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Conjugacy for Fourier—Bessel expansions
by

Oscar CIAURRI (Logrofio) and KRzYSZTOF STEMPAK (Wroctaw)

Abstract. We define and investigate the conjugate operator for Fourier—Bessel ex-
pansions. Weighted norm and weak type (1,1) inequalities are proved for this operator
by using a local version of the Calderéon-Zygmund theory, with weights in most cases
more general than A, weights. Also results on Poisson and conjugate Poisson integrals
are furnished for the expansions considered. Finally, an alternative conjugate operator is
discussed.

1. Introduction and statement of results. Given v > —1 consider
the differential operator

2 1/4—v?
1.1 L,=—(—+2"—"—"),
(L.1) <dx2+ z? >

initially defined on the space C2°(0,1). It is a positive and symmetric oper-
ator in L?((0,1),dz). The functions {¢%},>1,

¢Z(ﬂj) = dTL,I/(ATL,I/x)l/QJI/()\n,V:C)v n v = \/_ ’)\1 2J ( n 1/)|_17

where {\,,}n>1 denotes the sequence of the successive positive zeros of
the Bessel function J,(z), are eigenfunctions of L, corresponding to the
eigenvalues )\,21’1,,

Ly = X%,

and form a complete orthonormal system in L%((0,1), dz); see [13, Chapter
XVII] for a comprehensive study of Fourier—Bessel expansions.

In particular,

v (@) = Vacos(n(n — 1/2)z), /2 (x) = V2sin(mna),
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for n =1,2,.... It may be easily checked that the operator £, given by

LSSt uer) - ZA (Fvien
n=1

on the domain

Dom(L,) = {feLQ ((0,1),dx) Z])\ <oo}

with (f,y¥) = S f(x)Yk(x) dx, is a self-adjoint extension of L, has the dis-
crete spectrum {)\ : n=1,2,...} and admits the spectral decomposition

Lof=> X, Puf, f€Dom(L,),
n=1

where P, f = (f, %)y are the spectral projections (the inclusion Cg°(0,1)
C Dom(L,) is a consequence of [6, Lemma 2.2|). Notice that for v such that
0 < |v| < 1, the operators L, and L_, are identical but £, # L_,,.

Let
d v+1/2
— 4

o0, = —
dx x

denote the derivative associated with L,. Formally, we define the conjugate
operator by

R, = 0,(L,)" 2

This definition is motivated by the fact that the (formal) adjoint of §, in
L2((0,1), dx) is

d v+1/2
0F = —
Y dx + x
and a direct computation then shows that
L, =00,.

The precise definition of R, is the following. Since the spectrum of L, is
separated from zero, 5_1/2 is a bounded operator on L?((0,1),dx) given by

~1/2
/= Z .
A calculation that uses (2.1) (see Section 2) also shows that

(1.2) Sutbyy = A, S5t = Antl,

where

(1.3) P2(x) = dny )2 T Ani).

v, f € L2((0,1),dx).
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Since the system {1;7’;}”21, v > —1, is an orthonormal basis in L2((0, 1), dx)
(cf. Lemma 2.4), we define

(1'4) Ruf = Z<f’ ¢Z>$Zv fE€ L2(<07 1),dIL’).

n=1
(The series on the right converges in L?((0,1),dx) and defines a bounded
operator there.) In other words, the conjugate operator is furnished by the
mapping 1" — ¢¥. If v = —1/2, then 1#;1/2(@ = V2cos(n(n — 1/2)x);
moreover, A, _1/o = m(n — 1/2), hence a calculation gives

O V2 (x) = V2sin(n(n — 1/2)x).
Therefore, as the corresponding conjugate operator we recover the operator
determined by the mapping
cos(m(n —1/2)x) — sin(n(n — 1/2)x),

which differs slightly from the classical conjugate operator C, for trigono-
metric expansions of even functions on (—1,1), i.e. the operator given by
cos(mnx) — sin(mnx) (cf. [1, p. 100]).

Given a weight function w(z) on (0,1), consider the following set of
conditions (p’ denotes the conjugate to p, 1/p+ 1/p' = 1):

! 1/p ‘ VA /v
—p(v+3/2) - (v+1/2)
(1.5) 0221 (gw(x)pm p dm) (gw(x) Pl da:) < 00,
T 1
(w+3/2) 5\ /P o w45)2) .\
(1.6) Oiligl (éw(m)pxp dm) (§w(:r;) Pa™P d:c) < 00,

I Up i ;NP
(1.7) sup (Sw(m)pdx) (Sw(m)_p d:c) < 00.
O<u<v<min{1,2u} ¥V — U u u

For a weight w satisfying (1.7) we write w? € Ap o and say that w? is a
local Aj, weight. The left side of (1.7) is then called the A, .. norm of w?.
We allow 1 < p < oo when considering conditions (1.5)—(1.7). Here and
later on, for p’ = oo the above integrals have the usual interpretation. For
example, the second factor in (1.5) is taken as esssup,¢ (o, [w(z)~tar+1/2].
It is easily seen that for a power weight function w(z) = z%, a € R, (1.5) is
satisfied if and only if a < —1/p + (v + 3/2), (1.6) is satisfied if and only if
a > —(v+3/2)—1/p, and (1.7) is satisfied for each a € R. The condition
(1.5) is necessary and sufficient for the weighted Hardy inequality

1 x 1
(18) | ‘w(m)m_(”+3/2) fr@) dt‘pdx < C\lw(@)z= D f ()P do
0 0 0
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to hold, while the condition (1.6) is necessary and sufficient for
1 1 » 1
(1.9) Hw@mwwﬂfmdqdxgcﬂw@nww%@wwx
0 T 0
to be satisfied; this follows from |9, Theorems 1 and 2|. The local A, condition
(1.7) for w? is, for 1 < p < oo, sufficient for the estimate

1 1
(1.10) [ITf @@ de < C||f(@)w()P do
0 0

to hold, where T represents a local Calder6n-Zygmund operator (see |7,
Definition 3.2], cf. also [11, Definition 4.2]). In the case p = 1 the condition
(1.7) is sufficient for the weighted weak type (1,1) inequality

1
(1.11) | w@MxS%“ﬂ@M@M% A >0,
{0<z<1:|Tf(z)|>A} 0
to hold. These estimates for local Calderén—Zygmund operators are con-
tained in [7, Theorem 3.3] (see also [11, Section 4]).

Finally, note that if a weight w on (0,1) satisfies any of the conditions
(1.5)—(1.7) then either w = 0 or w(z) > 0 z-a.e. (here the convention 0 - oo
= 0 is used), and the same applies to the conditions (1.14) and (1.15).

Throughout the paper we use a fairly standard notation. Thus, for a
weight w on (0,1) (a nonnegative measurable function such that w(z) < oo
r-a.e.) we write LP(w) and L% (w) to denote the weighted LP and weighted
weak L' spaces (with respect to Lebesgue measure dx) that consist of all
functions f on (0, 1) for which

‘ 1/p
11y = (S 1 @w(@) P de) ™ < o,
0
or

Il =sm (¢ | w@)de) <o,
t>
{0<z<1:|f(x)|>t}

respectively. If w = 1, we simply write L? or L, By P, and Q,, 0 < r < 1,
we denote the usual Poisson and conjugate Poisson kernels,

1 I
P.(z) = 3 + ZT’” cos(nz) =
n=1

2(1 —2rcosx +r?)’

rsinx

1—2rcosz +1r2’

Qr(x) = Zr" sin(nzx) =
n=1

Notice that for = # 2kn, k € Z, lim,_,;- P-(z) = 0 and lim, ;- Q,(x) =
3 cot(z/2).
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We write g ~ > 7 | an®) to indicate that the Fourier-Bessel expansion
of g exists and a,, represents its nth coefficient, a,, = (g, 1¥); this, in partic-
ular, means that Sé lg(x)¥¥ (z)| dx < co. The analogous convention holds for
other orthonormal bases that appear later on, for instance {¢/ },>1.

With this notation, the main results of the paper are the following.

