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Abstract. We prove that Perron’s method and the method of half-relaxed limits of
Barles—Perthame works for the so called B-continuous viscosity solutions of a large class of
fully nonlinear unbounded partial differential equations in Hilbert spaces. Perron’s method
extends the existence of B-continuous viscosity solutions to many new equations that are
not of Bellman type. The method of half-relaxed limits allows limiting operations with
viscosity solutions without any a priori estimates. Possible applications of the method of
half-relaxed limits to large deviations, singular perturbation problems, and convergence
of finite-dimensional approximations are discussed.

1. Introduction. In this paper we investigate the possibility of ex-
tending Perron’s method and the method of half-relaxed limits of Barles—
Perthame to a class of equations in infinite-dimensional Hilbert spaces of the
form
(1.1) u+ (Az, Du) + F(x, Du, D*u) =0
and their time dependent versions
(1.2) {ut + (Azx, Du) + F(t,z, Du, D*>u) =0, (t,z)€ (0,T) x H,

u(0,z) = g(x).

Here H is a real separable Hilbert space with the inner product (-,-) and
norm || - ||, and A is a linear, maximal monotone operator in H. The sym-
bols Du, D*u denote the Fréchet derivatives of u. This is a large class of
equations that includes Hamilton—Jacobi-Bellman (HJB) equations for op-
timal control of stochastic semilinear PDE (for instance stochastically per-
turbed reaction-diffusion equations) and delay equations, Isaacs equations,
infinite-dimensional Black—Scholes—Barenblatt equation for option pricing,
and many others.
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There exists a good theory of such equations based on the notion of the
so called B-continuous viscosity solution [5, 6, 25]. The theory however still
lacks several key components that are among the main tools of viscosity
solutions in finite-dimensions, namely Perron’s method and the method of
half-relaxed limits. Perron’s method is the main technique for producing
viscosity solutions of PDE in finite-dimensional spaces (see [3]). It is based on
the principle that the supremum of the family of all viscosity subsolutions of
an equation is a viscosity solution and so all we need to do to prove existence
of a viscosity solution is to produce one sub- and one supersolution. Despite
previous efforts it is still not known if a version of Perron’s method can be
implemented for B-continuous viscosity solutions of (1.1) and (1.2), even if
the equations are of first order. Perron’s method works with Ishii’s definitions
of solutions [17, 18| (see also [23]), but his notion of solution [18] does not
seem easily applicable to stochastic optimal control problems and is not used.
Half-relaxed limits of Barles-Perthame (see [3]|) are perhaps an even more
fundamental technique in the theory of viscosity solutions that is widely used
to pass to weak limits without any a priori estimates. A huge part of the
success of viscosity solutions is based on the fact that limiting operations
are very easy in this framework. It is known that due to the lack of local
compactness in infinite-dimensional spaces this procedure may not work in
general, even for simple equations with A = 0 (see [1, 26]).

In this paper we will show that both Perron’s method and the method
of half-relaxed limits can be adapted for equations (1.1) and (1.2) if the
operator A satisfies a coercivity condition (2.2). It has been noticed before
[2, 8, 13-16] that a condition of this type leads to a stronger definition of
viscosity solution and this stronger definition will help us overcome technical
difficulties needed to implement both methods.

Apart from providing an easy method to produce solutions another con-
sequence of Perron’s method will be new existence results for a large class of
equations of the above types. Currently there exist two methods for proving
existence of B-continuous viscosity solutions of (1.1) and (1.2): by finite-
dimensional approximations [25], and by using stochastic analysis to show
that the value function of the associated stochastic optimal control prob-
lem solves the PDE [13, 15, 16, 19]. The first is limited to the case of the
operator B (see Section 2) being compact, and the second to HJB equa-
tions related to optimal control problems. Perron’s method will allow one
to construct solutions for general operators B and equations that are not of
Bellman type, for instance for Isaacs equations related to stochastic differen-
tial games. The method of half-relaxed limits should have significant impact
on the theory of PDE in Hilbert spaces, especially since passing to limits in
infinite-dimensional spaces is very difficult even with good a priori estimates.
Moreover we anticipate many other interesting applications, for instance in
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the theory of large deviations and risk sensitive control. In these problems
one has to deal with small noise limits that correspond to singular perturba-
tion problems for the associated HJB equations. For instance for diffusions
driven by stochastic PDE with additive noise these HJB equations may have
the form

(ue)e — 5Tr(QD2u5) + (Az, Du.) + F(t,x, Dus) =0

for some trace class operator Q = Q* > 0, and one is interested in the be-
havior of their solutions u. as ¢ — 0. Recently Feng and Kurtz [12] proposed
a very general framework for large deviations based on viscosity solutions in
abstract spaces. However, they only use viscosity solutions of the limiting
first order equation and the rest of the method relies on convergence of non-
linear semigroups and stochastic analysis making it a little cumbersome to
apply. A similar approach is used in [10, 11| for Hilbert space valued diffu-
sions. In [11] Tataru’s definition of viscosity solution [27, 28, 7| is used for the
limiting first order Hamilton—Jacobi equation and the passage to the limit
is based on the convergence of generators and the comparison principle for
the limiting Hamilton—-Jacobi equation. We think that the theory of second
order HJB equations is crucial to a good PDE approach to large deviations.
The method of half-relaxed limits is a purely analytical technique that makes
passing to singular limits almost trivial. It seems to be a perfect tool for large
deviation arguments for Hilbert space valued diffusions, including exit time
problems. We will present applications to large deviations in a future pub-
lication. Another possible applications of the method of half-relaxed limits
include convergence results for finite-dimensional approximations that would
give a “Galerkin” type procedure for (1.1) and (1.2) without any a priori esti-
mates. Apart from its theoretical value such a method may for instance help
produce numerical methods for solving infinite-dimensional equations, and
may help develop procedures for constructing e-optimal feedback controls.
The possibilities seem wide open.

Finally, we refer the reader to [9] for an overview of the established theory
of PDE in Hilbert spaces by methods other than viscosity solutions.

2. Notation and assumptions. We will always identify H with its
dual space. With this identification we can interpret the Fréchet derivatives
Du(z) and D?u(z) as respectively an element of H and a bounded, self-
adjoint operator in H. We will denote the space of bounded, self-adjoint
operators in H by S(H).

Throughout the paper B will be a fixed bounded, positive, self-adjoint
operator such that A*B is bounded and

(2.1) (A*B+ CyB)x,z) >0 for some Cp >0 and all x € H.
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Such an operator always exists, for instance B = (A* + I)"}(A+ I)~! or
B = ((A+ I)(A* +1))~/2. We refer the reader to [22] for the proof of the
latter and to |5] for examples of other possible B in some particular cases. The
operator B defines spaces H,. For a < 0 we define H, as the completion of
H under the norm ||z||o = ||B*/2z|), and for o > 0, H, = R(B*/?) equipped
with the norm ||z||o = ||[B~%/2z||. They are Hilbert spaces with the inner
product (z,y)e = (B~%2x, B=*/2z), H, and H_, are dual to each other,
and B®/? is an isometry between Hg and Hg,,.
We will require that A satisfy the coercivity condition
(2.2) (A*z,2) > N||z||? for x € D(A¥)

for some A > 0.

The above implies in particular that D(A*) C Hj. This assumption is
satisfied for instance for self-adjoint invertible operators A if B = A~1,

We will always assume that F': [0,7] x H x H x S(H) — R is locally
uniformly continuous and is degenerate elliptic, i.e.

F(t,z,p,X) > F(t,z,p,Y) when X <Y.

Let {e1,e2,...} be a basis of H_; consisting of elements of H. Given
N > 1let Viy = span{ey, ez, ...,en}, and let Py denote the orthogonal pro-
jection of H_1 onto V. Denote Qn = I — Py where [ is the identity in H_1.
We will sometimes need several additional conditions on the Hamiltonian F'.
Let £ > 0.

