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Derivations on noncommutative Banach algebras

by

Tsiu-Kwen Lee (Taiwan)

Abstract. We discuss range inclusion results for derivations on noncommutative Ba-
nach algebras from the point of view of ring theory.

1. Results. Throughout, A always denotes a Banach algebra over the
complex field C. We denote by rad(A) the Jacobson radical of A and by r(x)
the spectral radius of x ∈ A. Also, let Q(A) be the set of all quasinilpotent
elements of A and let q-Inv(A) be the set of all quasi-regular elements in A.
A linear mapping T : A→ A is called spectrally bounded if there existsM ≥ 0
such that r(T (x)) ≤ Mr(x) for all x ∈ A. In addition, if M = 0 (i.e.,
T (A) ⊆ Q(A)), then T is called spectrally infinitesimal. It is clear that
rad(A) ⊆ Q(A) ⊆ q-Inv(A). Therefore, we have the following implications:

T (A) ⊆ rad(A) ⇒ T (A) ⊆ Q(A) ⇒ T (A) ⊆ q-Inv(A).

By a derivation of A we mean a C-linear map d: A→ A such that d(xy) =
d(x)y + xd(y) for all x, y ∈ A. In 1955 Singer and Wermer [13] proved that
d(A) ⊆ rad(A) for every bounded derivation d of a commutative Banach
algebra A. They also conjectured that the boundedness hypothesis is super-
fluous. The conjecture was proved by Thomas [14]. In the last few years,
various generalizations of Thomas’ theorem have been proved. We mention
some related results.

Let d be a derivation of A. Mathieu and Murphy [9] proved that if d
is bounded such that d(A) ⊆ Q(A), then d(A) ⊆ rad(A). A generalization
due to Brešar and Mathieu [4] states that d(A) ⊆ rad(A) for d a spectrally
bounded derivation on A. Brešar and Vukman [5] proved that if d is bounded
and if [d(x), x] ∈ rad(A) for all x ∈ A, then d(A) ⊆ rad(A). In [3] Brešar
proved that if d is bounded and if [d(x), x] ∈ Q(A) for all x ∈ A, then
d(A) ⊆ rad(A). As pointed out by Brešar [3, p. 58], whether the inclusion
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d(A) ⊆ rad(A) holds in general is a very difficult problem. By [12, Theo-
rem 1.8], it is equivalent to the so-called noncommutative Singer–Wermer
conjecture: Every derivation on a Banach algebra leaves each primitive ideal
invariant. The goal of this note is to discuss some related problems about
range inclusions on Banach algebras. Precisely, we will prove the following
theorems:

Theorem 1.1. Let A be a Banach algebra with a derivation d. If d(A) ⊆
q-Inv(A), then d(A) ⊆ rad(A).

Theorem 1.1 also generalizes Mathieu and Murphy’s theorem [9] by
removing the assumption of boundedness of the derivation. On the other
hand, Mathieu and Murphy [9, Theorem 3.1] proved that if d is bounded
and d(x)2 ∈ rad(A) for all x ∈ A, then d(A) ⊆ rad(A). Since every ele-
ment in the Jacobson radical of a Banach algebra is quasinilpotent, The-
orem 1.1 also gives a generalization of Mathieu and Murphy’s theorem:
If d(x)n(x) ∈ rad(A) for all x ∈ A, where n(x) ≥ 1 depends on x, then
d(A) ⊆ rad(A). Indeed, let x ∈ A. Then d(x)n(x) ∈ rad(A) ⊆ Q(A) and so
d(x) ∈ Q(A). By Theorem 1.1, d(A) ⊆ rad(A). Paper [10] contains further
information on derivations mapping into the radical and, in particular, an
argument showing that an arbitrary derivation mapping into the quasinilpo-
tent elements has to map into the radical. We let IA be the ideal of A gen-
erated by [A,A]. Related to the noncommutative Singer–Wermer conjecture
we will show the following:

Theorem 1.2. Let A be a Banach algebra with a derivation d. Suppose
that [d(x), x] ∈ Q(A) for all x ∈ A. Then [d(A), A] ⊆ rad(A) and d(IA) ⊆
rad(A).

