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Conjuga
y for Fourier�Bessel expansionsby
Óscar Ciaurri (Logroño) and Krzysztof Stempak (Wro
ªaw)
Abstra
t. We de�ne and investigate the 
onjugate operator for Fourier�Bessel ex-pansions. Weighted norm and weak type (1, 1) inequalities are proved for this operatorby using a lo
al version of the Calderón�Zygmund theory, with weights in most 
asesmore general than Ap weights. Also results on Poisson and 
onjugate Poisson integralsare furnished for the expansions 
onsidered. Finally, an alternative 
onjugate operator isdis
ussed.1. Introdu
tion and statement of results. Given ν > −1 
onsiderthe di�erential operator(1.1) Lν = −

(
d2

dx2
+

1/4 − ν2

x2

)
,initially de�ned on the spa
e C∞

c (0, 1). It is a positive and symmetri
 oper-ator in L2((0, 1), dx). The fun
tions {ψν
n}n≥1,

ψν
n(x) = dn,ν(λn,νx)

1/2Jν(λn,νx), dn,ν =
√

2 |λ1/2
n,νJν+1(λn,ν)|−1,where {λn,ν}n≥1 denotes the sequen
e of the su

essive positive zeros ofthe Bessel fun
tion Jν(z), are eigenfun
tions of Lν 
orresponding to theeigenvalues λ2

n,ν ,
Lνψ

ν
n = λ2

n,νψ
ν
n,and form a 
omplete orthonormal system in L2((0, 1), dx); see [13, ChapterXVII℄ for a 
omprehensive study of Fourier�Bessel expansions.In parti
ular,

ψ−1/2
n (x) =

√
2 cos(π(n− 1/2)x), ψ1/2

n (x) =
√

2 sin(πnx),2000 Mathemati
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216 Ó. Ciaurri and K. Stempakfor n = 1, 2, . . . . It may be easily 
he
ked that the operator Lν given by
Lν

( ∞∑

n=1

〈f, ψν
n〉ψν

n

)
=

∞∑

n=1

λ2
n,ν〈f, ψν

n〉ψν
non the domain

Dom(Lν) =
{
f ∈ L2((0, 1), dx) :

∞∑

n=1

|λ2
n,ν〈f, ψν

n〉|2 <∞
}
,

with 〈f, ψν
n〉 =

T1
0 f(x)ψν

n(x) dx, is a self-adjoint extension of Lν , has the dis-
rete spe
trum {λ2
n,ν : n = 1, 2, . . . } and admits the spe
tral de
omposition
Lνf =

∞∑

n=1

λ2
n,νPnf, f ∈ Dom(Lν),where Pnf = 〈f, ψν

n〉ψν
n are the spe
tral proje
tions (the in
lusion C∞

c (0, 1)
⊂ Dom(Lν) is a 
onsequen
e of [6, Lemma 2.2℄). Noti
e that for ν su
h that
0 < |ν| < 1, the operators Lν and L−ν are identi
al but Lν 6= L−ν .Let

δν = − d

dx
+
ν + 1/2

xdenote the derivative asso
iated with Lν . Formally, we de�ne the 
onjugateoperator by
Rν = δν(Lν)−1/2.This de�nition is motivated by the fa
t that the (formal) adjoint of δν in

L2((0, 1), dx) is
δ∗ν =

d

dx
+
ν + 1/2

xand a dire
t 
omputation then shows that
Lν = δ∗νδν .The pre
ise de�nition of Rν is the following. Sin
e the spe
trum of Lν isseparated from zero, L−1/2

ν is a bounded operator on L2((0, 1), dx) given by
L−1/2

ν f =
∞∑

n=1

1

λn,ν
〈f, ψν

n〉ψν
n, f ∈ L2((0, 1), dx).A 
al
ulation that uses (2.1) (see Se
tion 2) also shows that(1.2) δνψ

ν
n = λn,νψ̃

ν
n, δ∗νψ̃

ν
n = λn,νψ

ν
n,where(1.3) ψ̃ν

n(x) = dn,ν(λn,νx)
1/2Jν+1(λn,νx).
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e the system {ψ̃ν
n}n≥1, ν > −1, is an orthonormal basis in L2((0, 1), dx)(
f. Lemma 2.4), we de�ne(1.4) Rνf =

∞∑

n=1

〈f, ψν
n〉ψ̃ν

n, f ∈ L2((0, 1), dx).

(The series on the right 
onverges in L2((0, 1), dx) and de�nes a boundedoperator there.) In other words, the 
onjugate operator is furnished by themapping ψν
n 7→ ψ̃ν

n. If ν = −1/2, then ψ
−1/2
n (x) =

√
2 cos(π(n − 1/2)x);moreover, λn,−1/2 = π(n− 1/2), hen
e a 
al
ulation gives

ψ̃−1/2
n (x) =

√
2 sin(π(n− 1/2)x).Therefore, as the 
orresponding 
onjugate operator we re
over the operatordetermined by the mapping

cos(π(n− 1/2)x) 7→ sin(π(n− 1/2)x),whi
h di�ers slightly from the 
lassi
al 
onjugate operator Ce for trigono-metri
 expansions of even fun
tions on (−1, 1), i.e. the operator given by
cos(πnx) 7→ sin(πnx) (
f. [1, p. 100℄).Given a weight fun
tion w(x) on (0, 1), 
onsider the following set of
onditions (p′ denotes the 
onjugate to p, 1/p+ 1/p′ = 1):

sup
0<r<1

( 1\
r

w(x)px−p(ν+3/2) dx
)1/p( r\

0

w(x)−p′xp′(ν+1/2) dx
)1/p′

<∞,(1.5)
sup

0<r<1

( r\
0

w(x)pxp(ν+3/2) dx
)1/p( 1\

r

w(x)−p′x−p′(ν+5/2) dx
)1/p′

<∞,(1.6)
sup

0<u<v<min{1,2u}

1

v − u

( v\
u

w(x)p dx
)1/p( v\

u

w(x)−p′ dx
)1/p′

<∞.(1.7)For a weight w satisfying (1.7) we write wp ∈ Ap,loc and say that wp is alo
al Ap weight. The left side of (1.7) is then 
alled the Ap,loc norm of wp.We allow 1 ≤ p < ∞ when 
onsidering 
onditions (1.5)�(1.7). Here andlater on, for p′ = ∞ the above integrals have the usual interpretation. Forexample, the se
ond fa
tor in (1.5) is taken as ess supx∈(0,r)[w(x)−1xν+1/2].It is easily seen that for a power weight fun
tion w(x) = xa, a ∈ R, (1.5) issatis�ed if and only if a < −1/p + (ν + 3/2), (1.6) is satis�ed if and only if
a > −(ν + 3/2) − 1/p, and (1.7) is satis�ed for ea
h a ∈ R. The 
ondition(1.5) is ne
essary and su�
ient for the weighted Hardy inequality
(1.8) 1\

0

∣∣∣w(x)x−(ν+3/2)
x\
0

f(t) dt
∣∣∣
p
dx ≤ C

1\
0

|w(x)x−(ν+1/2)f(x)|p dx
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ondition (1.6) is ne
essary and su�
ient for(1.9) 1\
0

∣∣∣w(x)xν+3/2
1\
x

f(t) dt
∣∣∣
p
dx ≤ C

1\
0

|w(x)xν+5/2f(x)|p dxto be satis�ed; this follows from [9, Theorems 1 and 2℄. The lo
al Ap 
ondition(1.7) for wp is, for 1 < p <∞, su�
ient for the estimate(1.10) 1\
0

|Tf(x)w(x)|p dx ≤ C

1\
0

|f(x)w(x)|p dxto hold, where T represents a lo
al Calderón�Zygmund operator (see [7,De�nition 3.2℄, 
f. also [11, De�nition 4.2℄). In the 
ase p = 1 the 
ondition(1.7) is su�
ient for the weighted weak type (1, 1) inequality(1.11) \
{0<x<1 : |Tf(x)|>λ}

w(x) dx ≤ C

λ

1\
0

|f(x)|w(x) dx, λ > 0,to hold. These estimates for lo
al Calderón�Zygmund operators are 
on-tained in [7, Theorem 3.3℄ (see also [11, Se
tion 4℄).Finally, note that if a weight w on (0, 1) satis�es any of the 
onditions(1.5)�(1.7) then either w ≡ 0 or w(x) > 0 x-a.e. (here the 
onvention 0 · ∞
= 0 is used), and the same applies to the 
onditions (1.14) and (1.15).Throughout the paper we use a fairly standard notation. Thus, for aweight w on (0, 1) (a nonnegative measurable fun
tion su
h that w(x) < ∞
x-a.e.) we write Lp(w) and L1,∞(w) to denote the weighted Lp and weightedweak L1 spa
es (with respe
t to Lebesgue measure dx) that 
onsist of allfun
tions f on (0, 1) for whi
h

‖f‖Lp(w) =
( 1\

0

|f(x)w(x)|p dx
)1/p

<∞,or
‖f‖L1,∞(w) = sup

t>0

(
t

\
{0<x<1 : |f(x)|>t}

w(x) dx
)
<∞,

respe
tively. If w ≡ 1, we simply write Lp or L1,∞. By Pr and Qr, 0 < r < 1,we denote the usual Poisson and 
onjugate Poisson kernels,
Pr(x) =

1

2
+

∞∑

n=1

rn cos(nx) =
1 − r2

2(1 − 2r cosx+ r2)
,

Qr(x) =
∞∑

n=1

rn sin(nx) =
r sinx

1 − 2r cosx+ r2
.Noti
e that for x 6= 2kπ, k ∈ Z, limr→1− Pr(x) = 0 and limr→1− Qr(x) =

1
2 cot(x/2).



