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Perron's method and the method of relaxed limits for�unbounded� PDE in Hilbert spa
esby
Djivede Kelome (Amherst, MA, and Montreal) and

Andrzej Święch (Atlanta, GA)Abstra
t. We prove that Perron's method and the method of half-relaxed limits ofBarles�Perthame works for the so 
alled B-
ontinuous vis
osity solutions of a large 
lass offully nonlinear unbounded partial di�erential equations in Hilbert spa
es. Perron's methodextends the existen
e of B-
ontinuous vis
osity solutions to many new equations that arenot of Bellman type. The method of half-relaxed limits allows limiting operations withvis
osity solutions without any a priori estimates. Possible appli
ations of the method ofhalf-relaxed limits to large deviations, singular perturbation problems, and 
onvergen
eof �nite-dimensional approximations are dis
ussed.1. Introdu
tion. In this paper we investigate the possibility of ex-tending Perron's method and the method of half-relaxed limits of Barles�Perthame to a 
lass of equations in in�nite-dimensional Hilbert spa
es of theform(1.1) u+ 〈Ax,Du〉 + F (x,Du,D2u) = 0and their time dependent versions(1.2) {
ut + 〈Ax,Du〉 + F (t, x,Du,D2u) = 0, (t, x) ∈ (0, T ) ×H,
u(0, x) = g(x).Here H is a real separable Hilbert spa
e with the inner produ
t 〈·, ·〉 andnorm ‖ · ‖, and A is a linear, maximal monotone operator in H. The sym-bols Du,D2u denote the Fré
het derivatives of u. This is a large 
lass ofequations that in
ludes Hamilton�Ja
obi�Bellman (HJB) equations for op-timal 
ontrol of sto
hasti
 semilinear PDE (for instan
e sto
hasti
ally per-turbed rea
tion-di�usion equations) and delay equations, Isaa
s equations,in�nite-dimensional Bla
k�S
holes�Barenblatt equation for option pri
ing,and many others.2000 Mathemati
s Subje
t Classi�
ation: 49L25, 35R15, 35J60.Key words and phrases: vis
osity solutions, Hamilton�Ja
obi�Bellman equations, Per-ron's method, relaxed limits, Hilbert spa
es.A. �wi�
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hThere exists a good theory of su
h equations based on the notion of theso 
alled B-
ontinuous vis
osity solution [5, 6, 25℄. The theory however stillla
ks several key 
omponents that are among the main tools of vis
ositysolutions in �nite-dimensions, namely Perron's method and the method ofhalf-relaxed limits. Perron's method is the main te
hnique for produ
ingvis
osity solutions of PDE in �nite-dimensional spa
es (see [3℄). It is based onthe prin
iple that the supremum of the family of all vis
osity subsolutions ofan equation is a vis
osity solution and so all we need to do to prove existen
eof a vis
osity solution is to produ
e one sub- and one supersolution. Despiteprevious e�orts it is still not known if a version of Perron's method 
an beimplemented for B-
ontinuous vis
osity solutions of (1.1) and (1.2), even ifthe equations are of �rst order. Perron's method works with Ishii's de�nitionsof solutions [17, 18℄ (see also [23℄), but his notion of solution [18℄ does notseem easily appli
able to sto
hasti
 optimal 
ontrol problems and is not used.Half-relaxed limits of Barles�Perthame (see [3℄) are perhaps an even morefundamental te
hnique in the theory of vis
osity solutions that is widely usedto pass to weak limits without any a priori estimates. A huge part of thesu

ess of vis
osity solutions is based on the fa
t that limiting operationsare very easy in this framework. It is known that due to the la
k of lo
al
ompa
tness in in�nite-dimensional spa
es this pro
edure may not work ingeneral, even for simple equations with A = 0 (see [1, 26℄).In this paper we will show that both Perron's method and the methodof half-relaxed limits 
an be adapted for equations (1.1) and (1.2) if theoperator A satis�es a 
oer
ivity 
ondition (2.2). It has been noti
ed before[2, 8, 13�16℄ that a 
ondition of this type leads to a stronger de�nition ofvis
osity solution and this stronger de�nition will help us over
ome te
hni
aldi�
ulties needed to implement both methods.Apart from providing an easy method to produ
e solutions another 
on-sequen
e of Perron's method will be new existen
e results for a large 
lass ofequations of the above types. Currently there exist two methods for provingexisten
e of B-
ontinuous vis
osity solutions of (1.1) and (1.2): by �nite-dimensional approximations [25℄, and by using sto
hasti
 analysis to showthat the value fun
tion of the asso
iated sto
hasti
 optimal 
ontrol prob-lem solves the PDE [13, 15, 16, 19℄. The �rst is limited to the 
ase of theoperator B (see Se
tion 2) being 
ompa
t, and the se
ond to HJB equa-tions related to optimal 
ontrol problems. Perron's method will allow oneto 
onstru
t solutions for general operators B and equations that are not ofBellman type, for instan
e for Isaa
s equations related to sto
hasti
 di�eren-tial games. The method of half-relaxed limits should have signi�
ant impa
ton the theory of PDE in Hilbert spa
es, espe
ially sin
e passing to limits inin�nite-dimensional spa
es is very di�
ult even with good a priori estimates.Moreover we anti
ipate many other interesting appli
ations, for instan
e in
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ontrol. In these problemsone has to deal with small noise limits that 
orrespond to singular perturba-tion problems for the asso
iated HJB equations. For instan
e for di�usionsdriven by sto
hasti
 PDE with additive noise these HJB equations may havethe form
(uε)t − εTr(QD2uε) + 〈Ax,Duε〉 + F (t, x,Duε) = 0for some tra
e 
lass operator Q = Q∗ ≥ 0, and one is interested in the be-havior of their solutions uε as ε→ 0. Re
ently Feng and Kurtz [12℄ proposeda very general framework for large deviations based on vis
osity solutions inabstra
t spa
es. However, they only use vis
osity solutions of the limiting�rst order equation and the rest of the method relies on 
onvergen
e of non-linear semigroups and sto
hasti
 analysis making it a little 
umbersome toapply. A similar approa
h is used in [10, 11℄ for Hilbert spa
e valued di�u-sions. In [11℄ Tataru's de�nition of vis
osity solution [27, 28, 7℄ is used for thelimiting �rst order Hamilton�Ja
obi equation and the passage to the limitis based on the 
onvergen
e of generators and the 
omparison prin
iple forthe limiting Hamilton�Ja
obi equation. We think that the theory of se
ondorder HJB equations is 
ru
ial to a good PDE approa
h to large deviations.The method of half-relaxed limits is a purely analyti
al te
hnique that makespassing to singular limits almost trivial. It seems to be a perfe
t tool for largedeviation arguments for Hilbert spa
e valued di�usions, in
luding exit timeproblems. We will present appli
ations to large deviations in a future pub-li
ation. Another possible appli
ations of the method of half-relaxed limitsin
lude 
onvergen
e results for �nite-dimensional approximations that wouldgive a �Galerkin� type pro
edure for (1.1) and (1.2) without any a priori esti-mates. Apart from its theoreti
al value su
h a method may for instan
e helpprodu
e numeri
al methods for solving in�nite-dimensional equations, andmay help develop pro
edures for 
onstru
ting ε-optimal feedba
k 
ontrols.The possibilities seem wide open.Finally, we refer the reader to [9℄ for an overview of the established theoryof PDE in Hilbert spa
es by methods other than vis
osity solutions.2. Notation and assumptions. We will always identify H with itsdual spa
e. With this identi�
ation we 
an interpret the Fré
het derivatives

Du(x) and D2u(x) as respe
tively an element of H and a bounded, self-adjoint operator in H. We will denote the spa
e of bounded, self-adjointoperators in H by S(H).Throughout the paper B will be a �xed bounded, positive, self-adjointoperator su
h that A∗B is bounded and(2.1) 〈(A∗B + C0B)x, x〉 ≥ 0 for some C0 > 0 and all x ∈ H.
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hSu
h an operator always exists, for instan
e B = (A∗ + I)−1(A + I)−1 or
B = ((A + I)(A∗ + I))−1/2. We refer the reader to [22℄ for the proof of thelatter and to [5℄ for examples of other possible B in some parti
ular 
ases. Theoperator B de�nes spa
es Hα. For α < 0 we de�ne Hα as the 
ompletion of
H under the norm ‖x‖α = ‖Bα/2x‖, and for α > 0, Hα = R(Bα/2) equippedwith the norm ‖x‖α = ‖B−α/2x‖. They are Hilbert spa
es with the innerprodu
t 〈x, y〉α = 〈B−α/2x,B−α/2x〉, Hα and H−α are dual to ea
h other,and Bα/2 is an isometry between Hβ and Hβ+α.We will require that A satisfy the 
oer
ivity 
ondition(2.2) 〈A∗x, x〉 ≥ λ‖x‖2

1 for x ∈ D(A∗)for some λ > 0.The above implies in parti
ular that D(A∗) ⊂ H1. This assumption issatis�ed for instan
e for self-adjoint invertible operators A if B = A−1.We will always assume that F : [0, T ] × H × H × S(H) → R is lo
allyuniformly 
ontinuous and is degenerate ellipti
, i.e.
F (t, x, p,X) ≥ F (t, x, p, Y ) when X ≤ Y.Let {e1, e2, . . .} be a basis of H−1 
onsisting of elements of H. Given

N ≥ 1 let VN = span{e1, e2, . . . , eN}, and let PN denote the orthogonal pro-je
tion of H−1 onto VN . Denote QN = I−PN where I is the identity in H−1.We will sometimes need several additional 
onditions on the Hamiltonian F .Let k ≥ 0.
(1)k There exists a radial fun
tion µ(x) = µ(‖x‖) satisfying the 
ondi-tions in De�nition 3.1(iii) below and K > 0 su
h that

lim
‖x‖→∞

µ(x)

‖x‖k
= ∞and for every positive real number α, t ∈ [0, T ], x, p ∈ H, X ∈ S(H),

|F (t, x, p+ αDµ(x), X + αD2µ(x)) − F (t, x, p,X)| ≤ Kα(1 + µ(x)).