See also [2], which contains information on derivations d with spectral
restrictions on the commutators [d(x), x]. Finally, we will prove a closely
related result in general rings:

Theorem 1.3. Let R be a semisimple ring with a derivation d. If
[d(x), x]n(x) = 0 for all x ∈ R, where n(x) ≥ 1 depends on x, then d(R) ⊆
Z(R), where Z(R) is the center of R.

2. Proofs. The key point to our proofs is the simple observation: If
a is a quasinilpotent element in a unital Banach algebra A, then 1 + a is
invertible in A [1, Theorem 9 (p. 12)]. Thus we begin with the following
result in general rings. Although derivations on Banach algebras are always
assumed to be C-linear here, we do not require a derivation on a k-algebra
to be necessarily k-linear.

Proposition 2.1. Let R be an algebra over a field k, |k| > 2, and 1 ∈ R,
and let d be a derivation of R. Suppose that 1 + d(x) is invertible for all
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x ∈ R. Then, for each primitive ideal P of R, d(P ) ⊆ P and either d(R) ⊆ P
or R/P is a division ring.

Proof. Let P be a primitive ideal of R and consider the quotient ring
R/P . Then 1 + v is invertible in R/P for all v ∈ P + d(P )/P . Note that
P + d(P )/P is an ideal of R/P . Thus P + d(P )/P ⊆ rad(R/P ). Since
rad(R/P ) = 0, we have P+d(P )/P = 0 and so d(P ) ⊆ P . Now d canonically
induces a derivation dP on R/P such that 1+dP (x) is invertible in R/P for
all x ∈ R, where x = x+P . Replacing R and d by R/P and dP , respectively,
we may assume that R is a primitive ring. The aim is to prove that either
d = 0 or R is a division ring.

Suppose that R is not a division ring. Let V be a faithful irreducible
left R-module with D = End(RV ). Then dimD V ≥ 2. Let v ∈ V and let
a ∈ R. Suppose that av = 0 but d(a)v 6= 0. Choose an element b ∈ R such
that bd(a)v = v. Then d(ba)v = (bd(a) + d(b)a)v = bd(a)v = v, implying
(1 − d(ba))v = 0. Since 1 − d(ba) is invertible, v = 0 follows. This is a
contradiction. Thus, for a ∈ A and v ∈ V , we have d(a)v = 0 if av = 0.

Let a ∈ R and v ∈ V . We claim that av and d(a)v are linearly dependent
over D. If not, then by the Density Theorem there exists b ∈ R such that
b(av) = 0 and bd(a)v = −av. By the above we see that d(ba)v = 0 = d(b)av.
Thus bd(a)v = 0 and so av = 0, a contradiction.

Let a ∈ R be such that dimD aV ≥ 2. Then there exists β ∈ Z(D),
the center of D, such that d(a) = βa. Indeed, choose v, w ∈ V such that
av and aw are D-independent. Then, by the above, there exist β, µ, ν ∈ D
such that d(a)v = (av)β, d(a)w = (aw)µ and d(a)(v + w) = (a(v + w))ν.
Thus (av)(ν − β) + (aw)(ν − µ) = 0. It follows from the D-independence
of av and aw that ν = µ = β. Let z ∈ V . If az 6= 0, then either av
and az are D-independent or aw and az are D-independent. In either case,
d(a)z = (az)β. This proves that there exists β ∈ D such that d(a)v = (av)β
for all v ∈ V . Let η ∈ D and v ∈ V . Then d(a)(vη) = (a(vη))β = (av)ηβ
and, on the other hand, d(a)(vη) = (d(a)v)η = (av)βη. This amounts to
saying that βη = ηβ for all η ∈ D, that is, β ∈ Z(D). This proves our claim.

