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The growth speed of digits
in infinite iterated function systems

by

Chun-Yun Cao, Bao-Wei Wang and Jun Wu (Wuhan)

Abstract. Let {fn}n≥1 be an infinite iterated function system on [0, 1] satisfying the
open set condition with the open set (0, 1) and let Λ be its attractor. Then to any x ∈ Λ
(except at most countably many points) corresponds a unique sequence {an(x)}n≥1 of
integers, called the digit sequence of x, such that

x = lim
n→∞

fa1(x) ◦ · · · ◦ fan(x)(1).

We investigate the growth speed of the digits in a general infinite iterated function system.
More precisely, we determine the dimension of the set{

x ∈ Λ : an(x) ∈ B (∀n ≥ 1), lim
n→∞

an(x) =∞
}

for any infinite subset B ⊂ N, a question posed by Hirst for continued fractions. Also we
generalize Łuczak’s work on the dimension of the set

{x ∈ Λ : an(x) ≥ ab
n

for infinitely many n ∈ N}

with a, b > 1. We will see that the dimension of the sets above is tightly connected with
the convergence exponent of the contraction ratios of the sequence {fn}n≥1.

1. Introduction. We first recall the definition of an infinite iterated func-
tion system. For a thorough study and foundations of the theory of infinite
iterated function systems, one is referred to the works of Hanus, Mauldin, and
Urbański [HaMU], Mauldin and Urbański [MU1, MU2] or their monograph
[MU3]. Here we follow the notation used in [JorR] by Jordan and Rams.

Let {fn}n≥1 be a sequence of functions with fn : [0, 1]→ [0, 1] satisfying

(i) Smoothness: fn ∈ C1 for each n ≥ 1;
(ii) Contraction property: there exists an integer m and a real number

0 < ρ < 1 such that for any (a1, . . . , am) ∈ Nm and x ∈ [0, 1],

0 < |(fa1 ◦ · · · ◦ fam)′(x)| ≤ ρ < 1;

(iii) Open set condition: for any i 6= j ∈ N, fi((0, 1)) ∩ fj((0, 1)) = ∅.
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Then we call ([0, 1], {fn}n≥1) or simply {fn}n≥1 an infinite iterated function
system (iIFS). Clearly, there is a natural projection Π : NN→ [0, 1] defined as

Π(a) = lim
n→∞

fa1 ◦ · · · ◦ fan(1)

for any a = {an}n≥1 ∈ NN. Let Λ be the attractor of the iIFS {fn}n≥1, i.e.,
Λ = Π(NN).

To each x ∈ Λ corresponds a sequence {an}n≥1 of integers such that

x = lim
n→∞

fa1 ◦ · · · ◦ fan(1).

We call {an}n≥1 the digit sequence of x. It should be pointed out that the
digit sequence of a point may not be unique. However, the open set condi-
tion (iii) guarantees that the points having more than one digit sequence are
at most countably many. In the following, since we are concerned with the
Hausdorff dimension, a countable set is negligible. Thus we can assume that
to each x ∈ Λ is attached a unique digit sequence, denoted by {an(x)}n≥1.

Now we limit ourselves to the iIFS with some regularity properties.

(iv) Regularity: there exists a sequence {ξn}n≥1 such that for any ε > 0
there are 0 < c1(ε) ≤ 1 ≤ c2(ε) such that for all n ∈ N and x ∈ [0, 1],

c1(ε)

ξ1+εn
≤ |f ′n(x)| ≤ c2(ε)

ξ1−εn
.

The system {fn}n≥1 satisfying conditions (i) to (iv) is named a ξ-regular
iIFS. Moreover, it is called Gauss-like if

(v)
⋃∞
n=1 fn([0, 1]) = [0, 1], and fi(x) > fj(x) whenever i < j.

We list two classical infinite iterated function systems closely connected
with number theory:

• Continued fractions:

fn(x) =
1

x+ n
, x ∈ [0, 1], n ∈ N.

Then the digit sequence {an(x)}n≥1 is just the partial quotients of x
in its continued fraction expansion.
• Lüroth expansions:

fn(x) =
x

n(n+ 1)
+

1

n+ 1
, x ∈ (0, 1], n ∈ N.

Then {an(x)}n≥1 is just the digit sequence in the Lüroth series expan-
sion of x.

When ξn = n−d, a ξ-regular iIFS {fn}n≥1 is referred to as a d-decaying
system by Jordan and Rams [JorR]. So both continued fractions and Lüroth
expansion are 2-decaying systems.
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Since these systems are infinite iterated function systems, unlike the
finite case, the digit sequence {an(x)}n≥1 can assume large values. Thus one
wonders which growth speed the digit can have.

In the case of continued fractions, in 1941, Good [Go] studied the size of
the set

E∞ := {x ∈ [0, 1) : an(x)→∞ as n→∞}
and showed that its Hausdorff dimension (denoted by dimH) is 1/2. Hirst
[Hir2] asked what happens when the partial quotients of points in E∞ are
further restricted to an infinite subset B ⊂ N of natural numbers, i.e., what
is the dimension of the set

{x ∈ [0, 1) : an(x) ∈ B(n ≥ 1) and an(x)→∞ as n→∞}.
(This is solved by the second and third named authors in [WanW, Wu].)

