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On the vYs-behaviour of
linear functionals on isotropic convex bodies

by

G. Paouris (Iraklion)

Abstract. The slicing problem can be reduced to the study of isotropic convex bod-
ies K with diam(K) < ¢y/n Lk, where Lk is the isotropic constant. We study the 1o-
behaviour of linear functionals on this class of bodies. It is proved that ||{-, 0}y, < CLk
for all 0 in a subset U of S™~' with measure o(U) > 1 — exp(—cy/n). However, there
exist isotropic convex bodies K with uniformly bounded geometric distance from the
Euclidean ball, such that maxgycgn—1 ||(-,0)|ly, > c¥/nLk. In a different direction, we
show that good average 2-behaviour of linear functionals on an isotropic convex body
implies very strong dimension-dependent concentration of volume inside a ball of radius

r~+/nLk.

1. Introduction. Let K be a convex body in R" with volume |K| =1
and centre of mass at the origin. Let a € [1, 2]. For every bounded measurable
function f: K — R, the a-Orlicz norm of f is defined by

(1.1) I£lly, = inf {t >0: | e/ dr < 2}.
K

It is not hard to check that | fl|y, =~ sup{g~"/®|fllq : ¢ > «a}. For every
x € R™ we consider the linear functional f,(y) = (y,z). We say that x
defines a v,-direction for K with a constant b > 0 if

(1.2) 1 fellpa < Ol fallas

equivalently, if ||fz|; < cbq™ || fz|la for every ¢ > o, where ¢ > 0 is an
absolute constant. We say that K is a 1,-body with constant b if (1.2) holds
for every .

It is clear that if = defines a 1),-direction for K and if 7' € SL(n), then
T*z defines a 1),-direction (with the same constant) for T'(K). It follows that
T(K) is a ¥4-body if K is a ¥4-body. By Borel’s lemma (see [14, Appendix
I11]), there exists an absolute constant C' > 0 with the following property:
every convex body K is a t1-body with constant C.
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The study of s-directions for linear functionals on convex bodies is mo-
tivated by the well known problem of the isotropic constant (see [13]). A
convex body K in R" is said to be isotropic if it has volume |K| = 1, centre
of mass at the origin, and there exists a constant Lx > 0 such that

(1.3) V(y,0)%dy = L%
K

for every # € S"~!. Every convex body with centre of mass at the origin
has a linear image which is isotropic. Moreover, this image is unique up to
orthogonal transformations; this shows that the isotropic constant L is well
defined for the linear class of K.

The isotropic constant is closely related to the slicing problem which asks
if there exists an absolute constant ¢ > 0 such that maxycgn-1 |[K N0+ > ¢
for every convex body K of volume 1 in R™ with centre of mass at the
origin. Indeed, by Brunn’s principle, for any convex body K in R™ and any
0 € S"! the function ¢ — |K N (6 +t6)| is log-concave on its support, and
this implies that

(1.4) V(. 0)2dy ~ |K not 2

K
Using this relation one can check (see [13]) that an affirmative answer to
the slicing problem is equivalent to the following statement: There exists an
absolute constant C' > 0 such that Lx < C for every convex body K of
volume 1 with centre of mass at the origin.

One can easily see that Lx = O(y/n) for every K. Uniform bounded-
ness of Ly is known for some classes of bodies: unit balls of spaces with
1-unconditional basis, zonoids and their polars, etc. The best known gen-
eral upper estimate is due to Bourgain [7] (see [15] for the not necessarily
symmetric case): Lx < c/nlogn, where ¢ > 0 is an absolute constant.
Bourgain’s argument reduces the problem to the class of isotropic convex
bodies K with circumradius R(K) < ¢y/n Lk, where ¢ > 0 is an absolute
constant. The other main ingredient of the argument is the fact that every
convex body is a ¥1-body with a uniform constant. One can see from the
proof that stronger information on the ws-behaviour of linear functionals
on K, combined with Talagrand’s majorizing measure theorem and Pisier’s
M M*-estimate, would result in an O(logn) estimate for L. In fact, Bour-
gain [8] has recently shown that the isotropic constant of a 1»-body with
constant b is bounded by cblogb. In view of these observations, V. Milman
asked the following question.

