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Abstract. We study the number of non-isomorphic subspaces of a given Banach
space. Our main result is the following. Let X be a Banach space with an unconditional
basis (ei)i∈N; then either there exists a perfect set P of infinite subsets of N such that
for any two distinct A,B ∈ P , [ei]i∈A � [ei]i∈B , or for a residual set of infinite subsets
A of N, [ei]i∈A is isomorphic to X, and in that case, X is isomorphic to its square, to its
hyperplanes, uniformly isomorphic to X ⊕ [ei]i∈D for any D ⊂ N, and isomorphic to a
denumerable Schauder decomposition into uniformly isomorphic copies of itself.

The starting point of this article is the so-called “homogeneous space
problem”, due to S. Banach. It was solved at the end of the last century
by W. T. Gowers [3], [4], R. Komorowski and N. Tomczak-Jaegermann [8]
and W. T. Gowers and B. Maurey [5]; see, e.g., [10] for a survey. Recall
that a Banach space is said to be homogeneous if it is isomorphic to all of
its (infinite-dimensional closed) subspaces. The previously named authors
showed that `2 is the only homogeneous Banach space. A very natural ques-
tion was posed to us by G. Godefroy: if a Banach space is not isomorphic
to `2, then how many mutually non-isomorphic subspaces must it contain?
(obviously, at least 2). In this article, we concentrate on spaces with a basis
and subspaces of it spanned by subsequences. We shall also be interested in
the relation of equivalence of basic sequences. By “many” we shall mean the
Cantor concept of cardinality, and sometimes finer concepts from the theory
of classification of equivalence relations in descriptive set theory.

1. Basic notions about basic sequences. Let X be a separable Ba-
nach space and (ei)i∈N a sequence in X. We say that (ei)i∈N is a basis for
X if any vector x in X can be uniquely written as a norm convergent series
x =

∑
i∈N aiei. In that case the functionals e∗k(

∑
i∈N aiei) := ak are in fact

continuous, as are the projections Pn(
∑

i∈N aiei) :=
∑n

i=0 aiei, and further-
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more their norms are uniformly bounded, supn ‖Pn‖ <∞. The supremum is
called the basis constant of (ei)i∈N and is denoted by bc((ei)i∈N). If (ei)i∈N
is a sequence that is a basis for its closed linear span, written [ei]i∈N, we
say that it is a basic sequence in X and its basis constant is defined as be-
fore. The property of (ei)i∈N being a basic sequence can also be equivalently
stated as the existence of a constant K ≥ 1 such that for any n ≤ m and
a0, a1, . . . , am ∈ R,

∥∥∥
n∑

i=0

aiei

∥∥∥ ≤ K
∥∥∥
m∑

i=0

aiei

∥∥∥.

The infimum of such K will then be the basis constant bc((ei)i∈N). Sup-
pose furthermore that for any x =

∑
i∈N aiei the series actually converges

unconditionally, i.e., for any permutation σ of N the series
∑

i∈N aσ(i)eσ(i)
converges to x. Then the basic sequence is said to be unconditional. Again
being an unconditional basis for some closed subspace (which will be des-
ignated by “unconditional basic sequence”) is equivalent to there being a
constant K ≥ 1 such that for all n, A ⊂ {0, . . . , n} and a0, . . . , an ∈ R,

∥∥∥
∑

i∈A
aiei

∥∥∥ ≤ K
∥∥∥

n∑

i=0

aiei

∥∥∥.

We will in general only work with normalised basic sequences, i.e., ‖ei‖ ≡ 1,
which can always be obtained by taking e′i := ei/‖ei‖.

Two sequences (ei) and (fi) are said to be equivalent if there exist C and
a, b with ab ≤ C such that (1/a)‖∑λiei‖ ≤ ‖

∑
λifi‖ ≤ b‖

∑
λiei‖, in which

case they are said to be C-equivalent. For basic sequences this is equivalent
to saying that for any choice of reals (λi)i∈N,

∑
λiei converges if and only if∑

λifi converges. We shall write (ei) ≈ (fi) to mean that (ei) and (fi) are
equivalent.

Given some vector x ∈ span(ei) let its support, supp(x), be the set of
indices i with e∗i (x) 6= 0. For k ∈ N and x, y ∈ span(ei) we write k < x if
k < min supp(x), and x < y if max supp(x) < min supp(y). A block basis,
(xi), over a basis (ei) is a finite or infinite sequence of vectors in span(ei)
with x0 < x1 < x2 < · · · . This sequence will also be basic and in fact
unconditional in case (ei) is so.