Besides the points with mild growth speed of their partial quotients, the
points with much larger partial quotients are also paid much attention to.
For any a, b > 1, define

E(a, b) = {x ∈ [0, 1] : an(x) ≥ abn for infinitely many n ∈ N}.
As one can see in [FengW], bounding dimH E(a, b) from above constitutes
the difficult part in getting the explicit dimension of E(a, b). After partial
progress by Cusick [Cu], Hirst [Hir1], Moorthy [Mo] etc., this was solved by
Łuczak [Lu] in 1997 by showing that

dimH E(a, b) ≤ 1

1 + b
,

which is the exact dimension of E(a, b) by combining this bound with the
main result in [FengW].

In the case of Lüroth expansions, Munday [Mun] showed that

dimH

{
x ∈ (0, 1] : lim

n→∞
an(x) =∞

}
= 1/2.

(Munday studied the dimension of the above set in a more general setting
than Lüroth expansion, called α-Lüroth expansion.)

For general d-decaying systems, Jordan and Rams [JorR] considered the
dimension of the sets of points with increasing digits, i.e.

(1.1) XΦ := Π{a ∈ NN : an+1 > Φ(an) for all n ∈ N},
where Φ(n) ≥ n for any n ∈ N. They proved

Theorem A (Jordan & Rams [JorR]).

• When n ≤ Φ(n) ≤ βn for some β ≥ 1, dimHXΦ = 1/d.
• If {fn}n≥1 is a d-decaying Gauss-like system and Φ(n) = nα for some
α > 1, then dimHXΦ = 1

1+α(d−1) .
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• For any d > 1 and any strictly increasing function Φ : N → N there
exists a d-decaying system {fn}n≥1 such that dimHXΦ = 1/d.

In this note, we consider the dimension of the set defined by Hirst in the
setting of a ξ-regular infinite iterated function system. At the same time,
we generalize Łuczak’s result to Gauss-like systems. We will see that the
convergence exponent

s0(B) = inf

{
s ≥ 0 :

∑
n∈B

1

ξsn
<∞

}
with B ⊂ N

plays an important role in the dimension of the sets above. In fact, 1/2
and 1/d are just the convergence exponents for the continued fractions and
the d-decaying systems. We also mention that besides the sets above, the
convergence exponent also plays part role in the multifractal analysis of
Birkhoff averages in infinite iterated function systems (see [FJLR, FLM,
KMS, LMW]). The attractor of an iIFS and its subsets considered here are
like the Moran constructions but with countably many branches. For more
about the Moran set construction, one is referred to a survey about Moran
sets by Wen [Wen] and a recent work of Rempe-Gillen and Urbański [ReU].

Now we state the main results of this note.

Theorem 1.1. Suppose that {fn}n≥1 is a ξ-regular iIFS. Let B be an
infinite subset of natural numbers. Define

E(B) = {x ∈ Λ : an(x) ∈ B (n ≥ 1) and an(x)→∞ as n→∞}.
Then dimH E(B) = s0(B).

Theorem 1.2. Suppose that {fn}n≥1 is a Gauss-like system and {ξn}n≥1
is increasing. For any a, b > 1, let

E(a, b) = {x ∈ Λ : an(x) ≥ abn for infinitely many n ∈ N},
Ẽ(a, b) = {x ∈ Λ : an(x) ≥ abn for all n ∈ N}.

Then

(1.2) dimH Ẽ(a, b) ≤ dimH E(a, b) ≤ s0(N)

s0(N) + b(1− s0(N))
.

For the lower bound of the dimension of Ẽ(a, b), two concrete systems are
provided in Section 3 indicating that even if they share the same convergence
exponent, the dimension of Ẽ(a, b) in different systems may be different. But
on the other hand, there do exist cases such that the inequality in (1.2)
is an equality, for example, for continued fractions [FengW] and d-decaying
Gauss-like systems, by combining Theorem 1.2 above and the second result
in Theorem A.

In [JorR] (see the third result in Theorem A), it was pointed out that
if {fn}n≥1 is not Gauss-like, the dimension of Ẽ(a, b) may exceed the upper
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bound above. The results in Theorems 1.1 and 1.2 are also sharp in the
following sense:

Theorem 1.3. Suppose that {fn}n≥1 is a Gauss-like system and {ξn}n≥1
is increasing. For any function ψ : N → R+ with ψ(n) → ∞ as n → ∞,
there exists B ⊂ N such that

s0(B) = s0(N) but dimH E(B,ψ) = 0,

where E(B,ψ) = {x ∈ Λ : an(x) ∈ B and an(x) ≥ ψ(n) for all n ∈ N}.

We end this note by a result indicating that Theorem A cannot be ex-
tended to general Gauss-like systems without d-decaying assumptions.

Theorem 1.4. For any function ψ : N→ R+ with ψ(n)→∞ as n→∞
and s0 ∈ [0, 1], there exists a Gauss-like system {fn}n≥1 such that

s0(N) = s0 but dimH E(ψ) = 0,

where E(ψ) = {x ∈ Λ : an(x) ≥ ψ(n) for all n ∈ N}.

If Theorem A is true for Gauss-like systems without d-decaying assump-
tions, one would have the dimension of XΦ defined in (1.1) equal to s0 if one
takes Φ(n) = n. However, if we let ψ(n) = n/2, it is clear that XΦ ⊂ E(ψ),
which gives dimHE(ψ) ≥ s0, contradicting dimHE(ψ) = 0.