Conjuga
y for Fourier�Bessel expansions 219We write g ∼ ∑∞
n=1 anψ

ν
n to indi
ate that the Fourier�Bessel expansionof g exists and an represents its nth 
oe�
ient, an = 〈g, ψν

n〉; this, in parti
-ular, means that T10 |g(x)ψν
n(x)| dx <∞. The analogous 
onvention holds forother orthonormal bases that appear later on, for instan
e {ψ̃ν

n}n≥1.With this notation, the main results of the paper are the following.Theorem 1.1. Let ν > −1 and 1 < p < ∞. Let w(x) be a weight thatsatis�es the 
onditions (1.5)�(1.7). Then(1.12) ( 1\
0

|Rνf(x)w(x)|p dx
)1/p

≤ C
( 1\

0

|f(x)w(x)|p dx
)1/p

for all f ∈ L2∩Lp(w). Consequently , Rν extends uniquely to a bounded linearoperator on Lp(w). Using the same symbol Rν to denote this extension, ifin addition w satis�es the 
onditions that result from (1.5) and (1.6) byrepla
ing ν by ν + 1, then(1.13) Rνf ∼
∞∑

n=1

〈f, ψν
n〉ψ̃ν

n, f ∈ Lp(w).In order to treat weighted weak type (1, 1) inequalities for Rν , for a givenweight fun
tion w(x) on (0, 1), 
onsider the following set of 
onditions:
sup

0<r<1

( 1\
r

(
r

x

)δ w(x)

xν+3/2
dx

)(
ess sup
x∈(0,r)

xν+1/2

w(x)

)
<∞,(1.14)

sup
0<r<1

( r\
0

(
x

r

)δ

xν+3/2w(x) dx

)(
ess sup
x∈(r,1)

1

xν+5/2w(x)

)
<∞.(1.15)In (1.14) and (1.15) we assume that there exists a positive δ su
h that the
orresponding quantities are �nite. It is easily seen that for a power weightfun
tion w(x) = xa, a ∈ R, (1.14) is satis�ed if and only if a ≤ ν + 1/2, and(1.15) is satis�ed if and only if a ≥ −(ν + 5/2). Let Pη, Qη, η real, denotethe Hardy operators a
ting on fun
tions de�ned on (0, 1):

Pηf(x) = x−η
x\
0

f(t) dt, Qηf(x) = x−η
1\
x

f(t) dt, 0 < x < 1.The 
ondition (1.14) is ne
essary and su�
ient for the inequality(1.16) \
{0<x<1 : |Pν+3/2f(x)|>λ}

w(x) dx≤ C

λ

1\
0

|f(x)|x−(ν+1/2)w(x) dx, λ>0,

to hold; this follows from [2, Theorem 2℄ taken with p = q = 1, η = ν + 3/2
> 0, U(x) = w(x) and V (x) = x−(ν+1/2)w(x) for x ∈ (0, 1), and U(x) =
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V (x) = 0 for x ≥ 1. The 
ondition (1.15) is ne
essary and su�
ient for(1.17) \

{0<x<1 : |Q
−(ν+3/2)f(x)|>λ}

w(x) dx≤ C

λ

1\
0

|f(x)|xν+5/2w(x) dx, λ> 0,

to hold; this follows from [2, Theorems 4 and 5℄ taken with p = q = 1,
η = −(ν + 3/2), U(x) = w(x) and V (x) = xν+5/2w(x) for x ∈ (0, 1), and
U(x) = V (x) = 0 for x ≥ 1.Theorem 1.2. Let ν > −1 and w(x) be a weight that satis�es the 
on-ditions (1.14), (1.15), and (1.7) with p = 1. Then\

{0<x<1 : |Rνf(x)|>λ}

w(x) dx ≤ C

λ

1\
0

|f(x)|w(x) dx, λ > 0,

for all f ∈ L2 ∩ L1(w). Consequently , Rν extends uniquely to a boundedlinear operator from L1(w) to L1,∞(w).The proofs of our main results, Theorems 1.1 and 1.2, rely on subtle esti-mates of the kernel Rν(x, y) asso
iated to the operator Rν (see Proposition3.3), and on an appli
ation of the aforementioned lo
al Calderón�Zygmundtheory. This theory, des
ribed in [11℄, has been adapted to the present set-ting in [7℄. We stress that in the 
ase ν > 1/2, when Rν(x, y) is a standardCalderón�Zygmund kernel (see Proposition 3.3), restri
ting the kernel to thelo
al region
D3 = {(x, y) ∈ (0, 1) × (0, 1) : x/2 < y < 3x/2},i.e. treating Rν by means of the lo
al Calderón�Zygmund theory, bringsan advantage at least when 1 < p < ∞. Then more weights are allowedsin
e outside D3, i.e. on the regions D1 = {(x, y) : 0 < y ≤ x/2} and

D2 = {(x, y) : min{1, 3x/2} ≤ y < 1}, weighted Hardy inequalities areapplied. Here are the details. Re
all that the (global) Ap 
ondition for wp,
1 ≤ p <∞, is(1.18) sup

0≤u<v≤1

1

v − u

( v\
u

w(x)p dx
)1/p( v\

u

w(x)−p′ dx
)1/p′

<∞.Here, as in (1.7), the se
ond integral is understood as ess supx∈(u,v)[w
−1(x)]for p = 1. Clearly, the (global) Ap 
ondition implies (1.7). We showed in [7,Proposition 2.4℄ that for ν ≥ −1/2 if w satis�es (1.18) then it satis�es (1.5)and (1.6) if p > 1, or (1.14) and (1.15) if p = 1. Therefore, taking into a

ountthe remarks 
on
erning power weights, it follows that in the 
ase ν > −1/2in Theorems 1.1 and 1.2 we are 
onsidering a range of weights substantiallywider than the 
lassi
al range of Ap weights. On the other hand, we showed
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y for Fourier�Bessel expansions 221in [7, Proposition 2.5℄ that for ν = −1/2 and 1 < p <∞, if w satis�es (1.5)and (1.6) then it satis�es (1.18). Thus, in the 
ase ν = −1/2, in Theorem1.1 we 
onsider pre
isely the range of Ap weights.A theory of Riesz transforms for the di�erential operator Lν 
onsideredas a positive symmetri
 operator on C∞
c (0,∞) ⊂ L2((0,∞), dx) has re
entlybeen developed in [3℄ by Betan
or, Bura
zewski, Fariña, Martínez and Torrea(for ν ≥ −1/2); in a slightly di�erent setting the same problem was inves-tigated in [5℄. A self-adjoint extension of this operator is realized in termsof the Hankel transform Hν . Sin
e for a given ν > −1 the Fourier�Besselexpansions with respe
t to {ψν

n}n≥1 may be viewed as dis
rete analogues ofthe (
ontinuous) Hankel transform Hν , it follows that, in some sense, theresults of the present paper 
an be 
onsidered as a dis
rete 
ounterpart ofthe results of [3℄. A di�eren
e between [3℄ and our paper is that in [3℄ therelevant operators are de�ned as singular integral operators while here theyare initially de�ned as bounded operators on L2.In [10, Se
tion 18℄ Mu
kenhoupt and E. M. Stein outlined a theory of
onjuga
y for Fourier�Bessel expansions in a setting di�erent from ours. Forthe system {φν
n}n≥1, φν

n(x) = ψν
n(x)x−(ν+1/2), 
omplete and orthonormal in

L2((0, 1), x2ν+1 dx), ν ≥ −1/2, they suggested the mapping f 7→ f̃ ,
f̃(x) = −x

∞∑

n=1

〈f, φν
n〉L2((0,1), x2ν+1 dx)φ

ν+1
n (x),as the appropriate 
onjugate operator for Fourier�Bessel expansions; in otherwords, the 
onjugate operator is furnished by the mapping φν

n 7→ −xφν+1
n(note that {−xφν+1

n }n≥1 is an orthonormal basis in L2((0, 1), x2ν+1 dx)). Inthat setting the underlying di�erential operator is
L(ν) = −

(
d2

dx2
+

2ν + 1

x

d

dx

)
.The stru
ture of the paper is as follows. In Se
tion 2 we gather ne
es-sary fa
ts and tools that are used later on and prove a number of lemmas.Se
tion 3 is devoted to proving estimates of the auxiliary kernel Rν(r, x, y)and its gradient, and then de�ning the 
onjugate kernel Rν(x, y) as the limit

limr→1− Rν(r, x, y), x 6= y, and proving similar estimates for it. The mainresults of this se
tion are 
ontained in Propositions 3.1 and 3.2; provingthem we heavily exploit the te
hniques developed in our previous papers[6℄ and [7℄. In Se
tion 4 some results about Poisson and 
onjugate Poissonintegrals are stated and proved. The proofs of the main results are givenin Se
tion 5. Finally, in Se
tion 6 we provide a de�nition of an alterna-tive 
onjugate operator and state, without proofs, some results 
on
erningthem.



222 Ó. Ciaurri and K. Stempak2. Preliminaries. The Bessel fun
tion Jν satis�es(2.1) J ′
ν(t) = −ν

t
Jν(t) + Jν−1(t), J ′

ν(t) =
ν

t
Jν(t) − Jν+1(t).The following asymptoti
s will be used (see [8, p. 122℄):(2.2) √

z Jν(z) =
M∑

j=0

(
Aν,j

zj
sin z +

Bν,j

zj
cos z

)
+HM (z),

where M = 0, 1, . . . and |HM (z)| ≤ Cz−(M+1), z → ∞. At z = 0+ one has(2.3) Jν(z) = O(zν), z → 0+.Given ν > −1 the following pointwise estimates also hold:
|ψν

n(x)| ≤ C

{
(nx)ν+1/2, 0 < x ≤ n−1,

1, n−1 < x < 1,
(2.4)

|ψ̃ν
n(x)| ≤ C

{
(nx)ν+3/2, 0 < x ≤ n−1,

1, n−1 < x < 1.
(2.5)We will also use the fa
t that(2.6) λn,ν = O(n), dn,λ = O(1).Moreover, Poisson's integral formula will be helpful:(2.7) Jν(z) = Cνz

ν
1\
0

(1 − t2)ν−1/2 cos(zt) dt, ν > −1/2.Lemma 2.1. Let ν > −1 and f ∈ Lp(w), where 1 ≤ p < ∞ and wsatis�es (1.5) and , in addition, the 
onditions (1.6) and (1.7) if p > 1, or(1.15) and (1.7) if p = 1. Then the 
oe�
ients 〈f, ψν
n〉 exist and satisfy(2.8) 〈f, ψν

n〉 = O(nτ )with some τ = τ(ν, p, w). The analogous statement holds for the system
{ψ̃ν

n}n≥1 provided w satis�es (1.7) and the 
onditions that result either from(1.5) and (1.6) if p > 1 or from (1.14) and (1.15) if p = 1, upon repla
ing νby ν + 1.Proof. Using (2.4) gives
1\
0

|f(x)ψν
n(x)| dx ≤ Cnν+1/2

1/n\
0

|f(x)|xν+1/2 dx+ C

1\
1/n

|f(x)| dx.