A space Y is isomorphic to Z if there is a bijective continuous linear map
T from Y onto Z such that T−1 is also continuous. They are C-isomorphic
if this happens for some T such that ‖T‖‖T−1‖ ≤ C. The Banach–Mazur
distance between Y and Z, denoted by dBM(Y,Z) is defined as the infimum
of the C’s such that Y and Z are C-isomorphic. We shall write Y ∼= Z to
mean that Y and Z are isomorphic, and Y ∼=K Z to mean that they are
K-isomorphic.



Number of non-isomorphic subspaces 205

2. Models of separable Banach spaces and their basic sequences.
To study separable Banach spaces by topological means we need some way
to make a space out of them. So we turn to descriptive set theory for the
basic tools. Let X be a Polish space and let F (X) denote the set of closed
subsets of X. We endow F (X) with the following σ-algebra that renders it a
standard Borel space. The generators are the following sets, where U varies
over the open subsets of X:

{F ∈ F (X) | F ∩ U 6= ∅}.
The resulting measurable space is called the Effros Borel space of F (X) (see
Section 12.E in [7]) .

A theorem due to Kuratowski and Ryll-Nardzewski ((12.13) in [7]) states
that there is a sequence of Borel functions dn : F (X)→ X such that for non-
empty F ∈ F (X) the set {dn(F )} is dense in F . Supposing now that X is
a separable Banach space, we can, in a Borel manner, express the fact that
F ∈ F (X) is a linear subspace of X:

0 ∈ F ∧ ∀n,m ∀p, q ∈ Q (pdn(F ) + qdm(F ) ∈ F ).

We use here the fact that the relations F0 ⊂ F1 and x ∈ F are Borel in
F (X)2 and X × F (X) respectively. But then it is possible to construct a
standard Borel space consisting of all separable Banach spaces. Simply take
any isometrically universal separable Banach space (for example, C(2N))
and let A be the set of closed linear subspaces of it. Call A the Borel space
of separable Banach spaces.

There is now a space in which we can express the relations of (linear) iso-
morphism, isometry, etc., and we will see that their descriptive complexities
are as they should be, e.g., analytic for isomorphism.

If we restrict ourselves to certain types of subspaces, the situation is
far less involved. Spaces spanned by subsequences of a given basis can be
identified with 2N. Also, following Gowers in [3], [4], it is natural to see the
set bb of normalised block sequences of a given basis as a closed subset of XN

equipped with the product of the norm topology. As expected, ≈ is Borel in
bb2 and the associated canonical injections from 2N and bb into A are Borel.

Going back to the notion of isomorphism, we see that it is indeed ana-
lytic: For X,Y ∈ A we have X ∼= Y iff

∃x ∃y (x ≈ y ∧ ∀n xn ∈ X ∧ ∀n yn ∈ Y ∧ ∀n (Un ∩ X 6= ∅ → ∃m xm ∈ Un)

∧∀n (Un ∩Y 6= ∅ → ∃m ym ∈ Un)).

Here {Un}n∈N is a basis for the topology on C(2N).
Our first result concerns equivalence of subsequences (respectively block

bases) of a given basis.
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3. Counting the number of non-equivalent block bases. Until
now we have only been looking at Cantor’s concept of cardinality, but there
is also a newer and finer one stemming from descriptive set theory. It allows
us to distinguish between different levels of 2N according to their complexity.

Definition 1. Let E ⊂ X2 and F ⊂ Y2 be equivalence relations on
standard Borel spaces X and Y. We say that E is Borel reducible to F
(E ≤B F ) if there is a Borel function φ : X→ Y such that ∀x, y ∈ X xEy ↔
φ(x)Fφ(y). E is Borel bireducible to F (E ∼B F ) if both E ≤B F and
F ≤B E.

The definition is of interest only if X and Y are uncountable and E
and F have uncountably many classes. Furthermore, it is usually supposed
that the equivalence relations are of some bounded complexity, e.g., Borel
or analytic.

Given some normalised basic sequence (ei)i∈N in a separable Banach
space X, we can look at the set of its subsequences as a subspace of 2N: just
take away the countable set FIN consisting of the finite subsets of N and
identify a subsequence with its set of indices. 2N \FIN is still a Polish space
(though now non-compact) under the usual topology. Note that the relation
of equivalence between subsequences of (ei)i∈N induces a Borel equivalence
relation on 2N \ FIN.