QUESTION. Let K be an isotropic convex body in R™. Is it true that
most # € S" ! define a vo-direction for K with a “good” constant (say,
logarithmic in n)?
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In fact, it is not known if there exists an absolute constant C' > 0 such
that every isotropic convex body has at least one 1»-direction with con-
stant C. Bobkov and Nazarov (see [5] and [6]) have recently proved that
if K is an isotropic 1-unconditional convex body, then || foly, < cv/n||€]oo
for every § € S"~!. In particular, the diagonal direction is a 1)s-direction.
Zonoids form another class of convex bodies for which the existence of good
1)9-directions can be established (see [16]). As for io-bodies, it is presently
known that the unit balls of /7, 2 < ¢ < oo, are 12-bodies with a uniformly
bounded constant C' (see [4] and [3]).

The aim of this paper is to study the 12-behaviour of linear functionals on
isotropic convex bodies K with R(K) < vy/n Lk in terms of the parameter
v > 0. We call these “isotropic bodies with small diameter". Our general
positive results are summarized in the following theorem.

THEOREM A. Let K be an isotropic convex body in R™. If K is contained
in (yvw/n Li)BY for some v > 0, then

(1.5) o(0 € 5" [ folly, > c1vtli) < exp(—cav/nt?/7)
for every t > 1, where c1,co > 0 are absolute constants.

In other words, for a random direction § € S™~!, an isotropic convex
body with small diameter satisfies

(1.6) ¢y, < CvLc

However, the concentration estimate is rather weak (observe the /n de-
pendence in Theorem A) to be directly applicable to the slicing problem. It
turns out that the positive result of Theorem A is optimal. One can construct
an isotropic convex body K with small diameter, for which maxg || fpy, =~
/n L. Surprisingly enough, the example may be given by a body whose
geometric distance to the Euclidean ball is uniformly bounded.

THEOREM B. There exists an isotropic convex body of revolution K in
R™ with the following properties:

(1.7) c1vV/nBY C K C cov/n BY
and
(1'8) H<'7€n>H¢2 > 03%7

where c1,co,c3 > 0 are absolute constants.

Theorems A and B are proved in Sections 2 and 3 respectively. In Sec-
tion 4 we discuss the relation of the o-behaviour of linear functionals to a
different question about the concentration of mass on isotropic convex bod-
ies. Alesker [1] has proved that if K is isotropic, then the Euclidean norm
f(y) = |ly||2 satisfies the io-estimate || f||y, < c[/f|l1 < ev/n Lk, where ¢ > 0
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is an absolute constant. This leads to the tail estimate
(1.9) Prob({y € K : ||yll2 > c1itv/nLx}) < 2exp(—t?)

for every ¢ > 0.

Bobkov and Nazarov [5] have obtained a striking dimension-dependent
result in the l-unconditional case: There exists an absolute constant ¢ > 0
such that if K is an isotropic 1-unconditional convex body in R", then

(1.10) Prob({y € K : ||y|l2 > ctv/n}) < exp(—ty/n)

for every ¢t > 1. This estimate is stronger than (1.9) for all ¢ > 1. A question
which arises naturally and was actually stated in [5] is whether such an
inequality may hold in full generality. This question is studied in [17] where
equivalent conditions are provided. The results of [17] were recently used in
[10] to establish a positive answer for a non-unconditional case: the unit balls
of the Schatten trace classes S}, 1 < p < oo, of matrices on R" or C". Here
we show that, in general, good average »s-behaviour of linear functionals
implies a very strong dimension-dependent concentration.

THEOREM C. Let K be an isotropic convex body in R™. Assume that

(1.11) VN foll, o(df) < yLi
Sn—1

for some v > 0. Then
(1.12) Prob({y € K : ||ly|l2 > c17tv/nLk}) < exp(—caty/n)

for every t > 1, where cq,co > 0 are absolute constants.

For the proof of Theorem C we study from an asymptotic point of view
the family of L,-centroid bodies of an isotropic convex body. In fact, this
study was at the basis of our original proof of Theorem A. The possibility of
giving the simpler proof in Section 2 was kindly pointed out to the author
by G. Schechtman and B. Klartag. Nevertheless, the proof of Theorem C
indicates that this line of thought has some interesting consequences.

Notation. We work in R”, which is equipped with a Euclidean structure
(-,-). We denote by || - ||2 the corresponding Euclidean norm, and write B
for the Euclidean unit ball and S™~! for the unit sphere. Volume is denoted
by |-|. We write o for the rotationally invariant probability measure on S™~!
and w, for the volume of B.

A conver body is a compact convex subset K of R" with non-empty
interior. We say that K is symmetric (or centred) if v € K = —z € K.
We say that K has centre of mass at the origin if ;- (x,0) dz = 0 for every
0 esn L.
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The circumradius of K is the quantity R(K) = max{||z|j2: « € K}, and
the polar body K° of K is

(1.13) K°:={yeR": (z,y) <1lforallz € K}.

