Differentiability of the g-Drazin inverse

by

J. J. Koliha (Melbourne) and V. Rakočević (Niš)

Abstract

If $A(z)$ is a function of a real or complex variable with values in the space $B(X)$ of all bounded linear operators on a Banach space X with each $A(z) g$-Drazin invertible, we study conditions under which the g-Drazin inverse $A^{\mathrm{D}}(z)$ is differentiable. From our results we recover a theorem due to Campbell on the differentiability of the Drazin inverse of a matrix-valued function and a result on differentiation of the MoorePenrose inverse in Hilbert spaces.

1. Introduction and preliminaries. The Drazin inverse defined originally for semigroups in [4] in 1958 is an important theoretical and practical tool in algebra and analysis. When \mathcal{A} is an algebra and $a \in \mathcal{A}$, then $b \in \mathcal{A}$ is the Drazin inverse of a if

$$
\begin{equation*}
a b=b a, \quad b a b=b, \quad a b a=a+u \quad \text { where } u \text { is nilpotent. } \tag{1.1}
\end{equation*}
$$

It was observed by Harte [7, 8] and by the first author in [11] that in Banach algebras it is more natural to replace the nilpotent element u in (1.1) by a quasinilpotent element. If u in (1.1) is allowed to be quasinilpotent, we call b the g-Drazin inverse of a.

The g-Drazin inverse introduced in [11] is a useful construct that finds its applications in a number of areas. In the present paper we concentrate on the g-Drazin inverse in the Banach algebra $B(X)$ of bounded linear operators, and continue the investigation of the continuity of the g-Drazin inverse [14] by studying its differentiability. For matrices, this was studied by Campbell [1] and Hartwig and Shoaf [9]. Drazin [5] considered differentiation of the conventional Drazin inverse in associative rings, using a general derivation in the ring.

We can briefly describe the contents of this paper as follows: If $A(z)$ is a function of a real or complex variable with values in the space of all bounded linear operators on a Banach space with each $A(z) g$-Drazin invertible, we study the conditions under which the g-Drazin inverse $A^{\mathrm{D}}(z)$ is

[^0]differentiable. From our results we recover a theorem due to Campbell on the differentiability of the Drazin inverse of a matrix-valued function and a result on differentiation of the Moore-Penrose inverse in Hilbert spaces.

By $B(X)$ we denote the Banach algebra of all bounded linear operators acting on the complex Banach space X with the usual operator norm. By $\varrho(T), \sigma(T)$ and $r(T)$ we denote the resolvent set, the spectrum and the spectral radius of $T \in B(X)$, respectively. We also write $\sigma_{0}(T)$ for $\sigma(T) \backslash\{0\}$. The sets of all isolated and accumulation spectral points of T are denoted by iso $\sigma(T)$ and $\operatorname{acc} \sigma(T)$. If $\lambda \in \varrho(T)$, then $R(\lambda ; T)=(\lambda I-T)^{-1}$ is the resolvent of T. We recall [12] that $0 \in$ iso $\sigma(T)$ if and only if there exists a nonzero projection $P \in B(X)$ such that

$$
A P=P A \text { is quasinilpotent and } A+P \text { is invertible; }
$$

P is the spectral projection of T at 0 , and is denoted by A^{π} [12, Theorem 1.2].
Definition 1.1 (Koliha [11, Definition 2.3]). An operator $A \in B(X)$ is g-Drazin invertible if there exists $B \in B(X)$ such that
(1.2) $\quad A B=B A, \quad B A B=B, \quad A B A=A+U, \quad$ where $r(U)=0$.

The operator B is called the g-Drazin inverse of A, denoted by A^{D}. The Drazin index $i(A)$ of A is 0 if A is invertible, k if A is not invertible and U is nilpotent of index k, and ∞ otherwise. Definition 1.1 with $i(A)$ finite coincides with the definition of the conventional Drazin inverse (see $[3,4,10])$. An operator A has a conventional Drazin inverse if and only if 0 is at most a pole of the resolvent of $A ; A$ has the g-Drazin inverse if and only if $0 \notin \operatorname{acc} \sigma(A)([11$, Theorem 4.2], [12, Theorem 1.2]).