An important measure of complexity is the following equivalence relation
E0, which is the minimum (up to ∼B) Borel equivalence relation ≤B-above
the equality relation on R and is defined on 2N as follows:

αE0β :≡ ∃n ∈ N ∀m ≥ n αm = βm.

In particular, if E0 Borel reduces to some equivalence relation E, then E
has continuum many classes.

Proposition 2. Let X be a Banach space with a normalised basis (ei)i∈N.

• Either (ei)i∈N is perfectly homogeneous, i.e., equivalent to all of its
normalised block basic sequences (and therefore equivalent to the stan-
dard unit basis in some `p, 1 ≤ p <∞, or c0), or E0 is Borel reducible
to equivalence of its normalised block basic sequences.
• Either (ei)i∈N is subsymmetric, i.e., equivalent to all of its subse-

quences, or E0 is Borel reducible to equivalence of its subsequences.

Proof. We show only the first part as the proof of the second is essentially
the same.

Assume that X has at least two non-equivalent normalised block se-
quences, (xi) and (yi). Then (xi) and (yi) are not 2-equivalent, so there
exists I1, an interval of integers, such that (xi)i∈I1 and (yi)i∈I1 are not 2-
equivalent. Also for any k, (xi)i>k and (yi)i>k are not equivalent, so there
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exists k<I2⊂N such that (xi)i∈I2 and (yi)i∈I2 are not 4-equivalent. With-
out loss of generality, we may assume that supp(xi, i∈ I2)∪supp(yi, i∈ I2)
> supp(xi, i ∈ I1) ∪ supp(yi, i ∈ I1). Repeating this, we get a sequence of
successive intervals Ik such that (xi)i∈Ik and (yi)i∈Ik are not 2k-equivalent.

For any α ∈ 2N, let f(α) be the block basis (fi), indexed on i ∈ ⋃j∈N Ij ,
defined by fi = xi if i ∈ Ij with α(j) = 0, and fi = yi otherwise; clearly, f(α)
is equivalent to f(β) iff αE0β and the map is Borel (even continuous).

Let us mention that in the case where E0 Borel reduces to an analytic
equivalence relation this latter can have no analytic transversal. That is,
there can be no analytic set intersecting every equivalence class in exactly
one point. So in particular, the above result says that if there is more than
one class, then the relation is rather complicated, and cannot in fact be clas-
sified in a Borel manner by real numbers. Also, we refer to the forthcoming
[2] for discussion about isomorphism on bb.

3.1. Classical Ramsey type results. We first mention that classical Ram-
sey type results can be proved in the case where there are countably many
classes of isomorphism.

Lemma 3. For any n there exists a constant c(n) = 1 + n(2n+1 + 1)2

such that for any Banach space X, all n-codimensional subspaces of X are
c(n)-isomorphic.

Proof. We are not interested in finding the best constant. We prove that
dBM(X,Z⊕1`

n
2 ) ≤ √n(2n+1+1) for any Banach space X and any n-codimen-

sional subspace Z of X. The result follows: for any two n-codimensional sub-
spaces H and H′ of a Banach space, there exists W n-codimensional in H
and H′, so H (resp. H′) is

√
n(2n+1 + 1) + ε-isomorphic to W ⊕1 `

n
2 for all

ε > 0, and dBM(H,H′) ≤ n(2n+1 + 1)2.
So let X be a Banach space and Z be n-codimensional in X. By induction,

there exists a projection P on Z of norm smaller than 2n + ε. Let F =
(Id − P )(X). Then using P one shows that X = Z ⊕ F is 2n+1 + 1 + 2ε-
isomorphic to Z⊕1 F . By classical results, F is

√
n-isomorphic to `n2 , and it

follows that X is
√
n(2n+1 + 1 + 2ε)-isomorphic to Z⊕1 `

n
2 .

To spark confusion we will identify several different objects; namely the
space [ei]i∈A for some subset A ⊂ N with the characteristic function χA
seen as a point in the Cantor space 2N, which we again simply identify with
the subset A of N. The subspaces spanned by subsequences are therefore
equipped with the Polish topology inherited from 2N. We denote by A ∼= B
the fact that the corresponding Banach spaces are linearly isomorphic. If
we see this relation as an equivalence relation between the points in the
Effros Borel space of closed linear subspaces of C(2N), it is analytic, and
furthermore the function associating to A ⊂ N the space (or point) in the
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Effros Borel space is Borel. So we have an induced analytic equivalence
relation, denoted by ∼=, on 2N. For K ≥ 1 we write A ∼=K B to denote that
the corresponding spaces are K-isomorphic, so that ∼= is the union of the
∼=K ,K ∈ N. Recall that for a finite binary sequence u = 〈u0, . . . , uk−1〉, Nu

denotes the basic open set of all A ∈ 2N such that i ∈ A iff ui = 1 for all
i < k.

