Doubly commuting submodules of the Hardy module over polydiscs

by
Jaydeb Sarkar (Bangalore), Amol Sasane (London) and Brett D. Wick (Atlanta, GA)

Abstract

In this note we establish a vector-valued version of Beurling's theorem (the Lax-Halmos theorem) for the polydisc. As an application of the main result, we provide necessary and sufficient conditions for the "weak" completion problem in $H^{\infty}\left(\mathbb{D}^{n}\right)$.

1. Introduction and statement of main results. In [B], Beurling described all the invariant subspaces for the operator M_{z} of "multiplication by z " on the Hilbert space $H^{2}(\mathbb{D})$ of the disc. In [L], Peter Lax extended Beurling's result to the (finite-dimensional) vector-valued case (while also considering the Hardy space of the half-plane). Lax's vectorial case proof was further extended to infinite-dimensional vector spaces by Halmos (see [NF]). The characterization of M_{z}-invariant subspaces obtained is the following famous result.

Theorem 1.1 (Beurling-Lax-Halmos). Let \mathcal{S} be a closed nonzero subspace of $H_{E_{*}}^{2}(\mathbb{D})$. Then \mathcal{S} is invariant under multiplication by z if and only if there exists a Hilbert space E and an inner function $\Theta \in H_{E \rightarrow E_{*}}^{\infty}(\mathbb{D})$ such that $\mathcal{S}=\Theta H_{E}^{2}(\mathbb{D})$.

For $n \in \mathbb{N}$ and E_{*} a Hilbert space, $H_{E_{*}}^{2}\left(\mathbb{D}^{n}\right)$ is the set of all E_{*}-valued holomorphic functions in the polydisc \mathbb{D}^{n}, where $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$ (with boundary \mathbb{T}) such that

$$
\|f\|_{H_{E_{*}}^{2}\left(\mathbb{D}^{n}\right)}:=\sup _{0<r<1}\left(\int_{\mathbb{T}^{n}}\|f(r \mathbf{z})\|_{E_{*}}^{2} d \mathbf{z}\right)^{1 / 2}<\infty
$$

On the other hand, if $\mathcal{L}\left(E, E_{*}\right)$ denotes the set of all continuous linear transformations from E to E_{*}, then $H_{E \rightarrow E_{*}}^{\infty}\left(\mathbb{D}^{n}\right)$ denotes the set of all $\mathcal{L}\left(E, E_{*}\right)$ -

[^0]valued holomorphic functions with
$$
\|f\|_{H_{E \rightarrow E_{*}}^{\infty}\left(\mathbb{D}^{n}\right)}:=\sup _{\mathbf{z} \in \mathbb{D}^{n}}\|f(\mathbf{z})\|_{\mathcal{L}\left(E, E_{*}\right)}<\infty
$$

An operator-valued function $\Theta \in H_{E \rightarrow E_{*}}^{\infty}\left(\mathbb{D}^{n}\right)$ is inner if its pointwise boundary values are isometries a.e.:

$$
(\Theta(\zeta))^{*} \Theta(\zeta)=I_{E} \quad \text { for almost all } \zeta \in \mathbb{T}^{n}
$$

A natural question is then to ask about an analogue of Theorem 1.1 in the case of several variables, for example for the Hardy space $H_{E_{*}}^{2}\left(\mathbb{D}^{n}\right)$. It is known that in general, a Beurling-Lax-Halmos type characterization of subspaces of this Hardy space is not possible [R]. It is, however, easy to see that $H_{E_{*}}^{2}\left(\mathbb{D}^{n}\right)$, when $n>1$, has the doubly commuting property, that is, for all $1 \leq i<j \leq n$,

$$
M_{z_{i}}^{*} M_{z_{j}}=M_{z_{j}} M_{z_{i}}^{*}
$$

We impose this additional assumption on submodules of $H_{E_{*}}^{2}\left(\mathbb{D}^{n}\right)$ and call that class of submodules doubly commuting submodules. More precisely:

Definition 1.2. A commuting family of bounded linear operators $\left\{T_{1}, \ldots, T_{n}\right\}$ on some Hilbert space \mathcal{H} is said to be doubly commuting if

$$
T_{i} T_{j}^{*}=T_{j}^{*} T_{i} \quad \text { for all } 1 \leq i, j \leq n \text { and } i \neq j
$$

A closed subspace \mathcal{S} of $H_{E}^{2}\left(\mathbb{D}^{n}\right)$ is said to be a doubly commuting submodule if \mathcal{S} is a submodule, that is, $M_{z_{i}} \mathcal{S} \subseteq \mathcal{S}$ for all i, and the family $\left\{R_{z_{1}}, \ldots, R_{z_{n}}\right\}$ of module multiplication operators, where

$$
R_{z_{i}}:=\left.M_{z_{i}}\right|_{\mathcal{S}} \quad \text { for all } 1 \leq i \leq n
$$

is doubly commuting, that is,

$$
R_{z_{i}} R_{z_{j}}^{*}=R_{z_{j}}^{*} R_{z_{i}} \quad \text { for all } i \neq j \text { in }\{1, \ldots, n\}
$$

In this note we completely characterize the doubly commuting submodules of $H_{E_{*}}^{2}\left(\mathbb{D}^{n}\right)$. This result is an analogue of the classical Beurling-LaxHalmos theorem.

Theorem 1.3. Let \mathcal{S} be a closed nonzero subspace of $H_{E_{*}}^{2}\left(\mathbb{D}^{n}\right)$. Then \mathcal{S} is a doubly commuting submodule if and only if there exists a Hilbert space E with $E \subseteq E_{*}$, where the inclusion is up to unitary equivalence, and an inner function $\Theta \in H_{E \rightarrow E_{*}}^{\infty}\left(\mathbb{D}^{n}\right)$ such that

$$
\mathcal{S}=M_{\Theta} H_{E}^{2}\left(\mathbb{D}^{n}\right)
$$

In the special scalar case $E_{*}=\mathbb{C}$ and when $n=2$ (the bidisc), this characterization was obtained by Mandrekar [M], and the proof given there relies on the Wold decomposition for two variables [S]. Our proof is based on the more natural language of Hilbert modules and a generalization of Wold decomposition for doubly commuting isometries Sa.

As an application of this theorem, we can establish a version of the "Weak" Completion Property for the algebra $H^{\infty}\left(\mathbb{D}^{n}\right)$. Suppose that $E \subset E_{c}$. Recall that the Completion Problem for $H^{\infty}\left(\mathbb{D}^{n}\right)$ is the problem of characterizing the functions $f \in H_{E \rightarrow E_{c}}^{\infty}\left(\mathbb{D}^{n}\right)$ such that there exists an invertible function $F \in H_{E_{c} \rightarrow E_{c}}^{\infty}\left(\mathbb{D}^{n}\right)$ with $\left.F\right|_{E}=f$.

In the case of $H^{\infty}(\mathbb{D})$, the Completion Problem was settled by Tolokonnikov in [T0]. In that paper, it was pointed out that there is a close connection between the Completion Problem and the characterization of invariant subspaces of $H^{2}(\mathbb{D})$. Using Theorem 1.3 we then have the following analogue of the results in TO .

