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Differentiability of the g-Drazin inverse

by

J. J. Koliha (Melbourne) and V. Rakočević (Nǐs)

Abstract. If A(z) is a function of a real or complex variable with values in the space
B(X) of all bounded linear operators on a Banach space X with each A(z) g-Drazin

invertible, we study conditions under which the g-Drazin inverse AD(z) is differentiable.
From our results we recover a theorem due to Campbell on the differentiability of the
Drazin inverse of a matrix-valued function and a result on differentiation of the Moore–
Penrose inverse in Hilbert spaces.

1. Introduction and preliminaries. The Drazin inverse defined orig-
inally for semigroups in [4] in 1958 is an important theoretical and practical
tool in algebra and analysis. When A is an algebra and a ∈ A, then b ∈ A
is the Drazin inverse of a if

(1.1) ab = ba, bab = b, aba = a+ u where u is nilpotent.

It was observed by Harte [7, 8] and by the first author in [11] that in Banach
algebras it is more natural to replace the nilpotent element u in (1.1) by a
quasinilpotent element. If u in (1.1) is allowed to be quasinilpotent, we call b
the g-Drazin inverse of a.

The g-Drazin inverse introduced in [11] is a useful construct that finds
its applications in a number of areas. In the present paper we concentrate
on the g-Drazin inverse in the Banach algebra B(X) of bounded linear op-
erators, and continue the investigation of the continuity of the g-Drazin
inverse [14] by studying its differentiability. For matrices, this was studied
by Campbell [1] and Hartwig and Shoaf [9]. Drazin [5] considered differenti-
ation of the conventional Drazin inverse in associative rings, using a general
derivation in the ring.

We can briefly describe the contents of this paper as follows: If A(z)
is a function of a real or complex variable with values in the space of all
bounded linear operators on a Banach space with each A(z) g-Drazin in-
vertible, we study the conditions under which the g-Drazin inverse AD(z) is
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differentiable. From our results we recover a theorem due to Campbell on
the differentiability of the Drazin inverse of a matrix-valued function and a
result on differentiation of the Moore–Penrose inverse in Hilbert spaces.

By B(X) we denote the Banach algebra of all bounded linear operators
acting on the complex Banach space X with the usual operator norm. By
%(T ), σ(T ) and r(T ) we denote the resolvent set, the spectrum and the
spectral radius of T ∈ B(X), respectively. We also write σ0(T ) for σ(T )\{0}.
The sets of all isolated and accumulation spectral points of T are denoted
by isoσ(T ) and accσ(T ). If λ ∈ %(T ), then R(λ;T ) = (λI − T )−1 is the
resolvent of T . We recall [12] that 0 ∈ isoσ(T ) if and only if there exists a
nonzero projection P ∈ B(X) such that

AP = PA is quasinilpotent and A+ P is invertible;

P is the spectral projection of T at 0, and is denoted by Aπ [12, Theorem 1.2].

Definition 1.1 (Koliha [11, Definition 2.3]). An operator A ∈ B(X) is
g-Drazin invertible if there exists B ∈ B(X) such that

(1.2) AB = BA, BAB = B, ABA = A+ U, where r(U) = 0.

The operator B is called the g-Drazin inverse of A, denoted by AD.
The Drazin index i(A) of A is 0 if A is invertible, k if A is not invertible
and U is nilpotent of index k, and ∞ otherwise. Definition 1.1 with i(A)
finite coincides with the definition of the conventional Drazin inverse (see
[3, 4, 10]). An operator A has a conventional Drazin inverse if and only if
0 is at most a pole of the resolvent of A; A has the g-Drazin inverse if and
only if 0 /∈ accσ(A) ([11, Theorem 4.2], [12, Theorem 1.2]).

We need a representation of AD in terms of the holomorphic calculus
for A. A cycle is a formal linear combination Γ of loops with integral co-
efficients; Γ is a Cauchy cycle relative to the pair (Ω,K), where K is a
compact subset of a nonempty open set Ω ⊂ C, if Γ ⊂ Ω \K, ind(Γ, λ) = 0
for all λ /∈ Ω and ind(Γ, µ) = 1 for all µ ∈ K. The existence of a Cauchy
cycle relative to any such pair (Ω,K) is proved in [16, Theorem 13.5]. By
[11, Theorem 4.4],

(1.3) AD =
1

2πi

�

Γ

λ−1R(λ;A) dλ,

where Γ is a Cauchy cycle relative to (C\{0}, σ0(A)). (In the case that A is
quasinilpotent, the formula is interpreted in the following way: As σ0(A) = ∅,
Γ can be any cycle in C \ {0} with ind(Γ, 0) = 0. The integral in (1.3) is
zero, which agrees with AD = 0.)