2. Proof of Theorem 1.1. We begin with some notation. For each
a1, . . . , an ∈ N, define

In(a1, . . . , an) = {x ∈ Λ : ak(x) = ak, 1 ≤ k ≤ n},

i.e., the collection of points whose digit sequence begins with a1, . . . , an. We
call In(a1, . . . , an) an nth order basic interval.

Since fk ∈ C1 for each k ≥ 1, it follows that the length of an nth order
basic interval satisfies

(2.1)
n∏
k=1

c1(ε)

ξ1+εak

≤ |In(a1, . . . , an)| ≤
n∏
k=1

c2(ε)

ξ1−εak

.

This estimate is essential to all the arguments below.
The proof of Theorem 1.1 is divided into two parts, for the upper bound

and the lower bound.

2.1. Upper bound. Recall the set

E(B) = {x ∈ Λ : an(x) ∈ B (n ≥ 1) and an(x)→∞ as n→∞}.

Write B = {b1, b2, . . .}. The upper bound of dimH E(B) can be determined
by a standard covering argument.
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Fix M ∈ N. For any x ∈ E(B), there exists N ∈ N such that, for any
n > N , an(x) ≥M . Thus

E(B) ⊂
∞⋂

M=1

∞⋃
N=1

{x ∈ Λ : an(x) ∈ B, an(x) ≥M, ∀n > N}.

If we write, for each a1, . . . , aN ∈ N,

EM (B; a1, . . . , aN ) = {x ∈ Λ : ak(x) = ak, 1 ≤ k ≤ N,
an(x) ∈ B, an(x) ≥M, ∀n > N},

then
E(B) ⊂

∞⋂
M=1

∞⋃
N=1

⋃
a1,...,aN∈N

EM (B; a1, . . . , aN ).

The desired result on the dimension of E(B) will follow if we can show that,
for any ε > 0,

(2.2) dimH EM (B; a1, . . . , aN ) ≤ s0(B)(1 + ε)

1− ε
=: s

when M is large enough.
Now fix ε > 0. Recall that c1(ε), c2(ε) appear in the definition of a ξ-

regular iIFS. By the definition of s0 = s0(B), the convergence exponent of
{ξb}b∈B, one has ∑

b∈B
1/ξ

s0(1+ε)
b <∞.

So, one can choose an integer M0 = M0(ε) sufficiently large ensuring that

(2.3)
∑

b∈B, b≥M0

c2(ε)

ξ
s0(1+ε)
b

≤ 1.

To show (2.2), we search for a cover of EM (B; a1, . . . , aN ). In fact, its
natural cover is sufficient to get (2.2). More precisely, for each n ≥ N , the
family of basic intervals

{In(a1, . . . , aN , aN+1, . . . , an) : ak ∈ B, ak ≥M, N < k ≤ n}
covers EM (B; a1, . . . , aN ). Hence the s-dimensional Hausdorff measure of
EM (B; a1, . . . , aN ) can be estimated as

Hs(EM (B; a1, . . . , aN )) ≤ lim inf
n→∞

∑
ak∈B, ak≥M,N<k≤n

|In(a1, . . . , an)|s

≤ lim inf
n→∞

∑
ak∈B, ak≥M,N<k≤n

n∏
k=1

(
c2(ε)

ξ1−εak

)s

≤
N∏
k=1

(
c2(ε)

ξ1−εak

)s
lim inf
n→∞

( ∑
b∈B, b≥M

c2(ε)

ξ
s0(1+ε)
b

)n−N
.
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By (2.3), when M ≥M0, we have

Hs(EM (B; a1, . . . , aN )) ≤
N∏
k=1

(
c2(ε)

ξ1−εak

)s
<∞.

This implies directly that, when M ≥M0,

dimH EM (B; a1, . . . , aN ) ≤ s0(1 + ε)

1− ε
.

2.2. Lower bound. From now on until the end of this note, for sim-
plicity of notation, we assume that m = 1 in (ii) of the definition of an iIFS,
i.e., for each n ≥ 1 and x ∈ [0, 1],

|f ′n(x)| ≤ ρ < 1.

Thus there is a natural bound on the length of a basic interval:

(2.4) |In(a1, . . . , an)| ≤ ρn.

For the lower bound of dimH E(B), we will construct a Cantor subset
consisting of points whose digits grow to infinity as slow as a “snail”.

First, we give some preliminaries. Without loss of generality, we assume
that s0(B) > 0. Fix ε > 0. Then we fix a real s > 0 such that

(2.5) s(1 + ε)2 < s0(B).

Now we define a sequence {rk}k≥1 of integers. For each k ≥ 1, choose rk
to be the smallest integer such that

rk∑
n=k

(
c1(ε)

ξ1+εbn

)s(1+ε)
≥ 3.

After the sequence {rk}k≥1 has been defined, we choose another integer
sequence {nk}k≥1 as follows. For each k ≥ 1, choose an integer nk so large
that

(2.6) max{(ξbiξbj )
1+ε : k ≤ i ≤ rk+1, k ≤ j ≤ rk+2} ≤ ρ−εnkc1(ε)2.