THEOREM 1.1. Let v > —1 and 1 < p < co. Let w(z) be a weight that
satisfies the conditions (1.5)—~(1.7). Then

! 1/p ! 1/p
(1.12) (S Ry f(2)w(z)P dm) < c(g | () w(z)[P da:)
0 0

for all f € L>NLP(w). Consequently, R, extends uniquely to a bounded linear
operator on LP(w). Using the same symbol R, to denote this extension, if
in addition w satisfies the conditions that result from (1.5) and (1.6) by
replacing v by v + 1, then

(1.13) Ruf ~ Y (fvn)dy,  f e LP(w).

n=1

In order to treat weighted weak type (1, 1) inequalities for R,, for a given
weight function w(z) on (0,1), consider the following set of conditions:

1 5 v+1/2
r\° w(x) > < vt >
1.14 su — dr )| esssu < 00,
( ) 0<TI<)1 <§ (x) av+3/2 xe(o,rg) w(x)

T )
x 1
1.15 su 2 vt (2 dx) <esssu 7> < 0.
(115) 0<7"I<)1 ((S) <T> ) 966(7‘,15) 252w ()

In (1.14) and (1.15) we assume that there exists a positive 0 such that the
corresponding quantities are finite. It is easily seen that for a power weight
function w(z) = z%, a € R, (1.14) is satisfied if and only if a < v+ 1/2, and
(1.15) is satisfied if and only if a > —(v +5/2). Let P,, @, 1 real, denote
the Hardy operators acting on functions defined on (0, 1):

x 1
Pyf(z) =2 "\ f(t)dt, Quf(x)=a""\f(t)dt, O0<z<1.
0

The condition (1.14) is necessary and sufficient for the inequality
ol
S w(z)dr < XS |f (@) |z~ D) de,  A>0,
{0<a<1:|P, 4370 f(z)|>A} 0

(1.16)

to hold; this follows from [2, Theorem 2| taken with p=¢=1,n=v+3/2
>0, U(z) = w(z) and V(z) = 2~ @+/2w(z) for z € (0,1), and U(z) =
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V(z) =0 for z > 1. The condition (1.15) is necessary and sufficient for
ol
X w(z)dx < XS |f(x)|2" T Pw(x) de, A >0,
{0<a<1:|Q_(vy3/2) f(2)[>A} 0
to hold; this follows from [2, Theorems 4 and 5] taken with p = ¢ = 1,
n=—+3/2), U(z) = wz) and V(z) = 2¥t5/2w(z) for z € (0,1), and
U(z)=V(z)=0for z > 1.

(1.17)

THEOREM 1.2. Let v > —1 and w(x) be a weight that satisfies the con-
ditions (1.14), (1.15), and (1.7) with p = 1. Then
ol
| w(w) de < V(@) w(z)de, x>0,
{0<z<1: R, f(z)|>A} 0

for all f € L?> N LY(w). Consequently, R, extends uniquely to a bounded
linear operator from L'(w) to LY*°(w).

The proofs of our main results, Theorems 1.1 and 1.2, rely on subtle esti-
mates of the kernel R, (z,y) associated to the operator R, (see Proposition
3.3), and on an application of the aforementioned local Calderén-Zygmund
theory. This theory, described in [11], has been adapted to the present set-
ting in [7]. We stress that in the case v > 1/2, when R, (z,y) is a standard
Calderon—Zygmund kernel (see Proposition 3.3), restricting the kernel to the
local region

D3 ={(z,y) € (0,1) x (0,1) : /2 < y < 3z/2},

i.e. treating R, by means of the local Calderén-Zygmund theory, brings
an advantage at least when 1 < p < oco. Then more weights are allowed
since outside D3, i.e. on the regions D7 = {(z,y) : 0 < y < z/2} and
Dy = {(z,y) : min{l,3z/2} < y < 1}, weighted Hardy inequalities are
applied. Here are the details. Recall that the (global) A, condition for wP,
1<p<oo,is

(1.18) sup ! (§w(:€)p da:) l/p(§w(x)_p/ dm) v < 00.

0<u<v<1 UV — U u

Here, as in (1.7), the second integral is understood as ess sSup,c(y,v) [w™L(z)]
for p = 1. Clearly, the (global) A, condition implies (1.7). We showed in |7,
Proposition 2.4] that for v > —1/2 if w satisfies (1.18) then it satisfies (1.5)
and (1.6) if p > 1, or (1.14) and (1.15) if p = 1. Therefore, taking into account
the remarks concerning power weights, it follows that in the case v > —1/2
in Theorems 1.1 and 1.2 we are considering a range of weights substantially
wider than the classical range of A, weights. On the other hand, we showed
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in |7, Proposition 2.5] that for v = —1/2 and 1 < p < oo, if w satisfies (1.5)
and (1.6) then it satisfies (1.18). Thus, in the case v = —1/2, in Theorem
1.1 we consider precisely the range of A, weights.

A theory of Riesz transforms for the differential operator L, considered
as a positive symmetric operator on C°(0, 00) C L?((0,00), dz) has recently
been developed in [3] by Betancor, Buraczewski, Farina, Martinez and Torrea
(for v > —1/2); in a slightly different setting the same problem was inves-
tigated in [5]. A self-adjoint extension of this operator is realized in terms
of the Hankel transform H,. Since for a given v > —1 the Fourier-Bessel
expansions with respect to {¢%},>1 may be viewed as discrete analogues of
the (continuous) Hankel transform H,, it follows that, in some sense, the
results of the present paper can be considered as a discrete counterpart of
the results of [3]. A difference between [3] and our paper is that in [3] the
relevant operators are defined as singular integral operators while here they
are initially defined as bounded operators on L2.

In [10, Section 18] Muckenhoupt and E. M. Stein outlined a theory of
conjugacy for Fourier—Bessel expansions in a setting different from ours. For
the system {¢}n>1, ¢4 (2) = ¥ (z)z~¥+1/2) complete and orthonormal in
L2((0,1), 22T dz), v > —1/2, they suggested the mapping f — f,

flz)=—a > ) 20,1, w21 amy B (),

n=1

as the appropriate conjugate operator for Fourier—Bessel expansions; in other
words, the conjugate operator is furnished by the mapping ¢¥ +— —x¢¥T!
(note that {—x¢%*1},>1 is an orthonormal basis in L?((0, 1), 2% dz)). In
that setting the underlying differential operator is

I d? +2V+1 d
) = dx? x dz)’

The structure of the paper is as follows. In Section 2 we gather neces-
sary facts and tools that are used later on and prove a number of lemmas.
Section 3 is devoted to proving estimates of the auxiliary kernel R, (r,z,y)
and its gradient, and then defining the conjugate kernel R, (x,y) as the limit
lim,_,1- R,(r,z,y), * # y, and proving similar estimates for it. The main
results of this section are contained in Propositions 3.1 and 3.2; proving
them we heavily exploit the techniques developed in our previous papers
[6] and [7]. In Section 4 some results about Poisson and conjugate Poisson
integrals are stated and proved. The proofs of the main results are given
in Section 5. Finally, in Section 6 we provide a definition of an alterna-
tive conjugate operator and state, without proofs, some results concerning
them.
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2. Preliminaries. The Bessel function J, satisfies

v v
(2'1) lej(t) = _; Ju(t)+Ju—1(t)’ Jz//(t) = ?JI/(t)_JI/-'F].(t)'
The following asymptotics will be used (see [8, p. 122]):
M (A, B,
_ Vv] 3 Vv]
(2.2) Vz Jy(2) —Z;) (z—ﬂ 51nz+7cosz> + Hpy(z),
]:
where M =0,1,... and |Hy(2)] < Cz~ M+ 2 — 00, At 2 = 0T one has
(2.3) J,(2) =0(2"), z—0%,
Given v > —1 the following pointwise estimates also hold:
l/+1/2 < —1
(2.4 i) s c{ T 05 s
1, nt<z<l,
~ l/+3/2 < —1
(2.5) G s c{ T 05 s
1, n~l <z <.
We will also use the fact that
(2.6) Ay =0(n), dy,r=O0(1).
Moreover, Poisson’s integral formula will be helpful:
1
(2.7) Ju(z) = C’,,z”s (1 — 2" Y2cos(zt)dt, v>—1/2.
0

LEMMA 2.1. Let v > —1 and f € LP(w), where 1 < p < oo and w
satisfies (1.5) and, in addition, the conditions (1.6) and (1.7) if p > 1, or
(1.15) and (1.7) if p=1. Then the coefficients (f,}) exist and satisfy

(2.8) (f;¢m) = O(n7)

with some 7 = 7T(v,p,w). The analogous statement holds for the system
{'JZ}nZl provided w satisfies (1.7) and the conditions that result either from
(1.5) and (1.6) if p > 1 or from (1.14) and (1.15) if p = 1, upon replacing v
by v+ 1.