(1)x There exists a radial function p(z) = p(||z||) satisfying the condi-
tions in Definition 3.1(iii) below and K > 0 such that

plr)
llzf|—oo [|2||¥

and for every positive real number «, t € [0,7T], z,p € H, X € S(H),

|F(t,z,p+ aDu(x), X + aD*u(z)) — F(t,z,p, X)| < Ka(l + p(z)).

(2) For all t € [0,T], x,p€ H, R > 0,
sup{|F(t,z,p, X+ \BQnN)—F(t,z,p, X)| : | X||,|]\| < R, PxX Py = X} —0
as N — oo.

(3) There exist moduli wg such that

F(t,z, B(x —y)/e, X) = F(t,y, B(x —y)/e, =Y)

> —wr([lz = yll-1 (1 + [[(z = y)[-1/e))
whenever ||z||,||y|| < R and X,Y satisfy the inequality

X 0)_2(BPy -BPy
0 Y] e\-BPy BPy |’



Perron’s method and method of relazed limits 253

We point out that condition (3) can be weakened if A and B satisfy a
stronger version of (2.1), namely if

(2.3) ((A*B + CoB)z,x) > ||z||* for some Cy > 0 and all = € H.

According to [22], (2.3) is always satisfied for B = ((A+I)(A* 4 1))~1/?
if (2.2) holds, and [D(A), H]y /o = [D(A*), H], /2 = H1, where [-,-];/5 is the
interpolation space (see [21]). Also it is easy to see that (2.3) holds if (2.2)
holds and for instance if ||(B'/2A*B'Y/? — A*B)z|| < C4||z||_1. To see this it
is enough to notice that

* * )\
(A*Bz,z) > (B'2A4* B'2x, z) = Cafja]| alzl] > 5 [l2]* = Call]|2,.

In particular, (2.3) holds if A is self-adjoint and invertible and B = AL,
However we will not state any results for the stronger case (2.3).

We will say that a function w : [0,7] x H — R is B-upper semicontinuous
(respectively, B-lower semicontinuous) if whenever t,, —t and ||z, —x||-1 —0
for a bounded sequence z, then limsup,,_, . u(tn,z,) < u(t,z) (respec-
tively, iminf,, oo u(tn,zn) > u(t,x)). A function is B-continuous if it is
both B-upper semicontinuous and B-lower semicontinuous. A function is lo-
cally uniformly B-continuous on [0,T] x H if it is uniformly continuous in
the |- | x || - ||l-1 norm on bounded subsets of [0,7] x H.

We will write u* and u, to denote the upper and lower semicontinuous
envelopes of u in the |- | X || - ||=1 norm, i.e.

w*(t,2) = limsup{u(s, ) : 5 — 1, |y — 2l — O},
us(t,z) = liminf{u(s,y) : s — ¢, ||y — z||-1 — 0}.

For a Hilbert space V we will be using the following function spaces:
C*V)={u:V — R : Du, D*u are continuous},

CH2((0,T) x V) ={u: (0,T) x V — R : us, Du, D*u are continuous}.

We will write L(V) for the space of bounded, linear operators in V
equipped with the operator norm.

3. Viscosity solutions. In order to obtain Perron’s method we will
have to deal with discontinuous solutions. Therefore we need two definitions
of viscosity solutions: the more usual one that is a stronger version of the
definition from [25], and a discontinuous viscosity solution that is based on
the notion given for first order equations by Ishii [17].

DEFINITION 3.1. A function 1 is a test function if ¥ = ¢ £+ 6(t)h(||z]]),
where:
(i) ¢ € CY2((0,T) x H), ¢ is B-continuous, and ¢y, A*Dy, Dy, D?p
are uniformly continuous on closed subsets of (0,7") x H.
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(ii) 6 € C*((0,7)) and 6 > 0 on (0, 7).
(iii) h € C?([0,00)) and A’(0) = 0, A" (0) > 0, h'(r) > 0 for r € (0,00).

For stationary equations ¢ is independent of ¢ and §(t) = 1.

We remark that even though ||z|| is not differentiable at 0, the function
h(||z]|) is in C?(H) for a test function h as above. Notice also that if ||x| — 0
then A'(||z|])/||=|]| — R”(0) > 0 so the term A/(]|z]])/||x| is bounded away
from 0 on bounded sets.

DEFINITION 3.2. A locally bounded B-upper semicontinuous function u
is a wiscosity subsolution of (1.1) if whenever u — 1 has a local maximum at
a point x for a test function ¥ = ¢ + h(||x||) then = € H; and

ata) + Al D

+ (2, A"Dy(x)) + F(z, D(x), D*(x)) < 0.

A locally bounded B-lower semicontinuous function w is a viscosity superso-
lution of (1.1) if whenever u — 1) has a local minimum at a point x for a test
function ¢ = ¢ — h(]|z||) then € H; and

R (ll=[)
]

u(w) = ||} + (&, A*Dp(x)) + F(z, Dy (x), D*)(x)) > 0.
A wiscosity solution of (1.1) is a function which is both a viscosity subsolution
and a viscosity supersolution.

DEFINITION 3.3. A locally bounded B-upper semicontinuous function
is a wviscosity subsolution of (1.2) if whenever u — v has a local maximum at
a point (t,z) € (0,7) x H for a test function ¥ (s,y) = ¢(s,y) + d(s)h(]|y|)
then x € Hq and

Bi(t, ) + M| z]|26(¢) R (||z]])

]

+ (x, A*Do(t, z))

+ F(t,z, DY(t,z), D*)(t,z)) < 0.

A locally bounded B-lower semicontinuous function u is a viscosity su-
persolution of (1.2) if whenever v — 1) has a local minimum at a point
(t,z) € (0,T) x H for a test function ¥ (s,y) = ¢(s,y) — d(s)h(|ly]|) then
xr € Hy and

R (||
u(t, ) Moy DD

]

+ (z, A*Dp(t, x))

+ F(t,z, DY(t,z), D*)(t, z)) > 0.

A wiscosity solution of (1.2) is a function which is both a viscosity subsolution
and a viscosity supersolution.

DEFINITION 3.4. A locally bounded function w is a discontinuous viscos-
ity subsolution of (1.1) if whenever (u — h(||-||))* — ¢ has a local maximum



Perron’s method and method of relazed limits 255

in the topology of || - ||-1 at a point z for test functions ¢, h(||y||) such that
(3.1) u(y) = h(llyl) = =00 as [lyl] — oo
then x € Hq and

(w—=h([l- 1) (@) + hllll) + Al h”(’m) + (z, A"Dp(x))

+ F(z, D(z), D*y(x)) <0,
where 1) = ¢ + h(||y]).
A locally bounded function u is a discontinuous viscosity supersolution

of (1.1) if whenever (u+ A(|| - ||))« — ¢ has a local minimum in the topology
of || -||=1 at a point z for test functions ¢, h(]|y||) such that

(3.2) u(y) + h([lyl]) — oo as [ly| — oo
then x € Hq and

(w+ Al 1))« (@) = hlll2l) = Al h”(’m) + (z, A"Dp(x))

+ F(x, Dy(z), D*)(x)) > 0,

where 1 = ¢ — h(||yl]).
A discontinuous viscosity solution of (1.1) is a function which is both a

discontinuous viscosity subsolution and a discontinuous viscosity supersolu-
tion.

DEFINITION 3.5. A locally bounded function w is a discontinuous vis-
cosity subsolution of (1.2) if whenever (u — §(-)h(|| - ||))* — ¢ has a local
maximum in the topology of |- | X || - ||=1 at a point (¢,z) for test functions

o, 5(s)h([ly) such that
(3.3)  wu(s,y) —(s)h(||yll) = —oc as ||y|| — oo locally uniformly in s
then z € H; and

W ([l=])
]

Yelt,z) + A28 (t) + (2, A"Dep(t, x))

+ F(t,z, DY(t,z), D*)(t,z)) <0,

where ¢(s,y) = ¢(s,y) + 0(s)h([[y))-

A locally bounded function u is a discontinuous viscosity supersolution of
(1.2) if whenever (u+d(-)h(]| - ||))+ — ¢ has a local minimum in the topology
of | -] x| -||l=1 at a point (¢, z) for test functions ¢, d(s)h(||y||) such that

(3.4)  wu(s,y)+0(s)h(||ly]) = o0  as ||y|| — oo locally uniformly in s
then x € Hq and
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W ()

¢t(t>$) _)‘Hx"%é(t) HQCH

+ (z, A*Dyp(t, x))

+ F(t,z, Dy(t,z), D*)(t,x)) > 0,
where (s, y) = ¢(s,y) — o(s)h(|lyll)-

A discontinuous viscosity solution of (1.2) is a function which is both a
discontinuous viscosity subsolution and a discontinuous viscosity supersolu-
tion.