Theorem 1.4 (Tolokonnikov's lemma for the polydisc). Let $f \in$ $H_{E \rightarrow E_{c}}^{\infty}\left(\mathbb{D}^{n}\right)$ with $E \subset E_{c}$ and $\operatorname{dim} E, \operatorname{dim} E_{c}<\infty$. Then the following statements are equivalent:
(i) There exists $g \in H_{E_{c} \rightarrow E}^{\infty}\left(\mathbb{D}^{n}\right)$ such that $g f \equiv I$ in \mathbb{D}^{n} and the operators $M_{z_{1}}, \ldots, M_{z_{n}}$ doubly commute on $\operatorname{ker} M_{g}$.
(ii) There exists $F \in H_{E_{c} \rightarrow E_{c}}^{\infty}\left(\mathbb{D}^{n}\right)$ such that $\left.F\right|_{E}=f,\left.F\right|_{E_{c} \ominus E}$ is inner, and $F^{-1} \in H_{E_{c} \rightarrow E_{c}}^{\infty}\left(\mathbb{D}^{n}\right)$.
Remark 1.5. Theorem 1.4 for the polydisc is different from Tolokonnikov's lemma in the disc in which one does not demand that the completion F has the property that $\left.F\right|_{E_{c} \ominus E}$ is inner. But, from the proof of Tolokonnikov's lemma in the case of the disc (see $[\mathbb{N}]$), one can see that the following statements are equivalent for $f \in H_{E \rightarrow E_{c}}^{\infty}(\mathbb{D})$ with $E \subset E_{c}$ and $\operatorname{dim} E<\infty$:
(i) There exists a function $g \in H_{E_{c} \rightarrow E}^{\infty}(\mathbb{D})$ such that $g f \equiv I$ in \mathbb{D}.
(ii) There exists a function $F \in H_{E_{c} \rightarrow E_{c}}^{\infty}(\mathbb{D})$ such that $\left.F\right|_{E}=f$ and $F^{-1} \in H_{E_{c} \rightarrow E_{c}}^{\infty}(\mathbb{D})$.
(ii') There exists a function $F \in H_{E_{c} \rightarrow E_{c}}^{\infty}(\mathbb{D})$ such that $\left.F\right|_{E}=f,\left.F\right|_{E_{c} \ominus E}$ is inner, and $F^{-1} \in H_{E_{c} \rightarrow E_{c}}^{\infty}(\mathbb{D})$.
In the polydisc case it is unclear how the conditions (II) and (II') below are related:
(II) There exists a function $F \in H_{E_{c} \rightarrow E_{c}}^{\infty}\left(\mathbb{D}^{n}\right)$ such that $\left.F\right|_{E}=f$ and $F^{-1} \in H_{E_{c} \rightarrow E_{c}}^{\infty}\left(\mathbb{D}^{n}\right)$.
$\left(\mathrm{II}^{\prime}\right)$ There exists a function $F \in H_{E_{c} \rightarrow E_{c}}^{\infty}\left(\mathbb{D}^{n}\right)$ such that $\left.F\right|_{E}=f$, $\left.F\right|_{E_{c} \ominus E}$ is inner, and $F^{-1} \in H_{E_{c} \rightarrow E_{c}}^{\infty}\left(\mathbb{D}^{n}\right)$.
We refer to the Completion Problem in (II) as the Strong Completion Problem, while the one in (II^{\prime}) is the Weak Completion Problem. Whether the two are equivalent is an open problem.

We also remark that in the disc case, Tolokonnikov's lemma was proved by Sergei Treil [T] without any assumptions about the finite dimensionality of E, E_{c}. However, our proof of Theorem 1.4 relies on Lemma 3.1, whose validity we do not know without assuming the finite dimensionality of E and E_{c}.

EXAMPLE 1.6. As a simple illustration of Theorem 1.4, take $n=3$, $\operatorname{dim} E=1, \operatorname{dim} E_{c}=3$ and

$$
f:=\left[\begin{array}{l}
e^{z_{1}} \\
e^{z_{2}} \\
e^{z_{3}}
\end{array}\right] \in\left(H^{\infty}\left(\mathbb{D}^{3}\right)\right)^{3 \times 1}
$$

With $g:=\left[\begin{array}{lll}e^{-z_{1}} & 0 & 0\end{array}\right] \in\left(H^{\infty}\left(\mathbb{D}^{2}\right)\right)^{1 \times 3}$, we see that $g f=1$. We have

$$
\begin{aligned}
\operatorname{ker} M_{g} & =\left\{\left[\begin{array}{l}
\varphi_{1} \\
\varphi_{2} \\
\varphi_{3}
\end{array}\right] \in\left(H^{2}\left(\mathbb{D}^{3}\right)\right)^{3 \times 1}: e^{-z_{1}} \varphi_{1}=0\right\} \\
& =\left\{\left[\begin{array}{l}
\varphi_{1} \\
\varphi_{2} \\
\varphi_{3}
\end{array}\right] \in\left(H^{2}\left(\mathbb{D}^{3}\right)\right)^{3 \times 1}: \varphi_{1}=0\right\}=\Theta\left(H^{2}\left(\mathbb{D}^{2}\right)\right)^{2 \times 1}
\end{aligned}
$$

where Θ is the inner function

$$
\Theta:=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \in\left(H^{\infty}\left(\mathbb{D}^{3}\right)\right)^{3 \times 2}
$$

As Θ is inner, it follows from Theorem 1.3 that $M_{z_{1}}, M_{z_{2}}, M_{z_{3}}$ doubly commute on the submodule $\Theta\left(H^{2}\left(\mathbb{D}^{3}\right)\right)^{2 \times 1}=\operatorname{ker} M_{g}$. Hence f can be completed to an invertible matrix. In fact, with

$$
F:=\left[\begin{array}{ll}
f & \Theta
\end{array}\right]=\left[\begin{array}{lll}
e^{z_{1}} & 0 & 0 \\
e^{z_{2}} & 1 & 0 \\
e^{z_{3}} & 0 & 1
\end{array}\right]
$$

one can easily see that F is invertible as an element of $\left(H^{\infty}\left(\mathbb{D}^{3}\right)\right)^{3 \times 3}$.
In Section 2 we give a proof of Theorem 1.3, and subsequently, in Section 3, we use this theorem to study the Weak Completion Problem for $H^{\infty}\left(\mathbb{D}^{n}\right)$, providing a proof of Theorem 1.4 .
2. Beurling-Lax-Halmos theorem for the polydisc. In this section we present a complete characterization of "reducing submodules" and a proof of the Beurling-Lax-Halmos theorem for doubly commuting submodules of $H_{E}^{2}\left(\mathbb{D}^{n}\right)$.

Recall that a closed subspace $\mathcal{S} \subseteq H_{E}^{2}\left(\mathbb{D}^{n}\right)$ is said to be a reducing submodule of $H_{E}^{2}\left(\mathbb{D}^{n}\right)$ if $M_{z_{i}} \mathcal{S}, M_{z_{i}}^{*} \mathcal{S} \subseteq \mathcal{S}$ for all $i=1, \ldots, n$.