(2) For all t ∈ [0, T ], x, p ∈ H, R > 0,
sup{|F (t, x, p,X+λBQN)−F (t, x, p,X)| : ‖X‖, |λ| ≤ R, P ∗

NXPN = X}→0as N → ∞.
(3) There exist moduli ωR su
h that
F (t, x,B(x− y)/ε,X) − F (t, y, B(x− y)/ε,−Y )

≥ −ωR(‖x− y‖−1(1 + ‖(x− y)‖−1/ε))whenever ‖x‖, ‖y‖ ≤ R and X,Y satisfy the inequality
(
X 0

0 Y

)
≤

2

ε

(
BPN −BPN

−BPN BPN

)
.
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ondition (3) 
an be weakened if A and B satisfy astronger version of (2.1), namely if(2.3) 〈(A∗B + C0B)x, x〉 ≥ ‖x‖2 for some C0 > 0 and all x ∈ H.A

ording to [22℄, (2.3) is always satis�ed for B = ((A+ I)(A∗ + I))−1/2if (2.2) holds, and [D(A), H]1/2 = [D(A∗), H]1/2 = H1, where [·, ·]1/2 is theinterpolation spa
e (see [21℄). Also it is easy to see that (2.3) holds if (2.2)holds and for instan
e if ‖(B1/2A∗B1/2 −A∗B)x‖ ≤ C1‖x‖−1. To see this itis enough to noti
e that
〈A∗Bx, x〉 ≥ 〈B1/2A∗B1/2x, x〉 − C2‖x‖−1‖x‖ ≥

λ

2
‖x‖2 − C2‖x‖

2
−1.In parti
ular, (2.3) holds if A is self-adjoint and invertible and B = A−1.However we will not state any results for the stronger 
ase (2.3).We will say that a fun
tion u : [0, T ]×H → R is B-upper semi
ontinuous(respe
tively, B-lower semi
ontinuous) if whenever tn→ t and ‖xn−x‖−1→0for a bounded sequen
e xn then lim supn→∞ u(tn, xn) ≤ u(t, x) (respe
-tively, lim infn→∞ u(tn, xn) ≥ u(t, x)). A fun
tion is B-
ontinuous if it isboth B-upper semi
ontinuous and B-lower semi
ontinuous. A fun
tion is lo-
ally uniformly B-
ontinuous on [0, T ] × H if it is uniformly 
ontinuous inthe | · | × ‖ · ‖−1 norm on bounded subsets of [0, T ] ×H.We will write u∗ and u∗ to denote the upper and lower semi
ontinuousenvelopes of u in the | · | × ‖ · ‖−1 norm, i.e.

u∗(t, x) = lim sup{u(s, y) : s→ t, ‖y − x‖−1 → 0},

u∗(t, x) = lim inf{u(s, y) : s→ t, ‖y − x‖−1 → 0}.For a Hilbert spa
e V we will be using the following fun
tion spa
es:
C2(V ) = {u : V → R : Du,D2u are 
ontinuous},

C1,2((0, T ) × V ) = {u : (0, T ) × V → R : ut, Du,D
2u are 
ontinuous}.We will write L(V ) for the spa
e of bounded, linear operators in Vequipped with the operator norm.3. Vis
osity solutions. In order to obtain Perron's method we willhave to deal with dis
ontinuous solutions. Therefore we need two de�nitionsof vis
osity solutions: the more usual one that is a stronger version of thede�nition from [25℄, and a dis
ontinuous vis
osity solution that is based onthe notion given for �rst order equations by Ishii [17℄.Definition 3.1. A fun
tion ψ is a test fun
tion if ψ = ϕ ± δ(t)h(‖x‖),where:(i) ϕ ∈ C1,2((0, T ) ×H), ϕ is B-
ontinuous, and ϕt, A

∗Dϕ, Dϕ, D2ϕare uniformly 
ontinuous on 
losed subsets of (0, T ) ×H.
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h(ii) δ ∈ C1((0, T )) and δ > 0 on (0, T ).(iii) h ∈ C2([0,∞)) and h′(0) = 0, h′′(0) > 0, h′(r) > 0 for r ∈ (0,∞).For stationary equations ϕ is independent of t and δ(t) ≡ 1.We remark that even though ‖x‖ is not di�erentiable at 0, the fun
tion
h(‖x‖) is in C2(H) for a test fun
tion h as above. Noti
e also that if ‖x‖ → 0then h′(‖x‖)/‖x‖ → h′′(0) > 0 so the term h′(‖x‖)/‖x‖ is bounded awayfrom 0 on bounded sets.Definition 3.2. A lo
ally bounded B-upper semi
ontinuous fun
tion uis a vis
osity subsolution of (1.1) if whenever u− ψ has a lo
al maximum ata point x for a test fun
tion ψ = ϕ+ h(‖x‖) then x ∈ H1 and

u(x) + λ‖x‖2
1

h′(‖x‖)

‖x‖
+ 〈x,A∗Dϕ(x)〉 + F (x,Dψ(x), D2ψ(x)) ≤ 0.A lo
ally bounded B-lower semi
ontinuous fun
tion u is a vis
osity superso-lution of (1.1) if whenever u−ψ has a lo
al minimum at a point x for a testfun
tion ψ = ϕ− h(‖x‖) then x ∈ H1 and

u(x) − λ‖x‖2
1

h′(‖x‖)

‖x‖
+ 〈x,A∗Dϕ(x)〉 + F (x,Dψ(x), D2ψ(x)) ≥ 0.A vis
osity solution of (1.1) is a fun
tion whi
h is both a vis
osity subsolutionand a vis
osity supersolution.Definition 3.3. A lo
ally bounded B-upper semi
ontinuous fun
tion uis a vis
osity subsolution of (1.2) if whenever u−ψ has a lo
al maximum ata point (t, x) ∈ (0, T ) ×H for a test fun
tion ψ(s, y) = ϕ(s, y) + δ(s)h(‖y‖)then x ∈ H1 and

ψt(t, x) + λ‖x‖2
1δ(t)

h′(‖x‖)

‖x‖
+ 〈x,A∗Dϕ(t, x)〉

+ F (t, x,Dψ(t, x), D2ψ(t, x)) ≤ 0.A lo
ally bounded B-lower semi
ontinuous fun
tion u is a vis
osity su-persolution of (1.2) if whenever u − ψ has a lo
al minimum at a point
(t, x) ∈ (0, T ) × H for a test fun
tion ψ(s, y) = ϕ(s, y) − δ(s)h(‖y‖) then
x ∈ H1 and

ψt(t, x) − λ‖x‖2
1δ(t)

h′(‖x‖)

‖x‖
+ 〈x,A∗Dϕ(t, x)〉

+ F (t, x,Dψ(t, x), D2ψ(t, x)) ≥ 0.A vis
osity solution of (1.2) is a fun
tion whi
h is both a vis
osity subsolutionand a vis
osity supersolution.Definition 3.4. A lo
ally bounded fun
tion u is a dis
ontinuous vis
os-ity subsolution of (1.1) if whenever (u− h(‖ · ‖))∗ −ϕ has a lo
al maximum



Perron's method and method of relaxed limits 255in the topology of ‖ · ‖−1 at a point x for test fun
tions ϕ, h(‖y‖) su
h that(3.1) u(y) − h(‖y‖) → −∞ as ‖y‖ → ∞then x ∈ H1 and
(u− h(‖ · ‖))∗(x) + h(‖x‖) + λ‖x‖2

1

h′(‖x‖)

‖x‖
+ 〈x,A∗Dϕ(x)〉

+ F (x,Dψ(x), D2ψ(x)) ≤ 0,where ψ = ϕ+ h(‖y‖).A lo
ally bounded fun
tion u is a dis
ontinuous vis
osity supersolutionof (1.1) if whenever (u+ h(‖ · ‖))∗ −ϕ has a lo
al minimum in the topologyof ‖ · ‖−1 at a point x for test fun
tions ϕ, h(‖y‖) su
h that(3.2) u(y) + h(‖y‖) → ∞ as ‖y‖ → ∞then x ∈ H1 and
(u+ h(‖ · ‖))∗(x) − h(‖x‖) − λ‖x‖2

1

h′(‖x‖)

‖x‖
+ 〈x,A∗Dϕ(x)〉

+ F (x,Dψ(x), D2ψ(x)) ≥ 0,where ψ = ϕ− h(‖y‖).A dis
ontinuous vis
osity solution of (1.1) is a fun
tion whi
h is both adis
ontinuous vis
osity subsolution and a dis
ontinuous vis
osity supersolu-tion.Definition 3.5. A lo
ally bounded fun
tion u is a dis
ontinuous vis-
osity subsolution of (1.2) if whenever (u − δ(·)h(‖ · ‖))∗ − ϕ has a lo
almaximum in the topology of | · | × ‖ · ‖−1 at a point (t, x) for test fun
tions
ϕ, δ(s)h(‖y‖) su
h that(3.3) u(s, y) − δ(s)h(‖y‖) → −∞ as ‖y‖ → ∞ lo
ally uniformly in sthen x ∈ H1 and

ψt(t, x) + λ‖x‖2
1δ(t)

h′(‖x‖)