We shall show that the two integrals are �nite and, in addition, O(nτ ).By Hölder's inequality we obtain (assuming for simpli
ity n ≥ 2)
1/n\
0

|f(x)|xν+1/2 dx ≤ ‖f‖Lp(w)

( 1/2\
0

w(x)−p′xp′(ν+1/2)
)1/p′
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omes ess supx∈(0,1/2)[w(x)−1xν+1/2]). By taking
r = 1/2 either in (1.5) or in (1.14) the very last integral turns out to bea �nite 
onstant, hen
e T1/n

0 |f(x)|xν+1/2 dx = O(1).For the se
ond relevant integral, by using Hölder's inequality we get
1\

1/n

|f(x)| dx ≤ ‖f‖Lp(w)

( 1\
1/n

w(x)−p′ dx
)1/p′

(if p = 1 the last quantity be
omes ess supx∈(1/n,1)[w(x)−1]). Sin
e
1\

1/2

w(x)−p′ dx ≤
1\

1/2

w(x)−p′x−p′(ν+5/2) dx

(or ≤ ess supx∈(1/2,1)[w(x)−1x−(ν+5/2)] if p = 1), and the last quantity is�nite by taking r = 1/2 in (1.6) (or in (1.15) if p = 1), it is su�
ient to
onsider T1/2
1/nw(x)−p′ dx (or ess supx∈(1/n,1/2)[w(x)−1] if p = 1). We have

1/2\
1/n

w(x)−p′ dx ≤ (max{2, n})p′(ν+1/2)

1/2\
0

w(x)−p′xp′(ν+1/2) dxif 1 < p <∞, or
ess sup

x∈(1/n,1/2)
[w(x)−1] ≤ (max{2, n})ν+1/2 ess sup

x∈(0,1/2)

xν+1/2

w(x)if p = 1. By taking r = 1/2 either in (1.5) or in (1.14) if p = 1, bothoutermost quantities are �nite 
onstants, hen
e T11/n |f(x)| dx = O(nτ ).The proof of the statement 
on
erning the system {ψ̃ν
n}n≥1 is 
ompletelyanalogous, so we omit it.Lemma 2.2. Let ν > −1, 1 < p < ∞ and suppose that w satis�es the
onditions (1.5)�(1.7). Then ψν

n ∈ Lp′(w−1), n = 1, 2, . . . , and(2.9) ‖ψν
n‖Lp′ (w−1) = O(nτ )with some τ = τ(ν, p, w). The analogous statement holds for the system

{ψ̃ν
n}n≥1 provided w satis�es (1.7) and the 
onditions resulting from (1.5)and (1.6) upon repla
ing ν by ν + 1.Proof. Using (2.4) gives

1\
0

|ψν
n(x)w(x)−1|p′ dx

≤ Cnp′(ν+1/2)

1/n\
0

xp′(ν+1/2)w(x)−p′ dx+ C

1\
1/n

w(x)−p′ dx.Now repeat the arguments from the proof of Lemma 2.1.



224 Ó. Ciaurri and K. StempakLemma 2.3. Let ν > −1. The fun
tions {ψ̃ν
n}n≥1 given by (1.3) areeigenfun
tions of the di�erential operator Lν+1 
orresponding to the eigen-values {λ2

n,ν}n≥1,
Lν+1ψ̃

ν
n = λ2

n,νψ̃
ν
n.Proof. A straightforward 
al
ulation gives(2.10) Lν+1 = δνδ

∗
ν .The 
laim follows by using the above and (1.2).Lemma 2.4. Let ν > −1. The fun
tions {ψ̃ν

n}n≥1 given by (1.3) form anorthonormal basis in L2.Proof. We re
all Lommel's formula (see [13, Ch. 5, p. 134℄, where thename �Lommel's formula� is not used, but it 
ommonly appears in the liter-ature, 
f. [12℄)
1\
0

xJν+1(ax)Jν+1(bx) dx =





aJ ′
ν+1(a)Jν+1(b) − bJ ′

ν+1(b)Jν+1(a)

b2 − a2
, a 6= b,

1

2
J ′

ν+1(a)
2+

1

2

(
1 − (ν+1)2

a2

)
Jν+1(a)

2, a = b.We also re
all the following fa
ts from the theory of Dini series (see [13, p.134℄). Given α > −1 and ̺ ∈ R, the fun
tions
θα,̺
n (x) = bn

√
xJα(µnx), b−2

n =

1\
0

(θα,̺
n (x))2 dx,

n = 1, 2, . . . , where {µn}n≥1 denotes the sequen
e of su

essive positive zerosof the equation(2.11) xJ ′
α(x) + ̺Jα(x) = 0,form an orthonormal system in L2 for α>−1; moreover, the system {θα,̺

n }n≥1is 
omplete if α+̺ > 0, and if α+̺ = 0, it be
omes 
omplete after adjoiningthe fun
tion θα,̺
0 (x) =

√
2(α+ 1)xα+1/2.Now 
onsider (2.11) with α = ν + 1 (then α > −1). By the identity

xJ ′
ν+1(x) + (ν + 1)Jν+1(x) = xJν(x)the equation (2.11) 
an be rewritten as
xJν(x) + (̺− ν − 1)Jν+1(x) = 0.Taking ̺ = ν + 1 (note that ̺ + α = 2(ν + 1) > 0) one obtains µn = λn,ν ,hen
e the fun
tions

θν+1,ν+1
n (x) = knψ̃

ν
n(x)form an orthonormal and 
omplete system in L2; using Lommel's formula,one shows that kn = 1, whi
h �nishes the proof.



Conjuga
y for Fourier�Bessel expansions 225We will also extensively use the following simpli�ed version of a 
ombi-nation of [6, Lemmas 4.1 and 4.2℄. The proof of these lemmas is based on(2.2) and good asymptoti
s of the sequen
es {λn,ν}n≥1 and {dn,ν}n≥1 (moresubtle than those in (2.6)).Lemma 2.5. Let ν > −1, ℓ be a nonnegative integer and γ be a realnumber. Then ea
h of the four fun
tions(2.12) d2
n,νλ

γ
n,ν

{
sin

cos

}
(λn,ν(x± y)), n = 1, 2, . . . ,is a sum of sixteen terms of the form

nγ

{
sin

cos

}
(πn(x± y))Eγ,ℓ(n, x, y),where

Eγ,ℓ(n, x, y) =
ℓ∑

k=0

Ak(x, y)

nk
+ q(ℓ)n (x, y),

and Ak(x, y), k = 0, 1, . . . , ℓ, q(ℓ)n (x, y), n = 1, 2, . . . , are fun
tions su
hthat |Ak(x, y)| ≤ C, |q(ℓ)n (x, y)| ≤ Cn−ℓ−1, 0 < x, y < 1, with a 
onstant
C = Cν,ℓ,γ .The lemma follows by taking µ = ν, m = j = 0 in [6, Lemmas 4.1 and4.2℄ (the fun
tions Ak(x, y) now in
orporate some bounded fun
tions thatappear in those lemmas).Another useful fa
t is taken from [6, Proposition 4.3℄ (see (4.12) at theend of the proof).Lemma 2.6. We have(2.13) ∣∣∣∣

∞∑

n=[1/|t|]

rn

n

{
sin

cos

}
(nt)

∣∣∣∣ ≤ C, 0 < |t| < 3π/2,

with C not depending on 0 < r < 1 and t.We will frequently use, without further mention, the fa
t that
N∑

n=1

n̺ =

{
O(N̺+1) for ̺ > −1,

O(logN) for ̺ = −1,and ∞∑

n=N

n̺ = O(N̺+1), ̺ < −1.

By 〈f, g〉 we shall mean T10 f(x)g(x)dx whenever the integral makes sense.



226 Ó. Ciaurri and K. Stempak3. Estimates of the kernel. We �rst de�ne the kernel Rν(r, x, y), 0 <
r < 1,

Rν(r, x, y) =
∞∑

n=1

rnψ̃ν
n(x)ψν

n(y), 0 < x, y < 1,asso
iated with the integral operator
Rν,rf(x) =

1\
0

Rν(r, x, y)f(y) dy =
∞∑

n=1

rn〈f, ψν
n〉ψ̃ν

n(x),and prove the following:Proposition 3.1. Let ν > −1. Then
(3.1) |Rν(r, x, y)| ≤ C





x−ν−3/2yν+1/2, 0 < y ≤ x/2,

|x− y|−1, x/2 < y < min{1, 3x/2},
xν+3/2y−ν−5/2, min{1, 3x/2} ≤ y < 1,with C independent of 0 < r < 1, x and y. Consequently , if ν ≥ −1/2 then

|Rν(r, x, y)| ≤ C|x− y|−1, 0 < x, y < 1.Proof. The last statement is a straightforward 
onsequen
e of (3.1). Toprove (3.1) we shall 
onsider three 
ases determined by the right side of thisestimate.
Case 1: 0 < y ≤ x/2. We split the series de�ning Rν(r, x, y) into

A =
N−1∑

n=1

rnψ̃ν
n(x)ψν

n(y)

=
N−1∑

n=1

rnd2
n,ν(λn,νx)

1/2Jν+1(λn,νx) · (λn,νy)
1/2Jν(λn,νy),

B =
∞∑

n=N

rnψ̃ν
n(x)ψν

n(y)

=

∞∑

n=N

rnd2
n,ν(λn,νx)

1/2Jν+1(λn,νx) · (λn,νy)
1/2Jν(λn,νy),where N = [1/x]. Using (2.6) and (2.3) we obtain

|A| ≤
N−1∑

n=1

d2
n,ν |(λn,νx)

1/2Jν+1(λn,νx)| |(λn,νy)
1/2Jν(λn,νy)|

≤ C(xy)1/2
N−1∑

n=1

n|Jν+1(λn,νx)| |Jν(λn,νy)|

≤ Cxν+3/2yν+1/2
N−1∑

n=1

n2ν+2 ≤ Cx−ν−3/2yν+1/2.
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y for Fourier�Bessel expansions 227To get the same estimate for |B| it is enough to show that for 0 < r < 1,
0 < x < 1, 0 < y ≤ x/2 and ν > −1/2,(3.2) ∣∣∣

∞∑

n=N

rnψ̃ν
n(x)dn,νλ

ν+1/2
n,ν cos(λn,νy)

∣∣∣ ≤ Cx−ν−3/2,and the analogous estimate with the exponents ν+1/2 and −ν−3/2 repla
edby (ν + 2) + 1/2 and −(ν + 2)− 3/2 respe
tively (the latter is needed in the
ase −1 < ν ≤ −1/2 only). Indeed, using (3.2) and Poisson's formula (2.7)applied to Jν(λn,νy) gives, for ν > −1/2,
|B| = Cν

∣∣∣
∞∑

n=N

rnψ̃ν
n(x)dn,ν(λn,νy)

