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Topological and algebraic genericity
of divergence and universality

by

Frédéric Bayart (Bordeaux)

Abstract. We give general theorems which assert that divergence and universality
of certain limiting processes are generic properties. We also define the notion of algebraic
genericity, and prove that these properties are algebraically generic as well. We show that
universality can occur with Dirichlet series. Finally, we give a criterion for the set of
common hypercyclic vectors of a family of operators to be algebraically generic.

1. Introduction. This paper deals with the pathological behavior of
certain series. Its origin goes back to the following observation of du Bois-
Reymond (1873):

There exists a continuous function whose Fourier series
diverges at a point.

Later, this property has been proved to be topologically generic in the fol-
lowing sense: it holds for a dense Gδ subset of C(T), the Banach space of
continuous functions on the unit circle T. We also say that this property is
quasi-sure, or that it holds quasi-everywhere. Recall that in a Baire space,
countable intersections of dense open sets are big sets: they are analogues
of sets of probability one in probability spaces.

Many other examples of divergence of Fourier series are known (due to
Kolmogorov, Fefferman, . . . ) and some of them have a generic version. We
refer to the recent survey of J.-P. Kahane ([Ka]) for precise statements. In
Section 2, we give a “proving machine theorem” which allows us to obtain
the genericity automatically from the existence of one divergent series. Thus,
we recover some known results, and discover some apparently new ones (in
the case of Fefferman’s divergence theorem, or of some recent results on
divergence of Dirichlet series).

We also introduce another type of genericity: a property on a Banach
spaceX is said to be algebraically generic if it holds for every non-zero vector
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of a dense subspace of X. Theorem 3 below asserts that the divergence of
Fourier series is also an algebraically generic phenomenon.

Sometimes, limiting processes may diverge in a maximal way: this is
linked with the phenomenon of universality. We restrict ourselves to the
notion of universal series: if (an)n∈N is a sequence of complex numbers, and
(xn)n∈N is a sequence in a topological vector space X, the series

∑∞
n=0 anxn

is said to be universal if the sequence of its partial sums (
∑N

n=0 anxn)N≥0

is dense in X. Surprisingly, a great number of universal objects have been
discovered: we refer to the survey of K.-G. Grosse-Erdmann [Gre], and just
give a recent result of V. Nestoridis ([Ne]):

There exists a Taylor series S =
∑∞

n=0 cnz
n, convergent in

the unit disk D, such that, given any compact set K which
does not separate the plane and which satisfies K ∩ D = ∅,
and any function g continuous on K and analytic in the
interior of K, there exists a sequence of partial sums of S
which converges to g uniformly on K.

If one allows the sequence (an) to be in a Baire subset Y ⊂ CN, one could
ask if the existence of a universal series with coefficients in Y implies the
topological genericity of this property in Y . Indeed, in the literature, for
many examples, universality appears as a generic phenomenon. For instance,
quasi-all Taylor series in H(D) are universal in the sense of Nestoridis. The-
orem 4 below shows that under some natural assumptions on Y , one has
a topological zero-one law: either there does not exist a universal series∑
anxn with (an) ∈ Y (the vectors xn being kept fixed), or for quasi-all se-

quences (an) ∈ Y , the series
∑
anxn is universal. We also give in Section 3

a generalization of the Nestoridis Theorem to Dirichlet series.
For Y a linear space, the notion of universality is of course connected

with that of hypercyclicity. Recall that if X and Y are two topological
vector spaces, a sequence (TN ) of continuous linear mappings TN : Y → X
is called hypercyclic provided there exists a vector y, called a hypercyclic
vector, whose orbit {TNy; N ∈ N} is dense in X. Now, if Y is a sequence
space, one can define

TN : Y → X, (an) 7→
N∑

n=0

anxn.

So, the existence of a universal series is equivalent to the hypercyclicity
of (TN ). If Y is a Baire space, the topological genericity of hypercyclic
vectors and therefore of universal series is well known (see for instance [Gre]).
Moreover, L. Bernal-González gave in [Be, Thm. 3] a sufficient condition for
the algebraic genericity of the set of hypercyclic vectors. We will show that
this sufficient condition is always satisfied for universal series.
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Recently, the notion of common hypercyclicity has drawn attention
([AG], [CS], [Ba1], [Ba2]): given a family (TN,λ)N∈N, λ∈I of operators Y → X
such that, for each λ ∈ I, the sequence (TN,λ)N∈N is hypercyclic, does there
exist a common hypercyclic vector, that is, a vector x which is hypercyclic
for each sequence (TN,λ)N∈N? In particular, G. Costakis and M. Sambarino
give in [CS] a sufficient condition for the set of common hypercyclic vectors
to be topologically generic. In Section 4, we give a similar condition for the
set of common hypercyclic vectors to be algebraically generic.

2. Divergent series

2.1. A criterion for topological genericity. Our first result asserts that
if a limiting process is unboundedly divergent at one point for one function,
it is divergent at quasi-all points for quasi-all functions.

Theorem 1. Let X be a Banach space, and G be a complete metrizable
abelian group. Let (Tt)t∈G be a continuous group of operators acting on X,
each of them being an isometry. Let (ϕn) be a sequence of continuous linear
forms on X, and define, for f ∈ X, t ∈ G, ϕn(f, t) = ϕn(Ttf). Suppose that

(H1) for all M > 0 and N > 0, there exist n ≥ N and g ∈ X such that
‖g‖ ≤ 1 and |ϕn(g, 0)| > M .

Then for quasi-all functions f ∈ X, the sequence (ϕn(f, t)) is unboundedly
divergent for quasi-all t ∈ G.

Remark. Hypothesis (H1) is for example an easy consequence of the
following one: There exists g ∈ X such that the sequence (ϕn(g, 0)) is un-
boundedly divergent.

Proof. For M,N ∈ Z+, set

A(M,N) =
⋃

n≥N
{(f, t) ∈ X ×G; |ϕn(f, t)| > M}.