‖x‖
+ 〈x,A∗Dϕ(t, x)〉

+ F (t, x,Dψ(t, x), D2ψ(t, x)) ≤ 0,where ψ(s, y) = ϕ(s, y) + δ(s)h(‖y‖).A lo
ally bounded fun
tion u is a dis
ontinuous vis
osity supersolution of(1.2) if whenever (u+ δ(·)h(‖ · ‖))∗−ϕ has a lo
al minimum in the topologyof | · | × ‖ · ‖−1 at a point (t, x) for test fun
tions ϕ, δ(s)h(‖y‖) su
h that(3.4) u(s, y) + δ(s)h(‖y‖) → ∞ as ‖y‖ → ∞ lo
ally uniformly in sthen x ∈ H1 and



256 D. Kelome and A. �wi�
h
ψt(t, x) − λ‖x‖2

1δ(t)
h′(‖x‖)

‖x‖
+ 〈x,A∗Dϕ(t, x)〉

+ F (t, x,Dψ(t, x), D2ψ(t, x)) ≥ 0,where ψ(s, y) = ϕ(s, y) − δ(s)h(‖y‖).A dis
ontinuous vis
osity solution of (1.2) is a fun
tion whi
h is both adis
ontinuous vis
osity subsolution and a dis
ontinuous vis
osity supersolu-tion.If a subsolution (respe
tively, supersolution) in De�nition 3.4 or 3.5 is B-upper semi
ontinuous (respe
tively, B-lower semi
ontinuous) then it is easyto see that De�nitions 3.4 and 3.5 redu
e to De�nitions 3.2 and 3.3 respe
-tively, sin
e if u is B-upper semi
ontinuous (respe
tively, B-lower semi
ontin-uous) then (u−h(‖·‖))∗(x) = u(x)−h(‖x‖) (respe
tively, (u+h(‖·‖))∗(x) =
u(x) + h(‖x‖)).Lemma 3.6. Without loss of generality the maxima and minima in Def-initions 3.2 and 3.3 
an be assumed to be global and stri
t in the | · | × ‖ · ‖norm and the maxima and minima in De�nitions 3.4 and 3.5 
an be assumedto be global and stri
t in the | · | × ‖ · ‖−1 norm. However , it is not 
lear ifthey 
an be stri
t in the | · | × ‖ · ‖ norm. Finally , without loss of generalitywe 
an always assume that the fun
tions in De�nitions 3.2 and 3.3 satisfy(3.1)�(3.4). Moreover we 
an also assume that the fun
tions in De�nitions3.4 and 3.5 satisfy

(u− δ(·)h(‖ · ‖))∗(t, x) − ϕ(t, x) → −∞,

(u+ δ(·)h(‖ · ‖))∗(t, x) − ϕ(t, x) → ∞as ‖x‖ → ∞ lo
ally uniformly in t.Proof. Let u be a B-upper semi
ontinuous fun
tion and let
(u− h− ϕ)(x) ≥ (u− h− ϕ)(y) for y ∈ BR(x)for some R > 0, i.e. u− h− ϕ has a lo
al maximum at x for test fun
tions

ϕ and h. We will show that there exist test fun
tions ϕ̃ and h̃ su
h that
Dϕ̃(x) = Dϕ(x), D2ϕ̃(x) = D2ϕ(x), Dh̃(x) = Dh(x), D2h̃(x) = D2h(x),and u− h̃− ϕ̃ has a stri
t global maximum at x. Let g ∈ C2([0,∞)) be anin
reasing fun
tion su
h that

1 + r2 + sup
‖y‖≤r

|u(y)| ≤ g(r).Let g1 ∈ C2([0,∞)) be a fun
tion su
h that
g1(r) =





0, r ≤ ‖x‖ + 1,in
reasing, ‖x‖ + 1 < r < ‖x‖ + 2,

g(r), r ≥ ‖x‖ + 2.
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ϕ1(r) =





r4, r ≤ 1,in
reasing, 1 < r < 2,

2, r ≥ 2.Now for n ≥ 1 
onsider the fun
tion
Φn(y) = u(y) − ϕ(y) − nϕ1(‖x− y‖−1) − h(‖y‖) − g1(‖y‖).Obviously we have

Φn(x) = u(x) − ϕ(x) − h(‖x‖).Suppose that for every n there exists yn su
h that Φn(yn) ≥ Φn(x). Thenwe must have ‖x − yn‖−1 → 0 as n → ∞ and ‖yn‖ ≤ C, i.e. yn ⇀ x.Sin
e u is B-upper semi
ontinuous and ϕ is B-
ontinuous, and h is stri
tlyin
reasing, this implies that ‖yn‖ → ‖x‖, and therefore yn → x in H. Butthen yn ∈ BR(x) for large n and so we get
Φn(yn) < u(y) − ϕ(y) − h(‖y‖) ≤ u(x) − ϕ(x) − h(‖x‖),whi
h is a 
ontradi
tion. Therefore there must exist n0 su
h that Φn0

(y) <
Φn0

(x) for y 6= x. It then follows easily that Φn0+1 has a stri
t globalmaximum at x. Therefore the 
on
lusion follows by setting ϕ̃(y) = ϕ(y) −

(n0 + 1)ϕ1(‖x− y‖−1) and h̃(‖y‖) = h(‖y‖) − g1(‖y‖).The fa
t that the maxima and minima in De�nition 3.4 
an be assumedto be global and stri
t in the ‖ ·‖−1 norm is obvious and the �nal statementsabout the 
onvergen
es at ∞ follow from the 
onstru
tion of ϕ̃ and h̃.Remark 3.7. There are other possibilities for the 
hoi
e of test fun
tionsthat would give good theory. For instan
e one 
an repla
e the fun
tions ϕ inDe�nition 3.1 by the fun
tions satisfying
• ϕ ∈ C1,2((0, T ) × H−1), and ϕt, Dϕ, D

2ϕ are uniformly 
ontinuouson 
losed subsets of (0, T ) ×H−1.In this 
ase one needs to assume that B1/2A∗B1/2 is bounded and that(2.2) is satis�ed for all x ∈ H1. (The term 〈A∗x, x〉 is now well de�ned for
x ∈ H1.) Noti
e that if B1/2A∗B1/2 is bounded and ψ = ϕ±δ(s)h(‖y‖) then
〈x,A∗Dψ(x)〉 is well de�ned for x ∈ H1 and so De�nitions 3.2�3.5 
an besimpli�ed by repla
ing the terms

±λ‖x‖2
1δ(t)

h′(‖x‖)

‖x‖
+ 〈x,A∗Dϕ(t, x)〉wherever they appear in De�nitions 3.2�3.5 by a single term 〈x,A∗Dψ(t, x)〉.Remark 3.8. It follows from the proof of Lemma 3.6 that if we know apriori that u has a 
ertain growth at ∞ then we 
an obtain the same growth(at least quadrati
) for h̃. For instan
e, if u has a polynomial growth at
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∞ we 
an have h̃ whi
h is a polynomial of some spe
ial form for large ‖x‖.This is important in appli
ations to sto
hasti
 optimal 
ontrol where we maywant to impose additional 
onditions on test fun
tions to be able to applysto
hasti
 
al
ulus. In these appli
ations it may also be useful to assumethat h′(r)/r is globally bounded away from 0 for the radial test fun
tions h.To avoid te
hni
al di�
ulties it may then be more 
onvenient to 
hoose hbelonging to one parti
ular 
lass of fun
tions, say 
ertain polynomials withgrowth depending on the growth of sub- and supersolutions we are dealingwith. All results presented in this paper would hold with an appropriateversion of su
h a de�nition. This approa
h has been su

essfully employedin [2, 13�16℄. However, for su
h narrow 
lasses of radial test fun
tions theglobal and lo
al de�nitions of vis
osity solutions may no longer be equivalent.4. Comparison prin
iples. In this se
tion we prove 
omparison prin-
iples for dis
ontinuous vis
osity solutions. We begin with the 
omparisonresult for the stationary 
ase.Theorem 4.1. Let (2.1) and (2.2) hold and let F satisfy (1)0, (2), (3).Let u be a vis
osity subsolution and v be a vis
osity supersolution of (1.1) inthe sense of De�nition 3.4, and let u,−v be bounded from above. Then(4.1) lim

R↑∞
lim
r↓0

sup{u(x) − v(y) : ‖x− y‖−1 ≤ r, x, y ∈ BR} ≤ 0.In parti
ular u ≤ v.Remark 4.2. Theorem 4.1 shows that a bounded vis
osity solution of(1.1) in the sense of De�nition 3.4 is uniformly 
ontinuous inH−1 on boundedsubsets ofH and therefore is a vis
osity solution in the sense of De�nition 3.2.Proof of Theorem 4.1. We argue by 
ontradi
tion. Assume that (4.1)does not hold. Then there exists a positive real number η su
h that
lim
R↑∞

lim
r↓0

sup{u(x) − v(y) : ‖x− y‖−1 ≤ r, x, y ∈ BR} > 2η.Let µ(x) be the fun
tion satisfying (1)0. For every positive real number α,we de�ne uα(x) = u(x) − αµ(x) and vα(y) = v(y) − αµ(y). Set
m := lim

R↑∞
lim
r↓0

sup{u(x) − v(y) : ‖x− y‖−1 < r, x, y ∈ BR},

mα := lim
r↓0

sup{(uα)∗(x) − (vα)∗(y) : ‖x− y‖−1 < r}

= lim
r↓0

sup{uα(x) − vα(y) : ‖x− y‖−1 < r}

mα,ε := sup

{
(uα)∗(x) − (vα)∗(y) −

1

2ε
‖x− y‖2

−1

}
,
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m = lim

α↓0
mα,(4.2)

mα = lim
ε↓0

mα,ε.(4.3)Using perturbed optimization te
hniques [24℄ (see also [6℄) we obtainsequen
es pn, qn ∈ H su
h that ‖pn‖ + ‖qn‖ → 0 as n→ ∞, and
(uα)∗(x) − (vα)∗(y) −

