STUDIA MATHEMATICA 152 (1) (2002)

Bounded and unbounded operators between Kothe spaces
by

P. B. DiakoV (Sofia) and M. S. RAMANUJAN (Ann Arbor, MI)

Abstract. We study in terms of corresponding Kéthe matrices when every continu-
ous linear operator between two Kothe spaces is bounded, the consequences of the exis-
tence of unbounded continuous linear operators, and related topics.

1. Introduction. If a = (a;y) and b = (bj,) are Kéthe matrices we
denote by K(a) and K(b) the Kéthe spaces defined by a and b. As usual,
L(K(a), K(b)) and LB(K(a),K (b)) denote, respectively, the space of all
continuous linear operators and the space of all bounded continuous linear
operators from K (a) to K(b). Our aim here is to characterize in terms of
the matrices a and b when

L(K(a), K(b)) = LB(K(a), K(b)),

and to study the consequences of the existence of unbounded continuous linear
operators between K (a) and K (b). The same questions were studied by many
mathematicians; here we mention only some results that inspired our work.

Zahariuta [18, 19] discovered that if the matrices @ and b satisfy con-
ditions do and dj, respectively, then each continuous linear operator from
K(a) to K(b) is bounded.

This phenomenon was studied later by many authors (see, e.g., [1, 4—
9, 12, 14]); comprehensive results were obtained by Vogt [17] not only for
Kothe spaces but also for the general case of Fréchet spaces (for further
generalizations see also [2, 3]).

On the other hand Nurlu and Terzioglu [15] proved (under some condi-
tions) that the existence of unbounded continuous linear operators between
nuclear Kéthe spaces K(a) and K (b) implies the existence of a common
basic subspace of K(a) and K (b).
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Our present research is highly influenced by the papers of Krone [10],
Nurlu and Terzioglu [15] and Vogt [17]. We sharpen some results of Nurlu
and Terzioglu by proving analogous statements without the nuclearity as-
sumption. Modifying a construction of Krone [10] we consider a class of
Ko6the spaces that generalizes not only infinite type power series spaces, but
also Dragilev spaces of infinite type, and extend Theorems 3.2 and 5.2 of
[17]. It seems to us that in this more general setting it is easier to see the
role of various linear topological invariants.

2. General results on Kothe spaces. We consider only ¢1-K&the
spaces; if (anp)p,—; is a Kdthe matrix we denote by K'(anp) the correspond-
ing Kothe sequence space, that is,

K (any) = {# = (wa) : |aly = Y l#nlan, < 00 ¥p}.

Equipped with the system of seminorms ||z, p = 1,2,..., K(anp) is a
Fréchet space.

As usual, we denote by {e, : n =1,2,...} the canonical basis of K (any),
that is, e, = (dpr)32; then obviously |le,||, = anp for all n, p. We associate
with each infinite subset {e,, : n € N; C N} of the canonical basis the
corresponding basic subspace, that is, the closed linear span [e, : n € Ny].
If (n;) is a strictly increasing sequence such that {nq,ne,...} = Njp, then
we may identify the corresponding basic subspace with the Koéthe space
K(anp)-

Recall that an operator T': K(aynp) — K (bpg) is bounded if and only if

(2.1) dpo Vg 3C, : || Tenllq < Cyllenllps  Vn.

An operator T : K (anp) — K (bpg) is called quasi-diagonal if it satisfies
(2.2) T(en) = themn), m(-): N —N.

Dragilev [5] and Nurlu [13] proved that if X and Y are nuclear Kéthe
spaces and there exists a continuous linear unbounded operator 7' : X — Y,

then there exists a continuous unbounded quasi-diagonal operator D : X —
Y. We sharpen that result by omitting the nuclearity condition:

PROPOSITION 1. If K(anp) and K (byy) are Kéthe spaces such that there
ezists a continuous linear unbounded operator T : K(anp) — K (bgp), then
there exists a continuous unbounded quasi-diagonal operator D : K (any,) —
K (bip).

Proof. Since T is continuous and unbounded, we may assume that

(2.3 ITal, <27lzl, Vo € Klan), p=1,2,...,
T
(2.4) supm:oo, p=12,...
n llenllp
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Indeed, one may achieve (2.3) and (2.4) by using appropriate multipliers
and passing to a subsequence of seminorms, if necessary.