Proposition 4. Let X be a Banach space with a basis (ei)i∈N. If X has
countably many classes of isomorphism generated by subsequences of the
basis then there exist K and A ⊂ N such that [ei]i∈B ∼=K [ei]i∈A for all
B ⊂ A.

Proof. In this proof, we think of sets A as increasing sequences of inte-
gers. For each n, let En ⊂ N be a representative in the nth ∼= class. Say that
A belongs to Am,n if A ∼=m En; fix furthermore a bijection k 7→ (mk, nk)
between N and N2.

Assume a Banach space X contradicts the proposition and apply the
infinite Ramsey theorem. No subset of N has all its subsets in Am0,n0 , so
there exists A0 ⊂ N such that no subset of A0 is in Am0,n0 . Let k0 be an
integer in A0. No subset A of A0 after k0 is such that {k0} ∪ A has all
its subsets in Am1,n1 : otherwise, any subset {b0 < b1 < · · ·} of A spans a
space which is c(1)-isomorphic to the span of {k0 < b1 < · · ·}, so is c(1)m0-
isomorphic to En0 , a contradiction. So some subset A1 of A0 after k0 is such
that {k0}∪A belongs to Am1,n1 for no A ⊂ A1. Choose k1 in A1. Repeating
this, define a decreasing sequence {An} and an increasing sequence {kn}
with ki in Ai to get a set K = {kp, p ∈ N} belonging to no Am,n.

The example of `1⊕`2 proves that the isomorphism class in this proposi-
tion need not contain X, nor contain “most” subspaces of X; in fact, we shall
see that the class of `1 (respectively `2) is meagre in the standard topology
associated with the space.

4. Banach spaces with unconditional basis isomorphic to their
squares. Let X be a Banach space with a basis (ei)i∈N. We will study the
linear-isomorphism classes of spaces spanned by subsequences (finite and
infinite) of this basis by using Baire category. As the finite subsets of N are
fully characterised up to ∼= by their cardinality we will often forget about
them. Also other relations on 2N will be useful. First note that the Cantor
space is an abelian Polish group under the action of symmetric difference 4,
with the identity element being ∅ and with each element being its own
inverse. Therefore not only ∼= but also the relations

A ∼1 B :≡ A ∼= {B, A ∼2 B :≡ {A ∼= {B
are analytic in 2N.
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Theorem 5 (Kuratowski–Mycielski, (19.1) in [7]). Let X be a perfect
Polish space, and R be a relation on X meagre in X2. Then there exists
a homeomorphic copy C of the Cantor space such that for all x, y ∈ C with
x 6= y we have ¬xRy.

Suppose now that ∼=, ∼1 and ∼2 are all meagre in the product 2N × 2N.
Then so is their union and the theorem above gives us a Cantor set C avoiding
the three relations. Now by taking away the countable set (possibly finite
or empty) of finite sets in C and going to a further subset, we can suppose
that C ∩ FIN = ∅. This means in particular that there is a continuum of
subsequences spanning non-isomorphic spaces.

Following Kalton we say that the basis (ei)i∈N is countably primary if
there is a countable list E0, E1, E2, . . . of Banach spaces such that if A ⊂ N
then for some n either [ei]i∈A ∼= En or [ei]i∈{A ∼= En. It is now easy to
see that our space cannot be countably primary, for take two subsets of N,
A 6= B,A,B ∈ C, associated to the same En, i.e., either A ∼= En ∼= B,
A ∼= En ∼= {B, {A ∼= En ∼= B or {A ∼= En ∼= {B. It should be evident for
the reader taking the pains of unraveling our definitions that we get a minor
contradiction here.

Going in the other direction we wish to see what we get from the fact
that some of the three relations are non-meagre in the product. First we note
that a Fubini type theorem is also true in Baire category (here ∃∗x P (x)
denotes the existence of a non-meagre set of x such that P (x)):

Theorem 6 (Kuratowski–Ulam, (8.41) in [7]). Let Y be a Polish space
and D a subset of the square having the Baire property. Then D is non-
meagre iff ∃∗x ∃∗y (x, y) ∈ D iff ∃∗y ∃∗x (x, y) ∈ D.