1

2ε
‖x− y‖2

−1 + 〈Bpn, x〉 + 〈Bqn, y〉a
hieves a stri
t global maximum at some point (x, y) ∈ H×H. Convergen
es(4.2)�(4.3) yield
lim
ε↓0

lim sup
n→∞

1

2ε
‖x− y‖2

−1 = 0 for every α > 0,(4.4)

lim
α↓0

lim sup
ε↓0

lim sup
n→∞

(αµ(x) + αµ(y)) = 0.(4.5)We now have
‖x− y‖2

−1 = ‖PN (x− y)‖2
−1 + ‖QN (x− y)‖2

−1and
‖QN (x− y)‖2

−1 ≤ 2〈BQN (x− y), x− y〉 + 2‖QN (x− x)‖2
−1

+ 2‖QN (y − y)‖2
−1 − ‖QN (x− y)‖2

−1with equality at x, y. Therefore de�ning
u1(x) = (uα)∗(x) − 〈BQN (x− y), x〉/ε− ‖QN (x− x)‖2

−1/ε

+ ‖QN (x− y)‖2
−1/2ε+ 〈Bpn, x〉and

v1(y) = (vα)∗(y) − 〈BQN (x− y), y〉/ε+ ‖QN (y − y)‖2
−1/ε− 〈Bqn, y〉,we see that

u1(x) − v1(y) −
1

2ε
‖PN (x− y)‖2

−1has a stri
t global maximum inH−1 at (x, y). At this step we need to produ
eappropriate test fun
tions to be able to use the de�nition of solution. Thisis done using partial sup-
onvolution te
hniques �rst introdu
ed in [20℄ (seealso [4℄).Lemma 4.3. Given N ≥ 1 there exist fun
tions ϕk, ψk ∈ C2(H−1) withuniformly 
ontinuous derivatives su
h that u1(x)− ϕk(x) has a global maxi-mum at some point xk, v1(y)+ψk(y) has a global minimum at some point yk,
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(4.6) (xk, u1(xk), Dϕk(xk), D

2ϕk(xk)) → (x, u1(x), BPN (x− y)/ε,XN ),

(4.7) (yk, v1(yk), Dψk(yk), D
2ψk(yk)) → (y, v1(y), BPN(y − x)/ε, YN ),(4.8) (

XN 0

0 YN

)
≤

2

ε

(
B −B

−B B

)
,with the 
onvergen
es being in H × R ×H2 × L(H).Proof. Set xN = PNx, x

⊥
N = QNx, yN = PNy, y

⊥
N = QNy and de�ne

ũ1(xN ) = sup
x⊥

N
∈QN H

u1(xN + x⊥N ), ṽ1(yN ) = inf
y⊥

N
∈QN H

v1(yN + y⊥N ),the partial sup- and inf-
onvolutions of u1 and v1 respe
tively. Then(4.9) (ũ1)
∗(xN ) − (ṽ1)∗(yN ) −

1

2ε
‖xN − yN‖2

−1has a stri
t global maximum over VN × VN at (xN , yN ), where (ũ1)
∗ and

(ṽ1)∗ are the upper and lower semi
ontinuous envelopes of ũ1 and ṽ1 in VN .Moreover we have (ũ1)
∗(xN ) = u1(x) and (ṽ1)∗(yN ) = v1(y).We 
an now apply the �nite-dimensional maximum prin
iple when we
onsider VN as a spa
e with the topology inherited from H−1 (whi
h isequivalent to the topology inherited from H). Denote VN with this topol-ogy by ṼN . Therefore there exist bounded fun
tions ϕ̃k, ψ̃k ∈ C2(ṼN ) withuniformly 
ontinuous derivatives su
h that (ũ1)

∗(xN ) − ϕ̃k(xN ) has a stri
tglobal maximum at some point (xk
N ), (ṽ1)∗(yN ) + ψ̃k(yN ) has a stri
t globalminimum at some point (yk

N ), and as k → ∞,
(4.10) (xk

N , (ũ1)
∗(xk

N ), DṼN

ϕ̃k(x
k
N ), D2

ṼN

ϕ̃k(x
k
N ))

→ (xN , u1(x), (xN − yN )/ε, X̃N ),

(4.11) (yk
N , (ṽ1)∗(y

k
N ), D

ṼN

ψ̃k(y
k
N ), D2

ṼN

ψ̃k(y
k
N ))

→ (yN , v1(y), (yN − xN )/ε, ỸN ),(4.12) (
X̃N 0

0 ỸN

)
≤

2

ε

(
I −I

−I I

) in H−1 ×H−1for some N × N matri
es X̃N and ỸN that as operators in L(H−1) satisfy
XN = PNXNPN , YN = PNYNPN and are symmetri
. Furthermore we 
anset the above maximum and minimum to be equal to zero. (Above, thesymbolsD

ṼN

and D2
ṼN

denote the Fré
het derivatives in ṼN .) Sin
e in VN thetopology of H−1 is equivalent to the topology of H the above 
onvergen
eshold in the topology of H×R×H×S(H). We now extend ϕ̃k, ψ̃k to fun
tionsin C2(H−1) by setting ϕk(x) = ϕ̃k(PNx) and ψk(y) = ψ̃k(PNy). Then, if
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DH−1

ϕk denotes the Fré
het derivative of ϕk in H−1 we have(4.13) Dϕk(x) = BDH−1
ϕk(x), D2ϕk(x) = BD2

H−1
ϕk(x),and the same also holds for ψk.Using a perturbed optimization result, we 
an �nd sequen
es p̃j , q̃j ∈ Hsu
h that ‖p̃j‖ + ‖q̃j‖ → 0 as j → ∞, and

u1(x) − ϕk(x) − 〈Bp̃j , x〉 has a global maximum at some xj ,(4.14)
v1(y) + ψk(y) − 〈Bq̃j , y〉 has a global minimum at some yj .(4.15)Combining (4.14) and the fa
t that (ũ1)

∗(xN ) − ϕ̃k(xN ) has a stri
t globalmaximum at xk
N , we dedu
e that PNxj → xk

N and u1(PNxj) → (ũ1)
∗(xk

N )as j → ∞. Similarly (4.15) and the fa
t that (ṽ1)∗(yN ) + ψ̃k(yN ) has astri
t global minimum at some point yk
N implies that PNyj → yk

N and
v1(PNyj) → (ṽ1)

∗(yk
N ) as j → ∞. We 
an then sele
t a subsequen
e jk su
hthat PNxjk

→ PNx and PNyjk
→ PNy, with the additional requirementsthat u1(PNxjk

) → u1(x), v1(PNyjk
) → v1(y), ϕk(PNxjk

)−ϕk(xN ) → 0 and
ψk(PNyjk

) − ψk(yN ) → 0 as k → ∞. Moreover we 
an 
hoose the subse-quen
e jk so that all the 
onvergen
es in (4.10) hold when xk
N and yk

N arerepla
ed by PNxjk
and PNyjk

respe
tively. We may now repeat rather stan-dard arguments of [4℄ (see also [13, pp. 409�410℄) and use (4.14) and (4.15)to show that xjk
→ x and yjk

→ y in H−1.We now need to prove that xjk
→ x and yjk

→ y in H. To obtainthese 
onvergen
es, it will be enough to prove that xjk
and yjk

are uniformlybounded in H1 (independently of k). First we observe that xjk
and yjk

areuniformly bounded in H (they remain in a ball whose radius depends ex
lu-sively on α). Using (4.14) and the de�nition of subsolution we get
(4.16) (uα)∗(xjk

) + 2αδ‖xjk
‖2
1 + αµ(xjk

)

+ 〈xjk
, A∗B(−pn + p̃jk

+QN (x− y)/ε+QN (x− xjk
)/ε) +A∗Dϕk(xjk

)〉

+ F (xjk
,−Bpn +Bp̃jk

+BQN (x− y)/ε+BQN (x− xjk
)/ε+Dϕk(xjk

)

+ αDµ(xjk
), BQN/ε+D2ϕk(xjk

) +D2µ(xjk
)) ≤ 0.Note that (uα)∗(xjk

) → (uα)∗(x) so using the lo
al boundedness of Fwe 
an dedu
e from the above inequality that ‖xjk
‖1 ≤ C for some positive
onstant C independent of k. A similar argument 
an be used to prove that

yjk
is bounded in H1. Therefore B1/2xjk

→ B1/2x, B−1/2xjk
⇀ B−1/2x andso

‖xjk
− x‖2 = 〈B−1/2(xjk

− x), B−1/2(xjk
− x)〉 → 0as k → ∞. The same argument also shows that yjk

→ y. Therefore the lemmaholds with ϕk(x) := ϕk(x) + 〈Bp̃jk
, x〉 and ψk(y) := ψk(y) − 〈Bq̃jk

, y〉.
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(uα)∗(x) + αµ(x) + 2αλ‖x‖2

1 + 〈x,A∗B(x− y)/ε〉 − 〈x,A∗Bpn〉

+ F (x, αDµ(x) −Bpn +B(x− y)/ε, αD2µ(x) +XN +BQN/ε) ≤ 0.Similarly (4.15) and De�nition 3.4 yield
(vα)∗(y) − αµ(y) − 2λα‖y‖2

1 + 〈y,A∗B(x− y)/ε〉 + 〈y,A∗Bqn〉

+ F (y,−αDµ(y) +Bqn +B(x− y)/ε,−αD2µ(y) − YN −BQN/ε) ≥ 0.We then use (1)0 and (2) to obtain
(uα)∗(x) − (vα)∗(y) ≤ σ1(N) + σ2(n) + C0‖x− y‖2

−1/ε

+ F (y,B(x− y)/ε,−YN ) − F (x,B(x− y)/ε,XN ) +Kα(2 + µ(x) + µ(y))where σ1(N) → 0 for n, ε, α �xed and σ2(n) → ∞ for α, ε �xed. Finally, (3)gives
(uα)∗(x) − (vα)∗(y) ≤ σ1(N) + σ2(n) + C0‖x− y‖2