If a subsolution (respectively, supersolution) in Definition 3.4 or 3.5 is B-
upper semicontinuous (respectively, B-lower semicontinuous) then it is easy
to see that Definitions 3.4 and 3.5 reduce to Definitions 3.2 and 3.3 respec-
tively, since if u is B-upper semicontinuous (respectively, B-lower semicontin-
uous) then (u—h(||-[)))*(z) = u(x)—h(||z]]) (respectively, (u+h(|-[)))«(z) =
u(z) + h(||z))-

LEMMA 3.6. Without loss of generality the mazima and minima in Def-
initions 3.2 and 3.3 can be assumed to be global and strict in the |- | x || - ||
norm and the mazima and minima in Definitions 3.4 and 3.5 can be assumed
to be global and strict in the |- | X || - ||=1 norm. However, it is not clear if
they can be strict in the |- | x || - || norm. Finally, without loss of generality
we can always assume that the functions in Definitions 3.2 and 3.3 satisfy
(3.1)-(3.4). Moreover we can also assume that the functions in Definitions
3.4 and 3.5 satisfy

(w—=8C)R(] - 1))*(t x) = @(t, ) — —oc,
(u 0GR - 1)t 2) = o(t,2) — oo
as ||z|| — oo locally uniformly in t.

Proof. Let u be a B-upper semicontinuous function and let

(u=h=9)(x) > (u—-h=9)(y) forye Br(z)
for some R > 0, i.e. u —h — ¢ has a local maximum at x for test functions
¢ and h. We will show that there exist test functions ¢ and h such that
D@(x) = Dy(x), D*@(x) = D*¢(x), Dh(z) = Dh(z), D*h(z) = D*h(x),
and u — h — @ has a strict global maximum at z. Let g € C2([0,0)) be an
increasing function such that

L+7%+ sup [u(y)| < g(r).

lyll<r
Let g1 € C?([0,00)) be a function such that
0, r <] +1,
g1(r) = < increasing, ||z||+1 <7r < |z| + 2,

9(r), r 2> [l] + 2.
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Let 1 € C%(]0,00)) be defined by

r47 r S 17
v1(r) = ¢ increasing, 1 <7 < 2,
2, r> 2.

Now for n > 1 consider the function

Pn(y) = u(y) — ¢(y) —ne1(l|lz — yll-1) = ~lyll) — g1 (lyl)-
Obviously we have

Pp(z) = u(z) — @(x) — h(|[z]]).
Suppose that for every n there exists y, such that @,(y,) > @,(z). Then
we must have ||z — y,||-1 — 0 as n — oo and |ly,|| < C, ie. y, — z.
Since u is B-upper semicontinuous and ¢ is B-continuous, and h is strictly
increasing, this implies that [|y,|| — ||=||, and therefore y, — = in H. But
then y, € Bgr(x) for large n and so we get

@n(yn) < uly) — o(y) = hllyl) < ulz) —(x) = A=),

which is a contradiction. Therefore there must exist ng such that @,,(y) <
&y, (x) for y # x. It then follows easily that &,,.1 has a strict global
maximum at x. Therefore the conclusion follows by setting ¢(y) = ¢(y) —
(no + Dpr (2 — yll—1) and Alllgll) = A(llyl) — g1 (lyll):

The fact that the maxima and minima in Definition 3.4 can be assumed
to be global and strict in the |- || -1 norm is obvious and the final statements
about the convergences at co follow from the construction of ¢ and h.w

REMARK 3.7. There are other possibilities for the choice of test functions
that would give good theory. For instance one can replace the functions ¢ in
Definition 3.1 by the functions satisfying

e o € CY2((0,T) x H_1), and ¢y, Dy, D?p are uniformly continuous
on closed subsets of (0,7") x H_;.

In this case one needs to assume that B'/24*B'/2 is bounded and that
(2.2) is satisfied for all x € Hy. (The term (A*z,z) is now well defined for
x € Hy.) Notice that if BY/2A4*B/? is bounded and 1) = ¢ +4(s)h(||y||) then
(x, A*Di(x)) is well defined for x € H; and so Definitions 3.2-3.5 can be
simplified by replacing the terms

A [l2]126(¢) h'ﬁﬂjﬁ”) T {z, A Dy(t, )

wherever they appear in Definitions 3.2-3.5 by a single term (z, A* D (¢, z)).

REMARK 3.8. It follows from the proof of Lemma 3.6 that if we know a
priori that u has a certain growth at oo then we can obtain the same growth
(at least quadratic) for h. For instance, if u has a polynomial growth at
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oo we can have h which is a polynomial of some special form for large ||z]|.
This is important in applications to stochastic optimal control where we may
want to impose additional conditions on test functions to be able to apply
stochastic calculus. In these applications it may also be useful to assume
that h'(r)/r is globally bounded away from 0 for the radial test functions h.
To avoid technical difficulties it may then be more convenient to choose h
belonging to one particular class of functions, say certain polynomials with
growth depending on the growth of sub- and supersolutions we are dealing
with. All results presented in this paper would hold with an appropriate
version of such a definition. This approach has been successfully employed
in [2, 13-16]. However, for such narrow classes of radial test functions the
global and local definitions of viscosity solutions may no longer be equivalent.

4. Comparison principles. In this section we prove comparison prin-
ciples for discontinuous viscosity solutions. We begin with the comparison
result for the stationary case.

THEOREM 4.1. Let (2.1) and (2.2) hold and let F satisfy (1)o, (2), (3).
Let u be a viscosity subsolution and v be a viscosity supersolution of (1.1) in
the sense of Definition 3.4, and let u, —v be bounded from above. Then

(4.1) lim limsup{u(z) —v(y) : |z —y||-1 <7, x,y € Br} <0.
Rloo r|0
In particular u < v.

REMARK 4.2. Theorem 4.1 shows that a bounded viscosity solution of
(1.1) in the sense of Definition 3.4 is uniformly continuous in H_; on bounded
subsets of H and therefore is a viscosity solution in the sense of Definition 3.2.

Proof of Theorem 4.1. We argue by contradiction. Assume that (4.1)
does not hold. Then there exists a positive real number 7 such that

lim lim sup{u(z) —v(y) : [|[* —yl-1 <7, ,y € Br} > 21.

Rloo 1|0
Let pu(x) be the function satisfying (1)g. For every positive real number «,
we define u, () = u(x) — ap(z) and vy (y) = v(y) — ap(y). Set

m= Jim tsup{u(e) = o) o — yll-1 <7, .y € Br,
ma = limsup{(ua)"(#) = (va)a(y) : | = yll-1 <7}

= limsup{ua(2) = va(y) : Iz = yl-1 <7}
1

e = sup { ()" () = (00 0) = 5 o = P
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We have

(4.2) m = limmg,
al0

(4.3) My = lellnol Mae-

Using perturbed optimization techniques [24] (see also [6]) we obtain
sequences pp, ¢, € H such that ||p,|| + |lgn|| — 0 as n — oo, and

(ua)" () = (va)«(y) = 21_5 lz = ylIZ1 + {Bpn, ) + (Ban, y)

achieves a strict global maximum at some point (Z,7) € H x H. Convergences
(4.2)—(4.3) yield

1
(4.4) limlimsup — [T —7|*, =0 for every o > 0,
610 n—oo 25
(4.5) lim lim sup lim sup(au(Z) + ap(y)) = 0.
[ ELO n—oo

We now have

lz = yl2y = [1Pv(z = )21 + QN (z = y)[12,
and
QN (z =921 < 2(BON(T —7),2 —y) +2|Qn(z — D)2,
+2|Qn(y - D2 — levE - D)%
with equality at T,7y. Therefore defining
u1(z) = (ua)*(z) = (BQN(T —7),2) /e — |Qn(z —T)|21 /e
+lQn@ = 9)21/2¢ + (Bpn, z)

and

vi(y) = (va)s(y) — (BQN (T = 7). y)/e + @y = D1/ — (Ban, y),

we see that
1
uy(r) —vi(y) — % 1Py (z —y))1*,

has a strict global maximum in H_; at (7, 7). At this step we need to produce
appropriate test functions to be able to use the definition of solution. This

is done using partial sup-convolution techniques first introduced in [20] (see
also [4]).