ν+1/2
1\
0

(1 − t2)ν−1/2 cos(λn,νyt) dt
∣∣∣

≤ Cyν+1/2
1\
0

(1 − t2)ν−1/2
∣∣∣

∞∑

n=N

rnψ̃ν
n(x)dn,νλ

ν+1/2
n,ν cos(λn,νyt)

∣∣∣ dt

≤ Cx−ν−3/2yν+1/2.In the 
ase −1 < ν ≤ −1/2, applying the identity
Jν(z) = −Jν+2(z) +

2(ν + 1)

z
Jν+1(z)gives

B = −
∞∑

n=N

rnψ̃ν
n(x)dn,ν(λn,νy)

1/2Jν+2(λn,νy)

+ 2(ν + 1)
∞∑

n=N

rnψ̃ν
n(x)dn,ν(λn,νy)

−1/2Jν+1(λn,νy).Now, using Poisson's formula (2.7) for Jν+1(λn,νy) and Jν+2(λn,νy) (togetherwith the assumption y ≤ x/2 in the �rst summand) and applying (3.2) weobtain the result.Proving (3.2) (the proof of its 
ounterpart with the aforementioned re-pla
ements in exponents is 
ompletely analogous, hen
e we do not treat itseparately) we use (2.2) to expand (λn,νx)
1/2Jν+1(λn,νx) and 
hoose M tobe the unique nonnegative integer satisfying M − 1 ≤ ν + 1/2 < M . It isthen 
lear that(3.3) ∣∣∣

∞∑

n=N

rnψ̃ν
n(x)dn,νλ

ν+1/2
n,ν cos(λn,νy)

∣∣∣ ≤ C
M∑

j=0

x−j(|Cj| + |Sj |) +GM ,where{Sj

Cj

}
=

∞∑

n=N

rnd2
n,νλ

−j+ν+1/2
n,ν

{
sin

cos

}
(λn,ν(x± y)), j = 0, 1, . . . ,M ,

GM =

∞∑

n=N

d2
n,ν |HM (λn,νx)|λν+1/2

n,ν .



228 Ó. Ciaurri and K. StempakThen GM is well 
ontrolled. Indeed, using (2.6) and M > ν + 1/2 gives
GM ≤ Cx−(M+1)

∞∑

n=N

n−M−1/2+ν ≤ Cx−(M+1)N−M+1/2+ν ≤ Cx−ν−3/2.

Taking into a

ount (3.3), to �nish the proof of (3.2) it remains to 
he
kthat both |Sj | and |Cj| are bounded by Cxj−ν−3/2. It follows from Lemma2.5 that for given j = 0, 1, . . . ,M , Sj and Cj are sums of sixteen series of theform(3.4) ∞∑

n=N

rnn−j+ν+1/2E−j+ν+1/2,M−j(n, x, y)

{
sin

cos

}
(πn(x± y)).It is therefore 
lear that our task is redu
ed to estimating the absolute valueof ea
h of the series in (3.4) by Cxj−ν−3/2. Given j = 0, . . . ,M , we usethe expression for E−j+ν+1/2,M−j(n, x, y) from Lemma 2.5 to show that theabsolute value of(3.5) Rj,k =

∞∑

n=N

rnn−j−k+ν+1/2

{
sin

cos

}
(πn(x± y))

is, for k = 0, . . . ,M − j, bounded by Cxj−ν−3/2, and
∣∣∣∣

∞∑

n=N

rnn−j+ν+1/2q(M−j)
n (x, y)

{
sin

cos

}
(πn(x± y))

∣∣∣∣ ≤ Cxj−ν−3/2.

For the term involving q(M−j)
n (x, y), using the fa
t that −M − 1/2+ ν < −1gives

∣∣∣∣
∞∑

n=N

rnn−j+ν+1/2q(M−j)
n (x, y)

{
sin

cos

}
(πn(x± y))

∣∣∣∣ ≤ C
∞∑

n=N

n−M−1/2+ν

≤ CxM−ν−1/2,whi
h is enough for our purpose.The hypothesis made on M shows that −j − k + ν + 1/2 > −1 for
j = 0, . . . ,M and k = 0, . . . ,M − j when M − 1 < ν + 1/2, and the same istrue for j = 0, . . . ,M − 1 and k = 0, . . . ,M − j − 1 when M − 1 = ν + 1/2.Hen
e, in these 
ases,

∣∣∣∣
N−1∑

n=1

rnn−j−k+ν+1/2

{
sin

cos

}
(πn(x± y))

∣∣∣∣ ≤ C
N∑

n=1

n−j−k+ν+1/2

≤ Cxj+k−ν−3/2 ≤ Cxj−ν−3/2.Consequently, in (3.5) we 
an extend the sum to start from n = 1 and then
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y for Fourier�Bessel expansions 229use [6, Lemma 3.3℄ to estimate the 
omplete sum. Thus,
|R̃j,k| =

∣∣∣∣
∞∑

n=1

rnn−j−k+ν+1/2

{
sin

cos

}
(πn(x± y))

∣∣∣∣ ≤ Cxj−ν−3/2.

This 
ompletes the estimate of Rj,k, k = 0, 1, . . . ,M− j, ex
ept for the 
asesof Rj,M−j when M − 1 = ν + 1/2 for j = 0, . . . ,M . In these ex
eptional
ases we have to show that |Rj,M−j| ≤ Cxj−M . Sin
e Rj,M−j takes theform of the series in (2.13) with t = π(x± y), Lemma 2.6 and the fa
t that
N = [1/x] ∼ [1/x+ y] ∼ [1/|x− y|] give the bound |Rj,M−j| ≤ C ≤ Cxj−M .
Case 2: x/2 < y < min{1, 3x/2}. We use (2.2) with M = 1 to expandthe fun
tions (λn,νx)

1/2Jν+1(λn,νx) and (λn,νy)
1/2Jν(λn,νy). Then, taking

N = [1/x] ∼ [1/y], we write Rν(r, x, y) as the sum
F (r, x, y) +

1∑

j,l=0

x−jy−lOj,l(r, x, y) + J1(r, x, y) + J2(r, x, y) +G1(r, x, y),

where
F (r, x, y) =

N−1∑

n=1

rnd2
n,ν(λn,νx)

1/2Jν+1(λn,νx) · (λn,νy)
1/2Jν(λn,νy),and, for the remainder sum that starts from n = N , the Oj,l terms 
apturethe part that 
omes from the main parts of the aforementioned expansionsand are sums of four terms of the form

Dj,l

∞∑

n=N

rnd2
n,νλ

−j−l
n,ν

{
sin

cos

}
(λn,νx)

{
sin

cos

}
(λn,νy),

(Dj,l is a produ
t of Aν+1,j or Bν+1,j and Aν,l or Bν,l depending on the 
hoi
eof sine or 
osine); J1 gathers the part that 
omes from the main parts of these
ond expansion and the remainder of the �rst one, hen
e its absolute valueis bounded by
|J1(r, x, y)| ≤ C

∣∣∣∣
2∑

1

∞∑

n=N

rnd2
n,νH1(λn,νx)

{
sin

cos

}
(λn,νy)

∣∣∣∣

+ Cy−1

∣∣∣∣
2∑

1

∞∑

n=N

rnd2
n,νλ

−1
n,νH1(λn,νx)

{
sin

cos

}
(λn,νy)

∣∣∣∣

(the symbol ∑2
1 indi
ates that we add two series, one for the 
hoi
e of thesine and the other for the 
osine); J2 a
ts as J1 but with the position of both
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hed, and its absolute value is 
ontrolled by
|J2(r, x, y)| ≤ C

∣∣∣∣
2∑

1

∞∑

n=N

rnd2
n,ν

{
sin

cos

}
(λn,νx)H1(λn,νy)

∣∣∣∣

+ Cx−1

∣∣∣∣
2∑

1

∞∑

n=N

rnd2
n,νλ

−1
n,ν

{
sin

cos

}
(λn,νx)H1(λn,νy)

∣∣∣∣;and �nally G1 
aptures the part that 
omes from the remainders,
G1(r, x, y) =

∞∑

n=N

rnd2
n,νH1(λn,νx)H1(λn,νy).We will now analyze separately ea
h of the summands in the above de
om-position of Rν(r, x, y) and bound them by C|x− y|−1.For F (r, x, y), using (2.3) and (2.6) we have

|F (r, x, y)| ≤ Cxν+3/2yν+1/2
N−1∑

n=1

n2ν+2

≤ Cx2ν+2N2ν+3 ≤ Cx−1,whi
h is dominated by C|x− y|−1 in the region 
onsidered.For J1(r, x, y) (the same reasoning works for J2(r, x, y)), using H1(z) =
O(z−2), z ≥ 1, and again (2.3) and (2.6), shows that

|J1(r, x, y)| ≤ Cx−2
( ∞∑

n=N

n−2 + y−1
∞∑

n=N

n−3
)

≤ Cx−2(N−1 + y−1N−2) ≤ Cx−1.In a similar way we show that
|G1(r, x, y)| ≤ C(xy)−2

∞∑

n=N

n−4 ≤ Cx−4N−3 ≤ Cx−1.The remainder of the proof 
onsists in a more deli
ate analysis of the
x−jy−lOj,l(r, x, y) terms. We start with the x−1y−1O1,1(x, y) term. It is 
learthat

|x−1y−1O1,1(r, x, y)| ≤ Cx−2
∞∑

n=N

n−2 ≤ Cx−2N−1 ≤ Cx−1.