Suppose next that a ∈ R \ Z(D) and dimD aV = 1. Then there exist
D-independent v1, v2 ∈ V such that av1 = v2. Write av2 = v2µ, where
µ ∈ D. Since |k| > 2, we choose β ∈ k with β 6= 0,−µ. Then (β + a)v1 =
βv1 + v2 and (β + a)v2 = v2(β + µ) 6= 0. Thus β + a has rank ≥ 2 and so
d(β+a) ∈ Z(D)(β+a) by the above argument. Thus d(a) ∈ Z(D)a+Z(D).

So we always have [d(y), y] = 0 for all y ∈ R. By Posner’s theorem
[11], either d = 0 or R is commutative. The latter case cannot occur since
dimD V ≥ 2. So d = 0 follows. This finishes the proof.

Proof of Theorem 1.1. Clearly, we may assume that A is unital. Let
x ∈ A. By assumption, d(x) ∈ q-Inv(A) and so 1 + d(x) is invertible in A.
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Let P be a primitive ideal of A with d(A) * P . By Proposition 2.1, we
have d(P ) ⊆ P and A/P ∼= C. Thus d canonically induces a derivation
dP : A/P → A/P , implying that dP (A/P ) = 0, that is, d(A) ⊆ P , a contra-
diction. Therefore, we have proved that d(A) ⊆ P for all primitive ideals P
of A. So d(A) ⊆ rad(A), as asserted.

In order to prove Theorems 1.2 and 1.3 we need one more lemma.

Lemma 2.2. Let R be a primitive ring with 1 and let a, u ∈ R with u a
unit. Suppose that u + ax − xa is invertible for all x ∈ I, a nonzero ideal
of R. Then either a is central in R or R is a division ring.

Proof. Let RV be a faithful irreducible left R-module and let D =
End(RV ). By the Jacobson density theorem, R acts densely on V . Sup-
pose that a is not central. We claim that R is a division ring, that is,
dimD V = 1. Suppose not. Then there exists v ∈ V such that av and v
are D-independent. Since I is a nonzero ideal of R, I also acts densely on V .
Choose an element x ∈ I such that xv = 0 and x(av) = −uv. Now we com-
pute (u+ ax− xa)v = uv + 0− uv = 0, implying that v = 0 as u+ ax− xa
is invertible.

Let R be a ring. We denote by Mn(R) the n×n matrix ring with entries
in R.

Proposition 2.3. Let R be an algebra over a field k, |k| > 2 and 1 ∈ R.
Suppose that d is a derivation of R such that 1 + [d(x), x] is invertible for
all x ∈ R. Then, for each primitive ideal P of R, either d(R) ⊆ P or
R/P ∼= Mn(D) where n ≤ 2 and where D is a division ring , depending
on P . For the latter case, d(P ) ⊆ P if n = 2.

Proof. Let P be a primitive ideal of R. Suppose that R/P is not a
division ring. We claim that d(P ) ⊆ P . Let x ∈ R and p, q ∈ P . Then, by
assumption, 1 + [d(x+ p), x+ p] is invertible. Note that

1 + [d(x+ p), x+ p] ≡ 1 + [d(x), x] + [d(p), x]

≡ 1 + [d(x), x] + [d(p) + q, x] mod P.

In R/P we let u = (1 + [d(x), x]) + P and x = x + P . Then u + xz − zx
is invertible for all z ∈ P + d(P )/P , an ideal of R/P . By Lemma 2.2, if
d(P ) * P , then x is central for all x ∈ R or R/P is a division ring. In either
case, R/P is a division ring, a contradiction. Thus d(P ) ⊆ P and hence d
canonically induces a derivation on R/P .

Passing from R to R/P we assume that R is a primitive ring, not a
division ring. Let V be a faithful irreducible right R-module with D =
End(RV ). Thus dimD V ≥ 2. The aim is then to prove that either d = 0 or
dimD V = 2. Suppose that dimD V ≥ 3. Let x ∈ R and v ∈ V be such that
xv = 0. We claim that d(x)v = 0.
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Case 1. Assume dimD xV ≥ 2. Suppose on the contrary that d(x)v 6= 0.
Since dimD xV ≥ 2, we have xV * (d(x)v)D. Choose w ∈ V such that
xw /∈ (d(x)v)D. Since R acts densely on VD, we can choose y ∈ R satisfying
y(d(x)v) = w and y(xw) = v. We compute (1+[d(yx), yx])v = v−yx(yd(x)+
d(y)x)v = v − y(xw) = 0. Since 1 + [d(yx), yx] is invertible, we have v = 0,
a contradiction.