Applying this to the above relations we get the following:
∼= non-meagre in 2N × 2N ⇒ ∃A ∈ 2N ∃∗B ∈ 2N A ∼= B,

∼1 non-meagre in 2N × 2N ⇒ ∃B ∈ 2N ∃∗A ∈ 2N A ∼= {B
⇒ ∃C ∈ 2N ∃∗A ∈ 2N A ∼= C,

∼2 non-meagre in 2N × 2N ⇒ ∃A ∈ 2N ∃∗B ∈ 2N {A ∼= {B
⇒ ∃C ∈ 2N ∃∗D ∈ 2N C ∼= D.

So each of the three cases gives us a non-meagre isomorphism class A in 2N.
Fix B in A and for all M ∈ N denote by AM the set {A | A ∼=M B}. Then
for some M large enough, AM is non-meagre as well, and we will show that
AK for some K ≥ M (and therefore A) is actually residual in the Cantor
space.

Note that being a section of an analytic set, AM is itself analytic and has
therefore the property of Baire. So as it is non-meagre it must be residual
in an open set U ⊂ 2N, and by going to a smaller open set we can suppose
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that U is of the form Ns for some finite binary sequence s. There are two
features of s interesting for us, its length and its cardinality. By the length,
|s|, we mean its length as a sequence, and by the cardinality, s, is meant the
number of 1’s appearing in the sequence. We prove that AK is residual for
K = Mc(2|s|).

Otherwise, let t ∈ 2<N be such that AK is meagre in Nt. Without loss
of generality, assume |t| ≥ |s| and write t = u_v with |u| = |s|. Then let
t′ = t_s = u_v_s and s′ = s_v_u. So |t′| = |s′|, t′ = s′, and AM is
residual in Ns′ while AK is meagre in Nt′ .

We now have a natural homeomorphism φ between the clopen sets Ns′

and Nt′ : simply for an A ∈ Ns′ change the beginning from s′ to t′, i.e.
φ(s′_α) = t′_α, where χA = s′_α. By construction, s′_α and t′_α code
subspaces of the same codimension 2|s| − s − u ≤ 2|s| of the space coded
by (1|s|)_v_(1|s|)_α (here 1n denotes the length n sequence of 1’s). By
Lemma 3, it follows that φ(A) ∼=c(2|s|) A. As AM is residual in Ns′ , it follows
that Ac(2|s|)M ⊃ φ(AM ) is residual in Nt′ , which is a contradiction.

We now need a standard compactness result from descriptive set theory:

Lemma 7. If G is a residual subset of 2N, then there exists a partition
A0, A1, A2, . . . of N and subsets Bi ⊂ Ai, i ∈ N, such that for any set E ⊂ N,
if E ∩Ai = Bi for some i ∈ N then E ∈ G.

Proof. For D a dense open set in 2N and n ∈ N there is s ∈ 2<N such
that for any t ∈ 2n we have Nt_s ⊂ D.

This is because we can enumerate 2n as {t1, t2, . . . , t2n} and hence, as D
is dense open, there is some s1 ∈ 2<N with Nt_1 s1 ⊂ D. Now find s2 ∈ 2<N

with Nt_2 s_1 s2 ⊂ D. Again find s3 ∈ 2<N with Nt_3 s_1 s_2 s3 ⊂ D, etc. Finally,
putting s = s_1 s

_
2 · · ·_ s2n yields our result.

Suppose that G ⊃ ⋂i∈NDi for dense open sets Di.
• Let n(0, 0) = 0.
• Take s(0, 0) such that Ns(0,0) ⊂ D0,

put n(1, 0) = n(0, 0) + |s(0, 0)|.
• Take s(1, 0) such that Nt_s(1,0) ⊂ D0,∀t ∈ 2n(1,0),

put n(0, 1) = n(1, 0) + |s(1, 0)|.
• Take s(0, 1) such that Nt_s(0,1) ⊂ D1,∀t ∈ 2n(0,1),

put n(2, 0) = n(0, 1) + |s(0, 1)|.
• Take s(2, 0) such that Nt_s(2,0) ⊂ D0,∀t ∈ 2n(2,0),

put n(1, 1) = n(2, 0) + |s(2, 0)|.
• Take s(1, 1) such that Nt_s(1,1) ⊂ D1,∀t ∈ 2n(1,1),

put n(0, 2) = n(1, 1) + |s(1, 1)|.
• Take s(0, 2) such that Nt_s(0,2) ⊂ D2,∀t ∈ 2n(0,2),

put n(3, 0) = n(0, 2) + |s(0, 2)|,
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etc. Finally, set