This set is clearly open. Let us show that it is dense. We fix (f, t0) ∈ X ×G
and ε > 0 as small as we wish. Let g ∈ X be a function given by hypothesis
(H1) satisfying

‖g‖ ≤ 1 and |ϕn(g, 0)| > M/ε for n ≥ N.
Suppose for a moment that the following two inequalities are simultaneously
true:

|ϕn(Tt0f + εg, 0)| < M, |ϕn(Tt0f − εg, 0)| < M.

By the triangle inequality, one deduces |ϕn(2εg, 0)| < 2M, which is false.
Therefore we can assume for instance that

|ϕn(Tt0f + εg, 0)| > M.
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This implies

|ϕn(f + εT−t0g, t0)| > M.

Thus, (f + εT−t0g, t0) ∈ A(M,N), and (f + εT−t0g, t0) can be chosen arbi-
trarily close to (f, t0). This implies that

⋂
M,N∈Z+ A(M,N) is residual, and

if (f, t) is in this set, the series (ϕn(f, t)) is unboundedly divergent. The
Kuratowski–Ulam Theorem, as employed in [Ka], gives the conclusion.

Example. Theorem 1 could be applied to prove the topological gener-
icity of du Bois-Reymond’s example (see [Ka]). We prefer to give a less
standard (and apparently new) result for a summability method. A series∑
un is said to be summable by Borel’s method , or B-summable, to sum S

if

B(λ) = e−λ
∞∑

n=0

snλ
n

n!
→ S as λ→∞,

where sn = u0 + · · ·+ un. Moore (see [Zyg, p. 314]) proved the existence of
a continuous function f on T whose Fourier series at 0 is not B-summable
(the divergence being unbounded). Theorem 1 implies that, for quasi-all
functions f ∈ C(T) and quasi-every t in T, the Fourier series of f at t is not
B-summable.

Indeed, let X be C(T), and G = T. The action of G on X is the trans-
lation

Teitf(z) = f(eitz).

The linear forms

ϕN (f) = e−N
∞∑

n=0

sn
Nn

n!
,

where sn is the nth partial sum of the Fourier series of f , evaluated at the
point 0, satisfy the assumptions of Theorem 1.

If the limiting process is everywhere unboundedly divergent, everywhere
unbounded divergence is also topologically generic:

Theorem 2. Let X be a Banach space, and E be a σ-compact topological
space. Suppose that , for each t ∈ E and each n ≥ 0, a linear form ϕn(t, ·)
is given such that ϕn : X ×E → C is continuous. For g ∈ X and t ∈ E, set

δN (g, t) = sup
n>N
|ϕn(g, t)− ϕN (g, t)|.

Suppose that

(H2) for all M,N > 0, and each compact subset K of E, there exists
g ∈ X such that ‖g‖ ≤ 1 and δN (g, t) > M for every t ∈ K.

Then for quasi-all f ∈ X, the sequence (ϕn(f, t))n≥0 is unboundedly diver-
gent for each t ∈ E.
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Remark. In many situations, (H2) will follow from the stronger as-
sumption

∃g ∈ X such that ∀t ∈ E, (ϕn(g, t)) is unboundedly divergent.

Proof. Write E =
⋃∞
k=1Xk, where (Xk) is a non-decreasing sequence of

compact subsets of E. We shall construct an increasing sequence (Nk)k≥0 of
integers and a sequence (gk)k≥1 of vectors in X such that

∀t ∈ Xk, sup
Nk−1<n≤Nk

|ϕn(gk, t)− ϕNk−1
(gk, t)| ≥ k, ‖gk‖ ≤ 1.(1)

Take N0 = 0. We assume that N0, . . . , Nk−1, g1, . . . , gk−1 have been defined,
and describe how to choose Nk and gk. Let gk be given by (H2) for M = k,
N = Nk−1, K = Xk, and let

δ∗N (t) = sup
Nk−1<n≤N

|ϕn(gk, t)− ϕNk−1
(gk, t)|.

The continuous functions (δ∗N (t) + 1)−1 decrease pointwise to 0, and Dini’s
Theorem implies the existence of N > Nk−1 such that (δ∗N (t) + 1)−1 ≤
(k+1)−1 for each t ∈ Xk. Just take Nk = N to get (1). Now, for M,k ∈ Z+,
set

A(M,k) =
⋃

l≥k
{f ∈ X; ∀t ∈ Xk, sup

Nl−1<n≤Nl
|ϕn(f, t)− ϕNl−1

(f, t)| > M}.

Clearly, A(M,k) is open. Moreover, it is dense: if f0 ∈ X and ε > 0 is
arbitrarily small, there exists l ≥ k such that

∀t ∈ Xk, sup
Nl−1<n≤Nl

|ϕn(gl, t)− ϕNl−1
(gl, t)| >

M

ε
.

As in the proof of Theorem 1, either f0 + εgl or f0− εgl belongs to A(M,k).
Therefore

⋂
M,k A(M,k) is quasi-sure, and for any f ∈ ⋂M,k A(M,k) and

any t ∈ E, (ϕn(f, t)) is unboundedly divergent.

Examples. (1) LetX = L1(T),E = T, and ϕN (f, t) =
∑
|n|≤N f̂(n)eint.

A famous result of Kolmogorov (see [Ka] or [Zyg] for a proof) asserts that
there exists a function f ∈ L1(T) such that, for each t ∈ T, (ϕn(f, t)) is
unboundedly divergent. This property is topologically generic.

(2) Let X = L2(T2), E = T2. Denote by SM,Nf(t, u) the Fourier series
of f ∈ L1(T2):

SM,N (f)(t, u) =
∑

|m|≤N, |n|≤N
f̂(m,n)eimteinu.

Fefferman gives in [Fe] an example of f ∈L2(T2) such that, for each (t, u)∈T2,

lim sup
M,N→∞

|SM,Nf(t, u)| =∞.
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More precisely, his construction implies the existence of two increasing se-
quences (Mk) and (Nk) of integers such that

|SMk,Nkf(t, u)| ≥ k
for every (t, u) ∈ T2. By setting ϕk(g, (t, u)) = SMk,Nkg(t, u) and by apply-
ing Theorem 2, we see that Fefferman’s example is topologically generic in
L2(T2).