Proof. Using (2.4) gives

1 1/n 1
V1f@)ys @) de < Cn T2\ | f(@)|a P de+ C | |f(2)] da
0 0 1/n

We shall show that the two integrals are finite and, in addition, O(n").
By Holder’s inequality we obtain (assuming for simplicity n > 2)
1/n 1/2

[ 1@ 2 d < |l ( | w(a) 2 0+1/2)
0 0

1/p'
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(if p = 1 the last integral becomes esssup,¢ (g 1/2) [w(z)~'z¥*+1/2]). By taking
r = 1/2 either in (1.5) or in (1.14) the very last integral turns out to be
a finite constant, hence S(l)/n |f(z)|zv T2 dz = O(1).
For the second relevant integral, by using Holder’s inequality we get
1 1 /
—p 1/p
| 1£@)dz < | llo( § wie)? dz)
1/n 1/n

(if p = 1 the last quantity becomes ess supze(l/ml)[w(z)_l]). Since

1 1
S w(x)_p/ de < S w(m)—p’x—p’(u+5/2) dr
1/2 1/2

(or < ess supl,e(l/m)[w(m)_lx_(”+5/2)] if p = 1), and the last quantity is
finite by taking r = 1/2 in (1.6) (or in (1.15) if p = 1), it is sufficient to

consider S}ﬁw(m)_p, dx (Or essSUpP,e(1/n,1/2) [w(z)~1] if p=1). We have

1/2 12
S w(:r)_p, dr < (max{Q,n})P’(wrl/?) S w(x)—p’xp’(u+1/2) dr

if 1 <p<oo,or
.1‘V+1/2

esssup [w(z) "] < (max{2,n})"*/? esssup
2e(1/n,1/2) 2e(0,1/2) W(T)

if p = 1. By taking » = 1/2 either in (1.5) or in (1.14) if p = 1, both
outermost quantities are finite constants, hence Si/n |f(x)| dz = O(n7).

The proof of the statement concerning the system {JZ}nzl is completely
analogous, so we omit it. m

LEMMA 2.2. Letv > —1, 1 < p < oo and suppose that w satisfies the
conditions (1.5)~(1.7). Then ¢% € L” (w™'), n=1,2,..., and
(2.9) [0l L -1y = O(n7)
with some 7 = 7(v,p,w). The analogous statement holds for the system
{{DVZ}nZl provided w satisfies (1.7) and the conditions resulting from (1.5)
and (1.6) upon replacing v by v + 1.

Proof. Using (2.4) gives
1

Jlvn(@)w(a) "' de

0 1/n 1
< Cn? H1/2) S 2P 2y () dx + C S w(z) 7Y da.
0 1/n

Now repeat the arguments from the proof of Lemma 2.1. u
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LEMMA 2.3. Let v > —1. The functions {Jz}nzl given by (1.3) are
eigenfunctions of the differential operator L, .1 corresponding to the eigen-
values {\2 , In>1,

LV—HJZ = )\EL,V{/}/Z'
Proof. A straightforward calculation gives
(2.10) Lyi1=6,0%
The claim follows by using the above and (1.2). m

LEMMA 2.4. Let v > —1. The functions {Jz}nzl given by (1.3) form an
orthonormal basis in L>.

Proof. We recall Lommel’s formula (see [13, Ch. 5, p. 134|, where the
name “Lommel’s formula” is not used, but it commonly appears in the liter-
ature, cf. [12])

1 aJII/Jrl(a)‘]V-i-l (b) B lel,+1(b)JV+1(a)

b2 — g2 ’
S:I:Jl,ﬂ(a:n)J,,H(ba:) dx = 1

1 (v+1)?
0 5.];_,'_1(0/)2—’-5(1 — a2 )Jy+1(a)2, a = b

We also recall the following facts from the theory of Dini series (see [13, p.
134]). Given a > —1 and p € R, the functions

a # b,

1
022 () = bun/T Jalpnz), b2 = | (622(x))? da,

0
n=1,2,..., where {{i, }n>1 denotes the sequence of successive positive zeros
of the equation
(2.11) zJl(z) + 0Ju(z) =0,

form an orthonormal system in L? for a > —1; moreover, the system {00%}>1
is complete if a+p > 0, and if a4+ p = 0, it becomes complete after adjoining

the function 65°¢(x) = \/2(a + 1) 221/,

Now consider (2.11) with & = v + 1 (then a > —1). By the identity
a2ty (2) + (v + D)y (2) = 2, ()
the equation (2.11) can be rewritten as
zJy(x) + (o —v—1)Jy41(z) = 0.
Taking ¢ = v + 1 (note that o+ o = 2(v + 1) > 0) one obtains p, = A\,
hence the functions _
0, (@) = katy (2)
form an orthonormal and complete system in L?; using Lommel’s formula,
one shows that k, = 1, which finishes the proof. =
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We will also extensively use the following simplified version of a combi-
nation of [6, Lemmas 4.1 and 4.2]. The proof of these lemmas is based on
(2.2) and good asymptotics of the sequences {\, , }n>1 and {d,, , }rn>1 (more
subtle than those in (2.6)).

LEMMA 2.5. Let v > —1, £ be a nonnegative integer and v be a real
number. Then each of the four functions

(2.12) di7y/\7b7u{81n}()\n,,,(x ty)), n=12...,
COS

is a sum of sizteen terms of the form

n? { sin } (mn(z £ y))Eyo(n, z,y),

cos
where '
Ag(z,y
Eyo(n,z,y) =Y % +q(z,),
k=0
and Ax(z,y), k = 0,1,...,¢, qff)(x,y), n = 1,2,..., are functions such

that |Ag(z,y)| < C, ]qg)(x,y)] < Cn~1, 0 < x,y < 1, with a constant
C=Cury-

The lemma follows by taking y = v, m = j = 0 in [6, Lemmas 4.1 and
4.2] (the functions Ag(x,y) now incorporate some bounded functions that
appear in those lemmas).

Another useful fact is taken from [6, Proposition 4.3] (see (4.12) at the
end of the proof).

LEMMA 2.6. We have

(2.13) 3y %{Sm}(nt) <0, 0<l|t|<3r/2
=1/l 9%

with C not depending on 0 < r <1 and t.

We will frequently use, without further mention, the fact that

i 0 {O(NQH) for o > —1,
n=- =
O(log N) for p=—1,

n=1

and o

Z n® =0O(N°Y), o< -1
n=N

By (f, g) we shall mean S(l) f(x)g(x) dx whenever the integral makes sense.
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3. Estimates of the kernel. We first define the kernel R, (r, z,y), 0 <
r <1,

o0

Ry(ra,y) = Y " B@iy), 0<zy<l,
n=1

associated with the integral operator

1

Runf(x) =\ Ro(r,2,9) f(y) dy = > r"(f,0)dn(x),
0 n=1
and prove the following:

PropPoOSITION 3.1. Let v > —1. Then
a2 t2 0 <y < a2,
(3.1) |Ry(r,z,y)| < C X |z —y|™, x/2 <y < min{1, 3z/2},
av+3/297v=5/2  min{1,32/2} <y < 1,
with C' independent of 0 < r < 1, x and y. Consequently, if v > —1/2 then
IR, (r,z,y)| < Clz—y|™', 0<az,y<l.

Proof. The last statement is a straightforward consequence of (3.1). To
prove (3.1) we shall consider three cases determined by the right side of this
estimate.

