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Ascent and descent for sets of operators

by

Derek Kitson (Dublin)

Abstract. We extend the notion of ascent and descent for an operator acting on a
vector space to sets of operators. If the ascent and descent of a set are both finite then
they must be equal and give rise to a canonical decomposition of the space. Algebras of
operators, unions of sets and closures of sets are treated. As an application we construct
a Browder joint spectrum for commuting tuples of bounded operators which is compact-
valued and has the projection property.

Introduction. In this paper we formulate the definitions and basic
properties of ascent and descent for an arbitrary (non-empty) set A of oper-
ators acting on a vector space X over any field K. This notion of ascent and
descent extends the classical theory for single operators (see for example
[3, 6, 8, 9]) and the work of Grunenfelder and Omladič ([2]) which deals
with commuting tuples. Much of the initial theory is purely algebraic but
Sections 2, 3 and 4 are also concerned with bounded operators acting on
a real or complex Banach space. By operator we will always mean a linear
map and denote by L(X) the set of all operators acting on X. The set of
bounded operators acting on a Banach space X is denoted B(X).

In Section 1, we begin by introducing ascending and descending chain
lengths for a set of operators. Unlike the case of a single operator, it is pos-
sible for a set to have finite ascending and descending chain lengths which
are not equal. We then define the stronger notions of ascent and descent for
a set of operators. If the ascent and descent of a set are both finite then they
must be equal and in this case must also equal the ascending and descending
chain lengths. We show that having finite ascent and descent is equivalent
to the existence of a decomposition X = X1 ⊕ X2 where X1 and X2 are
invariant under each operator in the set and such that the restriction of the
set to X1 is nilpotent while the restriction to X2 is bijective (in an appro-
priate sense). The spaces X1, X2 are uniquely determined by the ascent and
descent of A.
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In Section 2, we consider the behaviour of ascent and descent under the
operations of taking unions, generating algebras and (in the case of bounded
operators on a Banach space) forming closures of sets. Section 3 deals with
tuples of operators. In this case, ascent and descent may be expressed in
terms of associated row and column operators. We show that complete dual-
ity holds for tuples of bounded operators which satisfy a Fredholm condition.
Finally, in Section 4, we construct a joint spectrum for commuting tuples of
bounded operators which extends the Browder essential spectrum. We show
that this is a compact-valued joint spectrum which has the projection prop-
erty and we provide a characterisation analogous to that of D. C. Lay ([5]).
This Browder joint spectrum is smaller than the Taylor–Browder spectrum
considered by Curto and Dash ([1]) but contains the upper and lower semi-
Browder spectra of Kordula, Müller and Rakočević ([4]).

A subspace Y of X which is invariant under each a ∈ A will be called
A-invariant . Given an A-invariant subspace Y , we denote by A|Y the set
{a|Y : a ∈ A} of operators on Y . We denote by Ker a and Ran a the kernel
and range respectively of an operator a.

1. Ascent and descent. Let A ⊆ L(X) be a non-empty set of operators
acting on a vector space X. We define the null space and range space of A
respectively as

N(A) =
⋂
a∈A

Ker a, R(A) = span
( ⋃
a∈A

Ran a
)
.

For each k ∈ N we define Ak = {a1 . . . ak : a1, . . . , ak ∈ A} and A0 = {I}
where I denotes the identity operator on X.

Lemma 1.1. N(Ak) and R(Ak) are A-invariant subspaces of X for each
k ∈ N.

Proof. This is straightforward forN(Ak). Now,
⋃
a1,...,ak∈A(Ran a1 . . . ak)

is clearly invariant under each a ∈ A. By definition R(Ak) is the linear span
of this set and so R(Ak) is an A-invariant subspace of X.

It is not too difficult to see that we have an increasing chain of null
spaces,

{0} = N(A0) ⊆ N(A) ⊆ N(A2) ⊆ · · · ,
and a decreasing chain of range spaces,

X = R(A0) ⊇ R(A) ⊇ R(A2) ⊇ · · · .