Let V' be a symmetric convex body in R™. The function ||z||y = inf{\A > 0:
x € A\V'} is a norm on R", and the space (R", || - ||y/) will be denoted by Xy .
The dual space of Xy is Xyo.

Whenever we write a ~ b, we mean that there exist absolute constants
c1,c2 > 0 such that cia < b < coa. The letters ¢, ¢/, C, c1, co etc. denote ab-
solute positive constants which may change from line to line. We refer to the
books of Schneider [18] and Milman—Schechtman [14] for basic facts from the
Brunn-Minkowski theory and the asymptotic theory of finite-dimensional
normed spaces. A classical reference for isotropic convex bodies and the slic-
ing problem is the paper [13] of Milman and Pajor.

Acknowledgements. The author is indebted to B. Klartag, R. Latala
and G. Schechtman for suggestions and ideas which simplified and improved
the original proofs of some results of this paper.

2. Isotropic convex bodies with small diameter. Let K be an
isotropic convex body in R™. In this section we assume K C (vyy/n Lg)BY
(one can easily check that v must exceed an absolute constant ¢ > 0). If
v ~ 1 we say that K is “an isotropic convex body with small diameter”. Our
aim is to show that a random 6 € S™~! defines a 1/»-direction with constant
C(7). The precise statement is the following.

THEOREM 2.1. Let K be an isotropic convex body in R™. Assume that
for some v > 0 we have K C (y/n Lk )BY. Then

(2.1) o(0 € S™ | fally, > c1vtLi) < exp(—cav/nt?/y)
for every t > 1, where c1,c2 > 0 are absolute constants.
The proof will be based on a well known consequence of the spherical

isoperimetric inequality (see [14]): Let n > 4. If F : S"~! — R is a Lipschitz
function with constant bg, then
n—1 n82
(2.2) o(@eS" " F(0) >mp+s) <exp| ——5
4by

for every s > 0, where mp is the Lévy mean of F' (the unique m > 0 for
which o({F(0) > m}) > 1/2 and o({F(0) < m}) > 1/2).

Consider the function F(0) = || fo||4, on S~ 1. In the next two claims we
estimate the parameters by and mp.

Cram 2.2. We have bp < c3,/7 n Ly, where c3 > 0 is an absolute
constant.
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Proof. Let 6 € S"~!. From the definition of | - ||, we check that

(2.3) 1ol < Il foll: | folloc-

Since every § € S"~! defines a 1;-direction with constant C' and || f5|/oo <
R(K) <~vy/n Lk, we get

(2.4) 1foll7, < (CLk)(vW/nLk).
Then the claim follows from the triangle inequality for || - ||,,. =

The next lemma will allow us to estimate mp (a similar argument appears
in [16]).

LEMMA 2.3. Let K be an isotropic convex body in R™ contained in
(vv/n Li)BY. Then

2
(2.5) i Sexp<@) dy o(df) < 2

c
i 1YL K
where ¢4 > 0 is an absolute constant.

Proof. A direct computation shows that for every p > 1 and y € R",

(2.6 (5 10ro@)”~ (2 .

Sn—1 p + n

Let ¢4 > 0 be a constant to be determined. We have

2
27 | Sexp(|<y’0>|> dy o (df)

Gt i cayLk

> 1
=1+ ) S |(y, 0)** o(d0) dy.
; klejhy?k L3 IS{ Snsl

Using (2.6) we see that the right hand side of (2.7) is bounded by

(2'8) 1 + Z k'c2k’)/2kL2k <2]{7 n n) }{Hy’b dy,

where ¢5 > 0 is an absolute constant. Since ||y||2 < vy/n Lk for every y € K,
we get

(2.9) [ exp<’<y’7L9>|>2dy Z<C4 Q;:fn >k <2

C
gl K 4vLK

if we choose ¢4 = 2\/ec5. =
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An application of Markov’s inequality shows that, with probability great-
er than or equal to 1/2, a vector § € S"~! satisfies

1 [fo(w)\?
2.1 — 2 dy < k! < 4k!.
(2.10) (e L)% IS{\fa(y)! dy <k Iﬂ(exp<cﬂLK dy < 4k
Since || folly, = sup{|| follax/Vk : k € N}, we have
(2.11) o({#.€ 5"t (| folly, < covLr}) >1/2

for some absolute constant cg > 0. This proves our next claim.
CLAIM 2.4. We have mp < cgyLg, with cg > 0 an absolute constant. m