(3) Let us now turn to the case of H∞, the space of Dirichlet series
f(s) =

∑∞
n=1 ann

−s, with convergence and boundedness of f in the half-
plane C+ = {s ∈ C; <(s) > 0}; H∞ is a Banach space with the norm

‖f‖∞ = sup{|f(s)|; s ∈ C+}.
In [BKQ], it is proved that there exists a Dirichlet series f(s) =

∑∞
n=1 ann

−s

∈ H∞ such that
∑∞

n=1 ann
it diverges for each t ∈ R. In the course of the

proof, we build a sequence of Dirichlet polynomials Qk(s) =
∑Nk

n=1 an(k)n−s

and a sequence of intervals Xk such that:

‖Qk‖∞ k→∞−−−→ 0, Xk ⊂ Xk+1,
∞⋃

k=1

Xk = R,

∀t ∈ Xk, sup
1≤l≤Nk

∣∣∣
l∑

n=1

an(k)nit
∣∣∣ ≥ δ,

where δ > 0 is an absolute constant. We may apply Theorem 2: for quasi-
all Dirichlet series f(s) =

∑∞
n=1 ann

−s ∈ H∞,
∑∞

n=1 ann
it diverges un-

boundedly for each t ∈ R. Observe that in [BKQ], we obtained f(s) =∑∞
n=1 ann

−s ∈ H∞ such that
∑∞

n=1 ann
it was boundedly divergent on R.

Remark. The topological genericity of divergent series
∑
εnfn, where

(εn) runs over all choices of signs (εn = ±1), is proved in [BKQ].

2.2. Criterion for algebraic genericity. From the topological point of
view, a dense Gδ set in a Baire space is a very big set. But in an algebraic
setting, a dense Gδ set may be very thin: in particular, there is no reason why
it should contain an infinite-dimensional vector space. To name properties
which hold on a big algebraic set, we say that a property on a topological
vector space is algebraically generic if it holds for every non-zero vector in
a dense subspace of X. If T is a hypercyclic operator on a Banach space
X (meaning that the sequence of iterates (T n)n≥0 is hypercyclic), “being a
hypercyclic vector” is a good example of an algebraically generic property:
see [Bou] for the proof if X is complex. One can ask if the divergence of
Fourier series is algebraically generic. The following theorem says that the
answer is yes. The method of proof could be easily adapted to other examples
of divergent limiting processes. Before proceeding with the theorem, let us
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fix the notations: for f ∈ L1(T), we set

f̂(n) =
1

2π

�

T
f(t)e−int dt, SN (f, t) =

∑

|n|≤N
f̂(n)eint.

Theorem 3. Let X⊂L1(T) be a Banach space and E⊂T. Suppose that :

• The set of trigonometric polynomials is a dense subset of X (for the
topology of X).
• For all M > 0, there exists a trigonometric polynomial Q such that
‖Q‖X = 1 and supN |SN (Q, t)| > M for all t ∈ E.
• ‖eintf‖X = ‖f‖X for all n ∈ Z and f ∈ X.

Then there exists a dense subspace X0 of X such that , for each f ∈ X0 \{0}
and every t ∈ E, the Fourier series (Sn(f, t))n≥0 is unboundedly divergent.

Proof. Fix a sequence (Pl) of trigonometric polynomials dense in X, and
a sequence (ql) of integers such that Sp(Pl) ⊂ [−ql, ql] (here, Sp(Pl) denotes
the spectrum of the polynomial Pl). We build by induction a sequence of
“bad polynomials” with disjoint spectra. More precisely, we build, for j ≥ 1
and 1 ≤ k ≤ j, integers n(j, k) and m(j, k), and trigonometric polynomials
R(j, k) such that:

(2) ∀1 ≤ k < k′ ≤ j,
qj < n(j, k) ≤ m(j, k) < n(j, k′) ≤ m(j, k′) < n(j + 1, 1).

(3) Sp
(
R(j, k)

)
⊂ [n(j, k),m(j, k)].

(4) ‖R(j, k)‖X ≤ 1/2j+1.

(5) ∀t ∈ E, sup
n(j,k)≤n≤m(j,k)

|Sn(R(j, k), t)| ≥ j.

Indeed, for j = 1, let Q be a trigonometric polynomial such that:

• ‖Q‖X ≤ 1/2.
• supN |SN (Q, t)| ≥ 1 for all t ∈ E.

Then, if Sp(Q) ⊂ [−a, a], the polynomial R(1, 1)(t) = ei(a+q1+1)Q(t) works,
with n(1, 1) = q1+1 and m(1, 1) = q1+2a+1. Suppose now the construction
is done till the rank j − 1, and set β = max(qj ,m(j − 1, j − 1)). We fix a
trigonometric polynomial Q and an integer a such that:

• ‖Q‖X ≤ 1/2j+1.
• supN |SN (Q, t)| ≥ j for all t ∈ E.
• Sp(Q) ⊂ [−a, a].

First we define

• R(j, 1)(t) = ei(β+a+1)tQ(t).
• n(j, 1) = β + 1.
• m(j, 1) = β + 2a+ 1.



168 F. Bayart

Next, the sequences are defined by induction for 2 ≤ k ≤ j, by setting

• R(j, k)(t) = ei(m(j,k−1)+1)tQ(t).
• n(j, k) = m(j, k − 1) + 1.
• m(j, k) = m(j, k − 1) + 2a+ 1.

Clearly, conditions (2) to (5) are fulfilled. Finally, we set

fk = Pk +
∑

j≥k
R(j, k).

Observe that, for k 6= k′,

Sp
(∑

j≥k
R(j, k)

)
∩ Sp

(∑

j≥k′
R(j, k′)

)
= ∅.(6)

We claim that the vector space X0 = span(fk; k ≥ 1) satisfies the require-
ments of Theorem 3. Indeed, on the one hand,

‖fk − Pk‖X ≤
∑

j≥k
‖R(j, k)‖ ≤ 1/2k.