We need a representation of A^{D} in terms of the holomorphic calculus for A. A cycle is a formal linear combination Γ of loops with integral coefficients; Γ is a Cauchy cycle relative to the pair (Ω, K), where K is a compact subset of a nonempty open set $\Omega \subset \mathbb{C}$, if $\Gamma \subset \Omega \backslash K$, ind $(\Gamma, \lambda)=0$ for all $\lambda \notin \Omega$ and $\operatorname{ind}(\Gamma, \mu)=1$ for all $\mu \in K$. The existence of a Cauchy cycle relative to any such pair (Ω, K) is proved in [16, Theorem 13.5]. By [11, Theorem 4.4],

$$
\begin{equation*}
A^{\mathrm{D}}=\frac{1}{2 \pi i} \int_{\Gamma} \lambda^{-1} R(\lambda ; A) d \lambda \tag{1.3}
\end{equation*}
$$

where Γ is a Cauchy cycle relative to $\left(\mathbb{C} \backslash\{0\}, \sigma_{0}(A)\right)$. (In the case that A is quasinilpotent, the formula is interpreted in the following way: As $\sigma_{0}(A)=\emptyset$, Γ can be any cycle in $\mathbb{C} \backslash\{0\}$ with $\operatorname{ind}(\Gamma, 0)=0$. The integral in (1.3) is zero, which agrees with $A^{\mathrm{D}}=0$.)

Below we will use the following perturbation result involving operator resolvents which follows from [6, Lemma VII.6.3].

Lemma 1.2. Let $A, A(z) \in B(X)$ for all z in some neighborhood U of z_{0}, and let $\|A(z)-A\| \rightarrow 0$ as $z \rightarrow z_{0}$. If K is a compact subset of the complex plane contained in the resolvent sets of A and $A(z)$ for all $z \in U$, then

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}} R(\lambda ; A(z))=R(\lambda ; A) \quad \text { uniformly for } \lambda \in K \tag{1.4}
\end{equation*}
$$

2. Differentiability properties of the g-Drazin inverse. In this section, U denotes an open interval in \mathbb{R} or an open subset of \mathbb{C}, z_{0} a point in U, and $A: U \rightarrow B(X)$ an operator-valued function. By $A^{\prime}(z)$ we denote the derivative of $A(z)$ at z, and by $A^{\mathrm{D}}(z)$ the g-Drazin inverse $A(z)^{\mathrm{D}}$. Our main result on the differentiability of the g-Drazin inverse is given in the following theorem:

Theorem 2.1. Let A be a $B(X)$-valued function defined on U such that $A(z)$ is g-Drazin invertible for all $z \in U$, and differentiable at $z_{0} \in U$. Then $A^{\mathrm{D}}(z)$ is differentiable at z_{0} if and only if $A^{\mathrm{D}}(z)$ is continuous at z_{0}. In this case the derivative $\left(A^{\mathrm{D}}\right)^{\prime}\left(z_{0}\right)$ is given by

$$
\begin{equation*}
\left(A^{\mathrm{D}}\right)^{\prime}\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{\Gamma} \lambda^{-1} R\left(\lambda ; A\left(z_{0}\right)\right) A^{\prime}\left(z_{0}\right) R\left(\lambda ; A\left(z_{0}\right)\right) d \lambda \tag{2.1}
\end{equation*}
$$

where Γ is a Cauchy cycle relative to $\left(\mathbb{C} \backslash\{0\}, \sigma_{0}\left(A\left(z_{0}\right)\right)\right)$.
Proof. Assume that $A^{\mathrm{D}}(z)$ is continuous at z_{0}. From [14, Theorem 4.1] (see equation (2.5) below) it follows that there exist $r>0$ and $\delta_{1}>0$ such that

$$
\begin{equation*}
0<|\lambda|<r \Rightarrow \lambda \in \varrho(A(z)) \text { whenever }\left|z-z_{0}\right|<\delta_{1} \tag{2.2}
\end{equation*}
$$

Let $\Omega=\{\lambda:|\lambda|>r\}$, and let Ω_{1} be a bounded open set with $\sigma_{0}\left(A\left(z_{0}\right)\right) \subset$ $\Omega_{1} \subset \bar{\Omega}_{1} \subset \Omega$. From the upper semicontinuity of the spectrum it follows that there exists $\delta \in\left(0, \delta_{1}\right)$ such that the sets $\sigma_{0}(A(z))$ are contained in Ω_{1} whenever $\left|z-z_{0}\right|<\delta$. (The cases $\sigma_{0}(A(z))=\emptyset$ or $\sigma_{0}\left(A\left(z_{0}\right)\right)=\emptyset$ are not excluded.) There exists a Cauchy cycle Γ relative to $\left(\Omega, \bar{\Omega}_{1}\right)$, and