Proof of Theorem 2.1. We first observe that || fy|ly, > 7l foll2 = c7Li
for every 6 € S"~!, and hence

(2.12) mp 2> c7Lk,

where ¢7 > 0 is an absolute constant. Let t > 1. We apply (2.2) with s = tmp,
and using (2.12) and Claims 2.2 and 2.4 we get

o(0 € 5" || follys > cov(1 +t)Li)
<o(@e S | folly, = (L+t)mp)

< ( nt%n%) < < c%mf2 L%( )
<exp| — <exp| ————rs

402, 4c3y/n L2
= exp(—eav/i /),

where ¢y = ¢2/(4c3). Since cg(1 +t) < 2cgt, the result follows if we take
c1 = 2cg. =

3. An example. In this section we exhibit an example of an isotropic
convex body K in R" which has bounded geometric distance from the Fu-
clidean unit ball but has the worst possible %s-behaviour. One can build
such an example inside the class of bodies of revolution.

LEMMA 3.1. There exist a ~ \/n and b ~ 1/+/n such that the symmetric
convex body

(3.1) C={y=(z,0):[t|<a,|z]2 <a—0lt]}
has volume 1 and satisfies
(3:2) 1 < \(y,0)2dy < cs

C

for every 6 € S*1, where c1,ca > 0 are absolute constants.
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Proof. Let r,,_1 be the solution of the equation w, 17"~ = 1, and con-
sider the body

(3-3) Cr={(z,t) : [t| < rn1, [J2ll2 < mae1 — [t]/V/0}
Since 7,_1 =~ \/n, we easily check that
Tn—1 n—1
(3.4) C1l =20n 1 | (ror——=) at
. 1 n—1 n—1 \/ﬁ

0
n
= 2wp 11l _V/n 1-d _nl/\/ﬁ) ~ 1.
Therefore, we may find s > 0 with s” ~ 1 such that C' := sC has volume 1.
It is clear that C' can be written in the form (3.1), with a = sr,—1 ~ \/n
and b=1/y/n.
Also, C is symmetric with respect to the coordinate subspaces, and hence
(3.2) will hold for every 6 € S"~! provided that

(3.5) c < S(y,ej>2dy < ca.
C

From (1.4) it is enough to check that

(3.6) c3 < |Cﬂej‘] <y

for every j =1,...,n. Let j <n — 1. Then

Tn—1 + n—2
’01 N eL] = 2wyp—9 <7“ 11— —) dt
J n § n NG

1 t n—1 (n—2)/(n—1)
(7)) e

|\ -2/
> "/Tn—1 < 5 " Y/rn—1 > 1.

- 2wn72 <2w 1
n—

For the lower bound we observe that

Tn—1 n—2
t
1
|C1 N €; | = 2wp—2 (S) (rn_l — \/ﬁ> dt

w ot t\"! w
T (e ) e ey

Tn—1Wn—1 0 Vn Tn—1Wn—1
Finally,
(3.7) IC1Net| =w, 1" = 1.
Since |C'N ejL| = " C1 N ejL| ~ |C1 N ejl| for all j < n, the lemma is

proved. =
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Starting with C, we easily pass to a “similar" isotropic body.

LEMMA 3.2. There exist a1, R1 ~ \/n and by ~ 1/\/n such that the
symmetric convez body
(3.8) K ={y= (1) : [t| < Ry, [|zll2 < a1 — bat[}
18 1sotropic.
Proof. Consider the body C of the previous lemma. We first observe (see [13,
equation (1.9) on p. 71]) that

n

(3.9) L =11 §(v.e)* dy.

j=1C
Because of (3.2), this implies that Lo ~ 1. By the symmetries of C' there
exists a diagonal operator T' = diag(u,...,u,v) such that K = T(C) is
isotropic. For every 6 € S"~! we have
(3.10) 1~L24=15%= S(x, 0)? do = S(x, T6)? dz ~ || TH|3.