LEMMA 4.3. Given N > 1 there exist functions @y, 1y, € C2(H_1) with
uniformly continuous derivatives such that ui(z) — @i (x) has a global mawi-
mum at some point xy, v1(y)+Vr(y) has a global minimum at some point yy,,
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and
(4.6) (i, u1(zk), Dop(ar), D*¢r(zr)) — (Z,u1(Z), BPN(T — ) /e, XN),
(4.7) (w1 (yk), DYi(yr), D*¥i(yr)) — (,v1(9), BPN(§ — T) /e, Yn),

(4.8) ();N 1%) <2 (_BB _BB> :

with the convergences being in H x R x Hy x L(H).
Proof. Set xny = Pyx, xﬁ =Qnx, yvn = Pny, yf\-, = @ ny and define
ui(zy) = sup  w(eny+zy),  Oi(yn) = Liréf Hvl(yzv+yfv),

IEJA‘,EQNH YynvELN

the partial sup- and inf-convolutions of u; and vy respectively. Then

(4.9 (1) () — @)olom) — 5 o vy

has a strict global maximum over Vy x Vi at (Tn,7y), where (u1)* and

(v1)4 are the upper and lower semicontinuous envelopes of u; and v7 in Vy.
Moreover we have (u1)*(Zn) = u1(Z) and (01)+(Yy) = v1(7)-

We can now apply the finite-dimensional maximum principle when we
consider Viy as a space with the topology inherited from H_; (which is
equivalent to the topology inherited from H). Denote Vy with this topol-
ogy by ‘N/N. Therefore there exist bounded functions Szk,{/;k € CQ(YN/N) with
uniformly continuous derivatives such that (u1)*(xnx) — @r(zn) has a strict
global maximum at some point (%), (¥1)«(yn) + ¥r(yn) has a strict global
minimum at some point (yﬁ,), and as k — oo,

(410) (2, (@)*(«N), Dy, Pr(ak), D _&n(ek))
N — (vaul(T)a(TN—gN)/E,XN),
(411)  (yn, (B0):(yX), Dy, Yk (yR), Dy, Ur(yR))

— @, v1(@), Tn —Tn)/e V),

X I I
(4.12) v 02 in H., x H_,
0 Yy) e\-1 I

for some N x N matrices Xy and Yy that as operators in L(H_,) satisfy
Xy = PN\XnPn, YNy = PvYny Py and are symmetric. Furthermore we can
set the above maximum and minimum to be equal to zero. (Above, the

symbols DVN and D‘2~/ denote the Fréchet derivatives in Vi .) Since in Vjy the
N

topology of H_; is equivalent to the topology of H the above convergences
hold in the topology of H xR x H x S(H). We now extend @y, 1, to functions

in C?(H_y) by setting ¢y (z) = @p(Pyz) and yi(y) = ¥r(Pyy). Then, if
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Dy ¢y denotes the Fréchet derivative of ¢y in H_1 we have

(4.13) Dyy(x) = BDy_,¢r(x),  D*pi(x) = BDY oi(),

and the same also holds for 1.

Using a perturbed optimization result, we can find sequences p;,q; € H
such that ||p;|| + ||g;]| — 0 as j — oo, and

(4.14) ui(x) — ¢r(x) — (Bpj, x) has a global maximum at some x;,
(4.15)  wvi(y) + Yx(y) — (Bgj, y) has a global minimum at some y;.

Combining (4.14) and the fact that (u1)*(zn) — @k(xn) has a strict global
maximum at 2%, we deduce that Pyx; — 2% and Ul(PNCCj)j (u1)* (%)
as j — oo. Similarly (4.15) and the fact that (v1).«(yn) + ¥r(yn) has a
strict global minimum at some point y]k{, implies that Pyy; — y}“v and
v1(Pny;) — (01)*(y%) as j — oo. We can then select a subsequence j; such
that Pyzj, — PnT and Pny; — Pn7y, with the additional requirements
that ui (Pyaj,) — w (), vi(Pny;,) — v1(7), ox(Prnaj,) — ox(Zn) — 0 and
Yr(Pnyj,) — Yk(Un) — 0 as k — oo. Moreover we can choose the subse-
quence jj so that all the convergences in (4.10) hold when xlf\, and yf“v are
replaced by Pyz;, and Pyyj, respectively. We may now repeat rather stan-
dard arguments of [4] (see also [13, pp. 409-410]) and use (4.14) and (4.15)
to show that z;, — 7 and y;, — ¥ in H_;.

We now need to prove that z; — T and y;, — ¥ in H. To obtain
these convergences, it will be enough to prove that x;, and y;, are uniformly
bounded in H; (independently of k). First we observe that z;, and y;, are
uniformly bounded in H (they remain in a ball whose radius depends exclu-
sively on «). Using (4.14) and the definition of subsolution we get

(4.16)  (ua)*(xj,) + 2ad||z;, 17+ ap(x;j,)
+ (@, A"B(—pn + Dj, + Qn(@ — ) /e + Qn(T — zj,)/e) + A"Doy(z;,)
+ F(xj,, —Bpn + Bpj, + BON(T — ) /e + BQN(T — xj,) /¢ + Dy ()
+aDu(zj,), BQn /e + D*gr(xj,) + D*p(j,)) < 0.

)

Note that (uq)*(zj,) — (uq)*(T) so using the local boundedness of F
we can deduce from the above inequality that ||z, ||1 < C for some positive
constant C' independent of k. A similar argument can be used to prove that
Yj, is bounded in H7. Therefore Bl/zmjk — B'/?7, Bfl/zxjk — B~/2% and
SO

ijk - EH2 = <B_1/2(xjk _5)73_1/2(33% - f)> —0

as k — o0o. The same argument also shows that y;, — ¥. Therefore the lemma
holds with ¢y (x) := pi(z) + (Bpj,,z) and ¥y (y) := Yr(y) — (Bqj,,y). =
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We now finish the proof of the theorem. Using (4.14), Definition 3.4 and
taking liminf as £k — oo we have

(v)* () + ap(z) + 20\ [Fl} + (7, A° Bz — §)/2) — (7, 4" Bpa)
+ F(Z,aDu(x) — Bpn + B(T —7) /e, aD*u(T) + Xy + BQn /¢) < 0.
Similarly (4.15) and Definition 3.4 yield
(va)« (@) — op(@) = 2al[Fllt + (7 A" B(T —7) /) + (7, A" Baa)
+ F(g, —aDuly) + By + B(T — ) /e, —aD*u(y) — Yy — BQn /<) 2 0.
We then use (1)p and (2) to obtain
(ua)*(T) = (va)«(7) < 01(N) + 02(n) + ColT — 7|21 /¢
+ P, B(T—y)/e,=Yn) = F(T,B(T - y)/e, Xn) + Ka(2 + p(T) + p(¥))

where 01 (N) — 0 for n, e, a fixed and o2(n) — oo for «, ¢ fixed. Finally, (3)
gives

(1a)*(T) = (va)+(H) < 01(N) + 02(n) + Co[|T — 7[>, /2
+ wr) ([T = yll-1(1 + [(z = y)l-1/¢)) + Ka(2 + pu(T) + pu(y))-

If m > 2n, then for e, a sufficiently small and n large enough we have
(ua)*(ZT) — (va)«(¥) > n. Therefore we get

1 < 01(N) +0a(n) + Col[T — 72, /¢
+wr@(lz =yl (L + [z = y)ll-1/€) + Ka(2 + (@) + pu(@))-

Letting now N — oo, n — 00, € — 0 and a — 0 in that order we arrive at
7 < 0, which is a contradiction. =

In the next theorem we prove a comparison result for the time dependent
problem (1.2).