Below we will use the following perturbation result involving operator
resolvents which follows from [6, Lemma VII.6.3].
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Lemma 1.2. Let A,A(z) ∈ B(X) for all z in some neighborhood U of z0,
and let ‖A(z)− A‖ → 0 as z → z0. If K is a compact subset of the complex
plane contained in the resolvent sets of A and A(z) for all z ∈ U , then

(1.4) lim
z→z0

R(λ;A(z)) = R(λ;A) uniformly for λ ∈ K.

2. Differentiability properties of the g-Drazin inverse. In this
section, U denotes an open interval in R or an open subset of C, z0 a point
in U , and A : U → B(X) an operator-valued function. By A′(z) we denote
the derivative of A(z) at z, and by AD(z) the g-Drazin inverse A(z)D. Our
main result on the differentiability of the g-Drazin inverse is given in the
following theorem:

Theorem 2.1. Let A be a B(X)-valued function defined on U such that
A(z) is g-Drazin invertible for all z ∈ U , and differentiable at z0 ∈ U . Then

AD(z) is differentiable at z0 if and only if AD(z) is continuous at z0. In
this case the derivative (AD)′(z0) is given by

(2.1) (AD)′(z0) =
1

2πi

�

Γ

λ−1R(λ;A(z0))A′(z0)R(λ;A(z0)) dλ,

where Γ is a Cauchy cycle relative to (C \ {0}, σ0(A(z0))).

Proof. Assume that AD(z) is continuous at z0. From [14, Theorem 4.1]
(see equation (2.5) below) it follows that there exist r>0 and δ1>0 such that

(2.2) 0 < |λ| < r ⇒ λ ∈ %(A(z)) whenever |z − z0| < δ1.

Let Ω = {λ : |λ| > r}, and let Ω1 be a bounded open set with σ0(A(z0)) ⊂
Ω1 ⊂ Ω1 ⊂ Ω. From the upper semicontinuity of the spectrum it follows
that there exists δ ∈ (0, δ1) such that the sets σ0(A(z)) are contained in Ω1

whenever |z − z0| < δ. (The cases σ0(A(z)) = ∅ or σ0(A(z0)) = ∅ are not
excluded.) There exists a Cauchy cycle Γ relative to (Ω,Ω1), and

(2.3) AD(z) =
1

2πi

�

Γ

λ−1R(λ;A(z)) dλ, |z − z0| < δ,

by (1.3). Consider the existence of the limit

lim
z→z0

AD(z)− AD(z0)

z − z0
.

Using the second resolvent equation, we get

AD(z)− AD(z0)

z − z0
=

1

z − z0

1

2πi

�

Γ

λ−1[R(λ;A(z))−R(λ;A(z0))] dλ

=
1

2πi

�

Γ

λ−1R(λ;A(z))
A(z)− A(z0)

z − z0
R(λ;A(z0)) dλ.
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In view of Lemma 1.2,

lim
z→z0

R(λ;A(z))
A(z)− A(z0)

z − z0
= R(λ;A(z0))A′(z0)

uniformly for λ ∈ Γ . Hence (2.1) follows.
The converse is clear.

We note that Theorem 4.1 of [14] holds when sequences are replaced
by functions of z; that theorem gives twelve conditions equivalent to the
continuity of AD(z) at z0. For the sake of completeness we restate four of
these conditions relevant to the present investigation. Under the hypotheses
of Theorem 2.1, AD(z)→ AD(z0) as z → z0 if and only if any of the following
conditions holds:

sup{‖AD(z)‖ : |z − z0| < δ} <∞ for some δ > 0,(2.4)

sup{r(AD(z)) : |z − z0| < δ} <∞ for some δ > 0,(2.5)

AD(z)A(z)→ AD(z0)A(z0) as z → z0,(2.6)

Aπ(z)→ Aπ(z0) as z → z0.(2.7)

We take this opportunity to correct a mistake in [14, Theorem 4.1]:
Conditions (4.14) and (4.15) of that theorem should be

Cn → C and γ(Cn)→ γ(C)

and
Cn → C and inf

n
γ(Cn) > 0,

respectively, where γ(A) denotes the reduced minimum modulus of an op-
erator A ∈ B(X).

Note 2.2. The preceding argument works with appropriate interpreta-
tion in the case that r(A(z0)) = 0.

Note 2.3. Hartwig and Shoaf [9, (3.10)] used holomorphic calculus to
give a formula for the derivative of the Drazin inverse of a complex matrix
in terms of the spectral components of A(z).

In the case that the operators A(z) have the conventional Drazin inverse
and the indices of A(z) are uniformly bounded, we are able to obtain a
stronger result.