Definition 1.2. The ascending chain length of A, denoted acl(A), is the
smallest non-negative integer r such that N(Ar) = N(Ar+1). The descending
chain length of A, denoted dcl(A), is the smallest non-negative integer r
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such that R(Ar) = R(Ar+1). In the case where no such r exists we say the
ascending or descending chain length of A is infinite.

Proposition 1.3.

(i) If N(Ar) = N(Ar+1) for some r ≥ 0 then N(Ar) = N(As) for all
s ≥ r.

(ii) If R(Ar) = R(Ar+1) for some r ≥ 0 then R(Ar) = R(As) for all
s ≥ r.

Proof. Apply a straightforward induction argument.

Remark 1.4. In the case of a single operator, if the ascending and
descending chain lengths are both finite then they are equal ([9, The-
orem V.6.2]). The following multishift example from [4] shows that this
is not true in general for sets containing two or more operators, even when
the operators commute.

Example 1.5. Let H be the complex Hilbert space with orthonormal
basis {ei,j : (i, j) ∈ S} where S = {(i, j) ∈ Z × Z : i ≥ 0 or j ≥ 0} ∪
{(−1,−1)}. Let A = {a1, a2} where a1 and a2 are commuting operators
on H given by a1(ei,j) = ei+1,j and a2(ei,j) = ei,j+1. Both a1 and a2 are
injective and so the ascending chain length of A is 0. However, the descending
chain length of A is 1. To see this, note that for k ≥ 1, R(Ak) is the closed
subspace of H spanned by {ei,j : i ≥ 0 or j ≥ 0}.

Definition 1.6. Let A be a non-empty set of operators on X. The
ascent of A, denoted α(A), is the smallest non-negative integer r such that
N(A) ∩R(Ar) = {0}. The descent of A, denoted δ(A), is the smallest non-
negative integer r such that N(Ar) +R(A) = X. In the case that no such r
exists we say that A has infinite ascent or infinite descent.

Proposition 1.7. If a ∈ L(X) then α(a) = acl(a) and δ(a) = dcl(a).

Proof. Apply [9, Theorems V.6.3 and V.6.4].

Proposition 1.8. Let r be a non-negative integer.

(i) If N(A) ∩R(Ar) = {0} then N(Ak) ∩R(Ar) = {0} for all k ≥ 1.
(ii) If N(Ar) +R(A) = X then N(Ar) +R(Ak) = X for all k ≥ 1.

Proof. The results follow by an induction argument.

Proposition 1.9.

(i) acl(A) ≤ α(A) and dcl(A) ≤ δ(A).
(ii) If α(A) <∞ then α(A) ≤ dcl(A).

(iii) If δ(A) <∞ then δ(A) ≤ acl(A).
(iv) If α(A), δ(A) <∞ then α(A) = acl(A) = dcl(A) = δ(A).
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Proof. (i) Suppose A has finite ascent r and let x ∈ N(Ar+1). Then for
all a ∈ A we have a(a1 . . . arx) = 0 and so a1 . . . arx ∈ N(A)∩R(Ar) for all
a1, . . . , ar ∈ A. Now N(A) ∩ R(Ar) = {0} and so x ∈ N(Ar). Since N(Ar)
is contained in N(Ar+1) we have shown that N(Ar) = N(Ar+1). Thus the
ascending chain length of A is at most r. The second inequality holds by a
similar argument.

(ii) Suppose α(A) <∞. If A has descending chain length s < α(A) then
by Proposition 1.3, R(As) = R(Aα(A)) and so N(A)∩R(As) = {0}. But this
contradicts the minimality of the ascent and so the result follows. A similar
argument holds for (iii).

(iv) follows immediately on combining (i)–(iii).

Remark 1.10. Note that by Proposition 1.9, finite ascent and descent
implies finite chain lengths. The converse is not true in general. In Ex-
ample 1.5, A has finite chain lengths but the descent of A is infinite.

Definition 1.11. We will say a set A ⊆ L(X) is nilpotent if there exists
k ∈ N with Ak = {0}. We will call A injective if N(A) = {0}, surjective if
R(A) = X and bijective if it is both injective and surjective.