THEOREM 4.4. Let (2.1) and (2.2) hold and let F satisfy (1), (2), (3)
for some k > 0. Let g be locally uniformly B-continuous and such that

(4.17) lg(z)| < C(1 + ||z]|¥)  for some C > 0.

Let u be a viscosity subsolution of (1.2), and v be a viscosity supersolution
of (1.2) in the sense of Definition 3.5 such that

(4.18) u,—v < C(1+||z|*)  for some C >0,
(4.19) lm{ (u(t, z) — g(2))+ + (v(t,2) — g(2))-} =0
uniformly on bounded sets. Then for every 0 <11 < T,
4.20 lim lim sup{u(t,x) —v(s,y): |[t—s|<n, |z —y|l|l-1 <7
@20 fhm lm o sip{u(ta) o) =] <. o=yl
xz,y € B, 0<t,s<T1} <0.

In particular u < v.
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Proof. We will just outline the proof as it is similar to the proof of Theo-
rem 4.1. We argue by contradiction and assume that (4.20) is not true. Then
for a sufficiently small ¢ > 0 and some v > 0 we have

4.21 < lim lim sup{u’(t,x) —v7(s,y) :
(421) v < lim i - sup{u?(t,z) = v7(s,y)
It - S| <, |z —yl-1 <r, z,y € Br}

u(t,z) = u(t,z) — 7

T—s

é? UJ(Svy) :U(Say)+
We define

Ua(t,z) = u’(t, ) — aeX!

w@),  vals,y) =v7(s,y) + aeu(y),
where p(x) satisfies (1) and K is the constant from (1). Let
= lim lim1 (t,x) —
m = lim lim Tgnsup{u ,x) —vo(s,y):
”‘T - yH—l <, |t - 5’ <n,T,yc BR}7

Me = limlimsup{(ua)*(t, ) — (va)«(s,y) : |z —yll-1 <7, [t — s] <n}
rl0 n]0

= hmhmsup{ua(t,:c) - va(s,y) : ||':C - yH—l <, |t - 8| < 77},
r10 nl0

. 1
Mae = limsup {( () — (a)u(5,) — =l —ylPy ¢ e — o] < n},
nl0 2¢e

— )2
e = s { (00)"(02) = (sm)elov) = o =iy = 520,

20

We have

4.22 =i

(4.22) m oillll(} Meys

(4.23) meq = lim Mae,

el0
4.24 =1
( ) Ma,e ,Bl’ﬁ)l Mae,B35

however m can now be co. Using perturbed optimization results, we can find

sequences an, b, € R and py, g, € H such that |a,|+|bn|+||pnl|+llan] < 1/n
and

. 1 9 1

(1) (1:2) = (v)s(3.9) = - o = w21 = 55

+ ant + bns + (Bpn, z) + (Ban, y)

achieves a strict global maximum at some point (¢,35,7,7) € (0,7] x [0,T] x
H x H. Convergences (4.22)-(4.24) yield

|t —s?
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(4.25) lim lim sup 2— t—352=0 for every a,e > 0,

0 n—oo

1
(4.26) limlimsuplimsup — [|[Z —7||>, =0 for every a > 0.
€0 gl0  nooo 26

By the definition of u” and v” we have ¢ < T and 5§ < T. In light of (4.19),
(4.21)-(4.26), and the uniform continuity of g in H_; on bounded sets of H,
we can conclude that £ > 0 and 5 > 0 for large n and small 3,e. We define
as before

ui(t, ) = (ua)*(t,z) — (BQN(T —7),2) /e — |Qn(z — T)||?, /2
+ 1@~ (@ —D)II71/2¢ + ant + (Bpy, )

and
v1(5,9) = (va)«(5,9) — (BON(Z —7),9) /e + 1Qn(y — D)1 /2
+ a,u(y) - bnS - <BQn;y>7
so that . )
u(t,z) = vi(s,y) — o [1Pn(z — Y2, - 35 It — s

has a strict global maximum at (Z,3,7,7). Arguing now as in the proof of
Lemma 4.3 we can claim the existence of functions oy, ¢, € CH2((0,T) x
H_) with uniformly continuous derivatives such that (¢, ) — ¢k (¢, z) has
a global maximum at some point (tg,xr), v1(s,y) + ¥x(s,y) has a global
minimum at some point (s, yx), and

(4.27) <tk, o, ut (ty, 1), %(tk, zi), Doy (ty, o1), Do (ts, xk)>

— (£, 7,n(t,7), (t = 35)/B, BPn(T — ) /2, XN),
(4.28) (Skvykavl(skvyk) 8;/; (Sk: Yk), Di/fk(skvyk)?DQl/Jk(Sk»yk))

— (3,7,v1(5,9),(s—1)/8,BPn(y — T) /e, YN),
(4.29) (XON £N> < g < _BB _BB ) :

with the convergences in R x H x R x R x Hy x L(H).
Therefore, using Definition 3.5 we find as in the proof of Theorem 4.1
that

(4.30) (T%t) an+_7+aKeKt (z )+OceKz/\ "(‘” H’) Iz Hl

+ (7, A"B(T —y)/e) — (T, A" Bpn)
+ F(I,%,ae"'Du(z) — Bp, + BT —7) /e, aeX'D*u(T) + Xy + BQn /¢)
<0
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and
o [ s sy WA (e
— + — aKe™u(y) — ae" A ——===||y||
(T—-32" 3 el '
7 + (5 ABE ~7)/¢) + (7, A" Baw)
+F(5,7, —ae®*Du(7) + Bq, + BT — ) /¢, —ae™*D*u(y) — Y — BQn/e)
> 0.

(4.31) b, —

Combining (4.30) and (4.31) and using assumptions (1), (2), and the local
uniform continuity of F', we have

20/T? < 01(N) + 03(n) + Co|[T = Fl|21 /e — aK (" u(T) + " (7))
+ F(§7va(§_y)/€7 _YN) - F(zviﬂB(f_g)/&XN)
+aK (2 + e @) + (@),

where 01(N) — 0 for n, e, «, § fixed and o3(n) — oo for a, ¢, § fixed. Using
(3) and the local uniform continuity of F' we then conclude that

0/T? < a1(N) + oa(n) + 03(8) + Co||7 — 7||%1 /¢
+ wre) (|7 = yll-1 (1 + |z — yll-1/¢)) + 20K,

where 03(3) — 0 for a, ¢ fixed. We can now let N — oo, n — oo, f — 0,
€ — 0, and o — 0 in this order to arrive at ¢ < 0, which is a contradiction. =

5. Perron’s method and existence of solutions. In this section we
will show that viscosity solutions of (1.1) in the sense of Definition 3.4 (re-
spectively, viscosity solutions of (1.2) in the sense of Definition 3.5) can
be obtained by Perron’s method, i.e. by taking the supremum of all such
viscosity subsolutions of (1.1) (respectively, (1.2)) provided that a viscosity
subsolution and a viscosity supersolution exist. Therefore, if the assumptions
of Theorem 4.1 (respectively, Theorem 4.4) are satisfied, we will deduce that
the solution produced by this method is B-continuous, and so it is a viscosity
solution in the sense of Definition 3.2 (respectively, Definition 3.3). A pos-
teriori this will also show that this solution is equal to the supremum of all
viscosity subsolutions in the sense of Definition 3.2 (respectively, Definition
3.3).

It is convenient to state a simple lemma for future reference.