Therefore, X0 is dense in X. On the other hand, pick any f = a1f1 + · · ·+
aNfN , aN 6= 0, in X0 \ {0}. By (5) and (6), for j ≥ N and t ∈ E, one has

sup
n(j,N)≤n≤m(j,N)

|Sn(f, t)− Sn(j,N)−1(f, t)| ≥ j|aN |.

The Fourier series (Sn(f, t))n≥0 is unboundedly divergent at each t ∈ E.

Examples. (1) If X = L1(T), E = T, Kolmogorov’s result gives exactly
what is needed to apply Theorem 3. Thus the algebraic genericity is proved
for this example.

(2) The same proof works in the multi-dimensional case, and in particular
for Fefferman’s example: there exists a dense subspace X0 of L2(T2) such
that, for each f ∈ X0 \ {0}, and each w ∈ T2,

lim sup
|M |,|N |→∞

|SM,N (f, w)| =∞.

(3) Let X be C(T), and E ⊂ T be a set of Lebesgue measure 0. We
can adapt the previous proof to produce a dense subspace X0 of C(T) such
that, for each f ∈ X0 \ {0}, the Fourier series of f at any point of E
is unboundedly divergent. Recall the following lemma from [KK]: given a
finite union F of intervals of T, with Lebesgue measure a, 0 < a < 1/π,
there exists a trigonometric polynomial Q with norm 1 in C(T) such that

sup
n∈N
|Sn(Q, t)| ≥ 1

π
log

1

aπ
when t ∈ F.
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Since E is negligible, we can find a sequence (Fj) of sets such that Fj is a
finite union of intervals, its measure aj satisfies

1

π
log

1

ajπ
≥ 2j+1j,

and each point of E belongs to infinitely many Fj ’s. The construction is the
same, except that the polynomial Q chosen at the jth step is given by the
lemma: it satisfies ‖Q‖C(T) ≤ 1/2j+1 and

sup
n
|Sn(Q, t)| ≥ j for each t ∈ Fj .

The rest of the proof is unchanged. Since each point of E belongs to infinitely
many Fj ’s, the Fourier series of each vector of X0 \ {0} is unboundedly
divergent on E.

(4) The proof cannot be extended to the case of the spaceH∞ of Dirichlet
series. More precisely, H∞ is not separable (it contains H∞(D) via the isom-
etry

∑
n≥0 anz

n 7→∑
n≥0 an(2n)−s), and the set of Dirichlet polynomials is

not dense inH∞. So the proof just gives an infinite-dimensional subspace X0

ofH∞, not necessarily dense, such that, for each f =
∑

n≥1 ann
−s ∈ X0\{0},

the series
∑

n≥1 ann
it diverges for each t ∈ R.

3. Universal series

3.1. Topological and algebraic genericity. The first result of this section
is a general result which states clearly, for universal series, the following well
known fact (see [Gre]): “Universality is a generic phenomenon in analysis”.

Theorem 4. Let X be a separable metrizable vector space, and Y be a
subset of CN such that :

(a) Y is a Baire topological space.
(b) The projection on each component is continuous.
(c) If a = (an), b = (bn) ∈ Y , and N ≥ 0, then

c(N) = (b0, . . . , bN , aN+1, aN+2, . . .)

belongs to Y and c(N)→ b in Y as N →∞.

Finally , let (xn) be a sequence of vectors in X. Then the following are equiv-
alent :

(i) For at least one a ∈ Y , the series
∑
anxn is universal.

(ii) For quasi-all a ∈ Y , the series
∑
anxn is universal.
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Proof. Fix a countable basis (Ul) of open sets in X, and set

G(l) =
{
a ∈ Y ; ∃N ≥ 0 such that

N∑

n=0

anxn ∈ Ul
}
.

By condition (b), G(l) is open. Moreover, G(l) is dense: indeed, consider
b ∈ Y , an open set U containing b, and a ∈ Y so that

∑
anxn is universal.

By condition (c), there exists N0 ∈ N such that

c = (b0, . . . , bN0 , aN0+1, . . . ) ∈ U.
Since

∑
anxn is universal, there exists N1 ≥ N0 such that

N1∑

n=0

anxn ∈ Ul +

N0∑

n=0

anxn −
N0∑

n=0

bnxn.

Therefore,
N1∑

n=0

cnxn ∈ Ul,

which means that c ∈ G(l) ∩ U . Clearly, each sequence in
⋂
l≥1G(l) gives a

universal series.

The hypotheses of Theorem 4 are natural and very permissive. For in-
stance, Y could be c0, `p, CN with the topology of convergence of the coeffi-
cients, or the set of all choices of signs with the same topology (see below).
In case Y is a topological vector space which contains the set of finitely
supported sequences as a dense subspace, Theorem 4 is a consequence of
already known results on hypercyclic sequences. Indeed, as announced in
the introduction, the existence of a universal series is equivalent to the hy-
percyclicity of the sequence of operators (TN ), with TN : Y → X defined

by TN (a) =
∑N

n=0 anxn. Since (TN ) converges pointwise on the dense set of
finitely supported sequences, Proposition 6 of [Gre] ensures that the set of
hypercyclic vectors (equivalently, the set of universal series) is either empty
or residual.

On the other hand, we obtain new examples of topological genericity for
sets which are not vector spaces.

Corollary 1. Let Y be TN, equipped with the natural topology defined
by convergence of the coefficients for each index n. Let H be a separable
Hilbert space, and (xn) be a sequence in H satisfying :

(a)
∑

n≥0

‖xn‖2 <∞.
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(b)
∑

n≥0

|〈xn, x〉| =∞ for all x ∈ H \ {0}.

Then, for quasi-all a ∈ Y , the series
∑

n≥0 anxn is universal.

