3). Moreover, we shall assume that gi(ω)
for i ∈ Sn (resp., i ∈ S̃, i ∈ Sm \ Sk = Sm \ Sn \ S̃) depends only on ω1

(resp., ω2, ω3). Note that, in the notation of Proposition 4.2, R(ω) depends
only on ω2 and so we shall write R(ω2) rather than R(ω) or R(ω1, ω2, ω3).
Similarly, we define

B(ω1, ω3) = symconv{gi(ω0) | i ∈ Sm \ S̃}
for ω = (ω1, ω2, ω3) ∈ Ω. It follows directly from the definitions that for
every ω = (ω1, ω2, ω3) ∈ Ω we have

R(ω2)Bω = R(ω2)B(ω1, ω3).(5.1)
The proof of Proposition 4.2 is based on two lemmas.

Lemma 5.1. For every ω′ = (ω′1, ω
′
2, ω
′
3) ∈ Ω0, T ∈ Mixn(b3κn/4c, 1),

and α > 0 we have
P2{ω2 ∈ Ω2 | R(ω2)Tgi(ω̃)∈α√nR(ω2)Bω̃ for every i∈ S̃}≤(c̃α)2bκn/4c2,

where ω̃ = (ω′1, ω2, ω
′
3) and c̃ = c̃(κ, δ) depends on κ and δ only.

The technique for the proof of Lemma 5.1 is well known. It suffices to
use (5.1) and then, e.g., to follow the line of argument from the proof of
Lemma 14 in [MT3]. We leave the details to the reader.

For a fixed ω′ = (ω′1, ω
′
2, ω
′
3) ∈ Ω0 and for every α > 0 we define

Ãα = {T ∈ L(Rn) | Tgi(ω′) ∈ αB(ω′1, ω
′
3) for i ∈ Sn},

Aα = Ãα ∩Mixn(b3κn/4c, 1).
In the above notation we have

Lemma 5.2. Given ω′ ∈ Ω0 and α > 0, the set Aα admits a 1/(2C(4))-
net Nα with respect to the operator norm on L(Bn

2 , αB(ω′1, ω
′
3)) with

cardNα ≤ C(δ)n
2
,

where C(δ) > 1 depends on δ only and C(4) is taken from Fact 3.2.

Proof. Fix ω′ ∈ Ω0 and note that, by Fact 3.2, ‖gi(ω′)‖2 ≤ C(4) for
i ∈ Sm. Hence (cf., e.g., [MT3, Lemma 5])

vol(αB(ω′1, ω
′
3)) ≤ (C1(δ)α/n)n,

where C1(δ) > 0 depends on δ only. On the other hand, since n−1/2Bn
2 ⊂ Bn

1 ,
we infer that the ellipsoid

E = Γn,m|Rn(αn−1/2Bn
2 )
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is contained in αB(ω′1, ω
′
3). By Fact 3.1 we have

vol E ≥ (c(δ)αn−1/2)n volBn
2 ≥ (c2(δ)α/n)n,

where c2(δ) > 0 depends on δ only. Similarly, by the same fact,

volB ≥ c(δ)n volBn
1 ,

where B = conv{±gi(ω′) | i ∈ Sn}.
Finally, by [MT4, Proposition 5.3] and the estimates above we see that

the set Aα of operators admits a 1/(2C(4))-net Nα in the operator norm on
L(Bn

2 , E) (and therefore in the operator norm on L(Bn
2 , αB(ω′1, ω

′
3))) with

cardNα ≤ (2CC(4))n
2
(

vol(αB(ω′1, ω
′
3)) volBn

1

vol E volB

)n
≤
(

2CC(4)C1(δ)
c2(δ)c(δ)

)n2

,

where C > 1 is a suitable numerical constant, which completes the proof.

Proof of Proposition 4.2. Fix δ > 0, κ ∈ (0, 1/2] and ω′ = (ω′1, ω
′
2, ω
′
3)

∈ Ω0. Let α0 > 0 (to be specified later). Again, let k = n + bκn/4c and
define

A(ω′1, ω
′
3) := {ω2 ∈ Ω2 | there exists T ∈Mixn(κn, 1) such that

R(ω2)Tgi(ω′1, ω2, ω
′
3) ∈ α0

√
nR(ω2)B(ω′1, ω

′
3) for i ∈ Sk

and (ω′1, ω2, ω
′
3) ∈ Ω0}.