Theorem 1.12. A has finite ascent and finite descent if and only if there
exist A-invariant subspaces X1, X2 of X such that X = X1 ⊕ X2, A|X1 is
nilpotent and A|X2 is bijective. Moreover , the spaces X1 and X2 are given
uniquely by X1 = N(Ar) and X2 = R(Ar), where r is the common value of
the ascent and descent of A.

Proof. Suppose A has finite ascent and finite descent. By Proposition 1.9,
the ascent and descent of A are equal. If r is their common value then
let X1 = N(Ar) and X2 = R(Ar). Note that X1 and X2 are A-invariant
subspaces of X and by Proposition 1.8, X = X1⊕X2. Now, A|X1 is nilpotent
since Ar|X1 = {0}. Also, N(A)∩R(Ar) = {0} and so A|X2 is injective. That
A|X2 is surjective follows since N(Ar) +R(A) = X.

For the converse, suppose there exist A-invariant subspaces X1, X2 of X
as in the statement of the theorem. Since A|X1 is nilpotent there exists
k ∈ N such that X1 ⊆ N(Ak) and R(Ak) ⊆ X2. Now A|X2 is injective and
so N(A)∩R(Ak) = {0}. Also, A|X2 is surjective and so N(Ak) +R(A) = X.
Hence A has ascent and descent at most k. By the above argument, X =
N(Ar)⊕R(Ar) where r = α(A) = δ(A). Now, A has ascending chain length
r and so X1 ⊆ N(Ar). Since A|X2 is surjective we have (by Proposition 1.3),
X2 = R(Ar|X2) = R(Ar). We conclude thatX1 = N(Ar) andX2 = R(Ar).

2. Operations on sets of operators. Let X be a vector space and
L(X) the set of operators on X. In the following proposition comm(A)
denotes the commutant of a set A in L(X).
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Proposition 2.1. Let A ⊆ L(X) and B ⊆ comm(A). If A and B
both have finite ascent and finite descent then A ∪ B has finite ascent and
finite descent. Moreover , if r = α(A) = δ(A), s = α(B) = δ(B) and
k = α(A ∪B) = δ(A ∪B) then k ≤ r + s.

Proof. By Theorem 1.12, X = X1⊕X2 where X1 = N(Ar), X2 = R(Ar)
and r = α(A) = δ(A). Similarly, X = Y1 ⊕ Y2 where Y1 = N(Bs), Y2 =
R(Bs) and s = α(B) = δ(B). Let Z1 = X1 ∩ Y1 and Z2 = (X1 ∩ Y2) ⊕X2.
Since B ⊆ comm(A), both Z1 and Z2 are A∪B-invariant. Now, X = Z1⊕Z2

where A∪B|Z1 is nilpotent and A∪B|Z2 is bijective. Hence by Theorem 1.12,
A ∪ B has finite ascent and finite descent. Also, by Theorem 1.12, Z1 =
N((A∪B)k) and Z2 = R((A∪B)k) where k = α(A∪B) = δ(A∪B). Thus
N((A ∪ B)k) = N(Ar) ∩N(Bs) ⊆ N((A ∪ B)r+s). By Proposition 1.9, the
ascending chain length of A ∪B is k and so k ≤ r + s.

Note that if we remove the condition B ⊆ comm(A) then the conclusion
to Proposition 2.1 will not hold in general. Also, the converse to Proposi-
tion 2.1 does not hold.

Example 2.2.

(i) Consider the 2 × 2 matrices a =
(

0 1
0 0

)
and b =

(
0 0
0 1

)
. We have

α(a) = δ(a) = 2 and α(b) = δ(b) = 1. However, acl({a, b}) = 1,
dcl({a, b}) = δ({a, b}) = 0 and α({a, b}) =∞.

(ii) Let X = span{ei,j : i, j ∈ N0} and A = {a1, a2} where

a1(ei,j) =
{
ei−1,j if i > 0,
0 if i = 0,

and a2(ei,j) = ei,j+1.