CASE 1: 0 < y < x/2. We split the series defining R, (r, z,y) into
N—-1

A= (@) (y)

n= 1

= Z rnd2 n l/x 1/2Jl/+1()\n,ym) . ()\n,uy)l/2=]l/()\n,l/y)a

B = Z (@) ()

= Z rndQ An 1/-7} 1/2J1/+1<)\n,1/x) : ()\n,yy)l/QJV<)\n,l/y)a

where N = [1/3:] Usmg (2.6) and (2.3) we obtain

Al < Z | M) 2 Ty 1 Q) | )2 T ()|

N—
Z V+1 nl/$ HJ( nl/y)’

N-1
< Cmu+3/2yu+l/2 Z n2vt? < C:C—u—3/2y1/+1/2‘

n=1
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To get the same estimate for |B] it is enough to show that for 0 < r < 1,
0<x<1,0<y<x/2andu>—1/2,

(3.2) ‘ Z r"w x)dy, V)\”'H/Q cos(Anpy)| < Cx7v=3/2,

and the analogous estimate with the exponents v+1/2 and —v—3/2 replaced
by (v +2)+1/2 and —(v +2) — 3/2 respectively (the latter is needed in the
case —1 < v < —1/2 only). Indeed, using (3.2) and Poisson’s formula (2.7)
applied to J, (A, y) gives, for v > —1/2,

0 1
|B|=C, TnJZ(x)dn,u()\n,yy)y—H/zS (1-— t2)y_1/2 cos(An L yt) dt‘
n=N 0
1 00 B
V-i-l/QS V—1/2‘ Z T’"W(fc)dn,u)\,’f,ﬁlﬂ COS()\n,yyt)‘ gt

<Cz V™ 3/2yu+1/2'
In the case —1 < v < —1/2, applying the identity

Jo(2) = —Jyea(e) + 2D )
gives o
= - Z rn¢Z($)dn,u(An,uy)1/2Ju+2()\n,uy)
=N
e ~
+2(v+1) Z r"qbZ(m)dn,V(An,Vy)_1/2J,,+1()\n,,,y).
n=N

Now, using Poisson’s formula (2.7) for J,41(Anvy) and Jy42(Ay,y) (together
with the assumption y < z/2 in the first summand) and applying (3.2) we
obtain the result.

Proving (3.2) (the proof of its counterpart with the aforementioned re-
placements in exponents is completely analogous, hence we do not treat it
separately) we use (2.2) to expand (\,,2)"2J,11(\, ) and choose M to
be the unique nonnegative integer satisfying M — 1 < v+ 1/2 < M. It is
then clear that

M
(3.3) ‘Zr ¥ () d, )\”+1/2cos n,,y‘ Z I(1C;] +1S;1) + G,
where
S]} > 9 sin )
_ P2 \TItv1/2 Mw(z£7)), =0,1,..., M,
{c Z Ay wos [Prr@EY), 3

Gy = Z d2 | Hyr (M) NG DY2.
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Then Gy is well controlled. Indeed, using (2.6) and M > v + 1/2 gives

Gy < Cx~ M+ Z n~M=1/24v < Cp=(M+1) N=M+1/24v < 0 —v=3/2,

n=N
Taking into account (3.3), to finish the proof of (3.2) it remains to check

that both |S;| and |C;| are bounded by Cx7=*~3/2. 1t follows from Lemma

2.5 that for given j = 0,1,..., M, §; and C; are sums of sixteen series of the
form
e 4 sin
B X I {2 et )
n=N

It is therefore clear that our task is reduced to estimating the absolute value
of each of the series in (3.4) by Ca/=*=3/2 Given j = 0,..., M, we use
the expression for E_j+y+1/27M_j(n, x,y) from Lemma 2.5 to show that the
absolute value of

(3.5) R, = Z r”n_j_k+”+1/2{sm}(7m(x +y))
= cos

is, for k=0,..., M — j, bounded by Cz/~*=3/2 and

> r”n‘j+”+1/2q;M-f‘><x,y>{sm}<m<x n y>>] < OV,
=N COS

For the term involving qq(lM_j)(:z:, y), using the fact that —M —1/24+v < —1
gives

Z T,nnj+u+1/2q7(1Mj)(‘rjy){sﬂl}(ﬂ_n(x N y))‘ <C Z n—M—1/2+v

n=N cos n=N
S CxM7V71/27

which is enough for our purpose.

The hypothesis made on M shows that —j — k + v + 1/2 > —1 for
j=0,...,Mand k=0,...,M — j when M —1 < v+ 1/2, and the same is
true for j =0,...., M —1land k=0,...,M —j—1when M —1=v+1/2.
Hence, in these cases,

N-1 . N
Z ,rnn—j—k—i-u—i-l/z{Sln}(ﬂ_n(xiy))‘ < Czn—j—k+u+1/2

COS n—1

< ij+kfyf3/2 < C'rjfuf3/2'

n=1

Consequently, in (3.5) we can extend the sum to start from n = 1 and then
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use [6, Lemma 3.3| to estimate the complete sum. Thus,

|Ej,k‘ — Z rnnjk+y+1/2{81n}(ﬂ'n($ + y))‘ < ij*V*3/2.

n—1 COS

This completes the estimate of R;, k = 0,1,..., M — j, except for the cases
of Rjp—; when M —1 =v +1/2 for j =0,...,M. In these exceptional
cases we have to show that |R;—;| < Cx9~™. Since R;\—; takes the
form of the series in (2.13) with ¢t = 7(z £ y), Lemma 2.6 and the fact that

= [1/z] ~ [1/z + y] ~ [1/|z — y|] give the bound |R; p/—;| < C < Cai=M,

CASE 2: /2 < y < min{1,3xz/2}. We use (2.2) with M = 1 to expand

the functions ()\n7yx)1/2Jl,+1()\n7V:U) and ()\n’yy)l/QJl,()\n,l,y). Then, taking
= [1/x] ~ [1/y], we write R,(r,x,y) as the sum

F(r,z,y) Zx Yy~ Jlracy)+J1(rxy)+J2(racy)+G1(racy)

7,0=0
where
N-1
F(r,z,y) = Z Tndi,u()‘n,vx)l/Q‘]V-I-l(An,ux) : ()‘n,vy)I/QJV()\n,Vy)a
n=1

and, for the remainder sum that starts from n = N, the O;; terms capture
the part that comes from the main parts of the aforementioned expansions
and are sums of four terms of the form

\—i— sin sin
Jl Z Tnd%z vin 1/ { }()‘n,l/x){ }()‘n,l/y)7

COs COS

(Dj, is a product of A, 41 or B,41,; and A, or B, ; depending on the choice
of sine or cosine); J; gathers the part that comes from the main parts of the
second expansion and the remainder of the first one, hence its absolute value
is bounded by

2 .
sin
|Ji(r,x,y |<C"ernd2 Hy( nuZL‘){ }(Anuy)‘

1 =N COS

2 [e’s) 3
SN, VHl()\m,x){Sm}()\n,uy)‘

1 n=N COS

+ Cy_l

(the symbol 377 indicates that we add two series, one for the choice of the
sine and the other for the cosine); Js acts as J; but with the position of both
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expansions switched, and its absolute value is controlled by

sin
|J2 T,y ’ < C‘ Z Z ndQ { }()\n,ul')Hl(An,l/y)‘

1 n=N
2

sin
Z Z Tnd%u r_ul/{ }(/\n,vx)Hl()‘n,lly) 3
cos

1 n=N

-1

and finally G captures the part that comes from the remainders,
(ryx,y) Z r”d2 JHI (M) Hi(Anpy).

We will now analyze separately each of the summands in the above decom-
position of R, (r,z,y) and bound them by C|z — y|~1.
For F(r,z,y), using (2.3) and (2.6) we have
N-1
|F(T,x,y)| < C$V+3/2yy+1/2 Z n2vt2
n=1

Y

which is dominated by C|z — y|~! in the region considered.
For Jy(r,z,y) (the same reasoning works for Ja(r, x,y)), using Hi(z) =
O(272), z > 1, and again (2.3) and (2.6), shows that

|Ji(r,z,y)| < Cax™ (Zn —i—ylz )

<Cz 3N~ +y—1N )§C’x_1.

In a similar way we show that

|G1(r,z,y)| < C(zy)~ Z nt<Cx N3 < Cxl
n=N

The remainder of the proof consists in a more delicate analysis of the
x_Jy_leyl(r, z,y) terms. We start with the 21y ~10y 1 (z, y) term. It is clear
that

o0
|z ™y 011 (r, 2, y)| < Ca™? Z n2<Cr N 1<Cz™!
n=N
Using Lemma 2.5 with v = —1 and ¢ = 0 yields |2 101 o(r,z,y)| <
C|z — y|~! once we show that

L2 Srsatne {2 b 2| < € op( 2.
xr "t n X

Ccos ’33 - y!
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The form of E_; o reduces this task to showing the estimates

> 2L e )| < g 22

3.6
(30) = Lcos |z =yl

and

i % qéo)(x,y){sm}(m(x + y))’ =G,

=N COS

where ]qéo) (z,y)| < Cn~L. The very last series is absolutely convergent and
the bound follows. The estimate (3.6) is the same as [6, (5.3)] and was proved
there. The estimate for y=1Og 1(r, z,y) follows analogously.