K C

This shows that u ~ 1 and v ~ 1. Finally, K can be written in the form
(3.8) with R; = av, a; = au and b; = bu/v. This completes the proof. m

LEMMA 3.3. Let K be the body in Lemma 3.2. If 0 < s < ¢1+/n, then
(3.11) Prob({(z,t) : [t| > s}) > caexp(—c3s),
where c1,co,c3 > 0 are absolute constants.
Proof. Direct computation shows that
R

Prob({(z,t) : [t| > s}) = 2wn_1 | (a1 — byt)" "t

s

= 2wp_1 a—?f((l - b1—8>n — <1 — blR1>n>.
nby al ai

Since w107 = |K Net| ~ 1 and a1/(nby) =~ 1, we see that

n

a

3.12 Qv —— >
(3.12) O
for some absolute constant ¢4 > 0. If s < a1/(2b1) ~ n, using the numerical
inequality 1 — z > =2 for x € [0, 1/2], we obtain

b n
(3.13) <1 - LS) > exp(—2bins/a1) > exp(—css).

aj

On the other hand,

(3.14) (1 - b1R1>" < exp(—biRin/a1) < exp(—c5v/n).
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If s < ¢14/n for a suitable absolute constant ¢; > 0, then

1
(3.15) exp(—csv/n) < 3 exp(—c3s).
It follows that if s < ¢14/n, then
(3.16) Prob({(z,t) : [t| > s}) > (ca/2) exp(—c3s).

This gives the result, with co = c4/2. =

LEMMA 3.4. Let K be a convex body of volume 1 in R™. If ¢ > 1, then
(3.17) Prob(y € K : [(y,0)] = all follgs) < e~
for all 6 € S" 1 and s > 1, where a > 0 is an absolute constant.

Proof Let ¢ > 1 and 6 € S"~!. Markov’s inequality shows that
(3.18) Prob(y € K : [(y,0)| > €’[|follq) < e,

Since y +— [(y, #)| is a seminorm, from Borel’s lemma (see [14, Appendix III])
we get

(3.19)  Prob(y € K : [(y,0)| = €’||foll45)

- o34 (s+1)/2
< (1—e7) <1_76—3q>

for every s > 1. This proves the lemma with o = e m

REMARK 3.5. The same lemma is proved in [17] as a consequence of
a much more general optimal L%-norm inequality of Carbery and Wright
(see [9]) for polynomials over convex bodies. The simple argument which is
presented here was kindly communicated to the author by R. Latala.

Let K be the body from Lemma 3.2. The next two claims describe two
“contradictory” properties of K.

CLAM 3.6. We have ci/n By C K C co\/n BY, where c1,c2 > 0 are
absolute constants.

Proof. The problem is two-dimensional. For every y = (z,t) € K we
have

(3.20) Ilyll5 = llzl3 + ¢* < af + R} < é3n,

where ¢2 > 0 is an absolute constant, because a1, Ry ~ /n. This shows
that K C cgy/n BY. For the other inclusion, we observe that the inradius
of K is equal to min{R;,d}, where d is the distance from (0, 0) to the line
y = a1 — bit in R%. We have

(3.21) d= 2

and hence K D ¢11/n B} for some absolute constant ¢; > 0. =
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CLAM 3.7. We have ||(-; en) |l (i) = ¢¥/n, where ¢ > 0 is an absolute
constant.

Proof. Let ¢ > 1. If a||(-, en)|lq < c1v/n, Lemmas 3.3 and 3.4 show that
(322)  crexp(—csall( en)ly)
< Prob({y € K : [(y,en)| = a|(,en)llg}) < €77
For these values of ¢ it follows that
(3.23) c3al| (-, en)llg > g+ logca.
Since e,, defines a 1;-direction for K, we have
(3.24) 1endlle < cagll (- en)l < esa.

Therefore, we can find ¢, ~ /n such that «o||(-, es)|lq. < c1v/n. Going back

to (3.23) we see that

(3.29 I entllos = e L2llae > cym
Vax

*

for some absolute constant ¢ > 0. =

Lemma 3.2 and Claims 3.6 and 3.7 are summarized in the next theorem.

THEOREM 3.8. There exists an isotropic convex body of revolution K in
R™ with the following properties:

(3.26) c1vn By C K C co\/n BY
and
(3.27) 1¢s endllgn > c3 ¥/,

where c1,co,c3 > 0 are absolute constants. m

4. L,-centroid bodies. Let K be a convex body of volume 1 in R” and
let ¢ > 1. The Ly-centroid body Z,(K) of K is the symmetric convex body
whose support function is given by

(1) Ny ) = el = (It i ay)

K
It is easy to check that Z,(K) C Z,(K) C Zo(K) for every 1 < p < g < o0,

where Zo(K) = K = co{ K, —K}. If K has its centre of mass at the origin,
then Z,(K) ~ K for all ¢ > n. This is a consequence of the Brunn—Minkowski
inequality (for a proof, see [16]). L,-centroid bodies were introduced in [12]

under a different normalization.
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For every p,q > 1 we define

(4.2) A(K) = | Ny(K,0)0(do),
Sn—l

(4.3) Agp(K) = § Ng(K,e)a(de))”p.
Snfl

The next proposition describes the behaviour of p — A, ,(K) for a fixed
value of q.