Let (p;) be a sequence of integers in which each p € N appears infinitely
many times. In view of (2.4) we may choose inductively a subsequence n; <
ng < ... such that

>2 V.
llen; [Ip;

Let Te,, = ). tnk€r; then by (2.3) we have

Z’tnk\sup [eklly Z’tn ’Z ’!eka Z | Tenlly

Hp ||p ||€an

Thus, for each j=12,..., we obtaln in view of (2. 5)

ek || ekllp;+1
Z’tn] |Sup H ||p <1<2° jz’tn] Hne=slipjr1

llen; 1o len;llp;

hence there exists a k; such that

||gkj||p —J ‘|gkj||pj+l

Aj 1= sup

len; 1, — len;lln; -
Consider the quasi-diagonal operator D : K (ayp) — K (byp) defined by

Den].:)\j_lfevkj, j=12,..., De,=0 ifn#n,.

Since
1Den; llp = A5 ek o < lewsllp Vo,
the operator D is continuous. In addition, D is unbounded, because if p is
fixed, then for some subsequence (j;) we have p;, =p, s =1,2,..., so by
(2.4),
| Dens, lpe1/llen, lp = 2% — 00 ass — oc. u

The next theorem gives a necessary and sufficient condition for
L(K(a), K(b)) = LB(K(a), K(b))

in terms of the Kothe matrices a = (as) and b = (byy). Formally this
condition coincides with the one given by Vogt (see [17], Satz 1.5), but
there it is assumed that the second Kothe space is regarded with (weighted)
l-norms instead of the usual ¢1-norms. So, in the case where the space
K(b) is nuclear the next theorem follows from that result of Vogt, since
then the systems of {.-norms and ¢;-norms in K(b) are equivalent. But in
the general case, when the Ko6the space K(b) is not nuclear, the theorem
does not follow from Vogt’s result.

THEOREM 2. If K(a) and K(b) are Kdthe spaces then
L(K(a), K(b)) = LB(K(a), K(b))
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if and only if

(2.6) Vp(q)Too 3k Vr Jqo, C : bur < (C max

Qik 1<q<qo @

Vi, V.
ip(q)

Proof. In view of Proposition 1 it is enough to prove the claim for quasi-
diagonal operators. Suppose (2.6) holds and 7" : K(a) — K (b) is a contin-
uous quasi-diagonal operator defined by T'(e;) = t;€,(;), i € Z4. Since T is
continuous there exists an increasing sequence p(q) T oo such that

||T6i||q _ |ti|bu(z’)q
7 ||ei||p(q) i Qip(q)

Thus by (2.6) there exists a k such that for every r there exist ¢o and C
with

= (Cy < 0.

L bl/ r ti bV 7
ip(q) 1<g<qo

Ak 1<¢<q0 a

so the operator T' is bounded.
Conversely, suppose that condition (2.6) does not hold. Then

Ip(q)Too Yk Ir Vn € N Jip, vy, - Ovar > n max by—"q,
a;.k 1<g<n ainp(q)
where the sequences (i,) = (in(k)) and (v,) = (vn(k)) depend on k.

There exist new sequences (for convenience we use the same notations
(in) and (v,)) such that the sequence (i,,) is strictly increasing and for each
k there exists a subsequence (n;) with i,, = in;(k), vn; = v, (k) for all j.
Indeed, to obtain such a sequence (i,) one may choose an element from
the first sequence (in(1)), say i1 = ix, (1), then an element from the sec-
ond sequence (i,(2)), say ia = ix,(2) > i1, then again an element from
the first sequence i3 = ig,(1) > ig, after that from the second sequence
g = i,(2) > i3, then from the third sequence i5s = iy, (3) > i4, and af-
ter that again return to choose an element from the first sequence, and so
on.

So, briefly, we may describe the construction as follows. Suppose N =
s Bs, where each subset Bj is infinite; then we choose consecutively ele-
ments i, = i, (s) and v, = vy, (s) for n € By so that iy, > i5_1.