Case 2. Assume dimD xV = 1. Note that dimD ker(x) ≥ 2 as dimD V
≥ 3. Choose u ∈ ker(x) such that u, v are D-independent. Clearly, there
exist D-independent w,w′ ∈ V such that xw = w′. Note that u, v and w are
D-independent. Applying the dense action of R on VD, we can choose y ∈ R
such that yu = w′, yv = 0 and yw = w. Thus (x + y)u = w′, (x+ y)v = 0
and (x + y)w = w + w′. Then dimD(x + y)V ≥ 2 and dimD yV ≥ 2. Since
(x + y)v = 0 = yv, by Case 1 we see that d(x + y)v = 0 = d(y)v and so
d(x)v = 0.

This proves our claim. Let x ∈ R and v ∈ V . We claim that d(x)v and
xv are D-independent. Suppose not. Choose y ∈ R such that y(xv) = 0 and
y(d(x)v) = v. Applying the above claim, we see that d(y)xv = 0 = d(yx)v
and hence y(d(x)v) = 0, a contradiction. Applying the same argument
given in Proposition 2.1 shows that d(x) ∈ Z(D)x + Z(D). In particu-
lar, [d(x), x] = 0 for all x ∈ R. By Posner’s theorem [11], either d = 0 or R
is commutative. This proves the proposition.

Lemma 2.4. Let R = M2(D), where D is a division ring , and let d be a
derivation of R. If [d(x), x]2 = 0 for all x ∈ R, then d = 0.

Proof. By assumption, [d(x), x]2 = 0 for all x ∈ R. If d is outer, by
Kharchenko’s theorem [6] we see that [y, x]2 = 0 for all x, y ∈ R, implying
that R is commutative. This is absurd. So d must be inner. Write d(x) =
[a, x], where a ∈ R. Let e = e2 ∈ R. Expanding (1−e)[[a, exe], exe]2(1−e) =
0 yields (1 − e)a(ex)4ea(1 − e) = 0 for all x ∈ R. Applying [7, Theorem 2]
or [8, Theorem], we see that (1− e)a(ex)ea(1− e) = 0 for all x ∈ R. By the
primeness of R, we have

(∗) either (1− e)ae = 0 or ea(1− e) = 0.

Write a =
(
α β
γ δ

)
∈ R. We take e =

( 1 0
0 0

)
in (∗). We see that β = 0

or γ = 0. Without loss of generality, we may assume that β = 0. Let
x =

(
η 0
0 λ

)
∈ R. Expanding [[a, x], x]2 = 0 and regarding its (1, 1) and (2, 2)

entries we obtain [[α, η], η] = 0 and [[δ, λ], λ] = 0 for all η, λ ∈ D. By Posner’s
theorem [11], α, δ ∈ Z(D). Since a and a−α define the same inner derivation
of R, by replacing a with a − α we may assume α = 0, that is, a =

( 0 0
γ δ

)
.

The aim is to prove a = 0, that is, γ = 0 = δ.
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Case 1. Assume that δ = 0. Let u be a unit in R. Then [[uau−1, x], x]2

= 0 for all x ∈ R. By (∗), given an idempotent e ∈ R we see that

(∗∗) either e(uau−1)(1− e) = 0 or (1− e)(uau−1)e = 0.

In particular, we choose u =
( 1 1

0 1

)
. Then uau−1 =

(
γ −γ
γ −γ

)
. Choose e =

( 1 0
0 0

)

in (∗∗). Then γ = 0 follows and so a = 0, as asserted.