Ai :=
⋃

k∈N
[n(i, k), n(i, k) + |s(i, k)|[,

Bi :=
⋃

k∈N
{n(i, k) +m | (s(i, k))(m) = 1}

Letting A′0 := A0, A
′
1 :=

⋃∞
i=1Ai, B

′
0 := B0, B

′
1 :=

⋃∞
i=1Bi we get: If G

is a residual set in 2N, then there is a partition N = A′0 ∪ A′1, A′0 ∩ A′1 = ∅
and sets B′i ⊂ A′i, i ∈ 0, 1, such that for any D ⊂ N, if either D ∩ A′0 = B′0
or D ∩A′1 = B′1 we have D ∈ G.

We shall now assume the basis is unconditional. Apply the lemma to A
and notice that B0, B1 and B0∪B1 are in A. Now as (ei)i∈N is unconditional,
for any pair of disjoint sets C,D ⊂ N we have [ei]i∈C ⊕ [ei]i∈D ∼= [ei]i∈C∪D.
Moreover, since A is residual and { is a homeomorphism of 2N there is some
C ⊂ N with C, {C ∈ A. So again abusing notation we calculate

N ∼= C ∪ {C ∼= C ⊕ {C ∼= B0 ⊕B0 ∼= B0 ⊕B1 ∼= B0 ∪B1 ∼= B0.

Hence N belongs to the residual class A and [ei]i∈N is isomorphic to [ei]i∈B0 ,
which is isomorphic to its square.

Without loss of generality assume N belongs to AK and let c be the un-
conditionality constant of the basis. We denote by ⊕1 the `1-sum of Banach
spaces.

Again for any subset D ⊂ N, since A0, A1 partition N, we have

N⊕1 D ∼=K (B0 ∪B1)⊕1 ((D ∩ A1) ∪ (D ∩A0))
∼=2C B0 ⊕1 B1 ⊕1 (D ∩A1)⊕1 (D ∩ A0)
∼=2C (B0 ∪ (D ∩ A1))⊕1 (B1 ∪ (D ∩A0)) ∼=K B0 ⊕1 B1 ∼=K N.

So spaces of the form [ei]i∈N⊕1 [ei]i∈D for any D ⊂ N are 4C2K3-isomorphic
to [ei]i∈N; and in particular [ei]i∈N is isomorphic to its hyperplanes.

Using also the complete version of the above lemma, we find
⋃

i∈N
Bi, B0, B1, B2, . . . ∈ A.

But [ei]i∈B0 , [ei]i∈B1 , [ei]i∈B2 , . . . gives (due to the unconditionality of the ba-
sis) an unconditional Schauder decomposition of [ei]i∈⋃j∈NBj and this latter
is again isomorphic to [ei]i∈N.

Summing up we have arrived at the following:

Theorem 8. Let X be a Banach space with an unconditional basis
{ei}i∈N. Then either :
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(1) There exists a perfect set P ⊂ 2N of infinite subsets of N such that
for any two distinct A,B ∈ P we have

[ei]i∈A � [ei]i∈B, [ei]i∈A � [ei]i∈{B , [ei]i∈{A � [ei]i∈{B ,

or
(2) For A in a residual subset of 2N, [ei]i∈A is isomorphic to X; X is

isomorphic to its hyperplanes, to its square, uniformly isomorphic to X ⊕
[ei]i∈D for any D ⊂ N and to a denumerable Schauder decomposition into
uniformly isomorphic copies of itself , X ∼= (

∑
k∈N⊕([ei]i∈Bk)).

As we noticed earlier, (1) in our dichotomy implies that the least cardinal
κ such that the basis is κ-primary (with the obvious definition) is 2N, that
is, the trivial one.

The theorem improves on an earlier result by Kalton which gives (2),
without uniformity, in case the unconditional basis is countably primary.
His proof, like the above, used very little from Banach space theory, but
instead his setting was measure and probability theory [6].

As is easily seen from the proof, (1) can be strengthened considerably,
and for our purposes, in fact one can get a perfect set avoiding any countable
list of relations of the form

[ei]i∈A ∼= φ(B),

where φ is a Borel function from 2N to the Effros Borel space of closed linear
subspaces of C(2N), that is, the canonical space of separable Banach spaces.
For example, one could use Borel functions ψ from 2N to the space bb of
normalised block sequences of some given basis, and one would avoid

[ei]i∈A ∼= [ψ(B)].