Consider the quasi-diagonal operator T : K(a) — K(b) defined by

Te; =0 fori 7£ in, Tein - tngl’”’

where
anq

tY_Ll = max
1<g<n G, p(q)

By the choice of the constants t,, the operator T' is continuous. On the other
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hand for each k there exists rj, such that for some subsequence (n;) we have
tnjbunjrk/ain].k > nj,
hence the operator T is unbounded. =

Following [11] we say that an ordered pair (K (b), K(a)) of Kothe spaces
satisfies condition S if

(2.7) Vp dq,k Vs, l dr,C : bims < C'max <%, %>
Qnk Qpp  Qpl

We say that Kothe spaces K (a) and K (b) have a common basic subspace
if there exists a quasi-diagonal operator T': X — Y such that the restriction
of T to some infinite-dimensional basic subspace of X is an isomorphism.

Our next proposition sharpens Proposition 3 of [15]. We prove a sim-
ilar claim but without the nuclearity assumption. In addition, we require
a weaker assumption on the pair of Kothe spaces: condition .S instead of
Apiola’s splitting condition used in [15].

PROPOSITION 3. If a pair (K(b), K(a)) of Kithe spaces satisfies condi-
tion S and there exists a continuous unbounded operator T : K(a) — K(b),
then K(a) and K(b) have a common basic subspace.

Proof. Let (e;)ieny and (€;)ien be, respectively, the canonical bases in
K (a) and K (b). In view of Proposition 1 we may assume that there exists a
continuous unbounded quasi-diagonal operator 1" : K (a) — K (b) given by

In addition we may assume that the mapping j(i) is injective. Otherwise,
since T is unbounded, there exists an infinite subset N7 of indices such that
the restriction of j(i) to N is injective and the restriction of T" to the basic
subspace Fp generated by e;, ¢ € Ni, is unbounded. So, one may consider
E; instead of K(a).

Observe that if there exist sequences (py) and (qx) with pp — oo, and
infinite sets N1 D No D ... of indices 7 such that

(2.8) ITeillg. = lleillpe Vi€ N,

then the claim holds. Indeed, choose a sequence (iy) with i T co and i, € Ny
for all k, and let E be the basic subspace generated by {e;, : k= 1,2,...}
Then, since the operator T' is quasi-diagonal, T'(F) is a basic subspace of
K(b), and (2.8) shows that 7" maps E isomorphically onto T'(E).

Let us try to construct (pg), (¢x) and Ny so that (2.7) holds with p = py
and ¢ = g, and

Ny, = {Z € Ng—1: ”TGNH% > Heank}v
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where Ng = N. We can choose p; in an arbitrary way and assume that q;
is chosen so that supy [|T'e;||q, /||€il|p, = 0o and (2.7) holds with p = p; and
q = q1. Then the set N is obviously infinite.

If the restriction of T to the basic subspace En, = [e; : ¢ € Njp]
is unbounded, then we can take any ps > p; and choose a g2 so that
supy, |T¢illq./ll€illp, = oo and (2.7) holds with p = ps and ¢ = ¢2. Then
the set

Ny ={i € Ny :[|Teillg, = lleillp. }

will be infinite.

Obviously one can proceed by induction, provided at each step the re-
striction of the operator T to the corresponding basic subspace En, = [e; :
i € Ni] is unbounded.

Otherwise, there exists kg > 1 such that the restriction of T to ENkO is
bounded, while the restriction of T' to E]\fko_1 is unbounded. Consider the
set
(2.9) Mo = Niy—1\ Ny = {i € Nig—1: [ Teillgo < lleillpo},

where pg = pr,, 90 = qx,- Then the restriction of the operator 1" to Epy, =
[ei i € Mp] is unbounded.
Since (K (b), K(a)) € S we have

Te;|ls Te; Te;ills
(210) T Vs 3s,c: LGl Scmax(u illgy ITei] )

leillr leillpo ™ lellr

Choose s; so that
sup{[|T€ils, /ll€illr, : i € Mo} = oo.

Then there exists a sequence (4,)52 4, i, € My, such that

T .
(2.11) ITeillss o) ) Z 19,
e, [r,
Consider the basic subspace E = [e;, : v = 1,2,...]. Take an arbitrary r

and choose s so that (2.10) holds. By (2.9) we have ||Te;, ||/l €illpo < 1,
so from (2.10) and (2.11) it follows that

Vr 3s: e llr < ||Tei,lls forv>C.
This means that the operator T~! maps continuously 7'(E) onto E, hence
the basic subspaces F and T'(F) are isomorphic. m
3. Properties of Kothe spaces Kp(a)

1. In this section we consider a wide class of Kéthe spaces that includes,
in particular, infinite type power series spaces and Dragilev spaces of infinite
type. We define that class by slightly modifying a construction due to Krone
[10].
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Suppose
F:(Fp)gozlv Fp:(oaoo)ﬁ(oﬂoox

is a family of increasing unbounded functions such that F,(t) < Fpq(t).