−1/ε

+ ωR(α)(‖x− y‖−1(1 + ‖(x− y)‖−1/ε)) +Kα(2 + µ(x) + µ(y)).If m > 2η, then for ε, α su�
iently small and n large enough we have
(uα)∗(x) − (vα)∗(y) > η. Therefore we get

η ≤ σ1(N) + σ2(n) + C0‖x− y‖2
−1/ε

+ ωR(α)(‖x− y‖−1(1 + ‖(x− y)‖−1/ε)) +Kα(2 + µ(x) + µ(y)).Letting now N → ∞, n → ∞, ε → 0 and α → 0 in that order we arrive at
η ≤ 0, whi
h is a 
ontradi
tion.In the next theorem we prove a 
omparison result for the time dependentproblem (1.2).Theorem 4.4. Let (2.1) and (2.2) hold and let F satisfy (1)k, (2), (3)for some k ≥ 0. Let g be lo
ally uniformly B-
ontinuous and su
h that(4.17) |g(x)| ≤ C(1 + ‖x‖k) for some C > 0.Let u be a vis
osity subsolution of (1.2), and v be a vis
osity supersolutionof (1.2) in the sense of De�nition 3.5 su
h that

u,−v ≤ C(1 + ‖x‖k) for some C > 0,(4.18)
lim
t→0

{(u(t, x) − g(x))+ + (v(t, x) − g(x))−} = 0(4.19)uniformly on bounded sets. Then for every 0 < T1 < T ,
(4.20) lim

R↑∞
lim

(r,η)↓(0,0)
sup{u(t, x) − v(s, y) : |t− s| < η, ‖x− y‖−1 < r

x, y ∈ BR, 0 ≤ t, s ≤ T1} ≤ 0.In parti
ular u ≤ v.
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ontradi
tion and assume that (4.20) is not true. Thenfor a su�
iently small σ > 0 and some γ > 0 we have
(4.21) γ < lim

R↑∞
lim

(r,η)↓(0,0)
sup{uσ(t, x) − vσ(s, y) :

|t− s| < η, ‖x− y‖−1 < r, x, y ∈ BR}

= lim
R↑∞

lim
r↓0

lim
η↓0

sup{uσ(t, x) − vσ(s, y) :

|t− s| < η, ‖x− y‖−1 < r, x, y ∈ BR},where we have set
uσ(t, x) = u(t, x) −

σ

T − t
, vσ(s, y) = v(s, y) +

σ

T − s
.We de�ne

uα(t, x) = uσ(t, x) − αeKtµ(x), vα(s, y) = vσ(s, y) + αeKsµ(y),where µ(x) satis�es (1)k and K is the 
onstant from (1)k. Let
m := lim

R↑∞
lim
r↓0

lim
η↓0

sup{uσ(t, x) − vσ(s, y) :

‖x− y‖−1 < r, |t− s| < η, x, y ∈ BR},

mα := lim
r↓0

lim
η↓0

sup{(uα)∗(t, x) − (vα)∗(s, y) : ‖x− y‖−1 < r, |t− s| < η}

= lim
r↓0

lim
η↓0

sup{uα(t, x) − vα(s, y) : ‖x− y‖−1 < r, |t− s| < η},

mα,ε := lim
η↓0

sup

{
(uα)∗(t, x) − (vα)∗(s, y) −

1

2ε
‖x− y‖2

−1 : |t− s| < η

}
,

mα,ε,β := sup

{
(uα)∗(t, x) − (vα)∗(s, y) −

1

2ε
‖x− y‖2

−1 −
(t− s)2

2β

}
.We have

m = lim
α↓0

mα,(4.22)
mα = lim

ε↓0
mα,ε,(4.23)

mα,ε = lim
β↓0

mα,ε,β,(4.24)however m 
an now be ∞. Using perturbed optimization results, we 
an �ndsequen
es an, bn ∈ R and pn, qn ∈ H su
h that |an|+|bn|+‖pn‖+‖qn‖ ≤ 1/nand
(uα)∗(t, x) − (vα)∗(s, y) −

1

2ε
‖x− y‖2

−1 −
1

2β
|t− s|2

+ ant+ bns+ 〈Bpn, x〉 + 〈Bqn, y〉a
hieves a stri
t global maximum at some point (t, s, x, y) ∈ (0, T ]× [0, T ]×
H ×H. Convergen
es (4.22)�(4.24) yield
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lim
β↓0

lim sup
n→∞

1

2β
|t− s|2 = 0 for every α, ε > 0,(4.25)

lim
ε↓0

lim sup
β↓0

lim sup
n→∞

1

2ε
‖x− y‖2

−1 = 0 for every α > 0.(4.26)By the de�nition of uσ and vσ we have t < T and s < T . In light of (4.19),(4.21)�(4.26), and the uniform 
ontinuity of g in H−1 on bounded sets of H,we 
an 
on
lude that t > 0 and s > 0 for large n and small β, ε. We de�neas before
u1(t, x) = (uα)∗(t, x) − 〈BQN (x− y), x〉/ε− ‖QN (x− x)‖2

−1/ε

+ ‖QN (x− y)‖2
−1/2ε+ ant+ 〈Bpn, x〉and

v1(s, y) = (vα)∗(s, y) − 〈BQN (x− y), y〉/ε+ ‖QN (y − y)‖2
−1/ε

+ αµ(y) − bns− 〈Bqn, y〉,so that
u1(t, x) − v1(s, y) −

1

2ε
‖PN (x− y)‖2

−1 −
1

2β
|t− s|2has a stri
t global maximum at (t, s, x, y). Arguing now as in the proof ofLemma 4.3 we 
an 
laim the existen
e of fun
tions ϕk, ψk ∈ C1,2((0, T ) ×

H−1) with uniformly 
ontinuous derivatives su
h that u1(t, x)−ϕk(t, x) hasa global maximum at some point (tk, xk), v1(s, y) + ψk(s, y) has a globalminimum at some point (sk, yk), and
(4.27)

(
tk, xk, u1(tk, xk),

∂ϕk

∂t
(tk, xk), Dϕk(tk, xk), D

2ϕk(tk, xk)

)

→ (t, x, u1(t, x), (t− s)/β,BPN (x− y)/ε,XN ),

(4.28)

(
sk, yk, v1(sk, yk),

∂ψk

∂t
(sk, yk), Dψk(sk, yk), D

2ψk(sk, yk)

)

→ (s, y, v1(s, y), (s− t)/β,BPN (y − x)/ε, YN ),(4.29) (
XN 0

0 YN

)
≤

2

ε

(
B −B

−B B

)
,with the 
onvergen
es in R ×H × R × R ×H2 × L(H).Therefore, using De�nition 3.5 we �nd as in the proof of Theorem 4.1that

(4.30)
σ

(T − t)2
− an +

t− s

β
+ αKeKtµ(x) + αeKtλ

µ′(‖x‖)

‖x‖
‖x‖2

1

+ 〈x,A∗B(x− y)/ε〉 − 〈x,A∗Bpn〉

+ F (t, x, αeKtDµ(x) −Bpn +B(x− y)/ε, αeKtD2µ(x) +XN +BQN/ε)

≤ 0
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(4.31) bn −

σ

(T − s)2
+
t− s

β
− αKeKsµ(y) − αeKsλ

µ′(‖y‖)

‖y‖
‖y‖2

1

+ 〈y,A∗B(x− y)/ε〉 + 〈y,A∗Bqn〉

+F (s, y,−αeKsDµ(y) +Bqn +B(x− y)/ε,−αeKsD2µ(y) − YN −BQN/ε)

≥ 0.Combining (4.30) and (4.31) and using assumptions (1)k, (2), and the lo
aluniform 
ontinuity of F , we have
2σ/T 2 ≤ σ1(N) + σ2(n) + C0‖x− y‖2

−1/ε− αK(eKtµ(x) + eKsµ(y))

+ F (s, y, B(x− y)/ε,−YN ) − F (t, x,B(x− y)/ε,XN )

+ αK(2 + eKtµ(x) + eKsµ(y)),where σ1(N) → 0 for n, ε, α, β �xed and σ2(n) → ∞ for α, ε, β �xed. Using
(3) and the lo
al uniform 
ontinuity of F we then 
on
lude that

σ/T 2 ≤ σ1(N) + σ2(n) + σ3(β) + C0‖x− y‖2
−1/ε

+ ωR(α)(‖x− y‖−1(1 + ‖x− y‖−1/ε)) + 2αK,where σ3(β) → 0 for α, ε �xed. We 
an now let N → ∞, n → ∞, β → 0,
ε→ 0, and α→ 0 in this order to arrive at σ ≤ 0, whi
h is a 
ontradi
tion.5. Perron's method and existen
e of solutions. In this se
tion wewill show that vis
osity solutions of (1.1) in the sense of De�nition 3.4 (re-spe
tively, vis
osity solutions of (1.2) in the sense of De�nition 3.5) 
anbe obtained by Perron's method, i.e. by taking the supremum of all su
hvis
osity subsolutions of (1.1) (respe
tively, (1.2)) provided that a vis
ositysubsolution and a vis
osity supersolution exist. Therefore, if the assumptionsof Theorem 4.1 (respe
tively, Theorem 4.4) are satis�ed, we will dedu
e thatthe solution produ
ed by this method is B-
ontinuous, and so it is a vis
ositysolution in the sense of De�nition 3.2 (respe
tively, De�nition 3.3). A pos-teriori this will also show that this solution is equal to the supremum of allvis
osity subsolutions in the sense of De�nition 3.2 (respe
tively, De�nition3.3).It is 
onvenient to state a simple lemma for future referen
e.Lemma 5.1. Let (2.2) hold. Let ϕ ∈ C2(H) be B-upper semi
ontinuousand su
h that A∗Dϕ is 
ontinuous, and let h ∈ C2((−∞,∞)) be even andsu
h that h′(r) ≥ 0 for r ∈ (0,∞). Let w(x) = ϕ(x) − h(‖x‖) (respe
tively ,
w(x) = −ϕ(x) + h(‖x‖)) satisfy

w(x) + 〈x,A∗Dw(x)〉 + F (x,Dw(x), D2w(x)) ≤ 0 for x ∈ D(A∗)(respe
tively ,
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h
w(x) + 〈x,A∗Dw(x)〉 + F (x,Dw(x), D2w(x)) ≥ 0 for x ∈ D(A∗).)Then w is a vis
osity subsolution (respe
tively , supersolution) of (1.1).Proof. We will only give the proof in the subsolution 
ase. Sin
e w is B-upper semi
ontinuous De�nitions 3.2 and 3.4 are equivalent. Suppose that

w(y)− h1(‖y‖)− ϕ1(y) has a lo
al maximum at x for test fun
tions ϕ1, h1.Then
Dϕ(x) −

h′(‖x‖)