We start by reviewing some definitions and well-known facts about the vector-valued Hardy space over polydisc. For more details about reproducing kernel Hilbert spaces over domains in \mathbb{C}^{n}, we refer the reader to [DMS]. Let

$$
\mathbb{S}(\boldsymbol{z}, \boldsymbol{w})=\prod_{j=1}^{n}\left(1-\bar{w}_{j} z_{j}\right)^{-1} \quad\left((\boldsymbol{z}, \boldsymbol{w}) \in \mathbb{D}^{n} \times \mathbb{D}^{n}\right)
$$

be the Cauchy kernel on \mathbb{D}^{n}. Then for some Hilbert space E, the kernel function \mathbb{S}_{E} of $H_{E}^{2}\left(\mathbb{D}^{n}\right)$ is given by

$$
\mathbb{S}_{E}(\boldsymbol{z}, \boldsymbol{w})=\mathbb{S}(\boldsymbol{z}, \boldsymbol{w}) I_{E} \quad\left((\boldsymbol{z}, \boldsymbol{w}) \in \mathbb{D}^{n} \times \mathbb{D}^{n}\right)
$$

In particular, $\left\{\mathbb{S}(\cdot, \boldsymbol{w}) \eta: \boldsymbol{w} \in \mathbb{D}^{n}, \eta \in E\right\}$ is a total subset for $H_{E}^{2}\left(\mathbb{D}^{n}\right)$, that is,

$$
\overline{\operatorname{span}}\left\{\mathbb{S}(\cdot, \boldsymbol{w}) \eta: \boldsymbol{w} \in \mathbb{D}^{n}, \eta \in E\right\}=H_{E}^{2}\left(\mathbb{D}^{n}\right)
$$

where $\mathbb{S}(\cdot, \boldsymbol{w}) \in H^{2}\left(\mathbb{D}^{n}\right)$ and

$$
\mathbb{S}(\cdot, \boldsymbol{w})(\boldsymbol{z})=\mathbb{S}(\boldsymbol{z}, \boldsymbol{w}) \quad \text { for all } \boldsymbol{z}, \boldsymbol{w} \in \mathbb{D}^{n}
$$

Moreover, for all $f \in H_{E}^{2}\left(\mathbb{D}^{n}\right), \boldsymbol{w} \in \mathbb{D}^{n}$ and $\eta \in E$

$$
\langle f, \mathbb{S}(\cdot, \boldsymbol{w}) \eta\rangle_{H_{E}^{2}\left(\mathbb{D}^{n}\right)}=\langle f(\boldsymbol{w}), \eta\rangle_{E}
$$

Note also that for the multiplication operator $M_{z_{i}}$ on $H_{E}^{2}\left(\mathbb{D}^{n}\right)$,
$M_{z_{i}}^{*}(\mathbb{S}(\cdot, \boldsymbol{w}) \eta)=\bar{w}_{i}(\mathbb{S}(\cdot, \boldsymbol{w}) \eta) \quad$ for all $\boldsymbol{w} \in \mathbb{D}^{n}, \eta \in E$ and $1 \leq i \leq n$.
We also have

$$
\mathbb{S}^{-1}(\boldsymbol{z}, \boldsymbol{w})=\sum_{0 \leq i_{1}<\cdots<i_{l} \leq n}(-1)^{l} z_{i_{1}} \cdots z_{i_{l}} \bar{w}_{i_{1}} \cdots \bar{w}_{i_{l}} \quad \text { for all } \boldsymbol{z}, \boldsymbol{w} \in \mathbb{D}^{n}
$$

For $H_{E}^{2}\left(\mathbb{D}^{n}\right)$ we set

$$
\mathbb{S}_{E}^{-1}\left(\boldsymbol{M}_{\boldsymbol{z}}, \boldsymbol{M}_{\boldsymbol{z}}\right):=\sum_{0 \leq i_{1}<\cdots<i_{l} \leq n}(-1)^{l} M_{z_{i_{1}}} \cdots M_{z_{i_{l}}} M_{z_{i_{1}}}^{*} \cdots M_{z_{i_{l}}}^{*}
$$

The following lemma is well-known in the study of reproducing kernel Hilbert spaces.

Lemma 2.1. Let E be a Hilbert space. Then

$$
\mathbb{S}_{E}^{-1}\left(\boldsymbol{M}_{\boldsymbol{z}}, \boldsymbol{M}_{\boldsymbol{z}}\right)=P_{E}
$$

where P_{E} is the orthogonal projection of $H_{E}^{2}\left(\mathbb{D}^{n}\right)$ onto the space of all constant functions.

Proof. For all $\boldsymbol{z}, \boldsymbol{w} \in \mathbb{D}^{n}$ and $\eta, \zeta \in E$ we have

$$
\begin{aligned}
&\left\langle\mathbb{S}_{E}^{-1}\right.\left.\left(\boldsymbol{M}_{\boldsymbol{z}}, \boldsymbol{M}_{\boldsymbol{z}}\right)(\mathbb{S}(\cdot, \boldsymbol{z}) \eta), \mathbb{S}(\cdot, \boldsymbol{w}) \zeta\right\rangle_{H_{E}^{2}}^{2}\left(\mathbb{D}^{n}\right) \\
& \quad=\left\langle\sum_{0 \leq i_{1}<\cdots<i_{l} \leq n}(-1)^{l} M_{z_{i_{1}}} \cdots M_{z_{i_{l}}} M_{z_{i_{1}}}^{*} \cdots M_{z_{i_{l}}}^{*}(\mathbb{S}(\cdot, \boldsymbol{z}) \eta), \mathbb{S}(\cdot, \boldsymbol{w}) \zeta\right\rangle_{H_{E}^{2}\left(\mathbb{D}^{n}\right)} \\
& \quad=\sum_{0 \leq i_{1}<\cdots<i_{l} \leq n}(-1)^{l}\left\langle M_{z_{i_{1}}}^{*} \cdots M_{z_{i_{l}}}^{*}(\mathbb{S}(\cdot, \boldsymbol{z}) \eta), M_{z_{i_{1}}}^{*} \cdots M_{z_{i_{l}}}^{*}(\mathbb{S}(\cdot, \boldsymbol{w}) \zeta)\right\rangle_{H_{E}^{2}\left(\mathbb{D}^{n}\right)} \\
& \quad=\sum_{0 \leq i_{1}<\cdots<i_{l} \leq n}(-1)^{l} \bar{z}_{i_{1}} \cdots \bar{z}_{i_{l}} w_{i_{1}} \cdots w_{i_{l}}\langle\mathbb{S}(\cdot, \boldsymbol{z}), \mathbb{S}(\cdot, \boldsymbol{w})\rangle_{H^{2}\left(\mathbb{D}^{n}\right)}\langle\eta, \zeta\rangle_{E} \\
& \quad=\mathbb{S}^{-1}(\boldsymbol{w}, \boldsymbol{z}) \mathbb{S}(\boldsymbol{w}, \boldsymbol{z})\langle\eta, \zeta\rangle_{E}=\langle\eta, \zeta\rangle_{E}=\left\langle P_{E} \mathbb{S}(\cdot, \boldsymbol{z}) \eta, \mathbb{S}(\cdot, \boldsymbol{w}) \zeta\right\rangle_{H_{E}^{2}\left(\mathbb{D}^{n}\right)}
\end{aligned}
$$

Since $\left\{\mathbb{S}(\cdot, \boldsymbol{z}) \eta: \boldsymbol{z} \in \mathbb{D}^{n}, \eta \in E\right\}$ is a total subset of $H_{E}^{2}\left(\mathbb{D}^{n}\right)$, we conclude that, $\mathbb{S}_{E}^{-1}\left(\boldsymbol{M}_{\boldsymbol{z}}, \boldsymbol{M}_{\boldsymbol{z}}\right)=P_{E}$.