For any increasing sequence o = (o;)32, of positive numbers with a; T oo
we denote by Kr(«) the Kothe space defined by the matrix

ajp = Fp(ay), j.p €N

In addition, we always require the following growth conditions:
(3.1) Vp Epl, Cl : tFp(t) § ClFm (t), t Z 1,
(32) Vp, L E|p2, CQ . Fp<FL<t)) < CQFp2(t), t> 1.

If = (F,) and G = (G,) are two families of functions we say that F
dominates G and write G < F if

Vg 3dp,C: Gy(t) < CFy(t), t>1.

The families F' and G are said to be equivalent if ¥ < G and G < F.
Obviously, if F' and G are equivalent then Kp(a) ~ Kg(a).

It is easy to see that for every sequence of functions with (3.1) and
(3.2) one may obtain (by using appropriate multipliers and passing to a
subsequence) an equivalent family satisfying the following conditions:

(3.3) Vp: 1 <tE,(t) < Fpi(t), t>1,
(3.4) Vp,L 3pa = Fp(FL(t)) < Fp(t), t>1.

Since in the following we are interested in some relations involving F' that
are invariant under equivalence we may think that (3.3) and (3.4) hold.

REMARK. We can always think, if necessary, that the family F' = (F))
is defined for p € [1, 00) by setting in case p is not a whole number

Fy(t) = Fy o (t) - Figa (8),

where [p] means the integer part of p and @ = p — [p|. Let us mention,
however, that in the most interesting examples F}, is “naturally” defined for
p € [1,00). For example, consider the family of power functions F(t) = tP.

2. Characterization of L(Kp(«), K(a)) = LB(Kp(a), K(a)). The space
Kp(«) is called shift-stable if

(3.5) Vp3p1,j: Fylaj) < Fpl(aj), j>7.

We say that a Kéthe space K (a) has property LBpr(K) and write K (a) €
LBp(K) if

(3.6) V7(p)Too 3k Vpo 3Py, D > 0 Vi Ip € (po, P) :

F‘r(p) (%) <D %'

aif Aipg
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THEOREM 4. If Kp(«) is shift-stable, then the following conditions are
equivalent:

(i) Fach continuous linear operator from Kp(«) into K(a) is bounded.
(ii) K(a) € LBp(K).

Proof. One can easily see that if F' < G then LBg(K)=LBp(K). There-
fore if F' and G are equivalent then properties LBp(K) and LBg(K) are
also equivalent, so we can assume that (3.3) and (3.4) hold.

By Theorem 2 condition (i) is equivalent to

a;
3.7) Vo(p)loo Ik Vpy 3Py, C: —2 _ < (C max —2—.
(3.7) (®) 00 Foy(aj) 1<p<Py Fy(p)(j)

So, it is enough to prove that (3.6) and (3.7) are equivalent. Observe that

we may consider in (3.7) only “large” indices j such that Fi(a;) > 1.
(3.7)=(3.6). Fix 7(p) 1 oo and choose o(p) T oo so that

(38) VL Jpg : FL(t) ’ FT(p) (FL(t)) < Fa(p) (t) Vp > pr.

Such a choice is possible. Indeed, by the growth conditions (3.3) and (3.4),

VL 371(p) T 00,0(p) T oo :
Fi(t) - Frp) (FL()) < Fry ) (FL(1)) < Fop(8) - Vp.
In addition, we may assume that if L; < Ly then o, (p) < or,(p). Take
o(p) = op(p); then
VL: Fy () < Fypy(t) forp> L.

Now for o(p) as in (3.8) there exists a k such that (3.7) holds. We shall
show that (3.6) holds with that k. By shift stability (3.5),

Aip

(3.9) 3Ly, g1 Fagylajn) < Fry () for j > ji.
Fix by (3.3) a constant L so that
(3.10) tFLl(t) SFL(t), t > 1.