‖x‖
x−Dϕ1(x) −

h′1(‖x‖)

‖x‖
x = 0and

D2w(x) ≤ D2(ϕ1 + h(‖ · ‖))(x).Therefore either x = 0 or(
h′(‖x‖)

‖x‖
+
h′1(‖x‖)

‖x‖

)
x = Dϕ(x) −Dϕ1(x) ∈ D(A∗) ⊂ H1.De�ne ψ = ϕ1 + h1(‖y‖). Now, using (2.2) and the degenerate ellipti
ityof F , we obtain

w(x) + λ‖x‖2
1

h′1(‖x‖)

‖x‖
+ 〈x,A∗Dϕ1(x)〉 + F (x,Dψ(x), D2ψ(x))

≤ w(x) +
h′1(‖x‖)

‖x‖
〈x,A∗x〉 + 〈x,A∗Dϕ1(x)〉 + F (x,Dw(x), D2w(x))

= w(x) + 〈x,A∗Dw(x)〉 + F (x,Dw(x), D2w(x)) ≤ 0and the 
laim is proved.Proposition 5.2. Let (2.2) be satis�ed. Let A be a family of vis
ositysubsolutions of (1.1) in the sense of De�nition 3.4. Suppose that the fun
tion(5.1) u(x) = sup{w(x) : w ∈ A}is lo
ally bounded. Then u is a vis
osity subsolution of (1.1) in the sense ofDe�nition 3.4.Proof. Suppose that (u− h(‖ · ‖))∗ −ϕ has a stri
t (in the ‖ · ‖−1 norm)global maximum at a point x for test fun
tions h and ϕ. (We 
an assumethat (u(y) − h(‖ · ‖))∗(y) − ϕ(y) → −∞ as ‖y‖ → ∞.) Perturbed opti-mization te
hniques and De�nition 3.2 then show that there exist vis
ositysubsolutions wn of (1.1), xn ∈ H1 and pn ∈ H with ‖pn‖ ≤ 1/n su
h that(5.2) B1/2xn → B1/2x, xn ⇀ x in H as n→ ∞,

(wn(y)− h(‖y‖))∗ −ϕ(y)− 〈Bpn, y〉 has a stri
t (in the ‖ · ‖−1 norm) globalmaximum at xn, and(5.3) (wn − h(‖ · ‖))∗(xn) → (u− h(‖ · ‖))∗(x) as n→ ∞.
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(5.4) (wn − h(‖ · ‖))∗(xn) − h(‖xn‖) + λ‖xn‖

2
1

h′(‖xn‖)

‖xn‖

+ 〈xn, A
∗Dϕ(xn)〉 + 〈xn, A

∗Bpn〉 + F (xn, Dψ(xn) +Bpn, D
2ψ(xn)) ≤ 0.Sin
e the xn are bounded, using the lo
al boundedness of F we thus obtain

‖xn‖
2
1 ≤ C for some 
onstant C, whi
h, together with (5.2), implies that

x ∈ H1, and B−1/2xn ⇀ B−1/2x as n→ ∞. Therefore, by (5.2),
‖xn − x‖2 = 〈B−1/2(xn − x), B1/2(xn − x)〉 → 0 as n→ ∞,i.e. xn → x in H. Using this, (5.3), the 
ontinuity of F , and the fa
t that

‖ · ‖1 is lower semi
ontinuous in H, we 
an now pass to lim inf as n→ ∞ in(5.4) to obtain
(u− h(‖ · ‖))∗(x) + h(‖x‖) + λ‖x‖2

1

h′(‖x‖)

‖x‖
+ 〈x,A∗Dϕ(x)〉

+ F (x,Dψ(x), D2ψ(x)) ≤ 0,whi
h 
ompletes the proof.Proposition 5.3. Let (2.2) be satis�ed. Let u0, v0 be respe
tively a vis-
osity subsolution and a vis
osity supersolution of (1.1) in the sense of Def-inition 3.4 su
h that u0 ≤ v0. Then the fun
tion
u(x) = sup{w(x) : u0 ≤ w ≤ v0, w is a vis
osity subsolutionof (1.1) in the sense of De�nition 3.4}is a vis
osity solution of (1.1) in the sense of De�nition 3.4.Proof. The fa
t that u is a subsolution follows from Proposition 5.2.Suppose now that (u+h(‖ · ‖))∗−ϕ has a stri
t (in the ‖ · ‖−1 norm) globalminimum at a point x for test fun
tions h(‖y‖) and ϕ. First we noti
e thatif

(u+ h(‖ · ‖))∗(x) = (v0 + h(‖ · ‖))∗(x)then (v0 +h(‖ · ‖))∗−ϕ has a global minimum at x and so we are done sin
e
v0 is a vis
osity supersolution. Therefore we only need to 
onsider the 
ase

(u+ h(‖ · ‖))∗(x) < (v0 + h(‖ · ‖))∗(x).It then follows from the B-
ontinuity of ϕ and the weak lower semi
ontinuityof ‖ · ‖ that for every R > 0,
(5.6) ε+ (u+ h(‖ · ‖))∗(x) − ϕ(x) + ϕ(y) − h(‖y‖)

< (v0 + h(‖ · ‖))∗(y) − h(‖y‖) ≤ v0(y)for y ∈ B−1(x, r) ∩B(x,R) for some small r, ε > 0. Set
w(y) = ε+ (u+ h(‖ · ‖))∗(x) − ϕ(x) + ϕ(y) − h(‖y‖).
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hIf the 
ondition for u being a vis
osity supersolution of (1.1) is violatedat x then either(i) x 6∈ H1, or(ii) x ∈ H1 but
(5.7) (u+ h(‖ · ‖))∗(x) − h(‖x‖) − λ‖x‖2

1

h′(‖x‖)

‖x‖
+ 〈x,A∗Dϕ(x)〉

+ F (x,Dψ(x), D2ψ(x)) < −ν < 0,where ψ(y) = ϕ(y) − h(‖y‖), ν > 0.If (i) happens, i.e. if x 6∈ H1 then(5.8) lim inf
y→x in H−1, y∈H1

‖y‖1 = ∞.Otherwise we would have a sequen
e yn su
h that B1/2yn → B1/2x and
‖B−1/2yn‖ ≤ C. Then for some subsequen
e (still denoted by yn) B−1/2yn

⇀ z for some z ∈ H. But this implies that x ∈ H1 and z = B−1/2x. By thelo
al boundedness of F , 
ondition (5.8) now implies that for every R > 0,
(5.9) w(y)−λ‖y‖2

1

h′(‖y‖)

‖y‖
+〈y,A∗Dϕ(y)〉+F (y,Dw(y), D2w(y)) < −ν/2for y ∈ B−1(x, r) ∩B(x,R) ∩H1 for some small r > 0.Suppose that (ii) is true. We will show that for every R > 0, (5.9) holdsfor y ∈ B−1(x, r) ∩ B(x,R) ∩H1 for ε = µ/4 and some small r > 0. If notthere exists a sequen
e xn → x in H−1 with ‖xn‖ ≤ R su
h that

(5.10) w(xn) − λ‖xn‖
2
1

h′(‖xn‖)

‖xn‖
+ 〈xn, A

∗Dϕ(xn)〉

+ F (xn, Dw(xn), D2w(xn)) ≥ −ν/2.Then of 
ourse ‖xn‖1 ≤ C for some 
onstant C as otherwise (5.10) would beviolated. But then we must have B−1/2xn ⇀ B−1/2x in H and so arguing asin the proof of Proposition 5.2 we obtain xn → x. However, then (5.7) andthe lower semi
ontinuity of ‖ · ‖1 imply
lim sup

n→∞

(
w(xn) − λ‖xn‖

2
1

h′(‖xn‖)

‖xn‖
+ 〈xn, A

∗Dϕ(xn)〉

+ F (xn, Dw(xn), D2w(xn))

)
< −

ν

2
,whi
h gives a 
ontradi
tion.So we have shown that in either 
ase, for every R > 0, (5.9) is satis�edfor y ∈ B−1(x, r) ∩B(x,R) ∩H1 for some small r, ε > 0.It follows from the fa
t that (u + h(‖ · ‖))∗ − ϕ has a (stri
t in the