$$
\begin{equation*}
A^{\mathrm{D}}(z)=\frac{1}{2 \pi i} \int_{\Gamma} \lambda^{-1} R(\lambda ; A(z)) d \lambda, \quad\left|z-z_{0}\right|<\delta \tag{2.3}
\end{equation*}
$$

by (1.3). Consider the existence of the limit

$$
\lim _{z \rightarrow z_{0}} \frac{A^{\mathrm{D}}(z)-A^{\mathrm{D}}\left(z_{0}\right)}{z-z_{0}}
$$

Using the second resolvent equation, we get

$$
\begin{aligned}
\frac{A^{\mathrm{D}}(z)-A^{\mathrm{D}}\left(z_{0}\right)}{z-z_{0}} & =\frac{1}{z-z_{0}} \frac{1}{2 \pi i} \int_{\Gamma} \lambda^{-1}\left[R(\lambda ; A(z))-R\left(\lambda ; A\left(z_{0}\right)\right)\right] d \lambda \\
& =\frac{1}{2 \pi i} \int_{\Gamma} \lambda^{-1} R(\lambda ; A(z)) \frac{A(z)-A\left(z_{0}\right)}{z-z_{0}} R\left(\lambda ; A\left(z_{0}\right)\right) d \lambda
\end{aligned}
$$

In view of Lemma 1.2,

$$
\lim _{z \rightarrow z_{0}} R(\lambda ; A(z)) \frac{A(z)-A\left(z_{0}\right)}{z-z_{0}}=R\left(\lambda ; A\left(z_{0}\right)\right) A^{\prime}\left(z_{0}\right)
$$

uniformly for $\lambda \in \Gamma$. Hence (2.1) follows.
The converse is clear.
We note that Theorem 4.1 of [14] holds when sequences are replaced by functions of z; that theorem gives twelve conditions equivalent to the continuity of $A^{\mathrm{D}}(z)$ at z_{0}. For the sake of completeness we restate four of these conditions relevant to the present investigation. Under the hypotheses of Theorem 2.1, $A^{\mathrm{D}}(z) \rightarrow A^{\mathrm{D}}\left(z_{0}\right)$ as $z \rightarrow z_{0}$ if and only if any of the following conditions holds:

$$
\begin{align*}
& \sup \left\{\left\|A^{\mathrm{D}}(z)\right\|:\left|z-z_{0}\right|<\delta\right\}<\infty \quad \text { for some } \delta>0 \tag{2.4}\\
& \sup \left\{r\left(A^{\mathrm{D}}(z)\right):\left|z-z_{0}\right|<\delta\right\}<\infty \quad \text { for some } \delta>0 \tag{2.5}\\
& A^{\mathrm{D}}(z) A(z) \rightarrow A^{\mathrm{D}}\left(z_{0}\right) A\left(z_{0}\right) \quad \text { as } z \rightarrow z_{0} \tag{2.6}\\
& A^{\pi}(z) \rightarrow A^{\pi}\left(z_{0}\right) \quad \text { as } z \rightarrow z_{0} \tag{2.7}
\end{align*}
$$

We take this opportunity to correct a mistake in [14, Theorem 4.1]: Conditions (4.14) and (4.15) of that theorem should be

$$
C_{n} \rightarrow C \quad \text { and } \quad \gamma\left(C_{n}\right) \rightarrow \gamma(C)
$$

and

$$
C_{n} \rightarrow C \quad \text { and } \quad \inf _{n} \gamma\left(C_{n}\right)>0
$$

respectively, where $\gamma(A)$ denotes the reduced minimum modulus of an operator $A \in B(X)$.

Note 2.2. The preceding argument works with appropriate interpretation in the case that $r\left(A\left(z_{0}\right)\right)=0$.

Note 2.3. Hartwig and Shoaf [9, (3.10)] used holomorphic calculus to give a formula for the derivative of the Drazin inverse of a complex matrix in terms of the spectral components of $A(z)$.

In the case that the operators $A(z)$ have the conventional Drazin inverse and the indices of $A(z)$ are uniformly bounded, we are able to obtain a stronger result.