We now characterize the reducing submodules of $H_{E}^{2}\left(\mathbb{D}^{n}\right)$.
Proposition 2.2. Let \mathcal{S} be a closed subspace of $H_{E}^{2}\left(\mathbb{D}^{n}\right)$. Then \mathcal{S} is a reducing submodule of $H_{E}^{2}\left(\mathbb{D}^{n}\right)$ if and only if

$$
\mathcal{S}=H_{E_{*}}^{2}\left(\mathbb{D}^{n}\right) \quad \text { for some closed subspace } E_{*} \text { of } E .
$$

Proof. Let \mathcal{S} be a reducing submodule of $H_{E}^{2}\left(\mathbb{D}^{n}\right)$, that is,

$$
M_{z_{i}} P_{\mathcal{S}}=P_{\mathcal{S}} M_{z_{i}} \quad \text { for all } 1 \leq i \leq n
$$

By Lemma 2.1 ,

$$
P_{E} P_{\mathcal{S}}=\mathbb{S}_{E}^{-1}\left(\boldsymbol{M}_{\boldsymbol{z}}, \boldsymbol{M}_{\boldsymbol{z}}\right) P_{\mathcal{S}}=P_{\mathcal{S}} \mathbb{S}_{E}^{-1}\left(\boldsymbol{M}_{\boldsymbol{z}}, \boldsymbol{M}_{\boldsymbol{z}}\right)=P_{\mathcal{S}} P_{E}
$$

In particular, $P_{\mathcal{S}} P_{E}$ is an orthogonal projection and

$$
P_{\mathcal{S}} P_{E}=P_{E} P_{\mathcal{S}}=P_{E_{*}},
$$

where $E_{*}:=E \cap \mathcal{S}$. Hence, for any $f=\sum_{k \in \mathbb{N}^{n}} a_{\boldsymbol{k}} z^{\boldsymbol{k}} \in \mathcal{S}$, where $a_{\boldsymbol{k}} \in E$ for all $\boldsymbol{k} \in \mathbb{N}^{n}$, we have

$$
f=P_{\mathcal{S}} f=P_{\mathcal{S}}\left(\sum_{k \in \mathbb{N}^{n}} M_{z}^{k} a_{k}\right)=\sum_{k \in \mathbb{N}^{n}} M_{z}^{k} P_{\mathcal{S}} a_{k}
$$

But $P_{\mathcal{S}} a_{\boldsymbol{k}}=P_{\mathcal{S}} P_{E} a_{\boldsymbol{k}} \in E_{*}$. Consequently, $M_{z}^{\boldsymbol{k}} P_{\mathcal{S}} a_{\boldsymbol{k}} \in H_{E_{*}}^{2}\left(\mathbb{D}^{n}\right)$ for all $\boldsymbol{k} \in \mathbb{N}^{n}$ and hence $f \in H_{E_{*}}^{2}\left(\mathbb{D}^{n}\right)$. That is, $\mathcal{S} \subseteq H_{E_{*}}^{2}\left(\mathbb{D}^{n}\right)$. For the reverse inclusion, it is enough to observe that $E_{*} \subseteq \mathcal{S}$ and that \mathcal{S} is a reducing submodule.

The converse part is immediate.
Let \mathcal{S} be a doubly commuting submodule of $H_{E}^{2}\left(\mathbb{D}^{n}\right)$. Then

$$
R_{z_{i}} R_{z_{i}}^{*}=M_{z_{i}} P_{\mathcal{S}} M_{z_{i}}^{*} P_{\mathcal{S}}=M_{z_{i}} P_{\mathcal{S}} M_{z_{i}}^{*}
$$

implies that $R_{z_{i}} R_{z_{i}}^{*}$ is the orthogonal projection of \mathcal{S} onto $z_{i} \mathcal{S}$ and hence $I_{\mathcal{S}}-R_{z_{i}} R_{z_{i}}^{*}$ is the orthogonal projection of \mathcal{S} onto $\mathcal{S} \ominus z_{i} \mathcal{S}$, that is,

$$
I_{\mathcal{S}}-R_{z_{i}} R_{z_{i}}^{*}=P_{\mathcal{S} \ominus z_{i} \mathcal{S}} \quad \text { for all } i=1, \ldots, n
$$

Define

$$
\begin{aligned}
\mathcal{W}_{i} & =\operatorname{ran}\left(I_{\mathcal{S}}-R_{z_{i}} R_{z_{i}}^{*}\right)=\mathcal{S} \ominus z_{i} \mathcal{S} \quad \text { for all } i=1, \ldots, n \\
\mathcal{W} & =\bigcap_{i=1}^{n} \mathcal{W}_{i}
\end{aligned}
$$

By double commutativity of \mathcal{S} (also see [Sa]),

$$
\left(I_{\mathcal{S}}-R_{z_{i}} R_{z_{i}}^{*}\right)\left(I_{\mathcal{S}}-R_{z_{j}} R_{z_{j}}^{*}\right)=\left(I_{\mathcal{S}}-R_{z_{j}} R_{z_{j}}^{*}\right)\left(I_{\mathcal{S}}-R_{z_{i}} R_{z_{i}}^{*}\right)
$$

for all $i \neq j$. Therefore $\left\{\left(I_{\mathcal{S}}-R_{z_{i}} R_{z_{i}}^{*}\right)\right\}_{i=1}^{n}$ is a family of commuting orthogonal projections and hence

$$
\begin{align*}
\mathcal{W} & =\bigcap_{i=1}^{n} \mathcal{W}_{i}=\bigcap_{i=1}^{n}\left(\mathcal{S} \ominus z_{i} \mathcal{S}\right)=\bigcap_{i=1}^{n} \operatorname{ran}\left(I_{\mathcal{S}}-R_{z_{i}} R_{z_{i}}^{*}\right) \tag{2.1}\\
& =\operatorname{ran}\left(\prod_{i=1}^{n}\left(I_{\mathcal{S}}-R_{z_{i}} R_{z_{i}}^{*}\right)\right)
\end{align*}
$$

Now we present a wandering subspace theorem concerning doubly commuting submodules of $H_{E}^{2}\left(\mathbb{D}^{n}\right)$. It is a consequence of a several variables analogue of the classical Wold decomposition theorem, obtained by Gaşpar and Suciu [GS]. We provide a direct proof (see also Corollary 3.2 in [Sa]).

THEOREM 2.3. Let \mathcal{S} be a doubly commuting submodule of $H_{E}^{2}\left(\mathbb{D}^{n}\right)$. Then

$$
\mathcal{S}=\sum_{\boldsymbol{k} \in \mathbb{N}^{n}} \oplus z^{\boldsymbol{k}} \mathcal{W}
$$

Proof. First, note that if \mathcal{M} is a submodule of $H_{E}^{2}\left(\mathbb{D}^{n}\right)$ then

$$
\bigcap_{k \in \mathbb{N}} R_{z_{i}}^{* k} \mathcal{M} \subseteq \bigcap_{k \in \mathbb{N}} M_{z_{i}}^{* k} H_{E}^{2}\left(\mathbb{D}^{n}\right)=\{0\} \quad \text { for each } i=1, \ldots, n
$$

Therefore $R_{z_{i}}$ is a shift, that is, the unitary part $\bigcap_{k \in \mathbb{N}} R_{z_{i}}^{* k} \mathcal{M}$ in the Wold decomposition (cf. [NF], [Sa]) of $R_{z_{i}}$ on \mathcal{M} is trivial for all $i=1, \ldots, n$. Moreover, if \mathcal{S} is doubly commuting then

$$
R_{z_{i}}\left(I_{\mathcal{S}}-R_{z_{j}} R_{z_{j}}^{*}\right)=\left(I_{\mathcal{S}}-R_{z_{j}} R_{z_{j}}^{*}\right) R_{z_{i}} \quad \text { for all } i \neq j
$$