Using Lemma 2.5 with γ = −1 and ℓ = 0 yields |x−1O1,0(r, x, y)| ≤
C|x− y|−1 on
e we show that

1

x

∣∣∣∣
∞∑

n=N

rn

n
E−1,0(n, x, y)

{
sin

cos

}
(πn(x± y))

∣∣∣∣ ≤ C
1

x
log

(
2x

|x− y|

)
.
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y for Fourier�Bessel expansions 231The form of E−1,0 redu
es this task to showing the estimates(3.6) ∣∣∣∣
∞∑

n=N

rn

n

{
sin

cos

}
(πn(x± y))

∣∣∣∣ ≤ C log

(
2x

|x− y|

)

and ∣∣∣∣
∞∑

n=N

rn

n
q(0)
n (x, y)

{
sin

cos

}
(πn(x± y))

∣∣∣∣ ≤ C,

where |q(0)
n (x, y)| ≤ Cn−1. The very last series is absolutely 
onvergent andthe bound follows. The estimate (3.6) is the same as [6, (5.3)℄ and was provedthere. The estimate for y−1O0,1(r, x, y) follows analogously.It remains to 
onsider the 
ase of O0,0(r, x, y). Using Lemma 2.5 with

γ = 0 and ℓ = 1 shows that ea
h of the four terms of O0,0(r, x, y) is a sumof sixteen terms of the form(3.7) ∞∑

n=N

rn

(
A0 +

A1(x, y)

n
+ q(1)

n (x, y)

){
sin

cos

}
(πn(x± y)),

where |q(1)
n (x, y)| ≤ Cn−2 for 0 < x, y < 1. The expression in (3.7) equalsthe expression in (5.4) of [6℄ 
orresponding to the 
ase s = 0. We proved in[6℄ (
f. the proof of [6, Proposition 5.1℄) that this expression equals

u(x, y)Pr(π(x− y)) + v(x, y)Qr(π(x− y)),where u and v are bounded fun
tions on (0, 1)×(0, 1), plus some terms whoseabsolute values are bounded by either C log(2x/|x− y|) or C(2 − x− y)−1.Ea
h of the aforementioned bounds is stronger than C|x− y|−1; in additionalso Pr(π(x − y)) as well as |Qr(π(x − y))| are bounded by C|x − y|−1 for
0 < x, y < 1. Hen
e the estimate |O0,0(r, x, y)| ≤ C|x− y|−1 follows.
Case 3: min{1, 3x/2} ≤ y < 1. We split the series de�ning Rν(r, x, y)into A and B (as in the 
ase 0 < y ≤ x/2) but this time we set N = [1/y].Then we get

|A| ≤
N−1∑

n=1

d2
n,ν |(λn,νx)

1/2Jν+1(λn,νx)| |(λn,νy)
1/2Jν(λn,νy)|

≤ C(xy)1/2
N−1∑

n=1

n|Jν+1(λn,νx)| |Jν(λn,νy)|

≤ Cxν+3/2yν+1/2
N−1∑

n=1

n2ν+2 ≤ Cxν+3/2y−ν−5/2.To get the analogous estimate of |B| it is enough to show that for 0 < r < 1,
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0 < x ≤ 2y/3, 0 < y < 1 and ν > −1,(3.8) ∣∣∣

∞∑

n=N

rndn,νλ
ν+3/2
n,ν cos(λn,νx)ψ

ν
n(y)

∣∣∣ ≤ Cy−ν−5/2.Indeed, using (3.8) and Poisson's formula (2.7) applied to Jν+1(λn,νx) gives,for ν > −1,
|B| = Cν+1

∣∣∣
∞∑

n=N

rndn,ν(λn,νx)
ν+3/2

1\
0

(1 − t2)ν+1/2 cos(λn,νxt) dt ψ
ν
n(y)

∣∣∣

≤ Cxν+3/2
1\
0

(1 − t2)ν+1/2
∣∣∣

∞∑

n=N

rndn,νλ
ν+3/2
n,ν cos(λn,νxt)ψ

ν
n(y)

∣∣∣ dt

≤ Cxν+3/2y−ν−5/2.Proving (3.8) we use (2.2) to expand (λn,νy)
1/2Jν(λn,νy) and 
hoose Mto be the positive integer satisfying M − 1 ≤ ν + 3/2 < M . It is then 
learthat(3.9) ∣∣∣

∞∑

n=N

rn cos(λn,νx)dn,νλ
ν+3/2
n,ν ψν

n(y)
∣∣∣ ≤ C

M∑

j=0

y−j(|Cj| + |Sj |) +GM ,where {Sj

Cj

}
=

∞∑

n=N

rnd2
n,νλ

−j+ν+3/2
n,ν

{
sin

cos

}
(λn,ν(x± y)),

j = 0, 1, . . . ,M , and
GM =

∞∑

n=N

d2
n,ν |HM (λn,νy)|λν+3/2

n,ν .Then GM is well 
ontrolled. Indeed, using (2.6) gives
GM ≤ Cy−(M+1)

∞∑

n=N

n−M+1/2+ν ≤ Cy−(M+1)N−M+3/2+ν ≤ Cy−ν−5/2.Taking into a

ount (3.9), to �nish the proof of (3.8) it remains to 
he
kthat both |Sj| and |Cj | are bounded by Cyj−ν−5/2. It follows from Lemma2.5 that for given j = 0, 1, . . . ,M , Sj and Cj are sums of sixteen series of theform(3.10) ∞∑

n=N

rnn−j+ν+3/2E−j+ν+3/2,M−j(n, x, y)

{
sin

cos

}
(πn(x± y)).It is therefore 
lear that our task is redu
ed to estimating the absolute valueof ea
h of the series in (3.10) by Cyj−ν−5/2. Given j = 0, . . . ,M , we usethe expression for E−j+ν+3/2,M−j(n, x, y) from Lemma 2.5 to show that the
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y for Fourier�Bessel expansions 233absolute value of(3.11) Rj,k =
∞∑

n=N

rnn−j−k+ν+3/2

{
sin

cos

}
(πn(x± y)),

is, for k = 0, . . . ,M − j, bounded by Cyj−ν−5/2 and
∣∣∣∣

∞∑

n=N

rnn−j+ν+3/2q(M−j)
n (x, y)

{
sin

cos

}
(πn(x± y))

∣∣∣∣ ≤ Cyj−ν−5/2.

For the term involving q(M−j)
n (x, y), using the fa
t that−M+1/2+ν<−1gives

∣∣∣∣
∞∑

n=N

rnn−j+ν+3/2q(M−j)
n (x, y)

{
sin

cos

}
(πn(x± y))

∣∣∣∣ ≤ C
∞∑

n=N

n−M+1/2+ν

≤ CM−ν−3/2,whi
h is enough for our purpose. The hypothesis made on M shows that
−j−k+ν+3/2 > −1 for j = 0, . . . ,M and k = 0, . . . ,M − j when M −1 <
ν + 3/2, and the same is true for j = 0, . . . ,M − 1 and k = 0, . . . ,M − j − 1when M − 1 = ν + 3/2. Hen
e, in these 
ases,

∣∣∣∣
N−1∑

n=1

rnn−j−k+ν+3/2

{
sin

cos

}
(πn(x± y))

∣∣∣∣ ≤ C
N−1∑

n=1

n−j−k+ν+3/2

≤ Cyj+k−ν−5/2 ≤ Cyj−ν−5/2.Consequently, in (3.5) we 
an extend the sum to start from n = 1 and thenuse [6, Lemma 3.3℄ to estimate the 
omplete sum. Thus,
|R̃j,k| =

∣∣∣∣
∞∑

n=1

rnn−j−k+ν+3/2

{
sin

cos

}
(πn(x± y))

∣∣∣∣ ≤ Cyj−ν−5/2.This 
ompletes the estimate of Rj,k, k = 0, 1, . . . ,M − j, ex
ept the 
ases of
Rj,M−j when M − 1 = ν + 3/2 for j = 0, . . . ,M . In these ex
eptional 
asesan argument analogous to that from the end of the proof of Case 1 applies.This �nishes 
onsidering Case 3 and 
ompletes the proof of Proposi-tion 3.1.Proposition 3.2. Let ν > −1. Then(3.12) |∇x,yRν(r, x, y)| ≤ C|x− y|−2, x/2 < y < min{1, 3x/2},with C independent of 0 < r < 1, x and y. Moreover , if ν ≥ 1/2 then

|∇x,yRν(r, x, y)| ≤ C|x− y|−2, 0 < x, y < 1.



234 Ó. Ciaurri and K. StempakProof. We use (2.1) (see also (1.2)) to �nd that
dψ̃ν

n(x)

dx
= −2ν + 1

2x
ψ̃ν

n(x) + λn,νψ
ν
n(x),

dψν
n(y)

dy
=

2ν + 1

2y
ψν

n(y) − λn,νψ̃
ν
n(y).In this way (in both 
ases, ex
hanging summation and di�erentiation is easilyseen to be possible)

∂Rν

∂x
(r, x, y) = −2ν + 1

2x
Rν(r, x, y) +

∞∑

n=1

rnλn,νψ
ν
n(x)ψν

n(y),(3.13)
∂Rν

∂y
(r, x, y) =

2ν + 1

2y
Rν(r, x, y) −

∞∑

n=1

rnλn,νψ̃
ν
n(x)ψ̃ν

n(y).(3.14)For the �rst summands on the right of (3.13) and (3.14), using (3.1), it is
lear that ∣∣∣∣
2ν + 1

x
Rν(r, x, y)

∣∣∣∣ ≤
C

x|x− y| ≤
C

|x− y|2 ,and the same estimate holds for ∣∣2ν+1
y Rν(r, x, y)

∣∣.To treat the se
ond summands we de�ne
R(1)

ν (r, x, y) =
∞∑

n=1

rnλn,νψ
ν
n(x)ψν

n(y)

=
∞∑

n=1

rnd2
n,νλn,ν(λn,νx)

1/2Jν(λn,νx) · (λn,νy)
1/2Jν(λn,νy)and

R̃(1)
ν (r, x, y) =

∞∑

n=1

rnλn,νψ̃
ν
n(x)ψ̃ν

n(y)

=

∞∑

n=1

rnd2
n,νλn,ν(λn,νx)

1/2Jν+1(λn,νx) · (λn,νy)
1/2Jν+1(λn,νy),and pro
eed analogously to the proof of (3.1) in x/2 < y < min{1, 3x/2}. A
-tually, we shall 
onsider the 
ase of R̃

(1)
ν (r, x, y) only sin
e treating

R
(1)
ν (r, x, y) is 
ompletely analogous.Now, we use the asymptoti
 expansion (2.2) with M = 2, to expand thefun
tions (λn,νx)

1/2Jν+1(λn,νx) and (λn,νy)
1/2Jν+1(λn,νy) and take N =

[1/x] ∼ [1/y] to write R̃(1)
ν (r, x, y) as the sum

F (r, x, y) +
2∑

j,l=0

x−jy−lOj,l(r, x, y) + J1(r, x, y) + J2(r, x, y) +G2(r, x, y).
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y for Fourier�Bessel expansions 235Here
F (r, x, y) =

N−1∑

n=1

rnd2
n,νλn,ν(λn,νx)

1/2Jν+1(λn,νx) · (λn,νy)
1/2Jν+1(λn,νy),and, for the remainder sum that starts from n = N , the Oj,l terms 
apturethe part that 
omes from the main parts of the aforementioned expansionsand are sums of four terms of the form

Dj,l

∞∑

n=N

rnd2
n,νλ

−j−l+1
n,ν

{
sin

cos

}
(λn,ν(x± y));

J1 gathers the part that 
omes from the main parts of the se
ond expansionand the remainder of the �rst one, hen
e
|J1(r, x, y)| ≤ C