Theorem 2.4. Let A be a B(X)-valued function defined on U such that
A(z) is g-Drazin invertible for all z ∈ U and differentiable at z0 ∈ U . If the
indices i(A(z)) are uniformly bounded and the spectral projections Aπ(z) are

of finite rank , then AD(z) is differentiable at z0 if and only if there exists
δ > 0 such that

rankAπ(z) = rankAπ(z0) whenever |z − z0| < δ.

Proof. This follows from Theorem 2.1 and [14, Theorem 5.1].
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From the preceding theorem we recover the main result of [1] on the
differentiability of the matrix Drazin inverse. The core part C(z) of A(z)
is defined by C(z) = A(z)(I − Aπ(z)); the core rank of A(z) is the rank
of C(z).

Corollary 2.5 (Campbell [1, Theorem 4]). Let A be a p × p matrix-
valued function defined on U and differentiable at z0 ∈ U . Then AD(z) is
differentiable at z0 if and only if the core rank of A(z) is constant in some
neighborhood of z0.

Proof. This follows from Theorem 2.4 and the result for the core rank
of A(z) which states that rankC(z) = p− rankAπ(z).

Let us remark that our approach differs from the one adopted by Camp-
bell in [1], who derived his theorem from the known differentiation result
for the Moore–Penrose inverse and from the relation between the Drazin
inverse AD of a p× p matrix A and the Moore–Penrose inverse A† of A:

AD = Ap(A2p+1)†Ap.

3. Series expansion for (AD)′. Let U be an open interval in R or
an open set in C, and A(z) an operator-valued function on U satisfying
the hypotheses of Theorem 2.1 such that AD(z) is continuous at z0. To
simplify notation, we write A, AD, A′, Aπ for A(z0), AD(z0), A′(z0), Aπ(z0).
Then (2.2) holds, and we pick R > max {r, r(A)}. In formula (2.1) we choose
Γ = ωR − ωr, where ω%(s) = % exp(is) for any % > 0, s ∈ [0, 2π]. It can be
verified that Γ is a Cauchy cycle relative to the pair (C \ {0}, σ0(A)).

According to (2.1),

(AD)′ =
1

2πi

�

ωR

λ−1R(λ;A)A′R(λ;A) dλ(3.1)

− 1

2πi

�

ωr

λ−1R(λ;A)A′R(λ;A) dλ.

Since R(λ;A) = O(|λ|−1) as |λ| → ∞, ‖ � ωR λ−1R(λ;A)A′R(λ;A) dλ‖ =

O(R−2) as R→∞. This shows that

1

2πi

�

ωR

λ−1R(λ;A)A′R(λ;A) dλ = 0.

By assumption, 0 /∈ accσ(A); in view of [11, Theorem 5.1] there exists
r0 > 0 such that

R(λ;A) =
∞∑

n=0

λ−n−1AnAπ −
∞∑

n=0

λn(AD)n+1 =: Uλ − Vλ

for 0 < |λ| < r0. If 0 < % < min(r, r0), then



198 J. J. Koliha and V. Rakočević

1

2πi

�

ωr

λ−1R(λ;A)A′R(λ;A) dλ =
1

2πi

�

ω%

λ−1(Uλ − Vλ)A′(Uλ − Vλ) dλ

=
1

2πi

�

ω%

λ−1UλA
′Uλ dλ+

1

2πi

�

ω%

λ−1VλA
′Vλ dλ

− 1

2πi

�

ω%

λ−1UλA
′Vλ dλ−

1

2πi

�

ω%

λ−1VλA
′Uλ dλ

=

∞∑

m,n=0

AπAmA′AnAπ
1

2πi

�

ω%

λ−m−n−3 dλ

+

∞∑

m,n=0

(AD)m+1A′(AD)n+1 1

2πi

�

ωr

λm+n−1 dλ

−
∞∑

m,n=0

AπAmA′(AD)n+1 1

2πi

�

ωr

λ−m+n−2 dλ

−
∞∑

m,n=0

(AD)n+1A′AmAπ
1

2πi

�

ωr

λ−m+n−2 dλ

= ADA′AD −
∞∑

n=0

AπAnA′(AD)n+2 −
∞∑

n=0

(AD)n+2A′AnAπ

as � ω% λk dλ is equal to 2πi if k = −1 and to 0 otherwise. Substituting this

into (3.1) we get the following result.

Theorem 3.1. Let A be a B(X)-valued function defined on U such that
A(z) is g-Drazin invertible for all z ∈ U and differentiable at z0 ∈ U . If AD

is continuous at z0, then

(3.2) (AD)′ = −ADA′AD +
∞∑

n=0

AπAnA′(AD)n+2 +
∞∑

n=0

(AD)n+2A′AnAπ,

where A, AD, A′, Aπ stand for A(z0), AD(z0), A′(z0), Aπ(z0), respectively.