It remains to consider the case of Ogg(r,z,y). Using Lemma 2.5 with
~v =0 and ¢ = 1 shows that each of the four terms of Oy o(r,z,y) is a sum
of sixteen terms of the form

67 3 (o B [ i),

where \q,g)(x,y)] < Cn=2 for 0 < z,y < 1. The expression in (3.7) equals
the expression in (5.4) of [6] corresponding to the case s = 0. We proved in
[6] (cf. the proof of [6, Proposition 5.1]) that this expression equals

w(@,y) Pr(m(z = y)) + o(z,y)Qr(n(x = y)),

where u and v are bounded functions on (0, 1) x (0, 1), plus some terms whose
absolute values are bounded by either C'log(2z/|x — y|) or C(2 — x —y) 1.
Each of the aforementioned bounds is stronger than C|z — y|~!; in addition
also P(m(x —y)) as well as |Q,(7(z — y))| are bounded by Cl|x — y|~! for

0 < z,y < 1. Hence the estimate |Og o(r,z,y)| < Clx — y|~! follows.

CaAsE 3: min{1,3z/2} < y < 1. We split the series defining R, (7, z,y)
into A and B (as in the case 0 < y < x/2) but this time we set N = [1/y].
Then we get

N-1
AL <> 2 ()2 Tyi1 )| [ (Anwt) 20 (A )|
n=1

N-1
S C(:Z?y)l/2 Z n|Ju+1()‘n,ux)| ’Jl/()‘n,l’y)’
n=1
N-1
< Cxu+3/2yu+1/2 Z n2v+2 < Cxl/+3/2y—z/—5/2'

n=1

To get the analogous estimate of |B| it is enough to show that for 0 < r < 1,
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0<zx<2y/3,0<y<landrv>-1,
o
(3.8) [ N2 cos (M)l )| < Cy 2,
n=N

Indeed, using (3.8) and Poisson’s formula (2.7) applied to J,41(An,,2) gives,
for v > —1,

00 1
1Bl = Copa| 32 Q) F/2 [ (1= 2712 cos 1) e 03 )
n=N 0

1 o)

< OV 32 S (1- t2)”+1/2‘ Z r"dm,,)\;’;;?’m cos()\n,,,xt)@b,l;(y)‘ dt
0 n=N

< OV t3/2y—v=5/2

Proving (3.8) we use (2.2) to expand (A, 4)"/2J,(An,y) and choose M
to be the positive integer satisfying M — 1 < v 4 3/2 < M. It is then clear
that

y (1G] + 18]) + G,

-

<
Il
o

(3.9) | i ™ c0s(n)dn Nk 200 ()| < €
n=N

where

{Sj } => r”di,»nfi”*:””{sm}(An,y«r +y)),
Cj n=N

COS

j=0,1,..., M, and

Gum = Z di,y|HM()‘n,Vy)|>‘er,Jrr/3/2‘
n=N

Then Gy is well controlled. Indeed, using (2.6) gives
[e.e]
Gy < Cy—(M—l-l) Z n-M+1/2+v Cy—(M+1)N—M+3/2+1/ < C«y—y—5/2.
n=N
Taking into account (3.9), to finish the proof of (3.8) it remains to check
that both |S;| and |C;| are bounded by Cy/~"~%/2. It follows from Lemma

2.5 that for given j = 0,1,..., M, S; and C; are sums of sixteen series of the
form
° . sin
(810) S ITRE s (na, y>{cos}<m<x +y)).
n=N

It is therefore clear that our task is reduced to estimating the absolute value
of each of the series in (3.10) by Cy/=*=%2 Given j = 0,..., M, we use
the expression for E_;, 3/9 py—j(n, z,y) from Lemma 2.5 to show that the
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absolute value of

(3.11) Rj) = Z r”n_j_k+”+3/2{sm}(7rn(x +vy)),
= cos

iS, fOI' kj = 0; .. -7M _j, bounded by Cyj—V—5/2 and

Z rnn—j+u+3/2q7(lM—j)(x7y){sm}(ﬂn(x 4 y))’ < Cyi V512,
=N COS

For the term involving qT(lM_j)(x, y), using the fact that —-M +1/24+v<—1

gives

Z T,nnj+u+3/2qT(LMj)(‘rjy){SID}(ﬂn(w N y))‘ <cC Z = M+1/2+v
n=N cos n=N

which is enough for our purpose. The hypothesis made on M shows that
—j—k+4+v+3/2>—-1forj=0,....Mand k=0,...,M —j when M —1 <
v+ 3/2, and the same is true for j =0,...,. M —1land k=0,..., M —j—1
when M — 1 = v+ 3/2. Hence, in these cases,

N—-1 sin N—-1
Z T,nnjk+u+3/2{ }(ﬂ'n(m + y))‘ <C Z n*j*k+u+3/2
n=1

COS

n=1

< nyj+k—u—5/2 < Cyj_V_S/Q.

Consequently, in (3.5) we can extend the sum to start from n = 1 and then
use [6, Lemma 3.3| to estimate the complete sum. Thus,

Z rnn—j—k+u+3/2{81n} (rn(z £ y))‘ < Cyj_”_5/2.
COS

|Rjkl =

n=1

This completes the estimate of R;, k = 0,1,..., M — j, except the cases of
Rjn—j when M —1=v+3/2for j =0,..., M. In these exceptional cases
an argument analogous to that from the end of the proof of Case 1 applies.

This finishes considering Case 3 and completes the proof of Proposi-
tion 3.1. m

PROPOSITION 3.2. Let v > —1. Then
(3.12) \VaeyRu(r,z,y)| < Clz —y|™2,  2/2 <y < min{l,3z/2},
with C' independent of 0 < r < 1, x and y. Moreover, if v > 1/2 then
VayRy(rz,y) <Clz—y[™%, 0<z,y<l.



234 O. Ciaurri and K. Stempak

Proof. We use (2.1) (see also (1.2)) to find that

dzZ;;(x)_ W1~

dyy(y) _ 2v + 1 =
dy — wn( ) - An,V¢n(y)

In this way (in both cases, exchanglng summation and differentiation is easily
seen to be possible)

OR, 2w +1 N, L
(3.13)  SEray) = ——5 = Ru(ra.y) + Y " At (@)l (y),
n=1
OR, 2w +1 N
(314) (Tvxay) = RV(rv‘T7y) - r )‘Tl,l/wn(z)wn(y)
8y 2y n=1

For the first summands on the right of (3.13) and (3.14), using (3.1), it is

clear that
C C

zlz —y| = |z —y*

and the same estimate holds for !% R, (r,z, y)‘
To treat the second summands we define

(r,@,y) ZT Aty (@) (y)
n=1

2v+1

Ry(r,z,y)| <

Z nd2 I/ An Vx)l/QJI/(An,V:E) : ()\n,uy)l/QJZ/(An,lly)

and
RM(r2,y) = r" Al (294 (y)
n=1
= Z rndz An Vz)l/QJV-i-l()‘n,Vx) : ()‘n,vy)l/QJV-i-l()‘n,uy)y

and proceed analogously to the proof of (3.1) in /2 < y < min{1, 3x/2}. Ac-
tually, we shall consider the case of ﬁ&l)(r, x,y) only since treating
,(,1)(r,x,y) is completely analogous.
Now, we use the asymptotic expansion (2.2) with M = 2, to expand the
functions ()\n7,,x)1/2l],,+1()\n71,:n) and ()\nvyy)l/QJ,,Jrl()\n’,,y) and take N =

[1/x] ~ [1/y] to write E(l)(r x,y) as the sum

F(r,z,y) Zm Y- ]lrxy)+J1(ra:y)+J2(rxy)+G2(r:Uy)
7,0=0
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Here
T x y Z Tnd2 1/ nux)l/QJVJrl()\n,z/x) : (An,uy)l/QJVJrl()\n,z/y)y

and, for the remalnder sum that starts from n = N, the O;; terms capture
the part that comes from the main parts of the aforementioned expansions
and are sums of four terms of the form