LEMMA 5.1. Let (2.2) hold. Let ¢ € C?(H) be B-upper semicontinuous
and such that A*Dy is continuous, and let h € C?((—o0,00)) be even and
such that h'(r) > 0 for r € (0,00). Let w(x) = o(x) — h(||z||) (respectively,
w(x) = —p(x) + h(l[z[])) satisfy

w(zx) + (x, A*Dw(z)) + F(z, Dw(z), D*w(x)) <0 for x € D(A¥)

(respectively,
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w(z) + (x, A*Dw(z)) + F(z, Dw(z), D*w(zx)) >0 for x € D(A*).)
Then w is a viscosity subsolution (respectively, supersolution) of (1.1).

Proof. We will only give the proof in the subsolution case. Since w is B-
upper semicontinuous Definitions 3.2 and 3.4 are equivalent. Suppose that
w(y) — h1(]lyl]) — ¢1(y) has a local maximum at z for test functions ¢1, hy.

Then
R (=)

]

([l

Dy(z) — x=0

x— Doy (z) —

and

Therefore either x = 0 or

(h/’(’!:i“) + hi’(’!ﬁ”)>az = Dy(z) — Dpi(x) € D(A*) C H;.

Define ¢ = ¢1 + h1(]|y|]). Now, using (2.2) and the degenerate ellipticity
of F', we obtain

Ry (||x
w(z) + el "D

+ (x, A* D1 (2)) 4+ F(x, Dy(x), D*)(x))
<w(z)+ % (z, A*x) + (x, A* D1 (2)) + F(z, Dw(x), D*w(z))
= w(z) + (z, A*Dw(z)) + F(x, Dw(z), D*w(x)) <0

and the claim is proved. =

PROPOSITION 5.2. Let (2.2) be satisfied. Let A be a family of viscosity
subsolutions of (1.1) in the sense of Definition 3.4. Suppose that the function

(5.1) u(z) = sup{w(z) : w € A}
is locally bounded. Then u is a viscosity subsolution of (1.1) in the sense of

Definition 3.4.

Proof. Suppose that (v — h(]| - ||))* — ¢ has a strict (in the || - [|-1 norm)
global maximum at a point x for test functions h and ¢. (We can assume
that (u(y) — A(l[ - 1))*(y) — ¢(y) — —oo as [y]| — oo.) Perturbed opti-
mization techniques and Definition 3.2 then show that there exist viscosity
subsolutions wy, of (1.1), x,, € Hy and p,, € H with [|p,|| < 1/n such that

(5.2) BY2z, — BY?x, x,—a inH asn— oo,

(wn(y) — h(|lyl]))* — ¢(y) — (Bpn,y) has a strict (in the || - ||-1 norm) global
maximum at x,, and

(53)  (wo— Al ) (@n) = (u—h(l- ) (@) asn— .
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Therefore, setting 1¥(y) = ¢(y) — h(||y||), we have

(54)  (wn— h([| - D) (@n) = hllznll) + Mal} %
+ (w0, A"Dip(an)) + (@, A*Bpn) + F(wn, DY (wn) + Bpn, D*(zn)) <0.

Since the x,, are bounded, using the local boundedness of F' we thus obtain
|lzn||?2 < C for some constant C, which, together with (5.2), implies that
z € Hy, and B~Y2z,, — B~1/2z as n — oo. Therefore, by (5.2),

|z — @[> = (B~"/*(2n — x), BY*(x, —2)) = 0 asn — oo,

i.e. x, — x in H. Using this, (5.3), the continuity of F', and the fact that
Il - ||l1 is lower semicontinuous in H, we can now pass to liminf as n — oo in
(5.4) to obtain

(w=nl D) (@) + (e + Aol ™50 + (o, 4D

+ F(z, Dy(z), D*P(x)) < 0,

which completes the proof. »

PROPOSITION 5.3. Let (2.2) be satisfied. Let ug, vy be respectively a vis-
cosity subsolution and a viscosity supersolution of (1.1) in the sense of Def-
inition 3.4 such that ug < vg. Then the function

u(z) = sup{w(z) : up < w < vy, w is a viscosity subsolution

of (1.1) in the sense of Definition 3.4}
is a viscosity solution of (1.1) in the sense of Definition 3.4.

Proof. The fact that u is a subsolution follows from Proposition 5.2.
Suppose now that (u+ h(]| - ||))« — ¢ has a strict (in the || - ||—; norm) global
minimum at a point x for test functions h(||y||) and ¢. First we notice that
if

(u Al - 1D))«(x) = (vo + (]l - )+(z)

then (vg+h(]|-]|))« — ¢ has a global minimum at z and so we are done since
vg is a viscosity supersolution. Therefore we only need to consider the case

(u Al 1D)«(x) < (vo+ Al - [))«(2)-
It then follows from the B-continuity of ¢ and the weak lower semicontinuity
of || - || that for every R > 0,

(5.6) e+ (uth(ll-N)«(x) =) +¢(y) = hllyl)
< (vo + A([l - 1))+ () = hllyll) < vo(y)
for y € B_i(x,r) N B(z, R) for some small r,¢ > 0. Set

w(y) = e+ (u+ (]| - [))«(x) = (2) + o(y) = hlylD)-
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If the condition for u being a viscosity supersolution of (1.1) is violated
at z then either

(1) z g Hla or

(ii) « € Hy but

(5.7)  (ut Al - D)) = A(llz]) = Ml ]F h,I(IB:gIJIH) + (z, A"Dp(x))

+ F(x, Dy(x), D*(x)) < —v < 0,

where ¥ (y) = o (y) — h(lly[), v > 0.
If (i) happens, i.e. if x ¢ H; then

5.8 lim inf = 0.

(5-8) yooiminf Ayl = oo

Otherwise we would have a sequence y, such that BY/ 2y — B2z and
| B='/2y,|| < C. Then for some subsequence (still denoted by 1,) B~?y,
— z for some z € H. But this implies that « € H; and z = B~/2z. By the
local boundedness of F', condition (5.8) now implies that for every R > 0,

(5.9  wiy)-Alyl " ﬁ‘fﬁ”)

for y € B_i(x,r) N B(z, R) N H; for some small r > 0.

Suppose that (ii) is true. We will show that for every R > 0, (5.9) holds
for y € B_y(z,r) N B(x, R) N Hy for € = p/4 and some small r > 0. If not
there exists a sequence =, — x in H_; with ||z,|| < R such that

2 P ([[znl)

2 VUl [1)
[l

+(y, A*Do(y))+F(y, Dw(y), D*w(y)) < —v/2

(5.10)  w(zn) = Allzn| + (2n, A" Dp(zn))

+ F(xy, Dw(zy), D*w(zy)) > —v/2.

Then of course ||z,||1 < C for some constant C' as otherwise (5.10) would be
violated. But then we must have B~/2z, — B~Y/2z in H and so arguing as
in the proof of Proposition 5.2 we obtain z, — z. However, then (5.7) and

the lower semicontinuity of || - ||; imply
. (||x .
imsup (1) ~ Al 3 L5 4 G, 4Dt
+ F(xn,Dw(a:n),DQw(:vn))) <-3

which gives a contradiction.

So we have shown that in either case, for every R > 0, (5.9) is satisfied
for y € B_i(x,r) N B(z, R) N Hy for some small r,e > 0.

It follows from the fact that (u + A(|| - ||))« — ¢ has a (strict in the
| - ||=1 norm) global minimum at x that for every r > 0 if € is small enough
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(depending on r) there exists a constant p, > 0 such that
w(y) < (u+h(l-1))«y) = bllyll) = pr <uly) = pr fory & Boa(z,7).

Moreover it is clear by the growth condition on the test function in Definition
3.4 that if R is large enough then

w(y) <u(y) =1 fory & B(z, R).

Using the last two inequalities and (5.6) we conclude that there exist R, r, e,
> 0 such that

(5.11) w<wvy inH, w(y) <uly)—p fory¢&B_i(xz,r)NB(z,R),
and (5.9) is satisfied for y € B_i(x,r) N B(z, R) N Hj.

Finally, if R is large enough there exist y,, € B(x, R) such that y, — =
in H_q such that

w(yn) + h([[ynll) — o (yn) — (u+ A - [)«(2) = @(2),
which means that there exist points y € B_;(z,r) N B(x, R) for which

(5.12) u(y) < w(y).