Since a1 is surjective and a2 is injective we have α(A) = δ(A) = 0.
However, the ascent of a1 is infinite and the descent of a2 is infinite.

Denote by 〈A〉 the algebra generated by a subset A in L(X).

Proposition 2.3. Let A ⊆ L(X) be a non-empty set. Then

(i) acl(A) = acl(〈A〉) and dcl(A) = dcl(〈A〉),
(ii) α(A) = α(〈A〉) and δ(A) = δ(〈A〉).

Proof. Note that N(Ak) = N(〈A〉k) and R(Ak) = R(〈A〉k) for each k.

Let X be a Banach space (real or complex). If A ⊆ B(X) then A denotes
the closure of A in the norm topology of B(X).

Proposition 2.4. Let A be a non-empty subset of B(X). If R(Ak) is
closed for all k ∈ N then

(i) acl(A) = acl(A) and dcl(A) = dcl(A),
(ii) α(A) = α(A) and δ(A) = δ(A).
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Proof. Note that N(Ak) = N((A)k) and R(Ak) = R((A)k) for all k ∈ N.
If R(Ak) is closed then R(Ak) = R((A)k).

3. Tuples of operators. Let a = (a1, . . . , an) be an n-tuple of operators
on a vector space X. For our purposes the ordering on a = (a1, . . . , an) is
not important but for clarity we adopt the following convention: for each
tuple a = (a1, . . . , an) and each k ∈ N, ak denotes the lexicographically
ordered tuple (ai1 . . . aik)ni1,...,ik=1 consisting of nk operators and a0 denotes
the identity operator on X. Our main interest is in the kernel and range
spaces of the following row and column operators:

row(a) : Xn → X, (x1, . . . , xn) 7→ a1x1 + · · ·+ anxn,

col(a) : X → Xn, x 7→ (a1x, . . . , anx).

The terminology and notation for sets of operators introduced thus far will
also be used for tuples a = (a1, . . . , an). In this case a = (a1, . . . , an)
may be substituted by the underlying subset A =

⋃n
j=1{aj} in L(X).

For example, α(a) = α(A) and δ(a) = δ(A). For each k ∈ N we write
N(ak) := Ker col(ak) = N(Ak) and R(ak) := Ran row(ak) = R(Ak).

Proposition 3.1. Let a = (a1, . . . , an) be an n-tuple of operators on X.
Then

(i) α(a) = min({r ∈ N0 : Ker row(ar) = Ker col(a) ◦ row(ar)} ∪ {∞}),
(ii) δ(a) = min({r ∈ N0 : Ran col(ar) = Ran col(ar) ◦ row(a)} ∪ {∞}).

Proof. For any composition W
s→ X

t→ Y of operators s, t between
vector spaces W , X and Y , we have isomorphisms Ker(t ◦ s)/Ker s ∼=
Ker t ∩ Ran s and Ran t/Ran(t ◦ s) ∼= X/(Ker t+ Ran s). The result follows
on applying this fact to the appropriate row and column operators.

Remark 3.2. The formulae in Proposition 3.1 can be seen to coincide
with the definitions of ascent and descent introduced in [2] for tuples of
commuting module endomorphisms.

Proposition 3.3. Let a = (a1, . . . , an) be a commuting n-tuple of oper-
ators on a finite-dimensional vector space X. Then a has finite ascent and
finite descent.

Proof. Since X is finite-dimensional, each operator aj has finite as-
cent and descent. The result follows by repeated application of Proposi-
tion 2.1.

Given an n-tuple a = (a1, . . . , an) of operators on X we denote by a′ =
(a′1, . . . , a

′
n) the tuple of transpose operators on the algebraic conjugate X ′.
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Proposition 3.4. Let a = (a1, . . . , an) be an n-tuple of operators on X.
Then

(i) acl(a) = dcl(a′) and dcl(a) = acl(a′),
(ii) α(a) = δ(a′) and δ(a) = α(a′).