Therefore \mathcal{W}_{j} is an $R_{z_{i}}$-reducing subspace for all $i \neq j$. Note also that for
all $1 \leq m<n$,

$$
\begin{aligned}
\bigcap_{i=1}^{m+1} \mathcal{W}_{i} & =\operatorname{ran}\left(\prod_{i=1}^{m+1}\left(I_{\mathcal{S}}-R_{z_{i}} R_{z_{i}}^{*}\right)\right) \\
& =\operatorname{ran}\left(\prod_{i=1}^{m}\left(I_{\mathcal{S}}-R_{z_{i}} R_{z_{i}}^{*}\right)-R_{z_{m+1}} R_{z_{m+1}}^{*} \prod_{i=1}^{m}\left(I_{\mathcal{S}}-R_{z_{i}} R_{z_{i}}^{*}\right)\right) \\
& =\operatorname{ran}\left(\prod_{i=1}^{m}\left(I_{\mathcal{S}}-R_{z_{i}} R_{z_{i}}^{*}\right)-R_{z_{m+1}} \prod_{i=1}^{m}\left(I_{\mathcal{S}}-R_{z_{i}} R_{z_{i}}^{*}\right) R_{z_{m+1}}^{*}\right) \\
& =\left(\mathcal{W}_{1} \cap \cdots \cap \mathcal{W}_{m}\right) \ominus z_{m+1}\left(\mathcal{W}_{1} \cap \cdots \cap \mathcal{W}_{m}\right) .
\end{aligned}
$$

We use induction to prove that for all $2 \leq m \leq n$,

$$
\mathcal{S}=\sum_{k \in \mathbb{N}^{m}} \oplus z^{k}\left(\mathcal{W}_{1} \cap \cdots \cap \mathcal{W}_{m}\right) .
$$

First, by the Wold decomposition theorem for the shift $R_{z_{1}}$ on \mathcal{S} we have

$$
\mathcal{S}=\sum_{k_{1} \in \mathbb{N}} \oplus R_{z_{1}}^{k_{1}} \mathcal{W}_{1}=\sum_{k_{1} \in \mathbb{N}} \oplus z_{1}^{k_{1}} \mathcal{W}_{1}
$$

Again by applying Wold decomposition for $R_{z_{2}} \mid \mathcal{W}_{1} \in \mathcal{L}\left(\mathcal{W}_{1}\right)$ we obtain

$$
\mathcal{W}_{1}=\sum_{k_{2} \in \mathbb{N}} \oplus R_{z_{2}}^{k_{2}}\left(\mathcal{W}_{1} \ominus z_{2} \mathcal{W}_{1}\right)=\sum_{k_{2} \in \mathbb{N}} \oplus z_{2}^{k_{2}}\left(\mathcal{W}_{1} \cap \mathcal{W}_{2}\right)
$$

and hence

$$
\mathcal{S}=\sum_{k_{1} \in \mathbb{N}} \oplus z_{1}^{k_{1}}\left(\sum_{k_{2} \in \mathbb{N}} \oplus m z_{2}^{k_{2}}\left(\mathcal{W}_{1} \cap \mathcal{W}_{2}\right)\right)=\sum_{k_{1}, k_{2} \in \mathbb{N}} \oplus z_{1}^{k_{1}} z_{2}^{k_{2}}\left(\mathcal{W}_{1} \cap \mathcal{W}_{2}\right)
$$

Finally, suppose

$$
\mathcal{S}=\sum_{\boldsymbol{k} \in \mathbb{N}^{m}} \oplus z^{\boldsymbol{k}}\left(\mathcal{W}_{1} \cap \cdots \cap \mathcal{W}_{m}\right)
$$

for some $m<n$. Then we again apply the Wold decomposition of the isometry

$$
R_{z_{m+1}} \mid \mathcal{W}_{1} \cap \cdots \cap \mathcal{W}_{m} \in \mathcal{L}\left(\mathcal{W}_{1} \cap \cdots \cap \mathcal{W}_{m}\right)
$$

to obtain

$$
\begin{gathered}
\mathcal{W}_{1} \cap \cdots \cap \mathcal{W}_{m}=\sum_{k_{m+1} \in \mathbb{N}} \oplus z_{m+1}^{k_{m+1}}\left(\left(\mathcal{W}_{1} \cap \cdots \cap \mathcal{W}_{m}\right) \ominus z_{m+1} \mathcal{W}_{1} \cap \cdots \cap \mathcal{W}_{m}\right) \\
=\sum_{k_{m+1} \in \mathbb{N}} \oplus z_{m+1}^{k_{m+1}}\left(\mathcal{W}_{1} \cap \cdots \cap \mathcal{W}_{m} \cap \mathcal{W}_{m+1}\right)
\end{gathered}
$$

which yields

$$
\mathcal{S}=\sum \oplus z^{k}\left(\mathcal{W}_{1} \cap \cdots \cap \mathcal{W}_{m+1}\right)
$$

This completes the proof.

Proof of Theorem 1.3. By Theorem 2.3 we have

$$
\begin{equation*}
\mathcal{S}=\sum_{k \in \mathbb{N}^{n}} \oplus z^{k}\left(\bigcap_{i=1}^{n} \mathcal{W}_{i}\right) . \tag{2.2}
\end{equation*}
$$

Now define the Hilbert space E by

$$
E=\bigcap_{i=1}^{n} \mathcal{W}_{i},
$$

and the linear operator $V: H_{E}^{2}\left(\mathbb{D}^{n}\right) \rightarrow H_{E_{*}}^{2}\left(\mathbb{D}^{n}\right)$ by

$$
V\left(\sum_{k \in \mathbb{N}^{n}} a_{\boldsymbol{k}} z^{k}\right)=\sum_{k \in \mathbb{N}^{n}} M_{z}^{k} a_{k},
$$

where $\sum_{k \in \mathbb{N}^{n}} a_{\boldsymbol{k}} z^{\boldsymbol{k}} \in H_{E}^{2}\left(\mathbb{D}^{n}\right)$ and $a_{\boldsymbol{k}} \in E$ for all $\boldsymbol{k} \in \mathbb{N}^{n}$. Observe that

$$
\left\|\sum_{k \in \mathbb{N}^{n}} M_{z}^{\boldsymbol{k}} a_{\boldsymbol{k}}\right\|_{H_{E_{*}}^{2}\left(\mathbb{D}^{n}\right)}^{2}=\left\|\sum_{\boldsymbol{k} \in \mathbb{N}^{n}} z^{\boldsymbol{k}} a_{\boldsymbol{k}}\right\|_{H_{E_{*}}^{2}\left(\mathbb{D}^{n}\right)}^{2}=\sum_{\boldsymbol{k} \in \mathbb{N}^{n}}\left\|z^{\boldsymbol{k}} a_{\boldsymbol{k}}\right\|_{H_{E_{*}}^{2}\left(\mathbb{D}^{n}\right)}^{2},
$$

where the last equality follows from the orthogonal decomposition of \mathcal{S} in (2.2). Therefore,