Dia 3 AL e 200

J1 gathers the part that comes from the main parts of the second expansion
and the remainder of the first one, hence

i(ry 2,y < c\ 5 r"di,m,ymun,ya:){Sm}un,uy)\

1 n=N COS
sin
+Cy~ r"d2 LHo( Wa;{ }AW ‘
2> sin
+Cy? rdy A Ho wa{ })\n,, :
yzzN e )

Jo acts as J; but with the position of both expansions switched, and

o, < c\ 33 {0 ) a0

1 n=N
- Z Z T,ndQ {Sm}()\n,um)fh()\n,yy)‘
1 n=N
Z Z ndgzy ny{SIH}()‘n,V:C)H2()‘n,Vy) ;
1 n=N cos

and finally G5 captures the part that comes from the remainders,
T € y Z rndi,y)\n,uH2(An,yl')H2(>‘n,1/y)'

We will now analyze separately each of the summands in the above decom-
position of R(l)(r x,y) and bound them by Cl|x — y|~2.
For F(r,z,y), using (2.3) and (2.6), we have
N-1
[F(r,2,)| < Clay) ™2 n? < Ca® PN < Ca™?,
n=1

which is dominated by C|z — y|~2 in the region considered.
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For Jy(r,z,y) (the same reasoning works for Jo(r, x,y)), using Hy(z) =
O(z73), z > 1, and again (2.3) and (2.6), shows that

|Ji(r,x,y)| < Caz™ (Zn_Q—f—ylZn +y22 )

<Cx3(N14y IN2 4y 2N )§C’x_2.

In a similar way we show that

|Ga(r,z,y)| < C(ay)~ Zn5<C’x6N < Cz 2
n=N

The remainder of the proof is an analysis of the 2=y ~'O;(r, z,y) terms.
We start with the 272y ~2032(, y) term. It is clear that

oo
|22y "2 090(r, 2, y)| < C2z™* Z n<Cx i N2 < Cz 2
n=N

The same bound is obtained for |z 72y~ 101 (z,y)| and |71y =201 2(z, v)|.

The estimate of |27204o(r, x, y)| by C|x —y|~2 uses Lemma 2.5 with v =
—1and ¢ = 0, and is essentially contained in the estimate of [x=1Oy (7, z, )|
already discussed when proving (3.1) in the region /2 < y < min{1, 3z/2}.
The estimates of |y~2002(r,x,y)| and |z7ly~1011(r,x,y)| follow analo-
gously.

The estimate of |~y (7, z,y)| by Clz — y|~2 uses Lemma 2.5 with
v =0and ¢ =1, and is essentially contained in the estimate of |Og o(r, x,y)|
already discussed when proving (3.1) in the relevant region. The estimate of
ly=100.1(r, z,y)| follows analogously.

It remains to consider the case of Og (7, z,y). We use Lemma 2.5 with
v =1 and ¢ = 2 to conclude that each of the four terms of Og (7, z,y) is a
sum of sixteen terms of the form

(3.15) i r"n(Ag + Al(Z’y) Az(x o 7y)) {::;}(m(xiy)),

Tl
n=N

where |q£2)(x,y)| < Cn73 for 0 < z,y < 1. It is immediate to see that the
series resulting from taking into account the remainder q,(f)(ac,y) is abso-
lutely convergent, hence its absolute value is bounded by a constant. The
series resulting from taking into account A; and Ay were already (implicitly)
discussed and are bounded by C|z —y|~2 in the region considered. The series
resulting from taking into account Ay was discussed in [7] (cf. the proof of
[7, Proposition 4.1]), and was also shown to be bounded by C|x — y| 2.

This finishes estimating E,@l), hence proving the first part of the propo-
sition. To prove the second part we first consider the first summands on the
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right of (3.13) and (3.14). Since |R,(r,z,y)| < Clz —y|™, 0 < z,y < 1, for
0 <y < x/2 we have

C c

zlz —y| = |z —y*

2v+1
T

RV(Tv €, y) <

while for min{1, 32/2} < y < 1 we obtain, by using the bottom line of (3.1),

e <o(2) L
y y* |z =yl
Similarly, for min{1,3z/2} <y < 1 we get
C C
< L
yle =yl = |z -y
while for 0 < y < x/2, by using the top line of (3.1) we obtain

v—1/2 1
Ry(r,x,y)‘ < C(g) ¢

X

2v+1

2v+1

Ry, (r,z,y)

<

2v+1

a2 = o -y

To treat the second summands on the right of (3.13) and (3.14) we pro-
ceed analogously to the proof of (3.1) in the regions 0 < y < z/2 and
min{1,3z/2} <y < 1, obtaining the bounds

.,11.71175/2y1/+1/27 0<y< $/2,

gVt 2y=v=5/2 0 min{1,3z/2} <y < 1,
‘,E—V—'Y/le/—l—i*l/Q7 0<y< $/2,

2V t3/2y=v=7/2  min{1,3z/2} <y < 1.

mﬁ&wwnsc{

W@&wwﬂéc{

It is easily seen that for v > 1/2 this is sufficient to bound |R,(f) (r,z,y)l,
i = 1,2, by C|z — y|~2 in the regions considered. This finishes the proof of
the proposition. =

PropoSITION 3.3. Let v > —1. Then for every x # vy, 0 < z,y < 1, the

limat

Ry(z,y) = T Ry(r,z,y) = lim Y r"dy(x)¢5(y)

r—1- —t

exrists and satisfies
x—l/—3/2y1/+1/27 0 < y S .’E/Q,
(3.16) |Ry(z,y)] <O |z —y|™, z/2 < y < min{1, 3z/2},
gV 3/2y=v=5/2  min{1,3z/2} <y < 1,
and

(3.17) VR, (z,y)| < Clz —y|™%,  z/2 <y < min{1,3z/2}.
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Moreover, if v > —1/2 then the middle estimate of (3.16) holds for 0 <
x,y < 1, and the same is true for (3.17) if v > 1/2; in all cases C is
independent of x and y.

Proof. Once we prove the existence of the limit, the required estimates
follow directly from Propositions 3.1 and 3.2. More precisely, justifying (3.17)
also requires the identity

o .. 0

(318) _y (TILI?_ RV(T’ €L, y)) - rliI{l— a_ R, (1", €L, y)
and a similar one for 9/0z. Assuming for a moment that lim,_,;—- R, (r, z,y)
exists, what is still needed to prove (3.18) is the fact that for fixed 0 < x < 1,
the convergence on the right of (3.18) is locally uniform in y. Using (3.14) it
is sufficient to check that for given 0 < x < 1, the convergence of R, (7, z,y)
and ﬁl(,l)(r,a:,y) as 7 — 17 is locally uniform in y. For R, (r,z,y) this will
be explained below in the proof of the existence of lim,_,;- R, (r,z,y). For
}?il(,l)(r,:c,y) the argument is essentially the same, so we omit the details (a
look into the proof of Proposition 3.2 is helpful). Analogous comments apply
when 0/0y in (3.18) is replaced by 9/0x.

We expand the functions ()\n,,,x)l/QJV+1()\n7,,$) and ()\nj,,y)l/QJ,,()\nﬂ,y)
by using (2.2) with M =1 to get

v (7,2, Y) Zx Ty~ l0ju(r,x,y) + Ji(ry2,y) + Jo(r,z,y) + Ga(r,z,y).
7,0=0

Here the Oj,; terms capture the part that comes from the main parts of the
aforementioned expansions and are linear combinations of terms of the form

Zrnd% l,)\n‘jy ! { } (Anpx) {Sm} (A, y);
el COS COS

J1 gathers the part that comes from the main parts of the second expansion
and the remainder of the first one, hence it is a linear combination of terms
of the form

- Z de% vitn, y ()‘n,l/x) {Sln} ()‘n,l/y)v o= 07 1;

COs

Jo acts as J; but with the position of both expansions switched, hence it is
a linear combination of terms of the form

z Z nd?L V)\nli { OS} (M) Hi(Anpy), 0=0,1;
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and finally 1 captures the part that comes from the remainders,
(ryx,y) Zr”dQ Hi(Anpz)Hi(Anpy).