∣∣∣∣
2∑

1

∞∑

n=N

rnd2
n,νλn,νH2(λn,νx)

{
sin

cos

}
(λn,νy)

∣∣∣∣

+ Cy−1

∣∣∣∣
2∑

1

∞∑

n=N

rnd2
n,νH2(λn,νx)

{
sin

cos

}
(λn,νy)

∣∣∣∣

+ Cy−2

∣∣∣∣
2∑

1

∞∑

n=N

rnd2
n,νλ

−1
n,νH2(λn,νx)

{
sin

cos

}
(λn,νy)

∣∣∣∣;

J2 a
ts as J1 but with the position of both expansions swit
hed, and
|J2(r, x, y)| ≤ C

∣∣∣∣
2∑

1

∞∑

n=N

rnd2
n,νλn,ν

{
sin

cos

}
(λn,νx)H2(λn,νy)

∣∣∣∣

+ Cx−1

∣∣∣∣
2∑

1

∞∑

n=N

rnd2
n,ν

{
sin

cos

}
(λn,νx)H2(λn,νy)

∣∣∣∣

+ Cx−2

∣∣∣∣
2∑

1

∞∑

n=N

rnd2
n,νλ

−1
n,ν

{
sin

cos

}
(λn,νx)H2(λn,νy)

∣∣∣∣;and �nally G2 
aptures the part that 
omes from the remainders,
G2(r, x, y) =

∞∑

n=N

rnd2
n,νλn,νH2(λn,νx)H2(λn,νy).We will now analyze separately ea
h of the summands in the above de
om-position of R̃(1)

ν (r, x, y) and bound them by C|x− y|−2.For F (r, x, y), using (2.3) and (2.6), we have
|F (r, x, y)| ≤ C(xy)ν+3/2

N−1∑

n=1

n2ν+4 ≤ Cx2ν+3N2ν+5 ≤ Cx−2,whi
h is dominated by C|x− y|−2 in the region 
onsidered.



236 Ó. Ciaurri and K. StempakFor J1(r, x, y) (the same reasoning works for J2(r, x, y)), using H2(z) =
O(z−3), z ≥ 1, and again (2.3) and (2.6), shows that

|J1(r, x, y)| ≤ Cx−3
( ∞∑

n=N

n−2 + y−1
∞∑

n=N

n−3 + y−2
∞∑

n=N

n−4
)

≤ Cx−3(N−1 + y−1N−2 + y−2N−3) ≤ Cx−2.In a similar way we show that
|G2(r, x, y)| ≤ C(xy)−3

∞∑

n=N

n−5 ≤ Cx−6N−4 ≤ Cx−2.

The remainder of the proof is an analysis of the x−jy−lOj,l(r, x, y) terms.We start with the x−2y−2O2,2(x, y) term. It is 
lear that
|x−2y−2O2,2(r, x, y)| ≤ Cx−4

∞∑

n=N

n−3 ≤ Cx−4N−2 ≤ Cx−2.The same bound is obtained for |x−2y−1O2,1(x, y)| and |x−1y−2O1,2(x, y)|.The estimate of |x−2O2,0(r, x, y)| by C|x−y|−2 uses Lemma 2.5 with γ =
−1 and ℓ = 0, and is essentially 
ontained in the estimate of |x−1O1,0(r, x, y)|already dis
ussed when proving (3.1) in the region x/2 < y < min{1, 3x/2}.The estimates of |y−2O0,2(r, x, y)| and |x−1y−1O1,1(r, x, y)| follow analo-gously.The estimate of |x−1O1,0(r, x, y)| by C|x − y|−2 uses Lemma 2.5 with
γ = 0 and ℓ = 1, and is essentially 
ontained in the estimate of |O0,0(r, x, y)|already dis
ussed when proving (3.1) in the relevant region. The estimate of
|y−1O0,1(r, x, y)| follows analogously.It remains to 
onsider the 
ase of O0,0(r, x, y). We use Lemma 2.5 with
γ = 1 and ℓ = 2 to 
on
lude that ea
h of the four terms of O0,0(r, x, y) is asum of sixteen terms of the form(3.15) ∞∑

n=N

rnn

(
A0 +

A1(x, y)

n
+
A2(x, y)

n2
+q(2)

n (x, y)

){
sin

cos

}
(πn(x± y)),

where |q(2)
n (x, y)| ≤ Cn−3 for 0 < x, y < 1. It is immediate to see that theseries resulting from taking into a

ount the remainder q(2)

n (x, y) is abso-lutely 
onvergent, hen
e its absolute value is bounded by a 
onstant. Theseries resulting from taking into a

ount A1 and A2 were already (impli
itly)dis
ussed and are bounded by C|x−y|−2 in the region 
onsidered. The seriesresulting from taking into a

ount A0 was dis
ussed in [7℄ (
f. the proof of[7, Proposition 4.1℄), and was also shown to be bounded by C|x− y|−2.This �nishes estimating R̃(1)
ν , hen
e proving the �rst part of the propo-sition. To prove the se
ond part we �rst 
onsider the �rst summands on the
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e |Rν(r, x, y)| ≤ C|x− y|−1, 0 < x, y < 1, for
0 < y ≤ x/2 we have

∣∣∣∣
2ν + 1

x
Rν(r, x, y)

∣∣∣∣ ≤
C

x|x− y| ≤
C

|x− y|2 ,while for min{1, 3x/2} ≤ y < 1 we obtain, by using the bottom line of (3.1),
∣∣∣∣
2ν + 1

x
Rν(r, x, y)

∣∣∣∣ ≤ C

(
x

y

)ν+1/2 1

y2
≤ C

|x− y|2 .Similarly, for min{1, 3x/2} ≤ y < 1 we get
∣∣∣∣
2ν + 1

y
Rν(r, x, y)

∣∣∣∣ ≤
C

y|x− y| ≤
C

|x− y|2 ,while for 0 < y ≤ x/2, by using the top line of (3.1) we obtain
∣∣∣∣
2ν + 1

y
Rν(r, x, y)

∣∣∣∣ ≤ C

(
y

x

)ν−1/2 1

x2
≤ C

|x− y|2 .To treat the se
ond summands on the right of (3.13) and (3.14) we pro-
eed analogously to the proof of (3.1) in the regions 0 < y ≤ x/2 and
min{1, 3x/2} ≤ y < 1, obtaining the bounds

|R(1)
ν (r, x, y)| ≤ C

{
x−ν−5/2yν+1/2, 0 < y ≤ x/2,

xν+1/2y−ν−5/2, min{1, 3x/2} ≤ y < 1,

|R(2)
ν (r, x, y)| ≤ C

{
x−ν−7/2yν+3/2, 0 < y ≤ x/2,

xν+3/2y−ν−7/2, min{1, 3x/2} ≤ y < 1.It is easily seen that for ν ≥ 1/2 this is su�
ient to bound |R(i)
ν (r, x, y)|,

i = 1, 2, by C|x − y|−2 in the regions 
onsidered. This �nishes the proof ofthe proposition.Proposition 3.3. Let ν > −1. Then for every x 6= y, 0 < x, y < 1, thelimit
Rν(x, y) = lim

r→1−
Rν(r, x, y) = lim

r→1−

∞∑

n=1

rnψ̃ν
n(x)ψν

n(y)exists and satis�es
(3.16) |Rν(x, y)| ≤ C





x−ν−3/2yν+1/2, 0 < y ≤ x/2,

|x− y|−1, x/2 < y < min{1, 3x/2},
xν+3/2y−ν−5/2, min{1, 3x/2} ≤ y < 1,and(3.17) |∇Rν(x, y)| ≤ C|x− y|−2, x/2 < y < min{1, 3x/2}.



238 Ó. Ciaurri and K. StempakMoreover , if ν ≥ −1/2 then the middle estimate of (3.16) holds for 0 <
x, y < 1, and the same is true for (3.17) if ν ≥ 1/2; in all 
ases C isindependent of x and y.Proof. On
e we prove the existen
e of the limit, the required estimatesfollow dire
tly from Propositions 3.1 and 3.2. More pre
isely, justifying (3.17)also requires the identity(3.18) ∂

∂y
( lim
r→1−

Rν(r, x, y)) = lim
r→1−

∂

∂y
Rν(r, x, y)and a similar one for ∂/∂x. Assuming for a moment that limr→1− Rν(r, x, y)exists, what is still needed to prove (3.18) is the fa
t that for �xed 0 < x < 1,the 
onvergen
e on the right of (3.18) is lo
ally uniform in y. Using (3.14) itis su�
ient to 
he
k that for given 0 < x < 1, the 
onvergen
e of Rν(r, x, y)and R̃(1)

ν (r, x, y) as r → 1− is lo
ally uniform in y. For Rν(r, x, y) this willbe explained below in the proof of the existen
e of limr→1− Rν(r, x, y). For
R̃

(1)
ν (r, x, y) the argument is essentially the same, so we omit the details (alook into the proof of Proposition 3.2 is helpful). Analogous 
omments applywhen ∂/∂y in (3.18) is repla
ed by ∂/∂x.We expand the fun
tions (λn,νx)

1/2Jν+1(λn,νx) and (λn,νy)
1/2Jν(λn,νy)by using (2.2) with M = 1 to get

Rν(r, x, y) =
1∑

j,l=0

x−jy−lOj,l(r, x, y) + J1(r, x, y) + J2(r, x, y) +G1(r, x, y).