‖ · ‖−1 norm) global minimum at x that for every r > 0 if ε is small enough
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onstant µr > 0 su
h that
w(y) < (u+ h(‖ · ‖))∗(y) − h(‖y‖) − µr ≤ u(y) − µr for y 6∈ B−1(x, r).Moreover it is 
lear by the growth 
ondition on the test fun
tion in De�nition3.4 that if R is large enough then

w(y) ≤ u(y) − 1 for y 6∈ B(x,R).Using the last two inequalities and (5.6) we 
on
lude that there exist R, r, ε, µ
> 0 su
h that(5.11) w ≤ v0 in H, w(y) < u(y) − µ for y 6∈ B−1(x, r) ∩B(x,R),and (5.9) is satis�ed for y ∈ B−1(x, r) ∩B(x,R) ∩H1.Finally, if R is large enough there exist yn ∈ B(x,R) su
h that yn → xin H−1 su
h that

u(yn) + h(‖yn‖) − ϕ(yn) → (u+ h(‖ · ‖))∗(x) − ϕ(x),whi
h means that there exist points y ∈ B−1(x, r) ∩B(x,R) for whi
h(5.12) u(y) < w(y).We now 
laim that the fun
tion w is a vis
osity subsolution of (1.1) in
B−1(x, r)∩B(x,R). (Sin
e w is B-upper semi
ontinuous De�nitions 3.2 and3.4 are equivalent, but we point out that being a vis
osity subsolution of(1.1) in B−1(x, r) ∩B(x,R) still requires that the maxima in De�nition 3.4be lo
al in the ‖ · ‖−1 norm in the whole spa
e.) The 
laim follows fromLemma 5.1 upon noti
ing that by (5.9) and (2.2) we have

w(y) + 〈y,A∗Dw(y)〉 + F (y,Dw(y), D2w(y))

≤ w(y) − λ‖y‖2
1

h′(‖y‖)

‖y‖
+ 〈y,A∗Dϕ(y)〉 + F (y,Dw(y), D2w(y)) < 0for y ∈ B−1(x, r) ∩B(x,R) ∩D(A∗).It now remains to show that the fun
tion u1 = max(w, u) is a vis
ositysubsolution in the sense of De�nition 3.4 and u0 ≤ u1 ≤ v0. But this is 
learfrom Proposition 5.2 (more pre
isely from its proof) and the fa
t that wis a vis
osity subsolution of (1.1) in B−1(x, r) ∩ B(x,R), and (5.11). This,together with (5.12), gives us a 
ontradi
tion, and the proof is 
omplete.Combining the above proposition with Theorem 4.1 we obtain the fol-lowing result.Theorem 5.4. Let (2.1) and (2.2) hold and let F satisfy (1)0, (2), (3).Let u0, v0 be respe
tively a bounded vis
osity subsolution and a bounded vis-
osity supersolution of (1.1) in the sense of De�nition 3.4. Then the fun
tion

u(x) = sup{w(x) : u0 ≤ w ≤ v0, w is a vis
osity subsolutionof (1.1) the sense of De�nition 3.4}



270 D. Kelome and A. �wi�
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osity solution of (1.1) in the sense of De�nition 3.2.Moreover u is lo
ally uniformly B-
ontinuous.The same te
hnique applies to the time dependent problems (1.2). Wejust state here the �nal existen
e result that 
an be proved in the same wayas Theorem 5.4.Theorem 5.5. Let (2.1) and (2.2) hold and let F satisfy (1)k, (2), (3)for some k ≥ 0. Let g be lo
ally uniformly B-
ontinuous and su
h that(5.13) |g(x)| ≤ C(1 + ‖x‖k) for some C > 0.Let u0 be a vis
osity subsolution of (1.2), and v0 be a vis
osity supersolutionof (1.2) in the sense of De�nition 3.5 su
h that
u0,−v0 ≤ C(1 + ‖x‖k) for some C > 0,(5.14)
lim
t→0

{|u0(t, x) − g(x)| + |v0(t, x) − g(x)|} = 0(5.15)uniformly on bounded sets. Then the fun
tion
u(t, x) = sup{w(t, x) : u0 ≤ w ≤ v0, w is a vis
osity subsolutionof (1.2) the sense of De�nition 3.5}is the unique vis
osity solution of (1.2) in the sense of De�nition 3.3 sat-isfying (5.14) and (5.15). Moreover u is lo
ally uniformly B-
ontinuous on

[0, T1] ×H for every 0 < T1 < T .We will 
onstru
t a subsolution and a supersolution so that we 
an applyPerron's method. We remark that if supx∈H |F (x, 0, 0)| = M <∞, then thefun
tions u(x) = −M and v(x) = M are respe
tively a vis
osity subsolutionand a vis
osity supersolution of (1.1) in the sense of De�nition 3.2. In theproposition below, we will show how the 
onstru
tion of the supersolution
an be done in the time dependent 
ase. The 
onstru
tion of a subsolutionis very similar.Proposition 5.6. Let (2.2) hold and let g be lo
ally uniformly B-
onti-nuous with |g(x)| ≤ µ(1+‖x‖) for x ∈ H for some positive 
onstant µ. Thenthere is a vis
osity supersolution V of equation (1.2) su
h that limt↓0 V (t, x)
= g(x) uniformly on bounded sets of H.Proof. De�ne C(r) = sup{|F (t, x, p,X)| : x ∈ H, t ∈ [0, T ], ‖p‖, ‖X‖
≤ r}. Let v(t, x) = αt + 2µ

√
1 + ‖x‖2. By a time dependent version ofLemma 5.1 a 
ondition for v to be a vis
osity supersolution of (1.2) is

α+ F (t, x,Dv(t, x), D2v(t, x)) ≥ 0for all (t, x) ∈ (0, T ) × H. Sin
e Dv(t, x) and D2v(t, x) are bounded we
an therefore sele
t α depending only on µ su
h that the above 
ondition issatis�ed.
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hoose a 
onstant R = R(‖z‖) su
h that
(‖x‖ − ‖z‖)4+ ≥ v(t, x) for ‖x‖ ≥ R. We then �nd M = M(‖z‖, ε) su
h that

wz,ε(x) = g(z) + ε+M‖x− z‖2
−1 + (‖x‖ − ‖z‖)4+ ≥ g(x)for ‖x‖ ≤ R. Let now γ = sup{‖Dwz,ε(x)‖ + ‖D2wz,ε(x)‖ : ‖x‖ ≤ R}. Inorder for wz,ε(t, x) = βt+ wz,ε(x) to be a vis
osity supersolution of (1.2) in

(0, T ) ×B(0, R) we need
β + 〈x,A∗B(x− z)〉 + F (t, x,Dwz,ε(t, x), D

2wz,ε(t, x)) ≥ 0.This 
an be a
hieved by taking β = R(R+ ‖z‖)‖A∗B‖ + C(γ).It now follows that̂
ωz,ε(t, x) = min{wz,ε(t, x), v(t, x)}is a B-lower semi
ontinuous vis
osity supersolution of (1.2) in (0, T )×H. Itis 
lear from the 
onstru
tion of the ω̂z,ε and the time dependent version ofProposition 5.2 for supersolutions that the fun
tion V (t, x) = infz,ε ω̂z,ε(t, x)is a vis
osity supersolution of (1.2) in the sense of De�nition 3.5 su
h that

limt↓0 V (t, x) = g(x) uniformly on bounded subsets of H.6. Relaxed limits. In this se
tion we show how the method of half-relaxed limits of Barles�Perthame 
an be generalized to in�nite-dimensionalspa
es. We 
onsider two separate 
ases. The �rst deals with limits of sub-and supersolutions of equations on the whole spa
e with operators A sat-isfying similar stru
ture 
onditions. The se
ond deals with limits of �nite-dimensional approximations.Let Fn : [0, T ] × H × H × S(H) → R be 
ontinuous, lo
ally boundeduniformly in n, and degenerate ellipti
. De�ne
F+(t, x, p,X) = lim

m→∞
sup{Fn(s, y, q, Y ) : n ≥ m,

|t− s| + ‖x− y‖ + ‖p− q‖ + ‖X − Y ‖ ≤ 1/m}and
F−(t, x, p,X) = lim

m→∞
inf{Fn(s, y, q, Y ) : n ≥ m,

|t− s| + ‖x− y‖ + ‖p− q‖ + ‖X − Y ‖ ≤ 1/m}.Let An be linear, maximal monotone operators in H su
h that D(A∗) ⊂
D(A∗

n) and(6.1) 〈A∗
nx, x〉 ≥ λn‖x‖

2
1 for x ∈ D(A∗

n),where lim infn→∞ λn ≥ λ. Assume moreover that(6.2) if xn → x, A∗xn → A∗x then A∗
nxn ⇀ A∗x,and that for every test fun
tion ϕ, the family A∗
nDϕ is lo
ally uniformlybounded. We then have the following theorem.
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hTheorem 6.1. Let the assumptions of this se
tion be satis�ed and let
B be 
ompa
t. Let un be lo
ally uniformly bounded vis
osity subsolutions(respe
tively , supersolutions) of(6.3) un + 〈Anx,Dun〉 + Fn(x,Dun, D

2un) = 0 in Hin the sense of De�nition 3.2. Then the fun
tion
u+(x) = lim

m→∞
sup{un(y) : n ≥ m, ‖x− y‖ ≤ 1/m}(respe
tively ,

u−(x) = lim
m→∞

inf{un(y) : n ≥ m, ‖x− y‖ ≤ 1/m})is a vis
osity subsolution (respe
tively , supersolution) of
u+ + 〈Ax,Du+〉 + F−(x,Du+, D2u+) = 0 in H(respe
tively ,
u− + 〈Ax,Du−〉 + F+(x,Du−, D