Also, for every T ∈ Mixn(b3κn/4c, 1) set

A(ω′1, ω
′
3, T ) = {ω2 ∈ Ω2 | R(ω2)Tgi(ω′1, ω2, ω

′
3) ∈ 2R(ω2)α0

√
nB(ω′1, ω

′
3)

for i ∈ Sk and (ω′1, ω2, ω
′
3) ∈ Ω0}.

Finally, let Nα0
√
n be the net in Aα0

√
n from Lemma 5.2.

We claim that

A(ω′1, ω
′
3) ⊂

⋃

T∈Nα0
√
n

A(ω′1, ω
′
3, T ).(5.2)

Indeed, pick ω2 ∈ A(ω′1, ω
′
3) and T ∈ Mixn(κn, 1) such that

R(ω2)Tgi(ω′1, ω2, ω
′
3) ∈ R(ω2)α0

√
nB(ω′1, ω

′
3)(5.3)

for i ∈ Sk = Sn ∪ S̃. Note that, by a standard “lifting” argument, the
condition (5.3) yields the existence of T1 ∈ L(Rn) satisfying

T1gi(ω′1, ω2, ω
′
3) ∈ α0

√
nB(ω′1, ω

′
3) for every i ∈ Sn(5.4)

and

R(ω2)T1 = R(ω2)T.(5.5)

Hence T1|{kerR(ω2)}⊥ =T|{kerR(ω2)}⊥ . Since dim kerR(ω2)≤ card S̃= bκn/4c,
it is easy to verify that T ∈ Mixn(κn, 1) implies T1 ∈ Mixn(b3κn/4c, 1).
Thus T1 ∈ Aα0

√
n. Pick T0 ∈ Nα0

√
n with

‖(T1 − T0) : Bn
2 → α0

√
nB(ω′1, ω

′
3)‖ ≤ 1/(2C(4))(5.6)
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and an arbitrary i∈ S̃. Since (ω′1, ω2, ω
′
3)∈Ω0, it follows that ‖gi(ω′1, ω2, ω

′
3)‖2

≤ C(4) (Fact 3.2). Thus by (5.3)–(5.6) we get

R(ω2)T0gi(ω′1, ω2, ω
′
3)

= R(ω2)T1gi(ω′1, ω2, ω
′
3) +R(ω2)(T0 − T1)gi(ω′1, ω2, ω

′
3)

∈ R(ω2)T1gi(ω′1, ω2, ω
′
3) + (α0

√
n/2)R(ω2)B(ω′1, ω

′
3)

= R(ω2)Tgi(ω′1, ω2, ω
′
3) + (α0

√
n/2)R(ω2)B(ω′1, ω

′
3)

⊂ 2α0
√
nR(ω2)B(ω′1, ω

′
3).

Thus

R(ω2)T0gi(ω′1, ω2, ω
′
3) ⊂ 2α0

√
nR(ω2)B(ω′1, ω

′
3)(5.7)

for every i ∈ S̃. Recall that gi(ω1, ω2, ω3) for every i ∈ Sn depends on
ω1 ∈ Ω1 only. Therefore, gi(ω′1, ω

′
2, ω
′
3) = gi(ω′1, ω2, ω

′
3) for every i ∈ Sn and

every ω2 ∈ Ω2. Since T0 ∈ Nα0
√
n ⊂ Aα0

√
n, we infer that (5.7) holds for

every i ∈ Sn as well. Thus ω2 ∈ A(ω′1, ω
′
3, T0), which concludes the proof

of (5.2).
Returning to the proof of Proposition 4.2 note that for each ω0 ∈ Ω0,

Lemmas 5.1, 5.2 and (5.2) yield

P2(A(ω′1, ω
′
3)) ≤

∑

T∈Nα0
√
n

P2(A(ω′1, ω
′
3, T ))(5.8)

≤ C(δ)n
2
(2c̃(κ, δ)α0)2bκn/4c2.

By choosing α0 = α0(κ, δ) sufficiently small we may make the right hand
side less than (21+δe)−n

2
. In view of (5.1), the proof is completed by setting

c′(κ, δ) = α0(κ, δ) and integrating (5.8) with respect to ω′1 and ω′3.
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