Theorem 2.4. Let A be a $B(X)$-valued function defined on U such that $A(z)$ is g-Drazin invertible for all $z \in U$ and differentiable at $z_{0} \in U$. If the indices $i(A(z))$ are uniformly bounded and the spectral projections $A^{\pi}(z)$ are of finite rank, then $A^{\mathrm{D}}(z)$ is differentiable at z_{0} if and only if there exists $\delta>0$ such that

$$
\operatorname{rank} A^{\pi}(z)=\operatorname{rank} A^{\pi}\left(z_{0}\right) \quad \text { whenever } \quad\left|z-z_{0}\right|<\delta
$$

Proof. This follows from Theorem 2.1 and [14, Theorem 5.1].

From the preceding theorem we recover the main result of [1] on the differentiability of the matrix Drazin inverse. The core part $C(z)$ of $A(z)$ is defined by $C(z)=A(z)\left(I-A^{\pi}(z)\right)$; the core rank of $A(z)$ is the rank of $C(z)$.

Corollary 2.5 (Campbell [1, Theorem 4]). Let A be a $p \times p$ matrixvalued function defined on U and differentiable at $z_{0} \in U$. Then $A^{\mathrm{D}}(z)$ is differentiable at z_{0} if and only if the core rank of $A(z)$ is constant in some neighborhood of z_{0}.

Proof. This follows from Theorem 2.4 and the result for the core rank of $A(z)$ which states that $\operatorname{rank} C(z)=p-\operatorname{rank} A^{\pi}(z)$.

Let us remark that our approach differs from the one adopted by Campbell in [1], who derived his theorem from the known differentiation result for the Moore-Penrose inverse and from the relation between the Drazin inverse A^{D} of a $p \times p$ matrix A and the Moore-Penrose inverse A^{\dagger} of A :

$$
A^{\mathrm{D}}=A^{p}\left(A^{2 p+1}\right)^{\dagger} A^{p}
$$

3. Series expansion for $\left(A^{\mathrm{D}}\right)^{\prime}$. Let U be an open interval in \mathbb{R} or an open set in \mathbb{C}, and $A(z)$ an operator-valued function on U satisfying the hypotheses of Theorem 2.1 such that $A^{\mathrm{D}}(z)$ is continuous at z_{0}. To simplify notation, we write $A, A^{\mathrm{D}}, A^{\prime}, A^{\pi}$ for $A\left(z_{0}\right), A^{\mathrm{D}}\left(z_{0}\right), A^{\prime}\left(z_{0}\right), A^{\pi}\left(z_{0}\right)$. Then (2.2) holds, and we pick $R>\max \{r, r(A)\}$. In formula (2.1) we choose $\Gamma=\omega_{R}-\omega_{r}$, where $\omega_{\varrho}(s)=\varrho \exp (i s)$ for any $\varrho>0, s \in[0,2 \pi]$. It can be verified that Γ is a Cauchy cycle relative to the pair $\left(\mathbb{C} \backslash\{0\}, \sigma_{0}(A)\right)$.

According to (2.1),

$$
\begin{align*}
\left(A^{\mathrm{D}}\right)^{\prime}= & \frac{1}{2 \pi i} \int_{\omega_{R}} \lambda^{-1} R(\lambda ; A) A^{\prime} R(\lambda ; A) d \lambda \tag{3.1}\\
& -\frac{1}{2 \pi i} \int_{\omega_{r}} \lambda^{-1} R(\lambda ; A) A^{\prime} R(\lambda ; A) d \lambda
\end{align*}
$$

Since $R(\lambda ; A)=O\left(|\lambda|^{-1}\right)$ as $|\lambda| \rightarrow \infty,\left\|\int_{\omega_{R}} \lambda^{-1} R(\lambda ; A) A^{\prime} R(\lambda ; A) d \lambda\right\|=$ $O\left(R^{-2}\right)$ as $R \rightarrow \infty$. This shows that

$$
\frac{1}{2 \pi i} \int_{\omega_{R}} \lambda^{-1} R(\lambda ; A) A^{\prime} R(\lambda ; A) d \lambda=0
$$