Due to the bound Hi(z) = O(z‘ ), z > 1, it is evident that each of the
series as in Gy(r,z,y) or in the terms entering either J; or Js, but with
the factor r™ removed, is absolutely convergent since, for sufficiently large n,
either |Hy(An )| < C(zn)~2 or |Hi(Anpy)| < C(yn)~2 applies (or both).
Thus the corresponding expressions converge as » — 17. In addition, the
convergence is locally uniform in y. It is therefore sufficient to analyze the
Oj, terms. Given j,1 € {0,1} we use Lemma 2.5 with / =1 and v = —j —[.
Then O;; can be written as a linear combination of terms of the form

S (ot 2D e,y ) {Sm} (wn(a £ ),

ot Ccos

where ]q%l)(x, y)| < Cn~2. Splitting the last series into three expressions cor-

responding to Ap, A;/n and qfll) we see that the expression corresponding to
q,(ll) converges as 1 — 17 due to the fact that the series as in this expression,
but with the factor ™ removed, is absolutely convergent; in addition the
convergence is locally uniform in y. The first two expressions also converge
as 7 — 17, locally uniformly in y (see the proof of |7, Proposition 4.2]).

The proof of the proposition is complete. =

REMARK 3.4. In the case v = —1/2, we have

2w
sin 21‘ COS 2y (COS 21‘+Sln 2y)

. T
sin —z cos —v.
sin §(z +y) sin §(xz — y) + T 2"

R—1/2(937 y) =
This is because, as a direct calculation shows,

R_y5(r,z,y)
_ cos(%(x n y)>Qr(7T($ ) — Siﬂ(%(:ﬁ + y)) <Pr(7r(:1: +y) - %)

+ cos( 3o =) )Qotnte =) —sin (3 - ) ) (Ptate =) - 3.

hence

R—l/z(%?/)
1

- COS@@ * y)> 2ten(E(z+y) COSG("T - y)> 2tan(5(z — y))
+ %m(%(z + y)> - %sin@(:v - y))-
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An application of trigonometric identities then gives the required equality.
The fact that R_y/5(x,y) is a C' function on (0,1) x (0,1)\ {z = y} and
satisfies estimates consistent with those of Proposition 3.3 now follows by
inspection.

Finally, we show that the kernel R, (z,y) is associated with R, in the
sense of Calder6n—Zygmund theory.

PROPOSITION 3.5. Let f,g € C(0,1) have disjoint supports. Then
11

(3.19) (Ruf,9) =\ Ru(z,9) f(y)g(2) dy da.
00
Proof. Let g =" (g, )Y (recall that the system Y is an orthonor-
mal basis in L?). Since, by definition, R, f = Y oo, (f, %)y, Parseval’s
identity (for the system {¢},>1) gives

[e.9]

(3.20) (Rufsg) = {f 009, 9%).

n=1
We will show that the right sides of (3.19) and (3.20) coincide. Denote by
F(z,y) the function from Proposition 3.3 that majorizes |R,(x,y)|; then it
is clear that

11

1§17, 9)f (v)9(@)] dy da < co.
00

Therefore the dominated convergence theorem justifies the second equality
in the following chain of equalities:

11
Ruf.9) SS lim R, (r,z,y)f(y)g(x) dy dz

11
= lim | R,(r,2,9)f(y)g(x) dy dw
0

r—1-

1

:—hmg zlrf()( :—hmZT‘ fw >

r—1 r—1

The third equality is explained in the proof of [6, Theorem 1.1], the fourth
one is a consequence of [6, (1.10)] and Parseval’s identity. Finally, since by [6,
Lemma 2.2] (and its slight modification for the system {t}},>1) the series

Yoo (k) (g, J;;) converges, the last limit equals the right side of (3.20). =
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4. Poisson and conjugate Poisson integrals. The Poisson semigroup
{P}V}+>0 associated with £, is, by the spectral theorem, given on L? hy

_ 1/2
Ptl/ —e t(Ly) )

For f € L? with the expansion f =% (f, 1)1, we then have
P f= Z e A (f ey

(convergence in L?).
We extend this definition by defining, for an appropriate f with the
expansion f ~ Y > (f r)r its Poisson integral f¥(z,t) by

o

(A1) Pt =S e @), 0<a<1,t>0.
n=1

We also define the conjugate Poisson integral f” (z,t) of f by

(4.2) Z P (f GV (z), 0<az <1,t>0.

LEMMA 4.1. Let v > —1 and f € LP(w), where 1 < p < oo and w
satisfies (1.7) and, in addition, (1.5) and (1.6) if p > 1, or (1.14) and
(1.15) if p = 1. Then the Poisson and conjugate Poisson integrals of f given
by (4.1) and (4.2) are well defined C*° functions on (0,1) x (0, 00), harmonic
in the sense that they satisfy the differential equations

(4.3) (07 = Lua) ["(@,0) = 0, (37 = Lys1,0) [ (,8) = 0.

Moreover, f”(a:,t) and f¥(x,t) are related by the “Cauchy—Riemann type
equations

0 0 ~
(4.4) &f”(:v,t) =0y f¥(2,1), &f”(:v,t) =0, . f"(x,1).

Proof. Lemma 2.1 ensures the existence of the coefficients (f, %) and,
together with (2.4) and (2.5), shows that f*(z,¢) and f“(z,t) are well de-
fined, i.e., the relevant series converge. The fact that f”(z,t) and f”(:n,t)
are twice differentiable and satisfy (4.3) follows from term by term differ-
entiation of the defining series ((2.10) and the second identity in (1.2) are
helpful). C* is then a consequence of the fact that the operators 87 — L,
and 02 — L, 41, are hypoelliptic on (0,1) x (0, 00). The identities (4.4) follow
by differentiating term by term the defining series and using (1.2). =

»

It may be easily checked that for f € LP(w), 1 < p < 0o, where w satisfies
the assumptions of Lemma 4.1, f¥ and f* given by (4.1) and (4.2) have the
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following integral form:

1 1
45) e t) =\ Pt y) f () dy, [ (e, t) =V PY(t 2, y) f(y) dy,
0 0
where - -
PU(tx,y) = e Mrgr@)en(y),  Prtay) =Y e g (@) (y).
n=1 n=1
For v = +1/2, a calculation shows that with » = e~ one has

P'2(t,2,y) = Pi(n(z —y)) = Pr(n(z +y)),
ﬁ_l/Q(tvxvy) = %R—l/Q(rwjjay)

(see the lines following Remark 3.4 for the explicit form of R_; 5(r, z,y)).

5. Proofs of the main results. We define the integral operators R}
and R2 by

x/2 1
Rif(@)= \ Rz f()dy, Rif(x)= |  Ru(z)fy)dy.
0 min{1,3z/2}

By taking p = 2 and w(z) = 1 in (1.8) and (1.9) it follows that R. and
R2 are bounded on L? (see the computations in the proof of Theorem 1.1
below). Thus

R3=R,-R.—R?
is also bounded on L2. Moreover, by Proposition 3.5, R? is associated with
the kernel R, (x,y)xps(z,y), which, by Propositions 3.1 and 3.2, is a local
Calder6n-Zygmund kernel. Thus R? is a local Calderén-Zygmund operator.

Proof of Theorem 1.1. By using the weighted Hardy inequality (1.8) we
obtain

1 1 x/2 »
[ lw(@)RL @) dz = | |w(@) | Ro(e,y)f(y)dy| da
0 0 0
1 /2 »
< O (w@)a™ =32 | y 12| f(y)| dy) " do
0 0
1
< Cfu(a) f (@) da.
0

Similarly, using the weighted Hardy inequality (1.9) we get
1 1
Vw(@)RE f ()P do < C | [w(x) f () da.
0 0
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Finally, the corresponding LP(w) inequality for R3 is a consequence of (1.10)
(see [7, Theorem 3]). Thus (1.12) follows.