Proof. By [La, p. 208], the set of convergent series {∑n≥0 anxn; |an|
= 1} is dense in H. In particular, if we fix n0 ≥ 0, the set of “polynomials”

{ N∑

n=n0

anxn; N ≥ n0, |an| = 1
}

is dense in H. We deduce the existence of a universal series by the following
argument: let (zk)k≥1 be a dense sequence in H. By induction, one exhibits
a sequence (aj)j≥0 of unimodular complex numbers and an increasing se-
quence (nk)k≥1 of integers such that

∥∥∥zk −
nk∑

n=0

anxn

∥∥∥ ≤ 1

k
.(7)

• For k = 1, this is obvious.
• Suppose that n1 < · · · < nk have already been chosen, satisfying (7)

at step k. There exist nk+1 > nk and ank+1, . . . , ank+1
, with |aj | = 1,

such that

∥∥∥
(
zk+1 −

nk∑

n=0

anxn

)
−

nk+1∑

n=nk+1

anxn

∥∥∥ ≤ 1

k + 1
.

It follows from (7) that the series
∑
anxn is universal, and Theorem 4 gives

the topological genericity.

Remark. TN could also be viewed as a probability space, equipped with
the product of the Haar measure on each factor. If (xn) satisfies the as-
sumptions of Corollary 1, Kolmogorov’s Theorem asserts that, for almost
all (an) ∈ TN, the series

∑∞
n=0 anxn is convergent. This is in strong contrast

with the quasi-sure behavior of such series, since for quasi-all (an) ∈ TN,
the series

∑∞
n=0 anxn is divergent, in the worst possible sense, because it

is universal. As usual, the Baire approach emphasizes divergence, while the
probabilistic one favors convergence.

Theorem 3 and Theorem 2 of [Be] suggest studying the algebraic gener-
icity of universal series:

Theorem 5. Let X be a metrizable topological vector space, and Y be
a subspace of CN such that :

(a) Y is a Baire topological space.
(b) The projection on each component is continuous.
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(c) If a = (an) ∈ Y and N ≥ 0, then

b(N) = (a0, . . . , aN , 0, . . .)

belongs to Y and b(N)→ a as N →∞.

Finally , let (xn) be a sequence of vectors in X. Then the following are equiv-
alent :

(i) For at least one a ∈ Y, the series
∑
anxn is universal.

(ii) For quasi-all a ∈ Y, the series
∑
anxn is universal.

(iii) There exists a dense subspace Y0 of Y such that , for all a ∈ Y0 \{0},∑
anxn is universal.

Proof. It suffices to prove (i)⇒(iii). Recall ([Be]) that a sequence (TN ) of
operators from Y to X is densely hypercyclic if it is hypercyclic and the set
of its hypercyclic vectors is dense in Y . It is called densely hereditarily hy-
percyclic if, for each increasing sequence (Nk)k≥0 of integers, the sequence of
operators (TNk)k≥0 is densely hypercyclic. The Theorem of Bernal-González
mentioned in the introduction asserts that, if X and Y are two separable
metrizable vector spaces, and if TN : Y → X is a densely hereditarily hyper-
cyclic sequence of operators, then the set of its hypercyclic vectors contains
a dense subspace of Y (without 0).

Thus, it suffices to prove that the sequence (TN )N≥0 of operators with

TN : Y → X, (an) 7→
N∑

n=0

anxn,

is densely hereditarily hypercyclic. Fix an increasing sequence (Nk) of in-
tegers, and let a ∈ Y be such that

∑
anxn is universal. Moreover, fix an

open subset U of Y , and an open subset V of X. For a sequence b in U , by
condition (c), there exists m ≥ 0 such that, for each l ≥ m,

(b0, . . . , bm, am+1, . . . , al, 0, . . . ) ∈ U.
Since

∑
anxn is universal, there exists u ≥ m such that

u∑

n=0

anxn ∈ V +
m∑

n=0

anxn −
m∑

n=0

bnxn.

Set c = (b0, . . . , bm, am+1, . . . , au, 0, . . . ). Summarizing, if k is chosen so that
Nk > u, one has

c ∈ U, TNk(c) ∈ V.
By the hypercyclicity criterion (see [Gre, Thm 1]), the sequence (TNk)k≥0 is
densely hypercyclic.

Example. J.-P. Kahane and V. Nestoridis have proved in [KN] the
existence of a sequence a in c0(Z) such that the trigonometric series∑∞

n=−∞ ane
int is universal in the sense of Men’shov: every measurable
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function on T can be approximated by some sequences of partial sums∑N
n=−N ane

int almost everywhere on T. Actually, they prove that quasi-all
sequences of c0(Z) give a universal series in the sense of Men’shov. The last
theorem shows that this property also holds for a dense subspace of c0(Z),
without 0.

3.2. Universality and Dirichlet series. Our aim in this section is to ex-
tend Nestoridis’ universal theorem to the case of Dirichlet series. Let Da(C+)
denote the space of all Dirichlet series which are absolutely convergent in
the right half-plane C+. It is a Fréchet space, endowed with the family of
seminorms ∥∥∥

∞∑

n=1

ann
−s
∥∥∥
σ

=
∞∑

n=1

|an|n−σ, σ > 0.

Our main tool for approximation by Dirichlet series is the following lemma
from Bagchi [Bag]:

Lemma 1. Let g be an analytic function in the strip {s ∈ C; 1/2 <
<(s) < 1}, K be a compact set contained in the same strip, n0 be an integer
and ε > 0. Then there exist n1 > n0 and complex numbers (bj)

n1
j=n0+1, with

|bj | ≤ 1, such that , for any s ∈ K,

∣∣∣g(s)−
n1∑

j=n0+1

bjj
−s
∣∣∣ < ε.

We will deduce from this lemma a version of Mergelyan’s Theorem for
Dirichlet series, but first of all we need to introduce a definition:

Definition 1. A compact set K ⊂ C is said to be admissible for Dirich-
let series if C\K is connected, and if it can be written as K = K1∪· · ·∪Kd,
each Ki being contained in a strip Si = {s ∈ C; ai ≤ <(s) ≤ bi}, with
bi − ai < 1/2, the strips Si being disjoint.

Let C− = {s ∈ C; <(s) < 0}.

Lemma 2. Let K ⊂ C− be a compact set admissible for Dirichlet series,

f be in Da(C+), g be a continuous function on K, analytic in K
◦
, and σ, ε

two positive numbers. Then there exists h in Da(C+) such that

‖h− g‖C(K) < ε, ‖h− f‖σ < ε.