$$
\begin{aligned}
\left\|\sum_{\boldsymbol{k} \in \mathbb{N}^{n}} M_{z}^{\boldsymbol{k}} a_{\boldsymbol{k}}\right\|_{H_{E_{*}}^{2}\left(\mathbb{D}^{n}\right)}^{2} & =\sum_{\boldsymbol{k} \in \mathbb{N}^{n}}\left\|a_{\boldsymbol{k}}\right\|_{H_{E_{*}}^{2}\left(\mathbb{D}^{n}\right)}^{2}=\sum_{\boldsymbol{k} \in \mathbb{N}^{n}}\left\|a_{\boldsymbol{k}}\right\|_{E}^{2} \\
& =\left\|\sum_{\boldsymbol{k} \in \mathbb{N}^{n}} z^{\boldsymbol{k}} a_{\boldsymbol{k}}\right\|_{H_{E}^{2}\left(\mathbb{D}^{n}\right)}^{2}
\end{aligned}
$$

and hence V is an isometry. Moreover, for all $\boldsymbol{k} \in \mathbb{N}^{n}$ and $\eta \in E$ we have

$$
V M_{z_{i}}\left(z^{\boldsymbol{k}} \eta\right)=V\left(z^{\boldsymbol{k}+e_{i}} \eta\right)=M_{z}^{k+e_{i}} \eta=M_{z_{i}}\left(M_{z}^{\boldsymbol{k}} \eta\right)=M_{z_{i}} V\left(z^{k} \eta\right),
$$

that is, $V M_{z_{i}}=M_{z_{i}} V$ for all $i=1, \ldots, n$. Hence V is a module map. Therefore, $V=M_{\Theta}$ for some bounded holomorphic function $\Theta \in H_{E \rightarrow E_{*}}^{\infty}\left(\mathbb{D}^{n}\right)($ cf. [BLTT, p. 655]). Moreover, since V is an isometry, we have

$$
M_{\Theta}^{*} M_{\Theta}=I_{H_{E}^{2}\left(\mathbb{D}^{n}\right)}
$$

that is, Θ is an inner function. Also since $M_{z_{i}} E \subseteq \mathcal{S}$ for all $i=1, \ldots, n$ we have $\operatorname{ran} V \subseteq \mathcal{S}$ and by 2.2 also $\mathcal{S} \subseteq \operatorname{ran} V$. Hence

$$
\operatorname{ran} V=\operatorname{ran} M_{\Theta}=\mathcal{S}
$$

that is,

$$
\mathcal{S}=\Theta H_{E}^{2}\left(\mathbb{D}^{n}\right) .
$$

Finally, for all $i=1, \ldots, n$, we have

$$
\mathcal{S} \ominus z_{i} \mathcal{S}=\Theta H_{E}^{2}\left(\mathbb{D}^{n}\right) \ominus z_{i} \Theta H_{E}^{2}\left(\mathbb{D}^{n}\right)=\left\{\Theta f: f \in H_{E}^{2}\left(\mathbb{D}^{n}\right), M_{z_{i}}^{*} \Theta f=0\right\}
$$

and hence by 2.1,

$$
\begin{aligned}
E & =\bigcap_{i=1}^{n} \mathcal{W}_{i}=\bigcap_{i=1}^{n}\left(\mathcal{S} \ominus z_{i} \mathcal{S}\right)=\left\{\Theta f: M_{z_{i}}^{*} \Theta f=0, f \in H_{E}^{2}\left(\mathbb{D}^{n}\right), \forall i=1, \ldots, n\right\} \\
& \subseteq\left\{g \in H_{E_{*}}^{2}\left(\mathbb{D}^{n}\right): M_{z_{i}}^{*} g=0, \forall i=1, \ldots, n\right\}=E_{*}
\end{aligned}
$$

that is, $E \subseteq E_{*}$.
To prove the converse, let $\mathcal{S}=M_{\Theta} H_{E}^{2}\left(\mathbb{D}^{n}\right)$ be a submodule of $H_{E_{*}}^{2}\left(\mathbb{D}^{n}\right)$ for some inner function $\Theta \in H_{E \rightarrow E_{*}}^{\infty}\left(\mathbb{D}^{n}\right)$. Then

$$
P_{\mathcal{S}}=M_{\Theta} M_{\Theta}^{*}
$$

and hence for all $i \neq j$,

$$
\begin{aligned}
M_{z_{i}} P_{\mathcal{S}} M_{z_{j}}^{*} & =M_{z_{i}} M_{\Theta} M_{\Theta}^{*} M_{z_{j}}^{*}=M_{\Theta} M_{z_{i}} M_{z_{j}}^{*} M_{\Theta}^{*}=M_{\Theta} M_{z_{j}}^{*} M_{z_{i}} M_{\Theta}^{*} \\
& =M_{\Theta} M_{z_{j}}^{*} M_{\Theta}^{*} M_{\Theta} M_{z_{i}} M_{\Theta}^{*}=M_{\Theta} M_{\Theta}^{*} M_{z_{j}}^{*} M_{z_{i}} M_{\Theta} M_{\Theta}^{*} \\
& =P_{\mathcal{S}} M_{z_{j}}^{*} M_{z_{i}} P_{\mathcal{S}} .
\end{aligned}
$$

This implies

$$
R_{z_{j}}^{*} R_{z_{i}}=\left.P_{\mathcal{S}} M_{z_{j}}^{*} P_{\mathcal{S}} M_{z_{i}}\right|_{\mathcal{S}}=\left.P_{\mathcal{S}} M_{z_{j}}^{*} M_{z_{i}}\right|_{\mathcal{S}}=M_{z_{i}} P_{\mathcal{S}} M_{z_{j}}^{*}=R_{z_{i}} R_{z_{j}}^{*}
$$

that is, \mathcal{S} is a doubly commuting submodule. -
3. Tolokonnikov's lemma for the polydisc. We will need the following lemma, which is a polydisc version of a similar result proved in the case of the disc in Nikolski's book [N, pp. 44-45]. Here we use the notation M_{g} for the multiplication operator on H_{E}^{2} induced by $g \in H_{E \rightarrow E_{*}}^{\infty}$.

Lemma 3.1 (Lemma on local rank). Let E, E_{c} be Hilbert spaces with $\operatorname{dim} E, \operatorname{dim} E_{c}<\infty$. Let $g \in H_{E_{c} \rightarrow E}^{\infty}\left(\mathbb{D}^{n}\right)$ be such that

$$
\operatorname{ker} M_{g}=\left\{h \in H_{E_{c}}^{2}\left(\mathbb{D}^{n}\right): g(z) h(z) \equiv 0\right\}=\Theta H_{E_{a}}^{2}\left(\mathbb{D}^{n}\right)
$$

where E_{a} is a Hilbert space and Θ is an $\mathcal{L}\left(E_{a}, E_{c}\right)$-valued inner function. Then

$$
\operatorname{dim} E_{c}=\operatorname{dim} E_{a}+\operatorname{rank} g
$$

where $\operatorname{rank} g:=\max _{\zeta \in \mathbb{D}^{n}} \operatorname{rank} g(\zeta)$.
Proof. We have ker $M_{g}=\left\{h \in H_{E_{c}}^{2}\left(\mathbb{D}^{n}\right): g h \equiv 0\right\}$. If $\zeta \in \mathbb{D}^{n}$, then let

$$
\left[\operatorname{ker} M_{g}\right](\zeta):=\left\{h(\zeta): h \in \operatorname{ker} M_{g}\right\}
$$