Proof. Note that col(ak)′ = row((a′)k) and row(ak)′ = col((a′)k) for
each k ∈ N.

Let X be a real or complex Banach space. An n-tuple a = (a1, . . . , an)
of bounded operators on X is called upper Fredholm if col(a) is upper Fred-
holm, lower Fredholm if row(a) is lower Fredholm, and Fredholm if a is both
upper and lower Fredholm. (See [3, 6, 9].) We denote by a∗ = (a∗1, . . . , a

∗
n)

the n-tuple of adjoint operators on the dual space X∗.

Proposition 3.5. Let a = (a1, . . . , an) be an n-tuple of bounded opera-
tors on X. If a = (a1, . . . , an) is Fredholm then

(i) acl(a) = dcl(a∗) and dcl(a) = acl(a∗),
(ii) α(a) = δ(a∗) and δ(a) = α(a∗).

Proof. Note that col(ak)∗ = row((a∗)k) and row(ak)∗ = col((a∗)k) for
each k. Since a is Fredholm, R((a∗)k) is weak∗ closed for each k ∈ N. Also,
R(ak) is closed and N(a) + R(ak) is closed for all k ∈ N. The results now
follow by elementary arguments.

An n-tuple a = (a1, . . . , an) is called bounded below if col(a) is bounded
below, and surjective if row(a) is surjective.

Proposition 3.6. Let a = (a1, . . . , an) be an n-tuple of bounded opera-
tors on X. Then a = (a1, . . . , an) is Fredholm with finite ascent and finite
descent if and only if there exist closed a-invariant subspaces X1, X2 of X
such that X = X1⊕X2, X1 is finite-dimensional , a|X1 is nilpotent and a|X2

is both bounded below and surjective.

Proof. Suppose a is Fredholm with finite ascent and descent. Then there
exist subspacesX1, X2 ofX as in Theorem 1.12 withX1 =N(ar),X2 =R(ar)
and r = α(a) = δ(a). Since a is Fredholm, X1 is finite-dimensional and X2

is closed. Also, col(a|X2) has closed range. Since a|X2 is injective it follows
that a|X2 is bounded below.

Suppose, conversely, that there exist subspaces X1, X2 of X as in the
statement of the proposition. By Theorem 1.12, a has finite ascent and finite
descent. That a is upper Fredholm follows since X1 is finite-dimensional
and a|X2 is bounded below. That a is lower Fredholm follows since X1 is
finite-dimensional and a|X2 is surjective.
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4. A Browder joint spectrum. Throughout this section we consider
commuting tuples a = (a1, . . . , an) of bounded operators on an infinite-
dimensional complex Banach space X. (Note that commutativity was gen-
erally not required in the previous sections.) If λ = (λ1, . . . , λn) ∈ Cn then
a− λ will denote the n-tuple (a1 − λ1, . . . , an − λn). The joint approximate
point spectrum is denoted by σπ and the joint defect spectrum is denoted
by σδ. We refer the reader to [3, 6] for a full treatment of joint spectra.

Definition 4.1. A commuting n-tuple a = (a1, . . . , an) of bounded op-
erators on a complex Banach space X is called a Browder tuple on X if a is
Fredholm with finite ascent and finite descent. The Browder spectrum of a
commuting tuple a = (a1, . . . , an) on X is given by

σb(a) = {λ ∈ Cn : a− λ not Browder}.
Remark 4.2. In the case of a single operator the above definitions coin-

cide with that of a Browder (or Riesz–Schauder) operator and the Browder
essential spectrum. (See for example [3, 5, 6].)

Proposition 4.3. Let a = (a1, . . . , an) be a commuting n-tuple of bound-
ed operators on X. Then a = (a1, . . . , an) is a Browder tuple on X if and
only if a∗ = (a∗1, . . . , a

∗
n) is a Browder tuple on X∗.

Proof. A tuple a = (a1, . . . , an) is Fredholm if and only if the adjoint
tuple a∗ = (a∗1, . . . , a

∗
n) is Fredholm ([6, Corollary III.19.12]). Thus the result

follows on applying Proposition 3.5.