By assumption, $0 \notin \operatorname{acc} \sigma(A)$; in view of [11, Theorem 5.1] there exists $r_{0}>0$ such that

$$
R(\lambda ; A)=\sum_{n=0}^{\infty} \lambda^{-n-1} A^{n} A^{\pi}-\sum_{n=0}^{\infty} \lambda^{n}\left(A^{\mathrm{D}}\right)^{n+1}=: U_{\lambda}-V_{\lambda}
$$

for $0<|\lambda|<r_{0}$. If $0<\varrho<\min \left(r, r_{0}\right)$, then

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{\omega_{r}} \lambda^{-1} R(\lambda ; A) A^{\prime} R(\lambda ; A) d \lambda=\frac{1}{2 \pi i} \int_{\omega_{\varrho}} \lambda^{-1}\left(U_{\lambda}-V_{\lambda}\right) A^{\prime}\left(U_{\lambda}-V_{\lambda}\right) d \lambda \\
&= \frac{1}{2 \pi i} \int_{\omega_{\varrho}} \lambda^{-1} U_{\lambda} A^{\prime} U_{\lambda} d \lambda+\frac{1}{2 \pi i} \int_{\omega_{\varrho}} \lambda^{-1} V_{\lambda} A^{\prime} V_{\lambda} d \lambda \\
&-\frac{1}{2 \pi i} \int_{\omega_{\varrho}} \lambda^{-1} U_{\lambda} A^{\prime} V_{\lambda} d \lambda-\frac{1}{2 \pi i} \int_{\omega_{\varrho}} \lambda^{-1} V_{\lambda} A^{\prime} U_{\lambda} d \lambda \\
&= \sum_{m, n=0}^{\infty} A^{\pi} A^{m} A^{\prime} A^{n} A^{\pi} \frac{1}{2 \pi i} \int_{\omega_{\varrho}} \lambda^{-m-n-3} d \lambda \\
&+\sum_{m, n=0}^{\infty}\left(A^{\mathrm{D}}\right)^{m+1} A^{\prime}\left(A^{\mathrm{D}}\right)^{n+1} \frac{1}{2 \pi i} \int_{\omega_{r}} \lambda^{m+n-1} d \lambda \\
&-\sum_{m, n=0}^{\infty} A^{\pi} A^{m} A^{\prime}\left(A^{\mathrm{D}}\right)^{n+1} \frac{1}{2 \pi i} \int_{\omega_{r}} \lambda^{-m+n-2} d \lambda \\
&-\sum_{m, n=0}^{\infty}\left(A^{\mathrm{D}}\right)^{n+1} A^{\prime} A^{m} A^{\pi} \frac{1}{2 \pi i} \int_{\omega_{r}} \lambda^{-m+n-2} d \lambda \\
&= A^{\mathrm{D}} A^{\prime} A^{\mathrm{D}}-\sum_{n=0}^{\infty} A^{\pi} A^{n} A^{\prime}\left(A^{\mathrm{D}}\right)^{n+2}-\sum_{n=0}^{\infty}\left(A^{\mathrm{D}}\right)^{n+2} A^{\prime} A^{n} A^{\pi}
\end{aligned}
$$

as $\int_{\omega_{\varrho}} \lambda^{k} d \lambda$ is equal to $2 \pi i$ if $k=-1$ and to 0 otherwise. Substituting this into (3.1) we get the following result.

Theorem 3.1. Let A be a $B(X)$-valued function defined on U such that $A(z)$ is g-Drazin invertible for all $z \in U$ and differentiable at $z_{0} \in U$. If A^{D} is continuous at z_{0}, then

$$
\begin{equation*}
\left(A^{\mathrm{D}}\right)^{\prime}=-A^{\mathrm{D}} A^{\prime} A^{\mathrm{D}}+\sum_{n=0}^{\infty} A^{\pi} A^{n} A^{\prime}\left(A^{\mathrm{D}}\right)^{n+2}+\sum_{n=0}^{\infty}\left(A^{\mathrm{D}}\right)^{n+2} A^{\prime} A^{n} A^{\pi} \tag{3.2}
\end{equation*}
$$

where $A, A^{\mathrm{D}}, A^{\prime}, A^{\pi}$ stand for $A\left(z_{0}\right), A^{\mathrm{D}}\left(z_{0}\right), A^{\prime}\left(z_{0}\right), A^{\pi}\left(z_{0}\right)$, respectively.
In the case that the Drazin indices $i(A(z))$ are finite and uniformly bounded, the preceding theorem subsumes the differentiation formula of Campbell [1, Theorem 2]; the summation then becomes finite. Let us observe that Campbell's proof is based on the differentiation of the defining equations in the case that A has the Drazin index 1 , that is, on the differentiation of the equations

$$
A A^{\mathrm{D}} A=A, \quad A^{\mathrm{D}} A A^{\mathrm{D}}=A^{\mathrm{D}}, \quad A A^{\mathrm{D}}=A^{\mathrm{D}} A
$$

Hartwig and Shoaf obtained Campbell's formula from a difference relation $[9,(4.16)]$. Under the assumption of finite and uniformly bounded indices,
formula (3.2) formally agrees with Drazin's result [5, Theorem 2], which is derived for the conventional Drazin inverse in associative rings.