We claim that $\left[\operatorname{ker} M_{g}\right](\zeta)=\Theta(\zeta) E_{a}$. Indeed, let $v \in\left[\operatorname{ker} M_{g}\right](\zeta)$. Then $v=h(\zeta)$ for some element $h \in \operatorname{ker} M_{g}=\Theta H_{E_{a}}^{2}\left(\mathbb{D}^{n}\right)$. So $h=\Theta \varphi$ for some
$\varphi \in H_{E_{a}}^{2}\left(\mathbb{D}^{n}\right)$. In particular, $v=h(\zeta)=\Theta(\zeta) \varphi(\zeta)$, where $\varphi(\zeta) \in E_{a}$. So

$$
\begin{equation*}
\left[\operatorname{ker} M_{g}\right](\zeta) \subset \Theta(\zeta) E_{a} . \tag{3.1}
\end{equation*}
$$

On the other hand, if $w \in \Theta(\zeta) E_{a}$, then $w=\Theta(\zeta) x$, where $x \in E_{a}$. Consider the constant function \mathbf{x} mapping $\mathbb{D} \ni \mathbf{z} \mapsto x \in E_{a}$. Clearly $\mathbf{x} \in H_{E_{a}}^{2}\left(\mathbb{D}^{n}\right)$. So $h:=\Theta \mathbf{x} \in \Theta H_{E_{a}}^{2}\left(\mathbb{D}^{n}\right)=\operatorname{ker} M_{g}$. Hence $w=\Theta(\zeta) x=(\Theta \mathbf{x})(\zeta)=h(\zeta)$, and so $w \in\left[\operatorname{ker} M_{g}\right](\zeta)$. So we also have

$$
\begin{equation*}
\Theta(\zeta) E_{a} \subset\left[\operatorname{ker} M_{g}\right](\zeta) \tag{3.2}
\end{equation*}
$$

Our claim that $\left[\operatorname{ker} M_{g}\right](\zeta)=\Theta(\zeta) E_{a}$ follows from (3.1) and (3.2).
Suppose that $v \in\left[\operatorname{ker} M_{g}\right](\zeta)$ for some $\zeta \in \mathbb{D}^{n}$. Then $v=h(\zeta)$ for some $h \in \operatorname{ker} M_{g}$. Thus $g h \equiv 0$ in \mathbb{D}^{n}, and in particular $g(\zeta) v=g(\zeta) h(\zeta)=0$. Thus $v \in \operatorname{ker} g(\zeta)$. So $\left[\operatorname{ker} M_{g}\right](\zeta) \subset \operatorname{ker} g(\zeta)$. Hence $\operatorname{dim}\left[\operatorname{ker} M_{g}\right](\zeta) \leq$ $\operatorname{dim} \operatorname{ker} g(\zeta)$, and consequently

$$
\operatorname{dim} \Theta(\zeta) E_{a}=\operatorname{dim}\left[\operatorname{ker} M_{g}\right](\zeta) \leq \operatorname{dim} \operatorname{ker} g(\zeta)=\operatorname{dim} E_{c}-\operatorname{rank} g(\zeta),
$$

where the last equality follows from the Rank-Nullity Theorem. Since Θ is inner, its boundary values satisfy $\Theta(\zeta)^{*} \Theta(\zeta)=I_{E_{c}}$ for almost all $\zeta \in \mathbb{T}^{n}$. So there is an open set $U \subset \mathbb{D}^{n}$ such that for all $\zeta \in U$,

$$
\operatorname{dim} E_{a}=\operatorname{dim} \Theta(\zeta) E_{a}
$$

But from the definition of the rank of g, we know that there is a $\zeta_{*} \in \mathbb{D}^{n}$ such that $k:=\operatorname{rank} g=\operatorname{rank} g\left(\zeta_{*}\right)$. So there is a $k \times k$ submatrix of $g\left(\zeta_{*}\right)$ which is invertible. Now look at the determinant of this $k \times k$ submatrix of g. This is a holomorphic function, and so it cannot be identically zero in the open set U. So there must exist a point $\zeta_{1} \in U \subset \mathbb{D}^{n}$ such that $\operatorname{rank} g=\operatorname{rank} g\left(\zeta_{1}\right)$ and $\operatorname{dim} E_{a}=\operatorname{dim} \Theta\left(\zeta_{1}\right) E_{a}$. Hence $\operatorname{dim} E_{a} \leq \operatorname{dim} E_{c}-\operatorname{rank} g$.

For the proof of the opposite inequality, consider a principal minor $g_{1}\left(\zeta_{1}\right)$ of the matrix of the operator $g\left(\zeta_{1}\right)$ (with respect to any two fixed bases in E_{c} and E respectively). Then $\operatorname{det} g_{1} \in H^{\infty}, \operatorname{det} g_{1} \not \equiv 0$. Let $E_{c}=E_{c, 1} \oplus E_{c, 2}$, $E=E_{1} \oplus E_{2}\left(\operatorname{dim} E_{c, 1}=\operatorname{dim} E_{1}=\operatorname{rank} g\left(\zeta_{1}\right)\right)$ be the decompositions corresponding to this minor, and let

$$
g(\zeta)=\left[\begin{array}{ll}
g_{1}(\zeta) & g_{2}(\zeta) \\
\gamma_{1}(\zeta) & \gamma_{2}(\zeta)
\end{array}\right], \quad \zeta \in \mathbb{D}^{n}
$$

be the matrix representation of $g(\zeta)$ with respect to this decomposition. Owing to our assumption on the rank, it follows that there is a matrix function $\zeta \mapsto W(\zeta)$ such that

$$
\left[\gamma_{1}(\zeta) \quad \gamma_{2}(\zeta)\right]=W(\zeta)\left[g_{1}(\zeta) \quad g_{2}(\zeta)\right] .
$$

So $\gamma_{2}(\zeta)=W(\zeta) g_{2}(\zeta)=\left(\gamma_{1}(\zeta)\left(g_{1}(\zeta)\right)^{-1}\right) g_{2}(\zeta)$. Thus with $g_{1}^{\text {co }}:=\left(\operatorname{det} g_{1}\right) g_{1}^{-1}$,
we have

$$
\gamma_{2} \operatorname{det} g_{1}=\gamma_{1} g_{1}^{\mathrm{co}} g_{2}
$$

and using this we get the inclusion $M_{\Omega} H_{E_{c, 2}}^{2}\left(\mathbb{D}^{n}\right) \subset \operatorname{ker} M_{g}$, where $\Omega \in$ $H_{E_{c, 2} \rightarrow E_{c}}^{\infty}\left(\mathbb{D}^{n}\right)$ is given by

$$
\Omega=\left[\begin{array}{c}
g_{1}^{\mathrm{co}} g_{2} \\
-\operatorname{det} g_{1}
\end{array}\right]
$$

We have $\operatorname{rank} \Omega=\operatorname{dim} E_{c, 2}=\operatorname{dim} E_{c}-\operatorname{rank} g=\operatorname{dim} \operatorname{ker}\left(g\left(\zeta_{1}\right)\right)$. Consequently, $\operatorname{dim}\left[\operatorname{ker} M_{g}\right]\left(\zeta_{1}\right) \geq \operatorname{dim} \operatorname{ker}\left(g\left(\zeta_{1}\right)\right)$.