Then we define two sequences {un, vn}n≥1 of integers with un → ∞ as
n→∞ in a very slow manner:

(2.7)
{
un = 1, vn = r1 when 1 ≤ n < n1;
un = k, vn = rk when nk ≤ n < nk+1.

Such design ensures the following

Proposition 2.1. For every (a1, . . . , an+1, an+2) ∈ Bn+2 with bun+1 ≤
an+1 ≤ bvn+1, bun+2 ≤ an+2 ≤ bvn+2 and nk ≤ n < nk+1, one has

(2.8) |In+2(a1, . . . , an+1, an+2)| ≥ |In(a1, . . . , an)|1+ε.
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Proof. It is clear that when nk ≤ n < nk+1 and an+1, an+2 ∈ B,

an+1 = bi for some k ≤ i ≤ rk+1,

an+2 = bj for some k ≤ j ≤ rk+2.

Thus we have

|In+2(a1, . . . , an+1, an+2)| ≥ |In(a1, . . . , an)| · c1(ε)
ξ1+εbi

· c1(ε)
ξ1+εbj

≥ |In(a1, . . . , an)| · ρεnk (by (2.6)).

Then the desired result follows from (2.4).

Now we construct a Cantor subset of E(B) as

F = {x ∈ Λ : an(x) ∈ B and bun ≤ an(x) ≤ bvn for all n ≥ 1}.

By (2.7), we know that F ⊂ E(B) and the digits of points in F grow to
infinity but as slow as one wishes.

To allow some gap between those basic intervals with nonempty inter-
section with F, we refine it to another Cantor subset F of E(B) as follows.

• The first level of F: The first level F1 of the Cantor set F is defined as

F1 = {I1(a1) : bu1 ≤ a1 ≤ bv1 , a1 ∈ B}.

• The second level of F: Level 2 is composed of sublevels for each I1(a1)
in F1. Fix I1(a1) in F1. The sublevel F2(I1(a1)) is constructed as fol-
lows. Define

F2(I1(a1)) = {I2(a1, a2) : bu2 ≤ a2 ≤ bv2 , a2 ∈ B}.

Now F2(I1(a1)) is defined by eliminating from F2(I1(a1)) the leftmost
and the rightmost elements of I1(a1). Then the second level F2 of the
Cantor set F is defined as

F2 =
⋃

I1(a1)∈F1

F2(I1(a1)).

• From the nth level to the (n + 1)th level : Suppose that the nth level
Fn of the Cantor set F has been defined, and it is a collection of basic
intervals of order n. Now we follow the construction procedure of the
second level to obtain the (n+1)th level. For each In(a1, . . . , an) ∈ Fn,
define

Fn+1(In(a1, . . . , an)) = {In+1(a1, . . . , an, an+1) :

bun+1 ≤ an+1 ≤ bvn+1 , an+1 ∈ B}.

Then the sublevel Fn+1(In(a1, . . . , an)) is defined by eliminating
from Fn+1(In(a1, . . . , an)) the leftmost and the rightmost elements of
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In(a1, . . . , an). Then the (n + 1)th level Fn+1 of the Cantor set F is
defined as

Fn+1 =
⋃

In(a1,...,an)∈Fn

Fn+1(In(a1, . . . , an)).

Then we have
F =

⋂
n≥1

⋃
In∈Fn

In.

For each n ∈ N, an element in Fn is called a cylinder of order n.
Now we show that dimH F ≥ s, where s is given in (2.5). This is done by

showing that for any given covering system U of F, we always have

(2.9)
∑
U∈U
|U |s ≥ 1.

Step 1. By the property of the Hausdorff measure in R1, we need only
consider covers by open intervals. Since F is compact, the covering U can
be assumed to contain only finitely many open intervals. Then add the end-
points to each element in U to make them closed intervals. Moreover, these
intervals can be shortened to make their endpoints belong to F.

In this way, we get a new cover of F. But in the process, the sum in
(2.9) is not increased. So we still denote by U the cover after the above
modifications.

Step 2. Now, we argue that the covering system U can be transformed
to a cover by cylinders.

For each U ∈ U with nonempty intersection with F, let n be the largest
integer such that U intersects only one cylinder In ∈ Fn. Thus, there will
exist a1, . . . , an ∈ B and bun+1 ≤ ` 6= r ≤ bvn+1 , `, r ∈ B such that

In+1(a1, . . . , an, `) ∈ Fn+1, In+1(a1, . . . , an, r) ∈ Fn+1

and
U ∩ In+1(a1, . . . , an, `) 6= ∅, U ∩ In+1(a1, . . . , an, r) 6= ∅.

Since the endpoints of U are in F, they are also in Fn+2. Thus, the length
of U is larger than the gap between

In+1(a1, . . . , an, `) ∩ Fn+2 and In+1(a1, . . . , an, r) ∩ Fn+2.

Notice that when defining Fn+2(In+1) from Fn+2(In+1), we eliminate the
two cylinders lying in the edge of Fn+2(In+1). Thus, the gap must be larger
than one of the four deleted cylinders in Fn+2(In+1(a1, . . . , an, `)) and
Fn+2(In+1(a1, . . . , an, r)). It follows that

|U | ≥ |In+2(a1, . . . , an, an+1, an+2)|
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for some bun+1 ≤ an+1 ≤ bvn+1 , bun+2 ≤ an+2 ≤ bvn+2 . By (2.8), we get

|U | ≥ |In(a1, . . . , an)|1+ε.
Denote by V the collection of In’s corresponding to all U ∈ U . Assume

V is maximal in the sense that if I ∈ V, there is no I ′ ∈ V such that I ⊂ I ′

and I 6= I ′. Then we get a new finite cover of F by cylinders, and

(2.10)
∑
u∈U
|U |s ≥

∑
In∈V

|In|s(1+ε).