Proof. By Mergelyan’s Theorem, we may suppose that g is an entire
function (and even that g is a polynomial). Write K = K1 ∪ · · · ∪Kd with
Ki ⊂ {s ∈ C; ai ≤ <(s) ≤ bi}, and assume 0 ≥ b1 ≥ a1 > b2 ≥ · · · > bd ≥
ad, bi − ai < 1/2. We first approximate simultaneously f(s) =

∑∞
j=1 ajj

−s
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and g on K1. We fix σ1 ∈ R such that K1 + σ1 ⊂ {s ∈ C; 1/2 < <(s) < 1},
and σ + σ1 > 1. Consider n1 ∈ N such that

∑

j≥n1+1

1

jσ1+σ
<
ε

2
,

∥∥∥f −
n1∑

j=1

ajj
−s
∥∥∥
σ
<
ε

2
.

By Lemma 1, there exist m1 > n1 and complex numbers (b
(1)
j )m1

n=n1+1 with

|b(1)
j | ≤ 1 such that

∀s ∈ K1 + σ1,
∣∣∣
(
g(s− σ1)−

n1∑

j=1

ajj
−s+σ1

)
−

m1∑

j=n1+1

b
(1)
j j−s

∣∣∣ < ε

2
.

We next approximate inductively g on each Ki, i ≥ 2, without affecting the
previous approximations. Let σi ∈ R be such that

1/2 < ai + σi ≤ bi + σi < 1 and 1 < ai−1 + σi.

We define αi = ai−1 + σi > 1. There exists ni > mi−1 such that

∑

j≥ni+1

1

jαi
<
ε

2
.

By Lemma 1, there exist mi > ni and complex numbers (b
(i)
j )mij=ni+1 with

|b(i)j | ≤ 1 such that, for any s ∈ Ki + σi,

∣∣∣
(
g(s− σi)−

n1∑

j=1

ajj
−s+σi −

i−1∑

l=1

ml∑

j=nl+1

b
(l)
j j
−s+σi−σl

)
−

mi∑

j=ni+1

b
(i)
j j
−s
∣∣∣ < ε

2
.

We finally set

h(s) =

n1∑

j=1

ajj
−s +

d∑

l=1

ml∑

j=nl+1

b
(l)
j j
−σlj−s,

and we claim that h satisfies the conclusions of Lemma 2. Indeed,

‖h− f‖σ ≤
ε

2
+

d∑

l=1

ml∑

j=nl+1

|b(l)j |
jσ+σl

≤ ε

2
+

∞∑

j=n1+1

1

jσ1+σ
≤ ε.

Now, take any i in {1, . . . , d}, and s ∈ Ki. One has
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|h(s)− g(s)| = |h(s+ σi − σi)− g(s+ σi − σi)|

≤
∣∣∣((s+ σi)− σi)−

n1∑

1

ajj
−(s+σi)+σi −

i∑

l=1

nl+1∑

j=nl+1

b
(l)
j j
−(s+σi)+σi−σl

∣∣∣

+

d∑

l=i+1

ml∑

j=nl+1

j−(σl+ai)

≤ ε

2
+

∑

j≥ni+1

1

jαi
≤ ε.

We are now ready to prove the existence of universal Dirichlet series “à
la Nestoridis”:

Theorem 6. There exists a Dirichlet series S =
∑

n≥1 ann
−s in Da(C+)

which is universal in the following sense: For each compact set K ⊂ C such
that K ⊂ {s ∈ C; −1/2 < <(s) ≤ 0} and C\K is connected , and for
any function g continuous on K and analytic in the interior of K, there
exists a sequence of partial sums of S which converges to g uniformly on K.
Moreover , this property is topologically and algebraically generic in Da(C+).

Proof. Let Y be the Fréchet space Da(C+) and X be the space of all
functions which are continuous on {s ∈ C; −1/2 < <(s) ≤ 0} =: Ω−1/2,0

and analytic in the interior of Ω−1/2,0, endowed with the topology of uniform
convergence on compact subsets of Ω−1/2,0. We also introduce the sequence
of operators

TN : Y → X,

∞∑

n=1

ann
−s 7→

N∑

n=1

ann
−s,

and prove that this sequence is hereditarily hypercyclic. To this end, fix an
increasing sequence (Nk)k≥0 of integers, f ∈ Y , g ∈ X, σ > 0, a compact
subset K of {s ∈ C; −1/2 < <(s) ≤ 0} and ε > 0. Then K is included in
a rectangle K1 ⊂ {s ∈ C; −1/2 < <(s) ≤ 0}. By Lemma 2, there exists a

Dirichlet polynomial P (s) =
∑N

n=1 ann
−s such that

‖f − P‖σ < ε, ‖g − P‖C(K1) < ε.

For k so that Nk ≥ N , one has

‖f − P‖σ < ε, ‖g − TNkP‖C(K) < ε.

The hypercyclicity criterion ensures that (TNk)k≥0 is densely hypercyclic,
and the set of hypercyclic vectors for (TNk) contains a residual set. We
deduce that the set of hypercyclic vectors for (TN ) is topologically and
algebraically generic. Theorem 6 follows, since by Mergelyan’s Theorem any
hypercyclic vector for (TN ) is clearly a universal Dirichlet series.
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Remarks. (1) It is possible to prove the same assertion with Da(C+)
replaced by Du(C+), the space of Dirichlet series which converge uniformly
on each half-plane Cε = {s ∈ C; <(s) > ε}, ε > 0, endowed with the
topology of uniform convergence on these half-planes. The proof is the same.

(2) A slight modification of the proof (for instance, a direct proof instead
of a topological one) shows that we can build a universal Dirichlet series∑

j≥1 ajj
−s satisfying aj = o(j−r) for any r < 1.

(3) Our method of proof differs from that of Nestoridis in that we use the
hypercyclicity criterion instead of reproving it by applying Baire’s Theorem.
This method can also be applied for the Nestoridis Theorem, in order to
obtain the algebraic genericity.