E.g., we can force

[ei]i∈A � ([ei]i∈B)2, [ei]i∈A � ([ei]i∈B)3, [ei]i∈A � ([ei]i∈B)4,

and so on. Or
[ei]i∈A � c0([ei]i∈B)

or whatever construction from B being reasonably explicit.

Example 9. In a certain sense, the above result is optimal. For we might
try to show that not only is some isomorphism class residual in 2N, but that
it is all of 2N \ FIN. However, this is easily seen to be false, for take the
following basis for `1 ⊕ `2:

‖a0e0 + a1e1 + · · ·+ a2n+1e2n+1‖
:= |a0|+ |a2|+ · · ·+ |a2n|+

√
a2

1 + a2
3 + · · ·+ a2

2n+1.

Then there are exactly three isomorphism classes: `1, `2, and `1 ⊕ `2, the
first two being meagre in 2N. Because if A ⊂ N, A infinite, contains infinitely
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many even and odd numbers then [ei]i∈A ∼= `1⊕`2, if it only contains finitely
many even numbers then [ei]i∈A ∼= `2, and if only finitely many odd numbers
then [ei]i∈A ∼= `1.

If we take the standard Haar basis for some Lp([0, 1]), 1 < p <∞, then
it is unconditional and in fact the only two spaces spanned by subsequences
are `p and Lp([0, 1]); so there are bases inducing exactly two isomorphism
classes in 2N \ FIN (see [9, Thm. 2.d.10]).

Example 10 (Tsirelson’s space). We take a look at the standard unit
vector basis for the Tsirelson space. It has the following properties (see [1];
here N∗ = N \ {0}):
• Two subsequences (tki)i∈N∗ and (tli)i∈N∗ are equivalent iff

[tki ]i∈N∗ ∼= [tli ]i∈N∗ .

• Two subsequences (tki)i∈N∗ and (tli)i∈N∗ are equivalent iff

sup
i∈N∗

(‖Ii‖, ‖Ji‖) <∞,

where
Ii : [tlln | ki−1 < ln ≤ ki] ↪→ `1

and
Ji : [tkkn | li−1 < kn ≤ li] ↪→ `1

are the formal identities (k0 := l0 := 0).
• (ti)i∈N∗ and (tki)i∈N∗ are equivalent iff the function k : N∗ → N∗ is

majorised by a primitive recursive function.

We can view subsets A⊂N∗ as strictly increasing functions a :N∗→N∗:
simply let a enumerate A in the usual order. In the same way, strictly in-
creasing functions can be seen as infinite subsets of N∗. Now the relation of
b majorising a is in fact closed in (2N \FIN)2 and has closed, nowhere dense
sections:

a ≤ b ≡ ∀n a(n) ≤ b(n)

≡ ∀n ∀m,k
[
[∀m1 < · · · < mn < m ∃i B(mi) = 0∧
∃m1 < · · · < mn = m ∀i B(mi) = 1∧
∀k1 < · · · < kn < k ∃i A(ki) = 0∧
∃k1 < · · · < kn = k ∀i A(ki) = 1]→ k ≤ m

]
.

So it is closed and it is easily seen that no function a can be such that it
majorises all functions belonging to some basic open set Ns (on the other
hand, n 7→ n minorises all functions), whence the sections (in one of the co-
ordinates) have empty interior. The set {A ⊂ N∗ | A ∼= N∗} is the countable
union of closed nowhere dense sets, hence meagre.
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Now take any A 6∼= N∗, A = {an}n∈N∗. As it generates a sequence not
equivalent to the full basis, there are disjoint non-empty intervals

[r1, s1[, [r2, s2[, . . . ⊂ {A
such that for the formal identities

Ii : [tn | n ∈ [ri, si]] ↪→ `1

we have ‖Ii‖ > i. So if B ∼= A then ∃i ∀j ≥ i [rj , sj ] 6⊂ B, which is
again easily seen to be the countable disjunction of closed, nowhere dense
conditions.

Therefore every isomorphism class for the Tsirelson space is meagre in 2N.
However, using the functions n 7→ 2n and n 7→ 2n + 1, it is seen that the
space is isomorphic to its square.

Though the notion of “complement” of a set is not absolute, i.e., it
depends on the ambient space, ∼= is so. This is to say, the fact that A ∼= B
does not depend on whether A and B are seen as subsets of N or of any
other C ⊂ N.

Denote by 2A the closed set {χB ∈ 2N | B ⊂ A}. If A is infinite then this
set is homeomorphic to 2N and we can use our preceding arguments.