We note that if $i(A) \leq 1$, formula (3.2) reduces to

$$
\begin{equation*}
\left(A^{\mathrm{D}}\right)^{\prime}=-A^{\mathrm{D}} A^{\prime} A^{\mathrm{D}}+A^{\pi} A^{\prime}\left(A^{\mathrm{D}}\right)^{2}+\left(A^{\mathrm{D}}\right)^{2} A^{\prime} A^{\pi} \tag{3.3}
\end{equation*}
$$

For matrices this yields [1, Theorem 1].
If A satisfies the hypotheses of Theorem 2.1 and A^{D} is continuous at z_{0}, equation (3.3) can be used to describe $\left(A^{\mathrm{D}}\right)^{\prime}$ in terms of the derivative C^{\prime} of the core part of A, bearing in mind that C has Drazin index not exceeding one:

$$
\begin{aligned}
\left(A^{\mathrm{D}}\right)^{\prime}=\left(C^{\mathrm{D}}\right)^{\prime} & =-C^{\mathrm{D}} C^{\prime} C^{\mathrm{D}}+C^{\pi} C^{\prime}\left(C^{\mathrm{D}}\right)^{2}+\left(C^{\mathrm{D}}\right)^{2} C^{\prime} C^{\pi} \\
& =-A^{\mathrm{D}} C^{\prime} A^{\mathrm{D}}+A^{\pi} C^{\prime}\left(A^{\mathrm{D}}\right)^{2}+\left(A^{\mathrm{D}}\right)^{2} C^{\prime} A^{\pi}
\end{aligned}
$$

it is known that $A^{\mathrm{D}}=C^{\mathrm{D}}$ and $A^{\pi}=C^{\pi}$.
4. The Moore-Penrose inverse of Hilbert space operators. For H a complex Hilbert space and $A \in B(H)$ it is well known that
A has closed range $\Leftrightarrow A^{*} A$ has closed range $\Leftrightarrow A A^{*}$ has closed range

$$
\Leftrightarrow 0 \notin \operatorname{acc} \sigma\left(A^{*} A\right) \Leftrightarrow 0 \notin \operatorname{acc} \sigma\left(A A^{*}\right)
$$

For a closed range operator $A \in B(H)$ we can give a definition of the Moore-Penrose inverse A^{\dagger} of A in terms of the Drazin inverse (see [13, Theorem 2.5]):

$$
\begin{equation*}
A^{\dagger}=\left(A^{*} A\right)^{\mathrm{D}} A^{*}=A^{*}\left(A A^{*}\right)^{\mathrm{D}} \tag{4.1}
\end{equation*}
$$

This equation enables us to obtain results on the continuity and differentiability of the Moore-Penrose inverse using our results on the g-Drazin inverse. (For the continuity of the Moore-Penrose inverse see, for instance, [15].)

Theorem 4.1. Let A be a $B(X)$-valued function defined on a real interval J differentiable at $t_{0} \in J$ with $A(t)$ closed range operators for all $t \in J$. Write $B(t)=A^{*}(t) A(t)$ and $E(t)=A(t) A^{*}(t)$ for all $t \in J$. Then the following conditions are equivalent:
(i) $B^{\mathrm{D}}(t)$ is continuous at t_{0}.
(ii) $E^{\mathrm{D}}(t)$ is continuous at t_{0}.
(iii) $B^{\mathrm{D}}(t)$ is differentiable at t_{0}.
(iv) $E^{\mathrm{D}}(t)$ is differentiable at t_{0}.
(v) $A^{\dagger}(t)$ is differentiable at t_{0}.
(vi) $A^{\dagger}(t)$ is continuous at t_{0}.
(vii) $A^{\dagger}(t) A(t)$ is continuous at t_{0}.
(viii) $A(t) A^{\dagger}(t)$ is continuous at t_{0}.
(ix) $\left\|A^{\dagger}(t)\right\|$ is bounded in some neighborhood of t_{0}.