Here the Oj,l terms 
apture the part that 
omes from the main parts of theaforementioned expansions and are linear 
ombinations of terms of the form
∞∑

n=1

rnd2
n,νλ

−j−l
n,ν

{
sin

cos

}
(λn,νx)

{
sin

cos

}
(λn,νy);

J1 gathers the part that 
omes from the main parts of the se
ond expansionand the remainder of the �rst one, hen
e it is a linear 
ombination of termsof the form
y−δ

∞∑

n=1

rnd2
n,νλ

−δ
n,νH1(λn,νx)

{
sin

cos

}
(λn,νy), δ = 0, 1;

J2 a
ts as J1 but with the position of both expansions swit
hed, hen
e it isa linear 
ombination of terms of the form
x−δ

∞∑

n=1

rnd2
n,νλ

−δ
n,ν

{
sin

cos

}
(λn,νx)H1(λn,νy), δ = 0, 1;
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y for Fourier�Bessel expansions 239and �nally G1 
aptures the part that 
omes from the remainders,
G1(r, x, y) =

∞∑

n=1

rnd2
n,νH1(λn,νx)H1(λn,νy).Due to the bound H1(z) = O(z−2), z ≥ 1, it is evident that ea
h of theseries as in G1(r, x, y) or in the terms entering either J1 or J2, but withthe fa
tor rn removed, is absolutely 
onvergent sin
e, for su�
iently large n,either |H1(λn,νx)| ≤ C(xn)−2 or |H1(λn,νy)| ≤ C(yn)−2 applies (or both).Thus the 
orresponding expressions 
onverge as r → 1−. In addition, the
onvergen
e is lo
ally uniform in y. It is therefore su�
ient to analyze the

Oj,l terms. Given j, l ∈ {0, 1} we use Lemma 2.5 with ℓ = 1 and γ = −j − l.Then Oj,l 
an be written as a linear 
ombination of terms of the form
∞∑

n=1

rn

(
A0 +

A1(x, y)

n
+ q(1)

n (x, y)

){
sin

cos

}
(πn(x± y)),

where |q(1)
n (x, y)| ≤ Cn−2. Splitting the last series into three expressions 
or-responding to A0, A1/n and q(1)

n we see that the expression 
orresponding to
q
(1)
n 
onverges as r → 1− due to the fa
t that the series as in this expression,but with the fa
tor rn removed, is absolutely 
onvergent; in addition the
onvergen
e is lo
ally uniform in y. The �rst two expressions also 
onvergeas r → 1−, lo
ally uniformly in y (see the proof of [7, Proposition 4.2℄).The proof of the proposition is 
omplete.Remark 3.4. In the 
ase ν = −1/2, we have

R−1/2(x, y) =
sin π

2x cos π
2 y

(
cos2 π

2x+ sin2 π
2 y

)

sin π
2 (x+ y) sin π

2 (x− y)
+ sin

π

2
x cos

π

2
y.This is be
ause, as a dire
t 
al
ulation shows,

R−1/2(r, x, y)

= cos

(
π

2
(x+ y)

)
Qr(π(x+ y)) − sin

(
π

2
(x+ y)

)(
Pr(π(x+ y)) − 1

2

)

+ cos

(
π

2
(x− y)

)
Qr(π(x− y)) − sin

(
π

2
(x− y)

)(
Pr(π(x− y)) − 1

2

)
,hen
e

R−1/2(x, y)

= cos

(
π

2
(x+ y)

)
1

2 tan
(

π
2 (x+ y)

) + cos

(
π

2
(x− y)

)
1

2 tan
(

π
2 (x− y)

)

+
1

2
sin

(
π

2
(x+ y)

)
+

1

2
sin

(
π

2
(x− y)

)
.



240 Ó. Ciaurri and K. StempakAn appli
ation of trigonometri
 identities then gives the required equality.The fa
t that R−1/2(x, y) is a C1 fun
tion on (0, 1) × (0, 1) \ {x = y} andsatis�es estimates 
onsistent with those of Proposition 3.3 now follows byinspe
tion.Finally, we show that the kernel Rν(x, y) is asso
iated with Rν in thesense of Calderón�Zygmund theory.Proposition 3.5. Let f, g ∈ C∞
c (0, 1) have disjoint supports. Then

(3.19) 〈Rνf, g〉 =

1\
0

1\
0

Rν(x, y)f(y)g(x)dy dx.

Proof. Let g =
∑∞

n=1〈g, ψ̃ν
n〉ψ̃ν

n (re
all that the system ψ̃ν
n is an orthonor-mal basis in L2). Sin
e, by de�nition, Rνf =

∑∞
n=1〈f, ψν

n〉ψ̃ν
n, Parseval'sidentity (for the system {ψ̃ν

n}n≥1) gives(3.20) 〈Rνf, g〉 =
∞∑

n=1

〈f, ψν
n〉〈g, ψ̃ν

n〉.We will show that the right sides of (3.19) and (3.20) 
oin
ide. Denote by
F (x, y) the fun
tion from Proposition 3.3 that majorizes |Rν(x, y)|; then itis 
lear that

1\
0

1\
0

|F (x, y)f(y)g(x)| dy dx <∞.Therefore the dominated 
onvergen
e theorem justi�es the se
ond equalityin the following 
hain of equalities:
〈Rνf, g〉 =

1\
0

1\
0

lim
r→1−

Rν(r, x, y)f(y)g(x)dy dx

= lim
r→1−

1\
0

1\
0

Rν(r, x, y)f(y)g(x)dy dx

= − lim
r→1−

1\
0

Rν,rf(x)g(x)dx = − lim
r→1−

∞∑

n=1

rn〈f, ψν
n〉〈g, ψ̃ν

n〉.The third equality is explained in the proof of [6, Theorem 1.1℄, the fourthone is a 
onsequen
e of [6, (1.10)℄ and Parseval's identity. Finally, sin
e by [6,Lemma 2.2℄ (and its slight modi�
ation for the system {ψ̃ν
n}n≥1) the series

∑∞
n=1〈f, ψν

n〉〈g, ψ̃ν
n〉 
onverges, the last limit equals the right side of (3.20).
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onjugate Poisson integrals. The Poisson semigroup
{P ν

t }t≥0 asso
iated with Lν is, by the spe
tral theorem, given on L2 by
P ν

t = e−t(Lν)1/2
.For f ∈ L2 with the expansion f =

∑∞
n=1〈f, ψν

n〉ψν
n, we then have

P ν
t f =

∞∑

n=1

e−tλn,ν 〈f, ψν
n〉ψν

n(
onvergen
e in L2).We extend this de�nition by de�ning, for an appropriate f with theexpansion f ∼ ∑∞
n=1〈f, ψν

n〉ψν
n, its Poisson integral fν(x, t) by(4.1) fν(x, t) =

∞∑

n=1

e−tλn,ν 〈f, ψν
n〉ψν

n(x), 0 < x < 1, t > 0.

We also de�ne the 
onjugate Poisson integral f̃ν(x, t) of f by(4.2) f̃ν(x, t) =
∞∑

n=1

e−tλn,ν 〈f, ψν
n〉ψ̃ν

n(x), 0 < x < 1, t > 0.

Lemma 4.1. Let ν > −1 and f ∈ Lp(w), where 1 ≤ p < ∞ and wsatis�es (1.7) and , in addition, (1.5) and (1.6) if p > 1, or (1.14) and(1.15) if p = 1. Then the Poisson and 
onjugate Poisson integrals of f givenby (4.1) and (4.2) are well de�ned C∞ fun
tions on (0, 1)×(0,∞), harmoni
in the sense that they satisfy the di�erential equations(4.3) (∂2
t − Lν,x)fν(x, t) = 0, (∂2

t − Lν+1,x)f̃ν(x, t) = 0.Moreover , f̃ν(x, t) and fν(x, t) are related by the �Cau
hy�Riemann type�equations(4.4) ∂

∂t
f̃ν(x, t) = δν,xf

ν(x, t),
∂

∂t
fν(x, t) = δ∗ν,xf̃

ν(x, t).Proof. Lemma 2.1 ensures the existen
e of the 
oe�
ients 〈f, ψν
n〉 and,together with (2.4) and (2.5), shows that fν(x, t) and f̃ν(x, t) are well de-�ned, i.e., the relevant series 
onverge. The fa
t that fν(x, t) and f̃ν(x, t)are twi
e di�erentiable and satisfy (4.3) follows from term by term di�er-entiation of the de�ning series ((2.10) and the se
ond identity in (1.2) arehelpful). C∞ is then a 
onsequen
e of the fa
t that the operators ∂2

t − Lν,xand ∂2
t −Lν+1,x are hypoellipti
 on (0, 1)×(0,∞). The identities (4.4) followby di�erentiating term by term the de�ning series and using (1.2).It may be easily 
he
ked that for f ∈ Lp(w), 1 ≤ p <∞, where w satis�esthe assumptions of Lemma 4.1, fν and f̃ν given by (4.1) and (4.2) have the



242 Ó. Ciaurri and K. Stempakfollowing integral form:(4.5) fν(x, t) =

1\
0

P ν(t, x, y)f(y) dy, f̃ν(x, t) =

1\
0

P̃ ν(t, x, y)f(y) dy,where
P ν(t, x, y) =

∞∑

n=1

e−tλn,νψν
n(x)ψν

n(y), P̃ ν(t, x, y) =
∞∑

n=1

e−tλn,ν ψ̃ν
n(x)ψν

n(y).For ν = ±1/2, a 
al
ulation shows that with r = e−πt one has
P 1/2(t, x, y) = Pr(π(x− y)) − Pr(π(x+ y)),

P̃−1/2(t, x, y) =
1√
r
R−1/2(r, x, y)(see the lines following Remark 3.4 for the expli
it form of R−1/2(r, x, y)).5. Proofs of the main results. We de�ne the integral operators R1

νand R2
ν by

R1
νf(x) =

x/2\
0

Rν(x, y)f(y) dy, R2
νf(x) =

1\
min{1,3x/2}

Rν(x, y)f(y) dy.

By taking p = 2 and w(x) ≡ 1 in (1.8) and (1.9) it follows that R1
ν and

R2
ν are bounded on L2 (see the 
omputations in the proof of Theorem 1.1below). Thus

R3
ν = Rν −R1

ν −R2
νis also bounded on L2. Moreover, by Proposition 3.5, R3

ν is asso
iated withthe kernel Rν(x, y)χD3(x, y), whi
h, by Propositions 3.1 and 3.2, is a lo
alCalderón�Zygmund kernel. Thus R3
ν is a lo
al Calderón�Zygmund operator.Proof of Theorem 1.1. By using the weighted Hardy inequality (1.8) weobtain

1\
0

|w(x)R1
νf(x)|p dx =

1\
0

∣∣∣w(x)

x/2\
0

Rν(x, y)f(y) dy
∣∣∣
p
dx

≤ C

1\
0

(
w(x)x−ν−3/2

x/2\
0

yν+1/2|f(y)| dy
)p
dx

≤ C

1\
0

|w(x)f(x)|p dx.Similarly, using the weighted Hardy inequality (1.9) we get
1\
0

|w(x)R2
νf(x)|p dx ≤ C

1\
0

|w(x)f(x)|p dx.
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y for Fourier�Bessel expansions 243Finally, the 
orresponding Lp(w) inequality for R3
ν is a 
onsequen
e of (1.10)(see [7, Theorem 3℄). Thus (1.12) follows.To prove (1.13) we �x f ∈ Lp(w) and 
hoose a sequen
e fk ∈ L2 ∩