We now turn to the extension of Tolokonnikov's Lemma to the polydisc.
Proof of Theorem 1.4. (ii) \Rightarrow (i): If $g:=P_{E} F^{-1}$, then $g f=I$. It only remains to show that the operators $M_{z_{1}}, \ldots, M_{z_{n}}$ are doubly commuting on ker M_{g}. Let Θ, Γ be such that

$$
F=\left[\begin{array}{ll}
f & \Theta
\end{array}\right] \quad \text { and } \quad F^{-1}=\left[\begin{array}{c}
g \\
\Gamma
\end{array}\right]
$$

Since $F F^{-1}=I_{E_{c}}$, it follows that $f g+\Theta \Gamma=I_{E_{c}}$. Thus if $h \in H_{E_{c}}^{2}\left(\mathbb{D}^{n}\right)$ is such that $g h=0$, then $\Theta(\Gamma h)=h$, and so $h \in \Theta H_{\left.E_{c} \ominus E\right)}^{2}\left(\mathbb{D}^{n}\right)$. Hence ker $M_{g} \subset \operatorname{ran} M_{\Theta}$. Also, since $F^{-1} F=I$, it follows that $g \Theta=0$, and so $\operatorname{ran} M_{\Theta} \subset \operatorname{ker} M_{g}$. So ker $M_{g}=\operatorname{ran} M_{\Theta}=\Theta H_{E_{c} \ominus E}^{2}\left(\mathbb{D}^{2}\right)$. By Theorem 1.3 , the operators $M_{z_{1}}, \ldots, M_{z_{n}}$ doubly commute on $\operatorname{ker} M_{g}$.

$$
(\mathrm{i}) \Rightarrow(\mathrm{ii}): \text { Let }
$$

$$
\mathcal{S}:=\left\{h \in H_{E_{c}}^{2}\left(\mathbb{D}^{n}\right): g(z) h(z) \equiv 0\right\}=\operatorname{ker} g
$$

\mathcal{S} is a closed nonzero invariant subspace of $H_{E_{c}}^{2}\left(\mathbb{D}^{n}\right)$. Also, by assumption, $M_{z_{1}}, \ldots, M_{z_{n}}$ are doubly commuting operators on \mathcal{S}. Then by Theorem 1.3, there exists an auxiliary Hilbert space E_{a} and an inner function $\widetilde{\Theta}$ with values in $\mathcal{L}\left(E_{a}, E_{c}\right)$ with $\operatorname{dim} E_{a} \leq \operatorname{dim} E_{c}$ such that

$$
\mathcal{S}=\widetilde{\Theta} H_{E_{a}}^{2}\left(\mathbb{D}^{n}\right)
$$

By the lemma on local rank, $\operatorname{dim} E_{a}=\operatorname{dim} E_{c}-\operatorname{rank} g=\operatorname{dim} E_{c}-\operatorname{dim} E=$ $\operatorname{dim}\left(E_{c} \ominus E\right)$. Let U be a (constant) unitary operator from $E_{c} \ominus E$ to E_{a} and define $\Theta:=\widetilde{\Theta} U$. Then Θ is inner, and we have ker $g=\Theta H_{E_{c} \ominus E}^{2}\left(\mathbb{D}^{n}\right)$. To get $F \in H_{E_{c} \rightarrow E_{c}}^{\infty}\left(\mathbb{D}^{n}\right)$ define the function F for $z \in \mathbb{D}^{n}$ by

$$
F(z) e:= \begin{cases}f(z) e & \text { if } e \in E \\ \Theta(z) e & \text { if } e \in E_{c} \ominus E\end{cases}
$$

We note that $F \in H^{\infty}\left(\mathbb{D}^{n}\right)$ and $\left.F\right|_{E}=f$. We now show that F is invertible.

With this in mind, we first observe that

$$
(I-f g) H_{E_{c}}^{2}\left(\mathbb{D}^{n}\right) \subset \Theta H_{E_{c} \ominus E}^{2}\left(\mathbb{D}^{n}\right)=\operatorname{ker} M_{g}
$$

This follows since $g(I-f g) h=g h-g h=0$ for all $h \in H_{E_{c}}^{2}\left(\mathbb{D}^{n}\right)$. Thus we see that $\Theta^{*}(I-f g) \in H_{E_{c} \rightarrow E_{c} \ominus E}^{\infty}\left(\mathbb{D}^{n}\right)$. Now, define $\Omega=g \oplus \Theta^{*}(I-f g)$. Clearly $\Omega \in H_{E_{c} \rightarrow E_{c}}^{\infty}\left(\mathbb{D}^{n}\right)$. Next, note that

$$
F \Omega=f g+\Theta \Theta^{*}(I-f g)=I
$$

Similarly,

$$
\begin{aligned}
\Omega F & =g f \mathbb{P}_{E}+\Theta^{*}(I-f g)\left(f \mathbb{P}_{E}+\Theta \mathbb{P}_{E_{c} \ominus E}\right) \\
& =\mathbb{P}_{E}+\Theta^{*}\left(f \mathbb{P}_{E}-f g f \mathbb{P}_{E}+\Theta \mathbb{P}_{E_{c} \ominus E}\right) \\
& =\mathbb{P}_{E}+\Theta^{*} \Theta \mathbb{P}_{E_{c} \ominus E}=I .
\end{aligned}
$$

Thus $F^{-1} \in H^{\infty}\left(\mathbb{D}^{n} ; E_{c} \rightarrow E_{c}\right)$.
Acknowledgements. The authors thank the anonymous referee for the careful review, for help in improving the presentation of the paper, and also for suggesting Example 1.6 .

The research of B. D. Wick was supported in part by National Science Foundation DMS grants \# 1001098 and \# 955432.

References

[BLTT] J. Ball, W. S. Li, D. Timotin and T. Trent, A commutant lifting theorem on the polydisc, Indiana Univ. Math. J. 48 (1999), 653-675.
[B] A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1948), 17 pp.
[DMS] R. Douglas, G. Misra and J. Sarkar, Contractive Hilbert modules and their dilations, Israel J. Math. 187 (2012), 141-165.
[GS] D. Gaşpar and N. Suciu, Wold decompositions for commutative families of isometries, An. Univ. Timişoara Ser. Şti. Mat. 27 (1989), 31-38.
[L] P. D. Lax, Translation invariant spaces, Acta Math. 101 (1959), 163-178.
[M] V. Mandrekar, The validity of Beurling theorems in polydiscs, Proc. Amer. Math. Soc. 103 (1988), 145-148.
[N] N. K. Nikolski, Treatise on the Shift Operator, Grundlehren Math. Wiss. 273, Springer, Berlin, 1986.
[R] W. Rudin, Function Theory in Polydiscs, W. A. Benjamin, New York, 1969.
[Sa] J. Sarkar, Wold decomposition for doubly commuting isometries, arXiv:1304. 7454.
[S] M. Słociński, On the Wold-type decomposition of a pair of commuting isometries, Ann. Polon. Math. 37 (1980), 255-262.
[NF] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, 1970.
[To] V. Tolokonnikov, Extension problem to an invertible matrix, Proc. Amer. Math. Soc. 117 (1993), 1023-1030.
[T] S. Treil, An operator corona theorem, Indiana Univ. Math. J. 53 (2004), 17631780.

Jaydeb Sarkar
Indian Statistical Institute
Statistics and Mathematics Unit
8th Mile, Mysore Road
Bangalore, 560059, India
E-mail: jay@isibang.ac.in, jaydeb@gmail.com
Amol Sasane
Mathematics Department
London School of Economics
Houghton Street

URL: http://www.isibang.ac.in/~jay/
Brett D. Wick
School of Mathematics
Georgia Institute of Technology
686 Cherry Street
Atlanta, GA 30332-0160, U.S.A.
E-mail: wick@math.gatech.edu
URL: www.math.gatech.edu/~ wick

[^0]: 2010 Mathematics Subject Classification: Primary 46J15; Secondary 47A15, 30H05, 47A56. Key words and phrases: invariant subspace, shift operator, doubly commuting, Hardy algebra on the polydisc, completion problem.