Step 3. We show that the cylinders composing the new cover can be
replaced by cylinders of smaller order without increasing the sum (2.9).

Suppose that the largest order of cylinders in V is `. Then there exists
I`(a1, . . . , a`) ∈ V. Since each cylinder I`(a1, . . . , ā`) ∈ F`(I`−1(a1, . . . , a`−1))
contains infinitely many points in F, all the cylinders in F`(I`−1(a1, . . . , a`−1))
must be members of V, i.e.

F`(I`−1(a1, . . . , a`−1)) ⊂ V.
Now we replace the subset F`(I`−1(a1, . . . , a`−1)) of V by I`−1(a1, . . . , a`−1).
If there are still other cylinders of order ` in V, with the same method,
we replace them by their mother cylinder of order ` − 1. Since V contains
only finitely many elements, the procedure above will terminate after finitely
many steps. Finally, we arrive at a new cover V1 of F consisting of cylinders
of order at most `− 1.

It should also be noticed that∑
I`(a1,...,a`−1,a`)∈F`(I`−1(a1,...,a`−1))

|I`(a1, . . . , a`−1, a`)|s(1+ε)

≥ |I`−1(a1, . . . , a`−1)|s(1+ε) ·
( ∑
bu`≤a`≤bv`

a`∈B

(
c1(ε)

ξ1+εa`

)s(1+ε)
− 2

)

≥ |I`−1(a1, . . . , a`−1)|s(1+ε).
So, we have ∑

I∈V
|I|s(1+ε) ≥

∑
I∈V1

|I|s(1+ε).

Thus, we can replace the cover V by the new cover V1 consisting of cylinders
of the largest order `− 1 without increasing the quantity in (2.10).

Continuing this process, we finally get a cover consisting of cylinders of
order 1. Note also that ∑

bu1≤a1≤bv1
a1∈B

|I1(a1)|s(1+ε) ≥ 1.

Thus we come to the assertion (2.9).
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By now we have proven dimH F ≥ s. The arbitrariness of ε > 0 enables
us to conclude that

dimH E(B) ≥ s0(B).

3. Proof of Theorem 1.2. From now on, the systems we deal with are
all Gauss-like. We assume that s0(N) < 1 otherwise the right side of (1.2)
equals 1. Recall that when {ξn}n≥1 is monotone, its convergence exponent
can be expressed as

(3.1) s0 := s0(N) = lim sup
n→∞

log n

log ξn
.

Then for any 0 < ε < (1− s0)/2, there exists a constant c3 = c3(ε) > 1 such
that

|f ′n(x)| ≤
(
c3
n

) 1
s0+ε

, ∀x ∈ [0, 1], ∀n ≥ 1.

According to (2.1), the length of a basic interval satisfies

(3.2) |In(a1, . . . , an)| ≤
n∏
k=1

(
c3
ak

) 1
s0+ε

.

For any x ∈ Λ, write
Qn(x) = a1(x) · · · an(x).

We begin with a property of Qn(x) when x ∈ E(a, b).

Lemma 3.1. For any x ∈ E(a, b) and 1 < d < b, the inequality

an+1(x) ≥ max{a2dn , Qn(x)d−1}
holds for infinitely many n ∈ N.

Proof. The idea is due to Łuczak [Lu]. For any M ∈ N and any x ∈
E(a, b), there exists an integer k > M with (b/d)k > 2/(d− 1) such that

QM (x) < ab
kdM−k and ak(x) ≥ abk .

Put g(n) = ab
kdn−k . Then

QM (x) < g(M) and Qk(x) ≥ ak(x) ≥ abk = g(k).

So, there exists an integer n with M ≤ n < k such that

Qn(x) < g(n) and Qn+1(x) ≥ g(n+ 1).

On one hand,
g(n+ 1) = g(n)d.

On the other hand, since (b/d)k > 2/(d− 1), we have

g(n+ 1) = g(n)d−1g(n) = ab
kdn−k(d−1)g(n) > a2d

n
g(n).
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Thus Qn+1(x) > max{Qn(x)d, Qn(x)a2d
n}. As a result, by the definition of

Qn(x), we obtain

an+1(x) ≥ max{Qn(x)d−1, a2d
n}.

Lemma 3.1 enables us to conclude that for any 1 < d < b,

E(a, b) ⊂
∞⋂
N=1

∞⋃
n=N

{
x ∈ Λ : an+1(x) ≥ max{Qn(x)d−1, a2d

n}
}
.

For each block of digits (a1, . . . , an) ∈ Nn, we write

Jn(a1, . . . , an) =
⋃

an+1≥max{Qd−1
n ,a2dn}

In+1(a1, . . . , an, an+1),

where Qn = a1 · · · an. Then for each N ≥ 1,

E(a, b) ⊂
∞⋃
n=N

⋃
a1,...,an

Jn(a1, . . . , an).