Lp(w) su
h that fk → f in Lp(w) as k → ∞. Then, by the very de�nition,
Rνf = limk→∞Rνfk (
onvergen
e in Lp(w)). Sin
e Rνf ∈ Lp(w) and theaforementioned modi�
ations of (1.5) and (1.6) hold, Rνf has an expansionwith respe
t to {ψ̃ν

n}n≥1 (see Lemma 2.1). In addition, for any n = 1, 2, . . . ,the mapping g 7→ 〈g, ψ̃ν
n〉 is a bounded fun
tional on Lp(w) (see Lemma2.2). Therefore 〈Rνfk, ψ̃
ν
n〉 → 〈Rνf, ψ̃

ν
n〉 as k → ∞. On the other hand,sin
e g 7→ 〈g, ψν

n〉 is also a bounded fun
tional on Lp(w) (see Lemma 2.2),we have 〈fk, ψ
ν
n〉 → 〈f, ψν

n〉 as k → ∞. But by (1.4), 〈Rνfk, ψ̃
ν
n〉 = −〈fk, ψ

ν
n〉,hen
e (1.13) follows.Proof of Theorem 1.2. Argue as in the �rst part of the proof of Theorem1.1 but using (1.16), (1.17) and (1.11) instead of (1.8), (1.9) and (1.10).6. An alternative 
onjuga
y mapping. Let

δ̂ν =
d

dx
+
ν − 1/2

xdenote an alternative derivative asso
iated with Lν . One 
an easily 
he
kthat the (formal) adjoint of δ̂ν in L2 is
δ̂∗ν = − d

dx
+
ν − 1/2

x
,and a dire
t 
omputation then shows that δ̂∗ν δ̂ν = Lν . Hen
e, another possibleformal de�nition of the 
onjugate operator is

R̂ν = δ̂ν(Lν)−1/2.A 
al
ulation also shows that
δ̂νψ

ν
n = λn,νψ̂

ν
n, δ̂∗νψ̂

ν
n = λn,νψ

ν
n,where(6.1) ψ̂ν

n(x) = dn,ν(λn,νx)
1/2Jν−1(λn,νx).An analogue of Lemma 2.4 now reads:Lemma 6.1. Let ν>0. The fun
tions {ψ̂ν

n}n≥0, where ψ̂ν
0 (x)=

√
2ν xν−1/2and , for n ≥ 1, ψ̂ν

n are given by (6.1), form an orthonormal basis in L2.Proof. We use the fa
ts and notation of the proof of Lemma 2.4, and
onsider (2.11) with α = ν − 1 (then α > −1). By the identity
aJ ′

ν−1(a) − (ν − 1)Jν−1(a) = −aJν(a)the equation (2.11) 
an be rewritten as
−xJν(x) + (̺+ ν − 1)Jν−1(x) = 0.



244 Ó. Ciaurri and K. StempakTaking ̺ = −ν + 1 (note that ̺ + α = 0) one obtains µn = λn,ν and thefun
tions
θν−1,−ν+1
n (x) = knψ̂

ν
n(x)form an orthonormal system in L2. The system be
omes 
omplete uponadding the fun
tion √

2ν xν−1/2. Now, using Lommel's formula, we 
an showthat kn = 1, and the proof is 
omplete.Thus we de�ne(6.2) R̂νf =
∞∑

n=1

〈f, ψν
n〉ψ̂ν

n, f ∈ L2.

(The series on the right 
onverges in L2.) That means that R̂ν is furnishedby the mapping ψν
n 7→ ψ̂ν

n. In the parti
ular 
ase ν = 1/2, as the 
orre-sponding 
onjugate operator we re
over Co, the 
lassi
 
onjuga
y mappingfor trigonometri
 expansions of odd fun
tions on (−1, 1) (
f. [1, p. 100℄),
Co : sin(πnx) 7→ cos(πnx).Given ν > 0, the following pointwise estimates hold:(6.3) |ψ̂ν

n(x)| ≤ C

{
(nx)ν−1/2, 0 < x ≤ n−1,

1, n−1 < x < 1.Lemma 6.2. Let ν > 0. The statement analogous to (2.8) from Lemma
2.1 holds for the system {ψ̂ν

n}n≥0 provided w satis�es (1.7) and the 
onditionsthat result either from (1.5) and (1.6) if p > 1, or from (1.14) and (1.15) if
p = 1, upon repla
ing ν by ν − 1.Lemma 6.3. Let ν > 0. The statement analogous to (2.9) from Lemma
2.2 holds for the system {ψ̂ν

n}n≥0 provided w satis�es (1.7) and the 
onditionsresulting from (1.5) and (1.6) upon repla
ing ν by ν − 1.It may be 
he
ked that for the kernel de�ned by
R̂ν(r, x, y) =

∞∑

n=1

rnψ̂ν
n(x)ψν

n(y),the analogues of Propositions 3.1 and 3.2 hold. More pre
isely, the estimatein (3.1), 
orresponding to the 
ase min{1, 3x/2} ≤ y < 1 has to be repla
edby Cxν−1/2y−ν−1/2. Consequently, the result 
orresponding to Proposition3.3 now reads:Proposition 6.4. Let ν > 0. Then for every x 6= y, 0 < x, y < 1, thelimit
R̂ν(x, y) = lim

r→1−
R̂ν(r, x, y) = lim

r→1−

∞∑

n=1

rnψ̂ν
n(x)ψν

n(y)
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|R̂ν(x, y)| ≤ C





x−ν−3/2yν+1/2, 0 < y ≤ x/2,

|x− y|−1, x/2 < y < min{1, 3x/2},
xν−1/2y−ν−1/2, min{1, 3x/2} ≤ y < 1.Consequently , if ν ≥ 1/2 then

|R̂ν(x, y)| ≤ C|x− y|−1, 0 < x, y < 1.Moreover ,
|∇R̂ν(x, y)| ≤ C|x− y|−2, x/2 < y < min{1, 3x/2}(all estimates hold with C independent of x and y).Remark 6.5. In the 
ase ν = 1/2, we have(6.4) R̂1/2(x, y) =

sin(πy)

cos(πy) − cos(πx)
.This is be
ause, as a dire
t 
al
ulation shows,

R̂1/2(r, x, y) = Qr

(
π(x+ y)

)
−Qr(π(x− y))hen
e

R̂1/2(x, y) =
1

2

(
1

tan
(

π
2 (x+ y)

) − 1

tan
(

π
2 (x− y)

)
)

and thus (6.4) follows. The fa
t that R̂1/2(x, y) is a C1 fun
tion on (0, 1) ×
(0, 1) \ {x = y} and satis�es estimates 
onsistent with those of Proposi-tion 6.4 now follows by inspe
tion (note, however, that the restri
tion on therange of x and y in the gradient estimate is essential). We also mention that
R̂1/2(x, y) is the kernel of the operator Co (
f. [1, p. 100℄).Similarly, the result 
orresponding to Proposition 3.5 is the following.Proposition 6.6. Let f, g ∈ C∞

c (0, 1) have disjoint supports. Then
〈R̂νf, g〉 =

1\
0

1\
0

R̂ν(x, y)f(y)g(x)dy dx.We now state results 
on
erning R̂ν , analogous to those in Theorems 1.1and 1.2.Theorem 6.7. Let ν > 0 and 1 < p < ∞. Let w(x) be a weight thatsatis�es (1.7), and also (1.5) and (1.6) with ν repla
ed by ν − 1. Then(6.5) ( 1\
0

|R̂νf(x)w(x)|p dx
)1/p

≤ C
( 1\

0

|f(x)w(x)|p dx
)1/p

for all f ∈ L2∩Lp(w). Consequently , R̂ν extends uniquely to a bounded linearoperator on Lp(w). Using the same symbol R̂ν to denote this extension, if in
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Rνf ∼

∞∑

n=1

〈f, ψν
n〉ψ̂ν

n, f ∈ Lp(w).Theorem 6.8. Let ν > 0 and w(x) be a weight that satis�es (1.7) with
p = 1, and (1.14) and (1.15) with ν repla
ed by ν − 1. Then(6.6) \

{0<x<1 : |R̂νf(x)|>λ}

w(x) dx ≤ C

λ

1\
0

|f(x)|w(x) dx, λ > 0,

for all f ∈ L2 ∩ L1(w). Consequently , R̂ν extends uniquely to a boundedlinear operator from L1(w) to L1,∞(w).The 
onditions imposed on w in Theorem 6.7 for ν = 1/2 are (1.7) and
sup

0<r<1

( 1\
r

w(x)px−p dx
)1/p( r\

0

w(x)−p′ dx
)1/p′

<∞,(6.7)
sup

0<r<1

( r\
0

w(x)pxp dx
)1/p( 1\

r

w(x)−p′x−2p′ dx
)1/p′

<∞.(6.8)It was proved in [1, Theorem 3℄ that in the 
ase ν = 1/2, (6.5) holds if andonly if
(6.9)

( v\
u

w(x)p dx
)1/p( v\

u

w(x)−p′(x(1 − x))p′ dx
)1/p′

≤ C(v2 − u2)(2 − (u+ v)), 0 ≤ u < v ≤ 1.Therefore, it follows from our Theorem 6.7 and [1, Theorem 3℄ that a weight
w satisfying (1.7), (6.7) and (6.8) must satisfy (6.9). We 
annot, however,expe
t an equivalen
e of the set of 
onditions (1.7), (6.7) and (6.8), with the
ondition (6.9): Theorem 6.7 was stated for general ν, hen
e it does not takeinto a

ount the fa
t that for ν = 1/2 the 
orresponding kernel vanishes at
y = 1.Similarly, the 
onditions imposed on w in Theorem 6.8 for ν = 1/2 are(1.7) with p = 1 and

sup
0<r<1

( 1\
r

(
r

x

)δw(x)

x
dx

)(
ess sup
x∈(0,r)

1

w(x)

)
<∞,(6.10)

sup
0<r<1

( r\
0

(
x

r

)δ

xw(x) dx

)(
ess sup
x∈(r,1)

1

x2w(x)

)
<∞(6.11)(in (6.10) and (6.11) we assume that there exists a positive δ su
h that the
orresponding quantities are �nite).
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y for Fourier�Bessel expansions 247It was proved in [1, Theorem 3℄ that in the 
ase ν = 1/2, (6.6) holdsif and only if the weight w satis�es (6.9) with p = 1. Therefore, it followsfrom our Theorem 6.8 and [1, Theorem 3℄ that a weight w satisfying (1.7)with p = 1, (6.10) and (6.11) must satisfy (6.9) with p = 1. The remarks
on
erning the la
k of equivalen
e between the set of 
onditions (1.7) with
p = 1, (6.10) and (6.11), with the 
ondition (6.9) 
onsidered for p = 1, alsoapply in this 
ase.
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