Proposition 4.4. σb is compact-valued.

Proof. Let a = (a1, . . . , an) be a commuting tuple of bounded operators
on X. Then σb(a) ⊆ σπ(a) ∪ σδ(a) and so σb(a) is bounded. To show that
σb(a) is closed, suppose λ /∈ σb(a). Then a − λ is Fredholm with finite
ascent and descent and so there exist subspaces X1, X2 as in Proposition
3.6. Since a− λ|X2 is bounded below and surjective, there exists ε > 0 such
that a−µ|X2 is bounded below and surjective for all |λ−µ| < ε. Since X1 is
finite-dimensional and a−λ|X1 is nilpotent, it follows that a−µ is bounded
below and surjective for all 0 < |λ− µ| < ε. Thus a− µ is a Browder tuple
for all |λ− µ| < ε and so σb(a) is closed.

Proposition 4.5. σb has the projection property.

Proof. Let a = (a1, . . . , an) be a commuting tuple of bounded operators
on X. We need to show that p(σb(a)) = σb(p(a)) for all projections p : Cn →
Ck given by p(z1, . . . , zn) = (zi1 , . . . , zik), 1 ≤ i1 < · · · < ik ≤ n. Firstly we
show the inclusion p(σb(a)) ⊆ σb(p(a)).

Let λ ∈ Cn and suppose p(λ) /∈ σb(p(a)). Then p(a)− p(λ) = (ai1 − λi1 ,
. . . , aik − λik) is Fredholm with finite ascent and finite descent. Thus there
exist subspaces X1, X2 as in Proposition 3.6. Moreover, we may take X1 =
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N(Br) and X2 = R(Br) where B =
⋃k
j=1{aij − λij} and r = α(B) = δ(B).

Since a is a commuting tuple, N(Br) and R(Br) are a-invariant. Now, X1

is finite-dimensional and a−λ|X2 is bijective. It follows that a−λ has finite
ascent and finite descent. That a − λ is Fredholm follows since a − λ|X2 is
bounded below and surjective and X1 is finite-dimensional. Hence a − λ is
a Browder tuple and so λ /∈ σb(a). We conclude that p(σb(a)) ⊆ σb(p(a)).

For the reverse inclusion, suppose µ = (µi1 , . . . , µik) ∈ σb(p(a)). If
p(a)− µ = (ai1 − µi1 , . . . , aik − µik) is not Fredholm then by the projection
property for the Fredholm spectrum (see [6, Theorem III.19.15]) there exists
λ ∈ Cn with p(λ) = µ such that a− λ is not Fredholm. Thus µ ∈ p(σb(a)).

Suppose that p(a) − µ is Fredholm with infinite ascent. Let B =⋃k
j=1{aij −µij}. Then the spaces N(B)∩R(Bj) are non-zero and form a de-

creasing chain. Since p(a)−µ is upper Fredholm, N(B) is finite-dimensional.
Hence there exists r such that N(B)∩R(Br) = N(B)∩R(Bs) for all s ≥ r.
Thus Z = N(B) ∩ R(Br) is a non-zero finite-dimensional space. Let q :
Cn → Cn−k be the complementary projection to p. That is, q(z1, . . . , zn) =
(zik+1

, . . . , zin) where 1 ≤ ik+1 < . . . < in ≤ n and ik+1, . . . , in /∈ {i1, . . . , ik}.
Since a = (a1, . . . , an) is a commuting tuple, Z is invariant for q(a) =
(aik+1

, . . . , ain). Thus there exists a joint eigenvalue ω ∈ Cn−k for q(a)|Z with
a corresponding eigenvector x ∈ Z. Let λ = (λ1, . . . , λn) where p(λ) = µ
and q(λ) = ω and let A =

⋃n
j=1{aj − λj}. Then x is a non-zero element

in N(A) ∩ R(Aj) for all j ≥ 0 and so the ascent of a − λ is infinite. Thus
λ ∈ σb(a) and so µ ∈ p(σb(a)).