2u−) = 0 in H)in the sense of De�nition 3.4.Noti
e that u+ does not have to be B-upper semi
ontinuous.Proof. Let (u+ −h(‖ · ‖))∗−ϕ have a lo
al maximum equal to 0 at x. Inlight of Lemma 3.6 and lo
al uniform boundedness of the un we 
an assumethat the maximum is global, stri
t in the ‖ · ‖−1 norm, and su
h that
u+(y) − h(‖y‖), (u+ − h(‖ · ‖))∗(y) − ϕ(y) → −∞,and

un(y) − h(‖y‖) − ϕ(y) → −∞as ‖y‖ → ∞, uniformly in n. Then there must exist a sequen
e xn su
h that
‖xn − x‖−1 → 0, ‖xn‖ ≤ C, and

u+(xn) − h(‖xn‖) − ϕ(xn) ≥ −1/n.Therefore there exist yn and mn su
h that(6.4) umn
(yn) − h(‖yn‖) − ϕ(yn) ≥ −2/n.Let zn be a global maximum of umn

(y)−h(‖y‖)−ϕ(y). It exists be
ause of thede
ay of this fun
tion at in�nity and the fa
t that, be
ause B is 
ompa
t, B-upper semi
ontinuity is equivalent to weak sequential upper semi
ontinuity.Obviously ‖zn‖ ≤ C1 and we also have
(6.5) umn

(zn) + λmn
‖zn‖

2
1

h′(‖zn‖)

‖zn‖
+ 〈zn, A

∗
mn
Dϕ(zn)〉

+ Fmn
(zn, Dψ(zn), D2ψ(zn)) ≤ 0,where ψ(y) = h(‖y‖) − ϕ(y). Using the boundedness of zn, the fa
t that

h′(‖y‖)/‖y‖ > c > 0 for ‖y‖ ≤ C1, and the lo
al uniform boundedness of the
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Fn and A∗

mn
Dϕ, we hen
e obtain ‖zn‖1 ≤ C2, whi
h implies that zn ⇀ z in

H1 and zn → z in H for some z ∈ H1.Therefore u+(z) ≥ lim supn→∞ umn
(zn), whi
h yields u+(z) − h(‖z‖) −

ϕ(z) ≥ 0, i.e. z = x. Moreover it also follows that
lim

n→∞
umn

(zn) = (u+ − h(‖ · ‖))∗(x) + h(‖x‖).We 
an now pass to lim inf in (6.5) to 
on
lude the proof.The following theorem is an immediate 
orollary of Theorems 6.1 and 4.1.Theorem 6.2. Let A satisfy (2.1) and (2.2). Let the assumptions of thisse
tion on An and Fn be satis�ed , and let B be 
ompa
t. Let F− = F+ =: Fsatisfy the assumptions of Theorem 4.1. Let un be lo
ally bounded (uniformlyin n) vis
osity solutions of (6.3) in the sense of De�nition 3.2. Let u+ and
−u− be bounded from above. Then u+ = u− =: u, u is lo
ally uniformly
B-
ontinuous (i.e. u is weakly sequentially 
ontinuous), and u is the uniquebounded vis
osity solution of (1.1) in the sense of De�nition 3.2. Moreoverthe fun
tions un 
onverge to u pointwise as n → ∞ and the 
onvergen
e isuniform on bounded subsets of Hα for every α > 0.We point out that the limiting Hamiltonians F+ and F− may be of�rst order so the above theorems 
an be applied to singular perturbationproblems and small noise limits.The time dependent version of Theorem 6.2 is the following. The fun
-tions u+ and u− below are now de�ned by taking lim sup and lim inf in bothvariables s and y.Theorem 6.3. Let A satisfy (2.1) and (2.2). Let the assumptions of thisse
tion on An and Fn be satis�ed , and let B be 
ompa
t. Let F− = F+ =: Fand let F and g satisfy the assumptions of Theorem 4.4. Let un be vis
ositysolutions of

(un)t + 〈Anx,Dun〉 + Fn(t, x,Dun, D
2un) = 0 in (0, T ) ×Hin the sense of De�nition 3.3 and suppose that

|un(x)| ≤ C(1 + ‖x‖k) for some C > 0,(6.6)
lim
t→0

|un(t, x) − g(x)| = 0 uniformly on bounded sets,(6.7)uniformly in n. Then u+ = u− =: u, u is weakly sequentially 
ontinuous,and u is the unique vis
osity solution of (1.2) in the sense of De�nition 3.3satisfying (6.6) and (6.7). Moreover the fun
tions un 
onverge to u pointwiseas n→ ∞ and the 
onvergen
e is uniform on bounded subsets of [0, T1]×Hαfor every α > 0 and 0 < T1 < T .We 
lose this se
tion by showing how half-relaxed limits 
an be appliedto proving 
onvergen
e of �nite-dimensional approximations.
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hDenote by VN the spa
e spanned by the eigenve
tors of B 
orrespondingto the eigenvalues that are greater than or equal to 1/N . Let PN be theorthogonal proje
tion in H onto VN . De�ne
AN = (PNA

∗PN )∗, BN = BPN .Then AN is bounded and monotone in H, AN and BN satisfy (2.1), and(6.8) 〈A∗
Nx, x〉 ≥ λ‖PNx‖

2
1 for x ∈ H.In what follows we denote QN = I − PN . We now have the following result.Theorem 6.4. Let A satisfy (2.1), (2.2), and let D(A∗) = R(B). Let Fsatisfy (1)0, (2) with λBQN repla
ed by λQN , (3), let supx∈H |F (x, 0, 0)| =

M <∞, and let B be 
ompa
t. Let u be the unique bounded vis
osity solutionof (1.1), and let uN (x) = vN (PNx), where the vN are the vis
osity solutionsof(6.9) vN + 〈ANx,DvN 〉 + F (x,DvN , D
2vN ) = 0 in HN .Then uN → u pointwise in H as N → ∞ and the 
onvergen
e is uniform onbounded subsets of Hα for every α > 0.Proof. Under our assumptions equation (6.9) has a unique vis
osity so-lution vN su
h that |vN | ≤M for every N ≥ 1. Also (see [25℄) the fun
tions

uN are vis
osity solutions of
uN + 〈ANx,DuN 〉 + F (PNx, PNDuN , PND

2uNPN ) = 0 in H.Sin
e the above equations have only bounded terms the solutions 
an beinterpreted in the usual sense of [20℄, whi
h in parti
ular implies that the
uN are solutions in the sense of De�nition 3.2.We �rst observe that the AN satisfy (6.2) with strong 
onvergen
e. Thisfollows from the proof of Lemma 2.3 of [5℄ upon noti
ing that D(A∗) = R(B)guarantees that the operator Q = A∗B + cB has bounded inverse Q−1 =
B−1(A∗ + cI)−1 for every c > 0. This last statement is a trivial 
onsequen
eof the 
losed graph theorem.We next 
laim that for every test fun
tion ϕ, the family A∗

NDϕ is lo
allyuniformly bounded. Indeed,
‖A∗

NDϕ(x)‖ ≤ ‖A∗BPNB
−1(A∗ + I)−1(A∗ + I)Dϕ(x)‖

≤ ‖A∗B‖ ‖B−1(A∗ + I)−1‖ ‖(A∗ + I)Dϕ(x)‖ ≤ C‖(A∗ + I)Dϕ(x)‖.However, we 
annot invoke Theorem 6.1 dire
tly as the AN only satisfy(6.8). Instead, we follow its proof pointing out the main di�eren
es. Repeat-ing the previous arguments we now dedu
e, instead of (6.4), that there exist
yN and mN su
h that

umN
(PmN

yN ) − h(‖PmN
yN‖) − ϕ(PmN

yn) ≥ −2/N.



Perron's method and method of relaxed limits 275We then take zN to be a global maximum of vmN
(y) − h(‖y‖) − ϕ(y)over HmN

. As before obviously ‖zN‖ ≤ C1 and (6.5) be
omes
(6.10) vmN

(zN ) + λ‖zN‖2
1

h′(‖zN‖)

‖zN‖
+ 〈zN , A

∗
mN

Dϕ(zN)〉

+ Fmn
(zN , PmN

Dψ(zN), PmN
D2ψ(zN )PmN

) ≤ 0,where ψ(y) = h(‖y‖) − ϕ(y). This implies that (noti
e that zN = PmN
zN )

‖zN‖1 ≤ C2, whi
h gives zN ⇀ z in H1 and zN → z in H for some z ∈ H1.Therefore u+(z) ≥ lim supN→∞ umN
(zN ) = lim supN→∞ vmN

(zN ) and thisgives u+(z) − h(‖z‖) − ϕ(z) ≥ 0, i.e. z = x. We also obtain
lim

N→∞
umN

(zN ) = (u+ − h(‖ · ‖))∗(x) + h(‖x‖).We 
an now pass to lim inf in (6.10) using Lemma 2.8 of [25℄.In spite of the novelty of the method of half-relaxed limits in in�nite di-mensions, Theorem 6.4 is not really new under our assumptions. Convergen
eof �nite-dimensional approximations was proved in [25℄ (following a similarmethod for �rst order equations of [5℄) by �rst proving uniform 
ontinuityestimates for the uN and then showing their lo
al uniform 
onvergen
e. In[25℄ assumption (2.2) was not needed but here 
ondition (2) is a little moregeneral. However, our new method may su

eed in situations where we maynot be able to obtain uniform a priori estimates for the 
ontinuity of uN .Similar results 
an also be obtained for time dependent problems and forproblems where we do not assume that D(A∗) = R(B). We do not work outthe details here as they are te
hni
al and lengthy, and the �nal statementsare similar to the results of [25℄. However, there is a signi�
ant di�eren
ebetween the approximations used in [25℄ (and in [5℄ before) and the oneswe would need here for the half-relaxed limits. In [25℄ the operator A was�rst approximated by its Yosida approximation Aλ and then by Aλ,N =
PNAλPN . We do not know if this pro
ess would su

eed here. It seems thatwe need �rst to take Aλ = A + λB−1 and then use Aλ,N = PNAλPN forthe above Aλ. This kind of approximation pro
edure was used in [6℄ and werefer the readers to this paper for some ideas and hints on how the proofshould pro
eed in our 
ase.
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