This gives us a collection of covers of E(a, b).
Let N1 = N1(ε) be an integer such that for all n ≥ N1,

(3.3)
2c

n+1
s0+ε

3

1/(s0 + ε)− 1
≤ (ad

n
)

ε
(s0+ε)(s0+2ε) ,

ε log a

n2
dn ≥ 1 + log

∑
i≥1

1

i1+ε
.

Then we are led to estimate the length of Jn(a1, . . . , an) for each (a1, . . . , an)
∈ Nn with n ≥ N1. Since the system is Gauss-like, we have

(3.4) |Jn(a1, . . . , an)| =
∑

an+1≥max{Qd−1
n ,a2dn}

|In+1(a1, . . . , an, an+1)|

≤
∑

an+1≥max{Qd−1
n ,a2dn}

c
n+1
s0+ε

3

(
1

Qn

) 1
s0+ε

(
1

an+1

) 1
s0+ε

≤ 2c
n+1
s0+ε

3

1/(s0 + ε)− 1
·Q
− 1
s0+ε

n · (max{Qd−1n , a2d
n})1−

1
s0+ε

≤ Q
− 1
s0+ε

n · (max{Qd−1n , a2d
n})1−

1
s0+2ε .

It is easy to observe that

max{Qd−1n , a2d
n} ≥

{
Qd−1n when Qn ≥ a

1
n
dn ,

a2d
n ≥ Qnn · ad

n when Qn < a
1
n
dn .

Thus when Qn ≥ a
1
n
dn , we have

(3.5) |Jn(a1, . . . , an)| ≤ Q
− 1
s0+ε

n ·Q
(d−1)(1− 1

s0+2ε
)

n =: Q−t1n .
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When Qn < a
1
n
dn , we have

(3.6) |Jn(a1, . . . , an)| ≤ (Qnn · ad
n
)
1− 1

s0+2ε =: (Qnn · ad
n
)−t2 .

Now we estimate (3.5) and (3.6) respectively but with the same method.
For any t > 1, define a set function µt on basic intervals as

µt(In(a1, . . . , an)) = e−t
∑n
j=1 log aj−nP (t),

where eP (t) =
∑

i≥1 i
−t is the classical Riemann zeta function. Then µt can

be extended to a Borel probability measure supported on Λ.
When Qn ≥ a

1
n
dn ,

(Q−t1n )
1+2ε
t1 ≤ e−(1+ε)

∑n
j=1 log aj−

ε
n
dn log a

≤ e−(1+ε)
∑n
j=1 log aj−nP (1+ε)−n (by (3.3))

= e−nµ1+ε(In(a1, . . . , an)).

When Qn < a
1
n
dn+1

,

(Q−nt2n a−d
nt2)

1+ε
nt2 = e−(1+ε)

∑n
j=1 log aj−

1+ε
n
dn log a

≤ e−(1+ε)
∑n
j=1 log aj−nP (1+ε)−n (by (3.3))

= e−nµ1+ε(In(a1, . . . , an)).

Clearly 1+2ε
t1
≥ 1+ε

nt2
when n is large enough. As a result, we have

(3.7) |Jn(a1, . . . , an)|
1+2ε
t1 ≤ e−nµ1+ε(In(a1, . . . , an)).

So the 1+2ε
t1

-dimensional Hausdorff measure of E(a, b) can be estimated as

H
1+2ε
t1 (E(a, b)) ≤

∞∑
n=N

∑
a1,...,an

|Jn(a1, . . . , an)|
1+2ε
t1

≤
∞∑
n=N

e−n
∑

a1,...,an

µ1+ε(In(a1, . . . , an)) ≤ 1

e− 1
.

Thus,

dimH E(a, b) ≤ 1 + 2ε

t1
=

1 + 2ε
1

s0+ε
+ (d− 1)

(
1

s0+2ε − 1
) .

By the arbitrariness of ε and d, we obtain

dimH E(a, b) ≤ s0
s0 + b(1− s0)

.

Remark on the lower bound of dimH Ẽ(a, b). For a d-decaying Gauss-
like system, by taking Φ(n) = nb in XΦ, we know that

XΦ ⊂ Ẽ(a, b).
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So we will have

dimH Ẽ(a, b) =
1

1 + b(d− 1)
=

s0
s0 + b(1− s0)

.

But for a general ξ-regular iIFS, two systems may share the same convergence
exponent, but the dimension of dimH Ẽ(a, b) may be different. To see this,
we construct a system with convergence exponent 1/2 the same as that of
the continued fraction but with a different dimension of dimH Ẽ(a, b).

First we define a sequence {ξn}n≥1 such that ξn � n2 for most n ∈ N but
which jumps very high at some positions. More precisely, take

(3.8) ξn =

{
4c0 when n = 1,
22
k!+1

c0 when 22
(k−1)! ≤ n < 22

k!
, ∀k ∈ N,

where

c0 =
1

4
+
∞∑
k=1

22
k! − 22

(k−1)!

22k!+1 .

Secondly, we construct linear functions {fn}n≥1 with respective slopes
{1/ξn}n≥1 which are arranged from right to left, side by side, to ensure this
is a Gauss-like system. More precisely, take f1(x) = 1− x

4c0
and

fn(x) =

(
1− 1

4c0
−
k−1∑
i=1

22
i! − 22

(i−1)!