Case 2. Assume that δ 6= 0. Since δ ∈ Z(D), replacing a by δ−1a we
may assume that δ = 1, that is, a =

( 0 0
γ 1

)
. We will derive a contradiction

to exclude this case. Note that(
1 1
0 1

)
a

(
1 −1
0 1

)
=
(
γ −γ + 1
γ −γ + 1

)
.

By (∗∗), either γ = 0 or γ = 1. If γ = 0, we compute
[[
a,

(
0 1
1 1

)]
,

(
0 1
1 1

)]2

=
(

5 0
0 5

)
= 0,

implying charD = 5. On the other hand,
[[
a,

(
0 1
1 2

)]
,

(
0 1
1 2

)]2

=
(

8 0
0 8

)
6= 0,

a contradiction. Suppose that γ = 1. Since
(

1 0
1 1

)(
0 0
1 1

)(
1 0
−1 1

)
=
(

0 0
0 1

)
,

we reduce to the case that γ = 0. This finishes the proof.

Proof of Theorem 1.2. Without loss of generality we may assume that
A is a unital Banach algebra. Let x ∈ A. Since [d(x), x] ∈ Q(A), 1+ [d(x), x]
is invertible. Suppose that d(A) * P . In view of Proposition 2.3, A/P ∼=
Mn(C), where n ≤ 2, depending on P . If d(P ) ⊆ P , d induces canonically a
derivation dP on A/P and [dP (x), x] ∈ Q(A/P ) for all x ∈ A/P . However,
in Mn(C), an element is quasinilpotent if and only if it is nilpotent. Thus,
[dP (x), x]2 = 0 for all x ∈ A/P . By Lemma 2.4, dP = 0 and so d(A) ⊆ P ,
a contradiction. Thus d(P ) * P and so A/P ∼= C by Proposition 2.3 again.
In this case, [A,A] ⊆ P follows. Thus, in either case, d(A)[A,A] ⊆ P and
[d(A), A] ⊆ P for each primitive ideal P of A. Hence, d(A)[A,A] ⊆ rad(A)
and [d(A), A] ⊆ rad(A). Note that IA = [A,A] + A[A,A] since A[A,A]A ⊆
A[[A,A], A] +A2[A,A] ⊆ A[A,A]. Thus d(IA) ⊆ rad(A).

Proof of Theorem 1.3. We consider the ring S = R × Z, where Z is the
ring of integers, with the usual multiplicative rule. Then rad(S) = rad(R)
and d is uniquely extended to a derivation of S. By assumption, it is clear
that [d(x), x]n(x) = 0 for all x ∈ S.
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Thus we may assume, without loss of generality, that 1 ∈ R. By assump-
tion, 1 + [d(x), x] is invertible for all x ∈ R. Let P be a primitive ideal of R.
Suppose that d(R) * P . In view of Proposition 2.3, R/P ∼= Mn(D), where
n ≤ 2 and D is a division ring, depending on P . Moreover, R/P is a division
ring if d(P ) * P .

Case 1. Assume that R/P ∼= D. Then [d(x), x] ∈ P for all x ∈ R.
If d(P ) ⊆ P , then [dP (x), x] = 0 for all x ∈ R/P . By Posner’s theorem
[11], dP = 0 or R/P is commutative. Since d(R) * P , [R,R] ⊆ P follows.
Suppose next that d(P ) * P , then d(P ) + P = R. Let x, y ∈ R. Write
y = d(p) + q, where p, q ∈ P . Then

[d(x+ p), x+ p] ≡ [d(x+ p), x] = [d(x), x] + [d(p), x]

≡ [d(p), x] ≡ [d(p) + q, x] ≡ [y, x] mod P.

That is, [R,R] ⊆ P . In either case, [d(R), R] ⊆ P .

Case 2. Assume that R/P ∼= M2(D). By Proposition 2.3, we have
d(P ) ⊆ P . Replacing R with R/P we may assume P = 0. Now we have
[d(x), x]2 = 0 for all x ∈ R. In view of Lemma 2.4, d = 0 follows.

By the two cases above, [d(R), R] ⊆ P for all primitive ideals P of R.
But R is semisimple, [d(R), R] = 0 and so d(R) is contained in the center
of R.
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