We now claim that the function w is a viscosity subsolution of (1.1) in
B_i(z,r)NB(z, R). (Since w is B-upper semicontinuous Definitions 3.2 and
3.4 are equivalent, but we point out that being a viscosity subsolution of
(1.1) in B_i(x,r) N B(z, R) still requires that the maxima in Definition 3.4
be local in the || - [|=; norm in the whole space.) The claim follows from
Lemma 5.1 upon noticing that by (5.9) and (2.2) we have

w(y) + (y, A*Dw(y)) + F(y, Dw(y), D*w(y))

< w(y) — All? h’w) T {y, A" D)) + F(y, Dw(y), Du(y)) < 0

for y € B_i(x,r) N B(z, R) N D(A").

It now remains to show that the function u; = max(w,u) is a viscosity
subsolution in the sense of Definition 3.4 and ug < u; < vg. But this is clear
from Proposition 5.2 (more precisely from its proof) and the fact that w
is a viscosity subsolution of (1.1) in B_;i(x,r) N B(x, R), and (5.11). This,
together with (5.12), gives us a contradiction, and the proof is complete. m

Combining the above proposition with Theorem 4.1 we obtain the fol-
lowing result.

THEOREM 5.4. Let (2.1) and (2.2) hold and let F' satisfy (1)o, (2), (3).
Let ug, vy be respectively a bounded viscosity subsolution and a bounded vis-
cosity supersolution of (1.1) in the sense of Definition 3.4. Then the function

u(z) = sup{w(z) : up < w < vy, w is a viscosity subsolution

of (1.1) the sense of Definition 3.4}
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is the unique bounded viscosity solution of (1.1) in the sense of Definition 3.2.
Moreover u is locally uniformly B-continuous.

The same technique applies to the time dependent problems (1.2). We
just state here the final existence result that can be proved in the same way
as Theorem 5.4.

THEOREM 5.5. Let (2.1) and (2.2) hold and let F satisfy (1), (2), (3)
for some k > 0. Let g be locally uniformly B-continuous and such that

(5.13) lg(z)| < C(1 + ||z]|¥)  for some C > 0.

Let ug be a viscosity subsolution of (1.2), and vy be a viscosity supersolution
of (1.2) in the sense of Definition 3.5 such that

(5.14) ug, —vg < C(1+ ||z||¥)  for some C > 0,
(5.15) tim{ (1, 2) — g(a)| + [eo(t. ) — g(x)]} = 0

uniformly on bounded sets. Then the function

u(t,x) = sup{w(t, x) : up < w < vy, w is a viscosity subsolution
of (1.2) the sense of Definition 3.5}

is the unique viscosity solution of (1.2) in the sense of Definition 3.3 sat-
isfying (5.14) and (5.15). Moreover u is locally uniformly B-continuous on
[0,T1] x H for every 0 < Ty < T.

We will construct a subsolution and a supersolution so that we can apply
Perron’s method. We remark that if sup,cy |F'(z,0,0)] = M < oo, then the
functions u(z) = —M and v(xz) = M are respectively a viscosity subsolution
and a viscosity supersolution of (1.1) in the sense of Definition 3.2. In the
proposition below, we will show how the construction of the supersolution
can be done in the time dependent case. The construction of a subsolution
is very similar.

PROPOSITION 5.6. Let (2.2) hold and let g be locally uniformly B-conti-
nuous with |g(x)| < p(1+||z||) for x € H for some positive constant ji. Then
there is a viscosity supersolution V' of equation (1.2) such that lim; o V (¢, z)
= g(x) uniformly on bounded sets of H.

Proof. Define C(r) = sup{|F(t,#,p, X)| : # € H, t € [0,T], |p|, || X]|
< r}. Let v(t,z) = at + 2u\/1+ ||z||?>. By a time dependent version of
Lemma 5.1 a condition for v to be a viscosity supersolution of (1.2) is

o+ F(t,z, Du(t,x), D*v(t,z)) > 0

for all (t,x) € (0,T) x H. Since Dv(t,z) and D?v(t,z) are bounded we
can therefore select o depending only on p such that the above condition is
satisfied.
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Let z € H and € > 0. We first choose a constant R = R(]|z||) such that
(Jlz]l = IzI)% > v(t,z) for ||z| > R. We then find M = M(||z|, ) such that

Wee(2) = g(2) + e+ Mz — 2|24 + (2] = |l2])3 > g(x)
for ||| < R. Let now v = sup{||Dw, .(z)|| + || D?*w. ()| : ||z|| < R}. In
order for w, .(t,z) = St + W, () to be a viscosity supersolution of (1.2) in
(0,T) x B(0, R) we need
ﬁ + <ZL‘,A*B(SL‘ - Z)> + F(tv vawZﬁ(tv ZL‘), Dszyi(tvaj)) Z 0

This can be achieved by taking 5 = R(R + ||z||)||A*B|| + C(7).
It now follows that

W, ¢ (t, ) = min{w, (¢, z),v(t,z)}

is a B-lower semicontinuous viscosity supersolution of (1.2) in (0,7) x H. It
is clear from the construction of the @, . and the time dependent version of
Proposition 5.2 for supersolutions that the function V' (t,2z) = inf, . ©, - (¢, x)
is a viscosity supersolution of (1.2) in the sense of Definition 3.5 such that
lim o V (¢, 2) = g(x) uniformly on bounded subsets of H. =

6. Relaxed limits. In this section we show how the method of half-
relaxed limits of Barles—Perthame can be generalized to infinite-dimensional
spaces. We consider two separate cases. The first deals with limits of sub-
and supersolutions of equations on the whole space with operators A sat-
isfying similar structure conditions. The second deals with limits of finite-
dimensional approximations.

Let F,, : [0,7] x H x H x S(H) — R be continuous, locally bounded
uniformly in n, and degenerate elliptic. Define

FT(t,z,p,X) = lim sup{F,(s,y,¢,Y) :n>m,
m—00
t—sl+llz—yll+lp—ql + X -Y|| <1/m}
and
F_(t,x,p,X) = lim inf{F,(s,y,q,Y) :n>m,
m—0o0
t=s[+[lz =yl +llp— gl + | X = Y] < 1/m}.

Let A, be linear, maximal monotone operators in H such that D(A*) C
D(A}) and

(6.1) (A, ) > Molle|? for o € D(AD),
where liminf,, . A\, > A. Assume moreover that
(6.2) if x, >z, A"z, — A%z then Az, — A%z,

and that for every test function ¢, the family A} Dy is locally uniformly
bounded. We then have the following theorem.
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THEOREM 6.1. Let the assumptions of this section be satisfied and let
B be compact. Let uy, be locally uniformly bounded viscosity subsolutions
(respectively, supersolutions) of

(6.3) Un + (Apx, Duy) + Fy(z, Dup, D?uy) =0 in H
in the sense of Definition 3.2. Then the function

ut(z) = tim sup{un(y) s n > m, |z~ y] < 1/m)
(respectively,

u_(x) = lim inf{u(y) 0 > m, o~ y| < 1/m})

is a viscosity subsolution (respectively, supersolution) of
ut + (Az, Dut) + F_(z, Du",D*u") =0 in H
(respectively,
u_ + (Az,Du_) + F"(z,Du_,D?*u_) =0 in H)
in the sense of Definition 3.4.
Notice that u™ does not have to be B-upper semicontinuous.

Proof. Let (u™ —h(]|-||))* — ¢ have a local maximum equal to 0 at z. In
light of Lemma 3.6 and local uniform boundedness of the u,, we can assume
that the maximum is global, strict in the || - ||-1 norm, and such that

u (y) = h(llyl), (™ = Al 1) (w) = ¢(y) — —o0,
and
un(y) = h(llyl)) — o(y) — —oo
as |ly|]| — oo, uniformly in n. Then there must exist a sequence z,, such that
|zn —z||—1 — 0, ||z,|| < C, and
u(wn) = h([[znl)) = @(an) = =1/n.