In the case that the Drazin indices i(A(z)) are finite and uniformly
bounded, the preceding theorem subsumes the differentiation formula of
Campbell [1, Theorem 2]; the summation then becomes finite. Let us ob-
serve that Campbell’s proof is based on the differentiation of the defining
equations in the case that A has the Drazin index 1, that is, on the differ-
entiation of the equations

AADA = A, ADAAD = AD, AAD = ADA.

Hartwig and Shoaf obtained Campbell’s formula from a difference relation
[9, (4.16)]. Under the assumption of finite and uniformly bounded indices,
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formula (3.2) formally agrees with Drazin’s result [5, Theorem 2], which is
derived for the conventional Drazin inverse in associative rings.

We note that if i(A) ≤ 1, formula (3.2) reduces to

(3.3) (AD)′ = −ADA′AD + AπA′(AD)2 + (AD)2A′Aπ.

For matrices this yields [1, Theorem 1].
If A satisfies the hypotheses of Theorem 2.1 and AD is continuous at z0,

equation (3.3) can be used to describe (AD)′ in terms of the derivative C ′ of
the core part of A, bearing in mind that C has Drazin index not exceeding
one:

(AD)′ = (CD)′ = −CDC ′CD + CπC ′(CD)2 + (CD)2C ′Cπ

= −ADC ′AD + AπC ′(AD)2 + (AD)2C ′Aπ;

it is known that AD = CD and Aπ = Cπ.

4. The Moore–Penrose inverse of Hilbert space operators. For
H a complex Hilbert space and A ∈ B(H) it is well known that

A has closed range ⇔ A∗A has closed range ⇔ AA∗ has closed range

⇔ 0 /∈ accσ(A∗A) ⇔ 0 /∈ accσ(AA∗).

For a closed range operator A ∈ B(H) we can give a definition of the
Moore–Penrose inverse A† of A in terms of the Drazin inverse (see [13, The-
orem 2.5]):

(4.1) A† = (A∗A)DA∗ = A∗(AA∗)D.

This equation enables us to obtain results on the continuity and differentia-
bility of the Moore–Penrose inverse using our results on the g-Drazin inverse.
(For the continuity of the Moore–Penrose inverse see, for instance, [15].)

Theorem 4.1. Let A be a B(X)-valued function defined on a real in-
terval J differentiable at t0 ∈ J with A(t) closed range operators for all
t ∈ J . Write B(t) = A∗(t)A(t) and E(t) = A(t)A∗(t) for all t ∈ J . Then
the following conditions are equivalent :

(i) BD(t) is continuous at t0.
(ii) ED(t) is continuous at t0.
(iii) BD(t) is differentiable at t0.
(iv) ED(t) is differentiable at t0.
(v) A†(t) is differentiable at t0.
(vi) A†(t) is continuous at t0.

(vii) A†(t)A(t) is continuous at t0.
(viii) A(t)A†(t) is continuous at t0.

(ix) ‖A†(t)‖ is bounded in some neighborhood of t0.
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Proof. (i)⇒(iii)⇒(v)⇒(vi)⇒(vii)⇒(i). The first four implications are
justified by Theorem 2.1, by the product rule for differentiation applied to
A†(t) = BD(t)A∗(t), by the relation between differentiability and continuity,
and by the continuity of the multiplication in B(X), respectively. The last

implication follows when we observe that if (vii) holds, then A†(t)A(t) =
(A∗(t)A(t))D(A∗(t)A(t)) = I −Aπ(t) is continuous at t0. Then (i) is true by
Theorem 2.1 (equivalent condition (2.7)).

(ii)⇒(iv)⇒(v)⇒(vi)⇒(viii)⇒(ii) is proved by a symmetrical argument.
Condition (ix) is equivalent to (vi) when we use the inequality

‖A†(t)− A†(t0)‖ ≤ 3 max{‖A†(t)‖2, ‖A†(t0)‖2}‖A(t)−A(t0)‖
(see [2, Theorem 10.4.5]).

Note 4.2. We note that in the proof of the implication (iii)⇒(v) the
differentiability of A∗(t) follows from the differentiability of A(t) via the
identity

dA∗(t)
dt

=

(
dA(t)

dt

)∗
,

which holds only when t is real. The preceding theorem, unlike Theorem 2.1,
does not hold for complex differentiation.
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[15] V. Rakočević, On the continuity of the Moore–Penrose inverse in C∗-algebras, Math.
Montisnigri 2 (1993), 89–92.

[16] W. Rudin, Real and Complex Analysis, 2nd ed., McGraw-Hill, New York, 1974.

Department of Mathematics and Statistics
University of Melbourne
Melbourne, VIC 3010, Australia
E-mail: j.koliha@ms.unimelb.edu.au

Faculty of Science and Mathematics
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18000 Nǐs, Serbia-Montenegro
E-mail: vrakoc@bankerinter.net

Received July 12, 1998
Revised version February 11, 2005 (4145)