22i!+1c0
− n− 22

(k−1)!

22k!+1c0

)
− x

22k!+1c0

when 22
(k−1)! ≤ n < 22

k! for any x ∈ [0, 1].
It is easy to see that {fn}n≥1 is a Gauss-like system and the convergence

exponent of {ξn}n≥1 is

s0(N) = lim sup
n→∞

log n

log ξn
= lim sup

k→∞

log 22
k!

log 22k!+1 =
1

2
.

By taking a = b = 2 in Ẽ(a, b), we will show that dimH Ẽ(2, 2) = 0 and
not 1/3 as in the system of continued fractions.

First we will show by the same method as in Lemma 3.1 that

Lemma 3.2. For any M ≥ 1 and x ∈ Ẽ(2, 2),

(3.9) ξan+1(x) ≥ (ξa1(x) · · · ξan(x))
M for infinitely many n ∈ N.

Proof. Let d > 1 be such that 2d > M + 1. For any x ∈ Ẽ(2, 2) and any
m > 1, there exists k > d with k! > m such that

ξa1(x) · · · ξam(x) < 22
dk!(M+1)m−k! .

By the choice of ξ in (3.8), we have ξak!(x) ≥ 22
(k+1)!+1

c0 since ak!(x) ≥ 22
k! .

Thus
ξa1(x) · · · ξak!(x) ≥ 22

(k+1)!+1
c0 ≥ 22

(k+1)!
> 22

dk!
.
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Then put
f(n) = 22

dk!(M+1)n−k! .

So there exists n with m ≤ n ≤ k! such that

ξa1(x) · · · ξan(x) < f(n) and ξa1(x) · · · ξan+1(x) ≥ f(n+ 1).

Now we give an upper estimate of the dimension of the set defined by
(3.9), i.e., the set

EM := {x ∈ Λ : ξan+1(x) ≥ (ξa1(x) · · · ξan(x))
M for infinitely many n ∈ N}.

For each a1, . . . , an ∈ N, define

J̃n(a1, . . . , an) =
⋃

an+1: ξan+1≥(ξa1 ···ξan )M
In+1(a1, . . . , an+1).

Clearly, for each N ∈ N, EM is covered by the collection of sets
∞⋃
n=N

⋃
a1,...,an

J̃n(a1, . . . , an).

The length of J̃n satisfies

|J̃n(a1, . . . , an)| =
∑

an+1: ξan+1≥(ξa1 ···ξan )M
|In+1(a1, . . . , an, an+1)|

= |In(a1, . . . , an)|
∑

j: ξj≥(ξa1 ···ξan )M

1

ξj
.

To estimate the last sum, define

j0 = min{j : ξj ≥ (ξa1 · · · ξan)M}.

Let k0 be the integer such that

22
(k0−1)! ≤ j0 < 22

k0!
.

Recalling the definition of ξn in (3.8), we have∑
j: ξj≥(ξa1 ···ξan )M

1

ξj
=
∞∑
j=j0

1

ξj
=

22
k0! − j0

22
k0!+1 +

∞∑
k=k0+1

22
k! − 22

(k−1)!

22k!+1(3.10)

≤
∞∑

k=k0

22
k! − 22

(k−1)!

22k!+1 ≤
∞∑

k=k0

1

22k!
≤ 4

3
· 1

22
k0!
.

Note that 22
k0!+1

= ξj0 ≥ (ξa1 · · · ξan)M . So∑
j: ξj≥(ξa1 ···ξan )M

1

ξj
≤ 4

3
(ξa1 · · · ξan)−M/2.
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As a result,

|J̃n(a1, . . . , an)| ≤ 4
3 |In(a1, . . . , an)| · (ξa1 · · · ξan)−M/2

= 4
3 |In(a1, . . . , an)|1+M/2.

Therefore, for any ε > 0,

H
1+ε

1+M/2 (EM ) ≤ lim inf
N→∞

∞∑
n=N

∑
a1,...,an

|J̃n(a1, . . . , an)|
1+ε

1+M/2

≤
(

4

3

) 1+ε
1+M/2

lim inf
N→∞

∞∑
n=N

∑
a1,...,an

|In(a1, . . . , an)|1+ε <∞.

So, dimH EM ≤ 1
1+M/2 . Thus we conclude that

dimH Ẽ(2, 2) ≤ dimH EM ≤
1

1 +M/2
→ 0 as M →∞.

4. Proof of Theorem 1.3. Recall (3.1). Denote by N the subset of N
such that

s0 = lim
n→∞, n∈N

log n

log ξn
.

Now we construct a subset B ⊂ N such that {ξn : n ∈ B} also has
convergence exponent s0. This is done by defining B part by part. Fix a > 1.

Define m1 = 0 and pick `1 � 1 such that m1 + `1 ∈ N . Then let the first
part of B be

B1 = {m1 + 1, . . . ,m1 + `1}.

Assume the (k − 1)th part of B has been defined, say

Bk−1 = {mk−1 + 1, . . . ,mk−1 + `k−1}.

Now we define the kth part of B as follows. Since ψ(n) → ∞ as n → ∞,
choose an integer nk such that

(4.1) ψ(nk) > mk−1 + `k−1.

Then choose another integer mk > mk−1 + `k−1 such that

(4.2) mk ≥ ak
nk .