To prove (1.13) we fix f € LP(w) and choose a sequence fp € L?N
LP(w) such that fy — f in LP(w) as k — oo. Then, by the very definition,
Ruf = limg_ 00 Ry fr (convergence in LP(w)). Since R, f € LP(w) and the
aforementioned modifications of (1.5) and (1.6) hold, R, f has an expansion
with respect to {1 },>1 (see Lemma 2.1). In addition, for any n = 1,2, ...,
the mapping g — (g,@;) is a bounded functional on LP(w) (see Lemma
2.2). Therefore (R, fi, ") — (R, f,0%) as k — oo. On the other hand,
since g — (g,¥%) is also a bounded functional on LP(w) (see Lemma 2.2),

we have (fi,, 94) — (f,0%) as k — co. But by (1.4), (Ry fi, V%) = —{fi %),
hence (1.13) follows. m

Proof of Theorem 1.2. Argue as in the first part of the proof of Theorem
1.1 but using (1.16), (1.17) and (1.11) instead of (1.8), (1.9) and (1.10). m

6. An alternative conjugacy mapping. Let

gy:i+1/—1/2
dx x

denote an alternative derivative associated with L,. One can easily check
that the (formal) adjoint of 6, in L? is

- d _
5;:___'_1/ 1/27
dx T

and a direct computation then shows that gﬁg,j = L,. Hence, another possible
formal definition of the conjugate operator is

Ry, = 0,(L,) "2
A calculation also shows that
bl = Anwtlyy, S0 = Analy,
where
(6.1) V(@) = duy () Tyt ).
An analogue of Lemma 2.4 now reads:

LEMMA 6.1. Letv>0. The functions {1;7’;}”20, where 126(3:) =\2v gV~ 1/2
and, for n > 1, Y¥ are given by (6.1), form an orthonormal basis in L>.

Proof. We use the facts and notation of the proof of Lemma 2.4, and
consider (2.11) with & = v — 1 (then o > —1). By the identity

aJ)_1(a) = (v = 1) Jy-1(a) = —aJy(a)
the equation (2.11) can be rewritten as
—xJy(x)+ (o +v—1)J,—1(x) = 0.
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Taking o0 = —v + 1 (note that ¢ + a = 0) one obtains p, = \,, and the
functions

O (@) = katy(2)

form an orthonormal system in L?. The system becomes complete upon
adding the function v/2v 2*~1/2, Now, using Lommel’s formula, we can show
that k, = 1, and the proof is complete. =

Thus we define

oo
(6.2) Rof =Y (L,  fel?

n=1
(The series on the right converges in L2.) That means that R, is furnished
by the mapping vy, — JZ In the particular case v = 1/2, as the corre-
sponding conjugate operator we recover C,, the classic conjugacy mapping
for trigonometric expansions of odd functions on (—1,1) (cf. [1, p. 100]),

C, : sin(mnzx) — cos(mnzx).
Given v > 0, the following pointwise estimates hold:
~ v—1/2 < p—1
(6.3 Grwsc{ T s
1, nl<z<l.

LEMMA 6.2. Let v > 0. The statement analogous to (2.8) from Lemma
2.1 holds for the system {1@’;}”20 provided w satisfies (1.7) and the conditions
that result either from (1.5) and (1.6) if p > 1, or from (1.14) and (1.15) if
p =1, upon replacing v by v — 1.

LEMMA 6.3. Let v > 0. The statement analogous to (2.9) from Lemma
2.2 holds for the system {127’;}”20 provided w satisfies (1.7) and the conditions
resulting from (1.5) and (1.6) upon replacing v by v — 1.

It may be checked that for the kernel defined by
oo
Ry(r,2,y) =Y r"dn(x)vh(y),
n=1

the analogues of Propositions 3.1 and 3.2 hold. More precisely, the estimate
in (3.1), corresponding to the case min{1,3x/2} <y < 1 has to be replaced
by Ca?~1/2y=v=1/2_ Consequently, the result corresponding to Proposition
3.3 now reads:

PROPOSITION 6.4. Let v > 0. Then for every x # y, 0 < x,y < 1, the
limat

R(z,y) = lim Ry(r,z,y) = lim > r"}(2)v(y)

r—1-— r—1- =
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exists and satisfies
eV 22 <y < )2,
IR, (z,y)] < C |z —y| ™, x/2 <y < min{1,3x/2},
a2y~ v=12 0 min{1,3z/2} <y < 1.
Consequently, if v > 1/2 then
[Ru(z,y)| <Clz—y|™', 0<ay<l.
Moreover,
VR, (z,y)| < Clz —y|™%, /2 <y < min{1,3z/2}
(all estimates hold with C' independent of x and y).

REMARK 6.5. In the case v = 1/2, we have
~ sin(my
(6.4 Rupa(e,y) = — o)

cos(my) — cos(mz)
This is because, as a direct calculation shows,

Ryjo(r,z,y) = Qr(r(x +1)) — Qu(m(z — y))

hence

_ 1 1 1
Ryja(w,y) = §<tan(%($ +v)) - tan (% (2 — y)))

and thus (6.4) follows. The fact that El/Q(:p,y) is a C'! function on (0,1) x
(0,1)\ {x = y} and satisfies estimates consistent with those of Proposi-
tion 6.4 now follows by inspection (note, however, that the restriction on the
range of x and y in the gradient estimate is essential). We also mention that
]/%\1/2(16,3/) is the kernel of the operator C, (cf. [1, p. 100]).

Similarly, the result corresponding to Proposition 3.5 is the following.

PROPOSITION 6.6. Let f,g € C(0,1) have disjoint supports. Then
11

(Rufr9) = | Rul,9) f (9)9(x) dy da.
00

We now state results concerning 7/?\,,,, analogous to those in Theorems 1.1
and 1.2.

THEOREM 6.7. Let v > 0 and 1 < p < oo. Let w(x) be a weight that
satisfies (1.7), and also (1.5) and (1.6) with v replaced by v — 1. Then

69 (IRs@uwra)” <c({iaupa)”

0 0

for all f € L>NLP(w). Consequently, ﬁ,j extends uniquely to a bounded linear
operator on LP(w). Using the same symbol R, to denote this extension, if in
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addition w satisfies (1.5) and (1.6), then

Rof ~ Y (f0l,  f € LP(w).

n=1
THEOREM 6.8. Let v > 0 and w(x) be a weight that satisfies (1.7) with
p=1, and (1.14) and (1.15) with v replaced by v — 1. Then

1
C
(6.6) | w(z)dr < V(@) w(z)de, x>0,
{0<a<1:|R, f(z)|>)\} 0
for all f € L?> N L'(w). Consequently, 7%1, extends uniquely to a bounded
linear operator from L'(w) to L} (w).

The conditions imposed on w in Theorem 6.7 for v = 1/2 are (1.7) and

r

‘ — 1/p oy 1/p'
61 s, (Jureds) " (fut 7 as) ” <oo
(6 8) su (§w<x)pxp d.%') 1/p<§w<x)_p,x_2p/ dx) 1/p/ e
. 0<T‘I<)l 0 .

It was proved in [1, Theorem 3| that in the case v = 1/2, (6.5) holds if and
only if
v v

69) (fuly dx)l/p( fuw(@) ™ (@1 - o)) do)

u

1/p'

<CW=uH)2—-(u+v), 0<u<wv<l.

Therefore, it follows from our Theorem 6.7 and [1, Theorem 3] that a weight
w satisfying (1.7), (6.7) and (6.8) must satisfy (6.9). We cannot, however,
expect an equivalence of the set of conditions (1.7), (6.7) and (6.8), with the
condition (6.9): Theorem 6.7 was stated for general v, hence it does not take
into account the fact that for v = 1/2 the corresponding kernel vanishes at
y=1.

Similarly, the conditions imposed on w in Theorem 6.8 for v = 1/2 are

(1.7) with p =1 and
(6.10) sup ( ( ) w(z) d$><esssup 1 ><oo,
0<r<1 x z€(0,r) w(z)
1
zw(x)dzx || esssup —— | < 00
() motore) (s o)

r

x

x

(6.11) sup ( —
0<r<1 r

(in (6.10) and (6.11) we assume that there exists a positive J such that the

corresponding quantities are finite).

0
0

|
|
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It was proved in [1, Theorem 3| that in the case v = 1/2, (6.6) holds
if and only if the weight w satisfies (6.9) with p = 1. Therefore, it follows
from our Theorem 6.8 and [1, Theorem 3| that a weight w satisfying (1.7)
with p = 1, (6.10) and (6.11) must satisfy (6.9) with p = 1. The remarks
concerning the lack of equivalence between the set of conditions (1.7) with
p =1, (6.10) and (6.11), with the condition (6.9) considered for p = 1, also
apply in this case.
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