If p(a) − µ is Fredholm with infinite descent then by Proposition 3.5,
the adjoint tuple (p(a) − µ)∗ = (a∗i1 − µi1 , . . . , a

∗
ik
− µik) is Fredholm with

infinite ascent. Thus by the above argument there exists λ ∈ Cn such that
p(λ) = µ and (a − λ)∗ is not a Browder tuple. By Proposition 4.3, a − λ
is not a Browder tuple and so µ ∈ p(σb(a)). Thus we have shown that
p(σb(a)) ⊇ σb(p(a)).

Remark 4.6. As a consequence of Propositions 4.4 and 4.5, σb is a sub-
spectrum in the sense of W. Żelazko ([10]) and a compact-valued spectral
system in the sense of V. Müller ([6]). By a result of M. Putinar ([7]), σb sat-
isfies a spectral mapping theorem for functions analytic on a neighbourhood
of the Taylor spectrum (see also [6, Corollary IV.30.11]).

The following proposition extends a characterisation of D. C. Lay ([5]).

Proposition 4.7. Let a = (a1, . . . , an) be a commuting n-tuple of bound-
ed operators on a complex Banach space X and denote by R the set of
commuting n-tuples r = (r1, . . . , rn) of Riesz (or compact , or finite rank)
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operators on X such that airj = rjai for all i, j = 1, . . . , n. Then

σb(a) =
⋂
r∈R

σπ(a + r) ∪ σδ(a + r).

Proof. If λ /∈ σb(a) then a−λ is Fredholm with finite ascent and descent.
Thus there exist subspaces X1, X2 as in Proposition 3.6. Let P be the finite
rank projection onto X1 along X2 and let r = (P, . . . , P ). Then r ∈ R and
a+r−λ is both bounded below and surjective. Hence λ /∈ σπ(a+r)∪σδ(a+r).

For the reverse inclusion, suppose λ /∈ σπ(a + r) ∪ σδ(a + r) for some
r ∈ R. Then λ /∈ σb(a + r). Define the polynomial mapping p : C2n → Cn

by p(z1, . . . , zn, w1, . . . , wn) = (z1 +w1, . . . , zn +wn). Applying the spectral
mapping theorem, we have

σb(a + r) = p(σb(a, r)) ⊆ p(σb(a)× σb(r)) = p(σb(a)× {0}) = σb(a).

Thus λ /∈ σb(a).

Remark 4.8. Note that for the Taylor–Browder spectrum σTb = σTe ∪
σ′T of R. E. Curto and A. T. Dash ([1]) and the upper and lower semi-
Browder spectra σB+, σB− of Kordula, Müller and Rakočević ([4]) there are
inclusions, σB+ ∪ σB− ⊆ σb ⊆ σTb. From Example 1.5 the first inclusion
may be strict. The following example shows the second inclusion may also
be strict:

Example 4.9. Let H be the complex Hilbert space with orthonormal
basis {ei,j : i, j ∈ N0}. Let a = (a1, a2) be the pair of commuting bounded
operators on H given by

a1(ei,j) =
{
ei−1,j if i > 0,
0 if i = 0,

a2(ei,j) =
1
2
ei,j+1.

Then a = (a1, a2) is bounded below and surjective. Hence (0, 0) /∈ σb(a).
Let x =

∑∞
i=0 2−iei,i ∈ H. Then a1x = a2x and (x, x) /∈ Ran col(a). Thus

(x, x) ∈ H ⊕ H represents a non-zero element in the cohomology of the
Koszul complex for a. Hence (0, 0) ∈ σT(a). If (0, 0) /∈ σTb(a) then (0, 0) is
an isolated point in σT(a). Constructing the spectral projection E associated
to (0, 0) via the Taylor functional calculus we obtain a decomposition of the
form in Theorem 1.12. Since a has ascent and descent 0, it follows that E
must be the zero operator. But this contradicts the fact that (0, 0) ∈ σT(a).
Hence (0, 0) ∈ σTb(a).
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