Therefore there exist y,, and m,, such that

(6.4) tm,, (Yn) = h(llynll) — ¢(yn) = =2/n.

Let z, be a global maximum of u,,, (y)—h(||y||)—¢(y). It exists because of the
decay of this function at infinity and the fact that, because B is compact, B-
upper semicontinuity is equivalent to weak sequential upper semicontinuity.
Obviously ||z,|| < C; and we also have

o (llznl)

(6.5) U, (2n) + Ay, |20 |1 Izl +<ZnaA:nnD90(Zn)>

+ Ep, (20, DY(2), D*1(2,)) < 0,

where ¥(y) = h(||y|]) — ¢(y). Using the boundedness of z,, the fact that
R (|lyl)/llyll > ¢ > 0 for ||ly|| < Ci, and the local uniform boundedness of the
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F, and Ay, Dy, we hence obtain ||z,[[1 < C2, which implies that z, — z in
Hy and z, — z in H for some z € Hj.

Therefore ut(z) > limsup,,_, o Um,, (2n), which yields u™(z) — h(]|z]]) —
©(z) > 0, i.e. z = x. Moreover it also follows that

T g, (20) = (b = h(]| - [)"(2) + A(|l2])-
We can now pass to liminf in (6.5) to conclude the proof. =

The following theorem is an immediate corollary of Theorems 6.1 and 4.1.

THEOREM 6.2. Let A satisfy (2.1) and (2.2). Let the assumptions of this
section on A, and F, be satisfied, and let B be compact. Let F_ = FT = F
satisfy the assumptions of Theorem 4.1. Let u,, be locally bounded (uniformly
in n) wiscosity solutions of (6.3) in the sense of Definition 3.2. Let u™ and
—u_ be bounded from above. Then u™ = u_ =: u, u is locally uniformly
B-continuous (i.e. u is weakly sequentially continuous), and u is the unique
bounded viscosity solution of (1.1) in the sense of Definition 3.2. Moreover
the functions u, converge to u pointwise as n — oo and the convergence is

uniform on bounded subsets of H, for every a > 0.

We point out that the limiting Hamiltonians ' and F~ may be of
first order so the above theorems can be applied to singular perturbation
problems and small noise limits.

The time dependent version of Theorem 6.2 is the following. The func-
tions u™ and u~ below are now defined by taking lim sup and lim inf in both
variables s and y.

THEOREM 6.3. Let A satisfy (2.1) and (2.2). Let the assumptions of this
section on A, and F, be satisfied, and let B be compact. Let F_ = FT = F
and let F' and g satisfy the assumptions of Theorem 4.4. Let u,, be viscosity
solutions of

(un)t + (Anz, Dup) + F,(t, 2, Dup, D*u,) =0 in (0,T) x H

in the sense of Definition 3.3 and suppose that

(6.6) lun(x)] < C(1 4+ ||z]|¥)  for some C >0,
(6.7) %ir% lun(t,z) —g(x)| =0  uniformly on bounded sets,
uniformly in n. Then u™ = u_ =: u, u is weakly sequentially continuous,

and u is the unique viscosity solution of (1.2) in the sense of Definition 3.3
satisfying (6.6) and (6.7). Moreover the functions u, converge to u pointwise
as n — oo and the convergence is uniform on bounded subsets of [0,T1] x Hy,
for everyaa >0 and 0 < Ty < T.

We close this section by showing how half-relaxed limits can be applied
to proving convergence of finite-dimensional approximations.
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Denote by Vi the space spanned by the eigenvectors of B corresponding
to the eigenvalues that are greater than or equal to 1/N. Let Py be the
orthogonal projection in H onto Vy. Define

Ay = (PyA*Py)*, By = BPy.
Then Ay is bounded and monotone in H, Ay and By satisfy (2.1), and
(6.8) (Ayz,z) > N|Pyz|? for z € H.
In what follows we denote Qn = I — Py. We now have the following result.

THEOREM 6.4. Let A satisfy (2.1), (2.2), and let D(A*) = R(B). Let F
satisfy (1)o, (2) with A\BQn replaced by A\Qn, (3), let sup,cp |F(2,0,0)| =
M < oo, and let B be compact. Let u be the unique bounded viscosity solution
of (1.1), and let uy(x) = vy (Pnz), where the vy are the viscosity solutions

of
(6.9) vy + (Anz, Duy) + F(z, Doy, D*vy) =0  in Hy.

Then uny — u pointwise in H as N — oo and the convergence is uniform on
bounded subsets of H,, for every a > 0.

Proof. Under our assumptions equation (6.9) has a unique viscosity so-
lution vy such that |uy| < M for every N > 1. Also (see [25]) the functions
upy are viscosity solutions of

uy + (Ayz, Duy) + F(Pyz, PyDuy, PyD?*unPy) =0 in H.

Since the above equations have only bounded terms the solutions can be
interpreted in the usual sense of [20], which in particular implies that the
upy are solutions in the sense of Definition 3.2.

We first observe that the Ay satisfy (6.2) with strong convergence. This
follows from the proof of Lemma 2.3 of [5] upon noticing that D(A*) = R(B)
guarantees that the operator Q = A*B + ¢B has bounded inverse Q' =
B71(A* 4+ cI)~! for every ¢ > 0. This last statement is a trivial consequence
of the closed graph theorem:.

We next claim that for every test function ¢, the family A% Dy is locally
uniformly bounded. Indeed,

AN D (2)|| < |A*BPy B~ (A" + 1) (A" + I) Dop(2) |
< [|A*B| [ B~HA* + D) (A" + 1) Deg(x)|| < C||(A* + 1) Dy(a)]].
However, we cannot invoke Theorem 6.1 directly as the Ax only satisfy
(6.8). Instead, we follow its proof pointing out the main differences. Repeat-

ing the previous arguments we now deduce, instead of (6.4), that there exist
yn and my such that

Uy (PmyYN) — h(HPmNyNH) — @(PryYn) = —2/N.
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We then take zy to be a global maximum of v, (y) — h(||y|) — ©(y)
over H,,, . As before obviously ||zx| < Cy and (6.5) becomes
o (2w )

(6.10) vy (2n) + Allzn [T === + (2N, Ay Do (2n))
lzn

+ an (zNa PmNDw(ZN)a PmNDQw(ZN)PmN) < 07

where ¥ (y) = h(|ly|]|) — ¢(y). This implies that (notice that zy = P, 2n)
llzn]l1 < Co, which gives zy — z in Hj and zy — z in H for some z € Hj.
Therefore u™(2) > Hmsupy_, o0 Umy (235) = limSupy_oo Umy (25) and this
gives u(z) — h(]|z]|) — ¢(2) > 0, i.e. z = x. We also obtain

By (z) = (= B ) (2) + R ).
We can now pass to liminf in (6.10) using Lemma 2.8 of [25]. »

In spite of the novelty of the method of half-relaxed limits in infinite di-
mensions, Theorem 6.4 is not really new under our assumptions. Convergence
of finite-dimensional approximations was proved in [25] (following a similar
method for first order equations of [5]) by first proving uniform continuity
estimates for the uy and then showing their local uniform convergence. In
[25] assumption (2.2) was not needed but here condition (2) is a little more
general. However, our new method may succeed in situations where we may
not be able to obtain uniform a priori estimates for the continuity of wy.

Similar results can also be obtained for time dependent problems and for
problems where we do not assume that D(A*) = R(B). We do not work out
the details here as they are technical and lengthy, and the final statements
are similar to the results of [25]. However, there is a significant difference
between the approximations used in [25] (and in [5] before) and the ones
we would need here for the half-relaxed limits. In [25] the operator A was
first approximated by its Yosida approximation Ay and then by Ay y =
PnAxPpyn. We do not know if this process would succeed here. It seems that
we need first to take Ay = A+ AB~! and then use Ayxn = PyA)Py for
the above A). This kind of approximation procedure was used in [6] and we
refer the readers to this paper for some ideas and hints on how the proof
should proceed in our case.
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