Finally, choose a third integer `k such that

(4.3) mk + `k ∈ N and
`k

mk + `k
≥ 1− 1

k
.

Then define
Bk = {mk + 1, . . . ,mk + `k}
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and

B = {n ∈ Bk : k ≥ 1} = {m1 + 1, . . . ,m1 + `1︸ ︷︷ ︸
B1

,m2 + 1, . . . ,m2 + `2︸ ︷︷ ︸
B2

, . . .}.

By noticing that the (`1 + · · ·+ `k)th term in {ξn : n ∈ B} is ξmk+`k , the
convergence exponent of {ξn : n ∈ B} can be estimated as

s0(B) ≥ lim sup
k→∞

log(`1 + · · ·+ `k)

log ξmk+`k

≥ lim sup
k→∞

log `k
log ξmk+`k

= lim sup
k→∞

log(mk + `k)

log ξmk+`k
(by (4.3))

= s0.

Now we show that for the set B constructed above, the set

E(B,ψ) = {x ∈ Λ : an(x) ∈ B, an(x) ≥ ψ(n), ∀n ≥ 1}
has Hausdorff dimension 0.

More precisely, for any x ∈ E(B,ψ), when n = nk is chosen as in (4.1),
we have

ank(x) ≥ ψ(nk) > mk−1 + `k−1.

Since an(x) is also in B and the first term in B larger than mk−1 + `k−1 is
mk + 1, we have

ank(x) ≥ mk + 1 ≥ ak
nk .

Thus for any M > 1,

E(B,ψ) ⊂ {x ∈ [0, 1] : an(x) ≥ aMn
for infinitely many n}.

By Theorem 1.2, we have

dimH E(B,ψ) ≤ s0
s0 +M(1− s0)

→ 0 as M →∞.

5. Proof of Theorem 1.4. In this section, since several systems will be
considered at the same time, we use Λf and an(x, f) for the attractor and
the nth digit of x in the system {fn}n≥1. Let ψ : N→ N with ψ(n) ≥ 2 for
all n ∈ N and ψ(n)→∞ as n→∞. Define

Ef (ψ) = {x ∈ Λf : an(x, f) ≥ ψ(n) for all n ∈ N}.

Without loss of generality, suppose that s0 > 0. We take, for example,

ξn =


n1/s0

∞∑
k=1

k−1/s0 when 0 < s0 < 1,

n(log 2n)2
∞∑
k=1

1

k(log 2k)2
when s0 = 1.
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This ensures that the convergence exponent of {ξn}n≥1 is s0 and
∑∞

n=1 ξ
−1
n

= 1.
Take

fn(x) =
x

ξn
+

∞∑
k=n+1

1

ξk
for any x ∈ [0, 1].

Then {fn}n≥1 is a Gauss-like system with convergence exponent s0. By The-
orem 1.3, there exists B ⊂ N such that

(5.1) s0(B) = s0 and dimH Ef (B,ψ) = 0,

where

Ef (B,ψ) = {x ∈ Λf : an(x, f) ∈ B and an(x, f) ≥ ψ(n), ∀n ∈ N}.
Write B = {b1, b2, . . .}. For each n ≥ 1, let gn(x) := fbn(x). It is clear that
Λg ⊂ Λf and the digit sequences an(x, g) and an(x, f) for x ∈ Λg satisfy

(5.2) ban(x,g) = an(x, f) for all n ≥ 1.

Thus, for any x in

Eg(ψ) := {x ∈ Λg : an(x, g) ≥ ψ(n) for all n ∈ N},
one has

an(x, f) ∈ B, an(x, f) = ban(x,g) ≥ an(x, g) ≥ ψ(n).

This gives Eg(ψ) ⊂ Ef (B,ψ). So,

dimH Eg(ψ) = 0.

Now there is only one step left since what we required is a Gauss-like
system. This can be done by translating and then expanding the functions
{gn}n≥1 in the following way.

(1) Translation. For each n ≥ 1, translate gn to

h̃n(x) = gn(x) +

∞∑
k=n

|gk([0, 1])| − max
y∈[0,1]

gn(y) =
x

ξbn
+

∞∑
k=n+1

1

ξbk
.

This means that the gaps between

min{gn(x) : x ∈ [0, 1]} and max{gn+1(x) : x ∈ [0, 1]}
are reduced to zero for each n ≥ 1 and limn→∞ h̃n(x) = 0.

In the process, the distances between points in Λg get contracted. So,

(5.3) dimH E
h̃
(ψ) ≤ dimH Eg(ψ) = 0.

(2) Expanding.

hn(x) =


(

1−
∞∑
k=2

1

ξbk

)
x+

∞∑
k=2

1

ξbk
, n = 1,

h̃n(x), n ≥ 2,
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i.e., all functions remain the same but the first one which gets expanded to
ensure that ⋃

n≥1
hn([0, 1]) = [0, 1].

Clearly the system {hn}n≥1 has convergence exponent s0(B), which equals
s0 by (5.1).

Recall that at the very beginning of this section, we assume that ψ(n) ≥ 2
for all n ∈ N. Thus
(5.4) Eh(ψ) = E

h̃
(ψ)

since only the functions {hn}n≥2, {h̃n}n≥2 are involved.
By (5.3) and (5.4), we complete the proof.
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