(4) As in Section 3 of [Ne], we can obtain the existence of a Dirichlet series
universal in the sense of Men’shov. More precisely, if S =

∑
n≥1 ann

−s is a

universal Dirichlet series in the sense of Nestoridis, and if h, g : R→ [−∞,∞]
are two measurable functions, then there exists a subsequence Skm of the
partial sums of S such that

<(Skm(it))→ g(t) and =(Skm(it))→ h(t)

as m → ∞, almost everywhere on R. The universality in the sense of
Men’shov is topologically and algebraically generic in Da(C+).

(5) Actually, our method of proof gives a stronger conclusion than stated
in Theorem 6. Let K1,K2, . . . be a sequence of compact subsets of C− such
that each compact set in C− admissible for Dirichlet series is contained in at
least one Ki. We can take, for instance, all finite unions of rectangles whose
vertices have coordinates in Q−+ iQ and which are admissible for Dirichlet
series. Denote by Xi the Banach space of functions continuous on Ki and
analytic in the interior of Ki. As in the proof of Theorem 6, the sequence of
operators

TN : Da(C+)→ Xi,

∞∑

n=1

ann
−s 7→

N∑

n=1

ann
−s,

is hereditarily hypercyclic. Denote by Hi the set of its hypercyclic vectors,
which is a dense Gδ subset of Da(C+). Let S be in

⋂
i≥1Hi 6= ∅. Then S is

universal in the following sense: For each compact set K ⊂ C− admissible
for Dirichlet series, and any function g continuous on K and analytic in the
interior of K, there exists a sequence of partial sums of S which converges
to g uniformly.

(6) We do not know if Theorem 6 remains true for arbitrary compact
subsets of C− whose complement is connected.

4. Common algebraic genericity. Let I be a set, and (Tn,λ)n≥1, λ∈I
be a family of operators on a separable normed space X. For convenience
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of notation, for each λ ∈ I, T0,λ will always be taken equal to IdX . Suppose
that, for each λ ∈ I, the sequence (Tn,λ)n∈N is hypercyclic, and denote by
HC(T.,λ) the set of its hypercyclic vectors:

HC((T.,λ)) = {x ∈ X; (Tn,λx)n≥0 is dense in X}.
It is natural to study the structure of

⋂
λ∈I HC(T.,λ). Is

⋂
λ∈I HC(T.,λ) non-

empty? Does it contain a dense Gδ set? Does it contain a dense subspace?
The first positive answer was given by E. Abakumov and J. Gordon who
proved that

⋂
λ>1 HC(λB) 6= ∅, where B is the backward shift on `2.

To proceed further, it is convenient to introduce the following

Definition 2. Let (Tn,λ)n∈N, λ∈I be a family of sequences of operators
on X, I being an interval of the real line. We say that the family satisfies
(CHC), the common hypercyclic criterion, provided there exists a family of
operators (Sn,λ)n∈N,λ∈I with Tn,λ ◦ Sn,λ = IdX , and a sequence (xj) dense
in X such that:

(1) Given a compact setK ⊂ I and an integer n0, there exists a sequence
(ck) of positive numbers with:

(a)
∑
ck <∞.

(b) ‖Tn+k,λSn,α(xj)‖ ≤ ck for any n, k ≥ 0, and λ, α ∈ K, λ ≥ α.
(c) ‖Tn,λSn+k,α(xj)‖ ≤ ck for any n, k ≥ 0, and λ, α ∈ K, λ ≤ α.

(d) ‖Tk,λSn0,α(xj)‖ k→∞−−−→ 0 for λ, α ∈ K, uniformly in λ.
(e) ‖Tn,λSn+k,α(xj)‖ ≤ ck for any k ≥ 0, n ≤ n0 and λ, α ∈ K.

(2) Given ε > 0 and a compact set K ⊂ I, there exists δ = δ(ε, xj,K)
such that

|λ− α| ≤ δ/n ⇒ ‖Tn,λSn,α(xj)− xj‖ ≤ ε.
In [CS], it is proved that if (Tn,λ) satisfies (CHC), then

⋂
λ∈I HC(T.,λ)

contains a residual set (actually, this is done under slightly weaker assump-
tions). In [Ba2], it is proved that, if (Tn,λ) satisfies (CHC), if each Tn,λ can
be written, for λ fixed, as a power of a single operator, Tn,λ = Tnλ , if X is a
Banach space and if there exists a closed infinite-dimensional subspace M
of X such that, for every vector x in M and every λ ∈ I, ‖T nλ x‖ → 0 as
n → ∞, then there exists a closed infinite-dimensional subspace X0 ⊂ X
such that X0 \ {0} ⊂

⋂
λ∈I HC(T.,λ).

Here, we prove the algebraic genericity.

Theorem 7. If X is a Banach space, and if (Tn,λ) is a family of oper-
ators acting on X and satisfying (CHC), then there exists a dense subspace
X0 ⊂ X such that

X0 \ {0} ⊂
⋂

λ∈I
HC(T.,λ).
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Proof. In [CS], the existence of a common hypercyclic vector is shown
by using a Baire category argument. Here, we need more than a common
hypercyclic vector: we have to control how it approaches zero and any vector.
Baire’s method is not accurate enough, and our proof is constructive. First,
fix an increasing sequence of compact sets Kk ⊂ I such that I =

⋃
k≥1Kk.

For l ≥ k ≥ 1, we build vectors zk(l) and blocks of integers Γk,l such that:

• zl(l) is close to xl:

‖zl(l)− xl‖ < 1/2l.(8)

• ∀l ≥ 1, ∀k ≤ l, ∀λ ∈ Kl, ∃n = n(l, k, λ) ∈ Γk,l such that

(9) ‖Tn,λzk(l)− xl‖ < 1/2l,

(10)
∑

j<l

‖Tn,λzk(j)‖ < 1/2l,

(11) ∀m < k,
∑

j≤l
‖Tn,λzm(j)‖ < 1/2l.