Proof. (i) \Rightarrow (iii $) \Rightarrow(\mathrm{v}) \Rightarrow(\mathrm{vi}) \Rightarrow($ vii $) \Rightarrow(\mathrm{i})$. The first four implications are justified by Theorem 2.1, by the product rule for differentiation applied to $A^{\dagger}(t)=B^{\mathrm{D}}(t) A^{*}(t)$, by the relation between differentiability and continuity, and by the continuity of the multiplication in $B(X)$, respectively. The last implication follows when we observe that if (vii) holds, then $A^{\dagger}(t) A(t)=$ $\left(A^{*}(t) A(t)\right)^{\mathrm{D}}\left(A^{*}(t) A(t)\right)=I-A^{\pi}(t)$ is continuous at t_{0}. Then (i) is true by Theorem 2.1 (equivalent condition (2.7)).
(ii) $\Rightarrow(\mathrm{iv}) \Rightarrow(\mathrm{v}) \Rightarrow(\mathrm{vi}) \Rightarrow($ viii $) \Rightarrow(\mathrm{ii})$ is proved by a symmetrical argument.

Condition (ix) is equivalent to (vi) when we use the inequality

$$
\left\|A^{\dagger}(t)-A^{\dagger}\left(t_{0}\right)\right\| \leq 3 \max \left\{\left\|A^{\dagger}(t)\right\|^{2},\left\|A^{\dagger}\left(t_{0}\right)\right\|^{2}\right\}\left\|A(t)-A\left(t_{0}\right)\right\|
$$

(see [2, Theorem 10.4.5]).
Note 4.2. We note that in the proof of the implication $(i i i) \Rightarrow(\mathrm{v})$ the differentiability of $A^{*}(t)$ follows from the differentiability of $A(t)$ via the identity

$$
\frac{d A^{*}(t)}{d t}=\left(\frac{d A(t)}{d t}\right)^{*}
$$

which holds only when t is real. The preceding theorem, unlike Theorem 2.1, does not hold for complex differentiation.

References

[1] S. L. Campbell, Differentiation of the Drazin inverse, SIAM J. Appl. Math. 30 (1976), 703-707.
[2] S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations, Pitman, London, 1979.
[3] S. R. Caradus, Generalized Inverses and Operator Theory, Queen's Papers in Pure and Appl. Math. 50, Queen's Univ., Kingston, 1978.
[4] M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly 65 (1958), 506-514.
[5] -, Differentiation of generalized inverses, in: Recent Applications of Generalized Inverses, S. L. Campbell (ed.), Res. Notes in Math. 66, Pitman, Boston, 1982, 138-144.
[6] N. Dunford and J. T. Schwartz, Linear Operators I: General Theory, Interscience, New York, 1958.
[7] R. E. Harte, Spectral projections, Irish Math. Soc. Newsletter 11 (1984), 10-15.
[8] -, On quasinilpotents in rings, Panamer. Math. J. 1 (1991), 10-16.
[9] R. E. Hartwig and J. Shoaf, On the derivative of the Drazin inverse of a complex matrix, SIAM J. Math. Anal. 10 (1979), 207-216.
[10] C. F. King, A note on Drazin inverses, Pacific J. Math. 70 (1977), 383-390.
[11] J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), 367-381.
[12] -, Isolated spectral points, Proc. Amer. Math. Soc. 124 (1996), 3417-3424.
[13] -, The Drazin and Moore-Penrose inverse in C^{*}-algebras, Math. Proc. Roy. Irish Acad. 99A (1999), 17-27.
[14] J. J. Koliha and V. Rakočević, Continuity of the Drazin inverse II, Studia Math. 131 (1998), 167-177.
[15] V. Rakočević, On the continuity of the Moore-Penrose inverse in C^{*}-algebras, Math. Montisnigri 2 (1993), 89-92.
[16] W. Rudin, Real and Complex Analysis, 2nd ed., McGraw-Hill, New York, 1974.
Department of Mathematics and Statistics Faculty of Science and Mathematics University of Melbourne

Višegradska 33
Melbourne, VIC 3010, Australia
E-mail: j.koliha@ms.unimelb.edu.au
18000 Niš, Serbia-Montenegro
E-mail: vrakoc@bankerinter.net

[^0]: 2000 Mathematics Subject Classification: 47A60, 47A05, 47A10.
 Key words and phrases: bounded linear operator, g-Drazin inverse, differentiable g-Drazin inverse.