PROPOSITION 4.1. Let K be a convex body of volume 1 in R™ with centre
of mass at the origin. For every p,q € [1,n] we have

(4.4) Ay p(K) ~ max {AQ(K), W}

If p>n, then Ay p(K) ~ R(Zy(K)).

Proof. Let V be a symmetric convex body in R", and let || - || be the
norm on R"” induced by V. For every p > 1, let

(4.5) My = My(V) = (] 1107 o(d6))

Sn—1
The behaviour of p — M), was clarified by Litvak, Milman and Schechtman
in [11]: If R = max{||z||2 : z € V°} then

R

(4.6) Mp:maX{Ml,%}
for all p € [1,n], and M, ~ R if p > n. A direct application to the polar
body of Z,(K) gives the result. m

1/p

PROPOSITION 4.2. There exist ¢1,ca > 0 and ng € N with the following
property: if n > ng and K is an isotropic convex body in R™ then, for every

2 S q S Cl\/ﬁa
Aq(K)

(4.7) IWQ:(MWMQW§@WF77-
K

For the proof we will need two simple observations.

CrAM 4.3. Let K be an isotropic convex body in R™. For every2 < q <mn
we have

(48) R(Zq(K)> S ngLK
and
(4.9) Agq(K) ~ \/q/—an(K) > cay/q Lk,

where c3,cqy > 0 are absolute constants.



Linear functionals on isotropic convez bodies 297

Proof. The first assertion follows from the fact that K is a v;-body. For
the second we use (2.6) and integration over K. The last inequality is a direct
consequence of Holder’s inequality: we have I,(K) > I3(K) = /nLk. u

Proof of Proposition 4.2. Observe that Z3(K) = Lk B%, which implies
R(Z3(K)) = Ay(K) = Lk. Also, when ¢ — oo, both R(Z,(K)) and A4(K)
tend to R(K). So, if we define
(4.10) N(K) = {2 2 R(Z,(K))yd < v/ Aq(K)},
we immediately see that 2 € N(K) and N(K) is bounded.

We set ¢, :=sup{q > 2:[2,q] € N(K)}. Then ¢, is well defined and the
continuity of R(Z,(K)) and A,(K) with respect to ¢ shows that
(4.11) R(Zy, (K))s = v/ Ag, (K).

From Proposition 4.1, this last equation shows that
(4.12) Ag. g (K) = Ay, (K).
Going back to (4.11) and using Claim 4.3 we get

(4.13) gs > civ/n.
Finally, since [2, ¢1y/n] € N(K), for every 2 < ¢ < ¢1/n we have A, ;(K) ~
A4(K) and this implies that
Ay(K
(4.14) I(K) ~\/n/qAqs(K) < 02\/5%
for some absolute constant c; > 0.

We can now give a proof of Theorem C based on the following criterion
from [17].

LEMMA 4.4. Let 6 > 1 and let 1 < ¢(n) < n be a positive constant. For
every isotropic convex body K in R", the following statements are equivalent:

(a) For everyt > 1,

(@15)  Prob({y € K : [ylls > 6t Lic}) < exp(~o(m)t).
(b) For every 2 < q < co(n),
(116) 1) = ([l dy) " < e(0) v L
K

where ¢() ~ 0. =

Proof of Theorem C. We assume that K is an isotropic convex body
in R™ which satisfies

(4.17) I ollon o(d8) <L
gn—1
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for some v > 0. Since || fy|lq < c31/q || foll, for every g > 2, we get

(4.18) AgK) = | Nfallgo(dd) < cary/q L
Sn—1
for every g > 2, where ¢4 > 0 is an absolute constant. Now, Proposition 4.2
shows that
(4.19) I,(K) < esyv/n Lk

for every 2 < q < cgy/n, where cs5,c > 0 are absolute constants. Then, we
can apply Proposition 4.4 with 6 ~ v and ¢(n) ~ \/n to get

(4.20) Prob({y € K : ||ly|l2 > c1vtv/n Lk }) < exp(—caty/n)

for every t > 1, where c¢1, co > 0 are absolute constants. =
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