• ∀l ≥ 1, ∀m < l, ∀λ ∈ Kl, ∀n ≤ max1≤j<l, 1≤r≤j Γr,j ,

‖Tn,λzm(l)‖ < 1

2l+1
.(12)

One easily deduces Theorem 7 from the existence of such sequences. Indeed,
set

zk =
∑

l≥k
zk(l).

By (8) and (12), applied to n = 0, zk is well defined and the sequence
(zk)k≥1 is dense in X. We define X0 = span(zk; k ≥ 1), and we claim that
every vector z = a1z1 + · · · + akzk ∈ X0 with ak = 1 is hypercyclic for the
family (Tn,λ)n≥0, for any λ ∈ I. Indeed, fix λ ∈ I and l0 > k such that
l ≥ l0 ⇒ λ ∈ Kl. To any l ≥ l0, one can associate n = n(l, k, λ) ∈ Γk,l such
that (9)–(11) are simultaneously true. On the other hand,

‖Tn,λz − xl‖ ≤ ‖Tn,λzk(l)− xl‖

+
l−1∑

j=k

‖Tn,λzk(j)‖+
∞∑

j=l+1

‖Tn,λzk(j)‖

+
k−1∑

m=1

|am|
( l∑

j=m

‖Tn,λzm(j)‖+
∞∑

j=l+1

‖Tn,λzm(j)‖
)
.

Now, the following inequalities hold:

• ‖Tn,λzk(l)− xl‖ < 1/2l, by (9).
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•
l−1∑

j=k

‖Tn,λzk(j)‖ < 1/2l, by (10).

•
l∑

j=m

‖Tn,λzm(j)‖ < 1/2l for m < k, by (11).

•
∞∑

j=l+1

‖Tn,λzm(j)‖ < 1/2l for m ≤ k, by (12).

Finally, for any ε > 0, we can choose l0 large enough to get

l ≥ l0 ⇒ ‖Tn,λz − xl‖ < ε.

Since the sequence (xl)l≥l0 remains dense, z ∈ ⋂λ∈I HC(T.,λ).
It remains to build zk(l) and Γk,l, for 1 ≤ k ≤ l. We proceed by induction

on l.

Step 1. It is enough to take z1(1) = x1, and Γ1,1 = {0}.
Step l. We assume that vectors zr(j) and blocks of integers Γr,j have

been built in the previous steps, with the property that each zr(j) is a (finite)
linear combination of Sn,α(xj), with n ∈ Γr,j . Set n0 = max1≤j<l, 1≤r≤j Γr,j .
Let (cn) be the sequence introduced in Definition 2, for the parameters xl,
Kl = [a, b] and n0. Observe that, by (CHC)(1)(d), since z1(j) is a linear
combination of Sn,α(xj), we have

∀λ ∈ Kl, ∀j ≤ l − 1, ‖Tn,λz1(j)‖ → 0

as n → ∞, uniformly in λ ∈ Kl. Therefore it is possible to find an integer
u > n0 such that

∀n ≥ u, ∀λ ∈ Kl,
∑

j<l

‖Tn,λz1(j)‖ < 1/2l(13)

and
∑

v≥u−n0

cv < 1/2l+2.(14)

We fix δ = δ(1/2l+1, xl,Kl) and consider a subdivision a = α0 < α1 < · · · <
αm = b of Kl with

αi+1 − αi ≤
δ

u(i+ 1)
.

This is always possible, for instance by choosing α0 = a, α1 = a + δ/u,
α2 = α1 + δ/2u, . . . . Finally, we set

z1(l) = Su,α0(xl) + · · ·+ Smu,αm−1(xl), Γ1,l = {u, 2u, . . . ,mu}.
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For any λ ∈ Kl, take j ∈ {0, . . . ,m− 1} such that αj ≤ λ ≤ αj+1. Then

‖T(j+1)u,λz1(l)− xl‖ ≤
∑

1≤r≤j
‖T(j+1)u,λSru,αr−1(xl)‖

+ ‖T(j+1)u,λS(j+1)u,αj(xl)− xl‖
+

∑

j+1<r≤m
‖T(j+1)u,λSru,αr−1(xl)‖

≤ cju + · · ·+ cu +
1

2l+1
+ cu + · · ·+ c(m−j−1)u

≤ 1/2l,

where we used (CHC)(1)(b), (CHC)(1)(c) and (CHC)(2). This proves (9)
for k = 1. Moreover, (10) is simultaneously true, thanks to the choice of u
(see (13)). By the way, for n ≤ max1≤j<l, 1≤r≤j Γr,j one has

‖Tn,λz1(l)‖ ≤ ‖Tn,λS(u−n)+n,α0
(xl)‖+ · · ·+ ‖Tn,λS(mu−n)+n,αm−1

(xl)‖
≤ cu−n + · · ·+ cmu−n ≤ 1/2l+1.

So, (12) is proved. By induction, the same construction works for 1 ≤ k < l.
The only difference is that we force the integer u to satisfy, in addition to
conditions like (13) and (14), the following one:

∀λ ∈ Kl, ∀n ≥ u, ∀m < k,
∑

j≤l
‖Tn,λzm(j)‖ < 1/2k.

This is always possible, once more thanks to (CHC)(1)(d), and condition
(11) is also satisfied. For k = l, we slightly diverge by setting

zl(l) = xl + Su,α0(xl) + · · ·+ Smu,αm−1(xl),

which ensures that (8) is satisfied. The rest of the proof is unchanged.

Example. Let dµ be the measure dt/(1 + t2) on the real line. For λ > 1,
we define the operator

Tλ : L2(R, dµ)→ L2(R, dµ), f(x) 7→ f(λx).

It is proved in [Ba2] that the family (Tλ)λ>1 satisfies (CHC). It follows
from Theorem 7 that there exists a dense subspace of L2(R, dµ) consisting
entirely, except for 0, of vectors that are hypercyclic for each Tλ.

Acknowledgements. I thank Prof. V. Nestoridis and Prof. H. Queffélec
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verselles au sens de Menchoff , J. Math. Pures Appl. 79 (2000), 855–862.
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