So if for some A the restriction of ∼= to 2A is meagre in 2A there are 2N

isomorphism classes generated by subsequences of A, hence also of N.
If not, there is some isomorphism class residual in 2A and we deduce as

before that [ei]i∈A is isomorphic to its hyperplanes, to its square, to [ei]i∈A⊕
[ei]i∈D for any D ⊂ A, and to a denumerable Schauder decomposition into
isomorphic copies of itself, [ei]i∈A ∼= (

∑
k∈N⊕([ei]i∈Bk)).

There is a priori no control on the uniformity of the isomorphisms be-
tween each space [ei]i∈A and its square. Notice also that the existence of
an isomorphism A ⊕ D ∼= A for D an infinite subset of A is straightfor-
ward from the assumption that A ∼= A⊕ A for all infinite A ⊂ N. For then
A⊕D ∼= (A \D)⊕D ⊕D ∼= (A \D)⊕D ∼= A, for all infinite D ⊂ A.

The diligent reader is invited to amuse himself by applying the above
proof to the cases of Lipschitz homeomorphism, uniform homeomorphism
and permutative equivalence of bases (all three are analytic equivalence
relations).

Theorem 11. Let X be a Banach space with an unconditional basis
(ei)i∈N. Then either :

(1) There exists a perfect set P ⊂ 2N of infinite subsets of N such that
for any two distinct A,B ∈ P we have

[ei]i∈A � [ei]i∈B,

or
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(2) For any infinite subset A ⊂ N, [ei]i∈A is isomorphic to its hyper-
planes, to its square, and to a denumerable Schauder decomposition into
uniformly isomorphic copies of itself , [ei]i∈A ∼= (

∑
k∈N⊕([ei]i∈Bk)).

Recall that a Banach space is complementably minimal if it embeds
complementably in any of its subspaces. Using Pełczyński’s decomposition
method and the above result, one proves:

Corollary 12. Let X be a complementably minimal Banach space with
an unconditional basis (ei)i∈N. Then either :

(1) There exists a perfect set P ⊂ 2N of infinite subsets of N such that
for any two distinct A,B ∈ P we have

[ei]i∈A � [ei]i∈B,

or
(2) For any infinite subset A ⊂ N, [ei]i∈A ∼= X.

4.1. The number of non-isomorphic subspaces of hereditarily indecom-
posable Banach spaces. Let now X be a separable hereditarily indecompos-
able (H.I.) Banach space. This means that no (closed, infinite-dimensional)
subspace of X can be written as a direct sum of two closed infinite-dimen-
sional subspaces. In this section “space” will always refer to closed infinite-
dimensional subspaces of X. It follows clearly from the H.I. property that
X contains no unconditional basic sequence; and in fact, by Gowers’s di-
chotomy theorem, every Banach space contains either an H.I. subspace or a
subspace with an unconditional basis. Moreover, Gowers and Maurey proved
that an H.I. space is isomorphic to no proper subspace (and as the H.I. prop-
erty is hereditary, this is also true of any subspace of X).

Now since we have the first property we cannot hope to use the above
theorem to conclude something about the number of non-isomorphic sub-
spaces of X, but it is still possible to use the fact that X must contain
some basic sequence (ei)i∈N. Again we look at the subspaces spanned by
subsequences as points in 2N.

According to Dedekind every real is a set of rational numbers r =
{q ∈ Q | q < r}, but following Cantor the set of rational numbers is the
same as the set of natural numbers. So every real r is a set Ar of natural
numbers such that r < s ≡ Ar ( As. Now again confusing Banach spaces
with subsets of N, reals become for us a subspace Br and the relation r < s
is simply strict inclusion Br ( Bs. All of the identifying functions are evi-
dently Borel. So we have 2N non-isomorphic subspaces of X.

This could also be seen by using the arguments from the preceding sec-
tion. For suppose that some isomorphism class A was residual in 2N. Then
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as {0} 4 (·) is a homeomorphism of 2N,

A ∩ {{0} 4A | A ∈ A} 6= ∅.
So there is some B ⊂ N, 0 6∈ B with B, {0} ∪B ∈ A, i.e., some subspace of
X isomorphic to a hyperplane. But this cannot be the case in an H.I. space,
so ∼= must be meagre in 2N and the Kuratowski–Mycielski result takes care
of the rest.

Proposition 13. Any H.I. Banach space contains 2N pairwise non-iso-
morphic subspaces.

Corollary 14. Any Banach space contains 2N pairwise non-isomor-
phic subspaces or is saturated with subspaces isomorphic to their squares.
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