Obviously, it is enough to prove (3.6) for “large” pg. Fix a po>max(k, pr.),
where pr, is the constant from (3.8); then (3.7) holds with some Py and
C > 1. Choose j > ji so that ¢; > C. Then from (3.9) and (3.10) it follows
that _

(3.11) CFo(ajp1) < Fr(ag)  for j = j.

Observe that there exists a jg such that if j > jo then the maximum in
(3.7) occurs for p € [1, k] U (po, Po]. Indeed, otherwise there exist sequences
(Jv), (iv), (py) with p, € (k,po] and j, — oo such that (in view of (3.3))

1< Qj,,po < Fa(k) (ijy)

aiupu U(pu)(aju)

—0 asv— oo,

which is impossible.
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Choose a jo with the above property so that jo > j and Fi(aj,) > 1. Fix
an 7; then one of the following two cases can occur:
Case I: ajpy/ai; < CFyy(,). Then

a;
FT<p>( m) < Fr () (CFp ) (o)

ik
and (3.6) holds with

D= pogll?SXPo FT(p) (CFa(k) (ajo))'
Case 2: aipy/aix > CFyq)(ay,). Then, since F, ) (ay) T oo, there exists
J = jo such that

(3.12) CFyr) () < aipy/aix < CFygy(ajy1).

Observe that the maximum in (3.7) does not occur for p € [1, k] because
otherwise

. ) F, .
CFy () (aj) < ivo < o o Ci(k)(aj)

Qik Qip Fa(p) (ij)

< CFU(k) (aj)a

which is impossible. Therefore the maximum occurs for some p € (po, Pol,

that is,
Fop) () < ¢ Yir
Fo(k)(aj) S Qi

By (3.11) the right inequality in (3.12) implies

(3.13)

(3.14) Livo < Fy (o).
ik
Therefore (since j > jo > j), from (3.8), (3.11) and (3.13) it follows that
a; Fo )(043‘) a;
) < aik o (Frle) Foy(ay) —  aipg

hence (3.6) holds with D = C.
(3.6)=(3.7). Take 7(-) = o(-); then there exists a k such that (3.6) holds.
Choose k by (3.3) so that

tFU(k)(t) < FJ(E)(t)7 t>1.

Fix any pg and choose Py > k and D so that (3.6) holds; then (3.7) also

holds with k,pg, Py. Indeed, for every pair (7,j) one of the following two
cases can OCCUr:
y Lo ®\9) i T\ ) a
Foy(oy) = ai’ Fomy (o) — air
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In case (a),
Qipo ik Qip
< max ——,
Foiy(ag) — Fomylag) ~ 1=p=h Fop) (@)
thus (3.7) holds with C' = 1.

S aip() .
ik

If (b) occurs we have, by the choice of k,
. FO'(E) (Oéj)
T Fyu(ay)
So from (3.6) it follows that, for some p € [po, Pol,
Fo(p)(aj) (ai ) Q;
—— < Fypy(ay) < F %) <D*%,
Flag) =~ Low) = Fowm o e
hence (3.7) holds with C' = D. =
3. Let F' = (F,) and G = (Gy,) be two families of increasing functions
that satisfy the growth conditions (3.1) and (3.2). Krone [10] showed (as-
suming nuclearity) that if two spaces of the kind Kp(«a) and Kg(5) have
no common basic subspace then the relations (Kr(a), Kg(f)) € S and
L(Kg(B),Kr(a)) = LB(Kg(8), Krp(a)) are equivalent. Using Theorem 4
we provide another approach to Krone’s result that allows us to remove the
nuclearity assumption.
We say that a Kothe space K (a) has property DNp(K) and write K (a) €
DNp(K) if

(3.15) Hpo Vpl VFTL E|p2, 01 >0: Fn(aim) S Cl aim.
Qipy Gipy
It is easy to see by (3.1) and (3.2) that Kp(a) € DNp(K) and that
(3.16) LBp(K) = DNp(K).

We say that a Koéthe space K (b) has property 2¢(K) and write K(b) €
2¢(K) if

b; b.
(3.17) Vo g1 Vo 3G, Co > 0 22 < 0@, <j_q1>

It is easy to see by (3.1) and (3.2) that Kg(8) € Q2¢(K).

PROPOSITION 5. If K(a) € DNp(K) and K(b) € 2¢(K), where G < F,
then (K(a), K(b)) € S.

Proof. We are to prove

(3.18)  Ygo Ipo, q1 Yp1,q2 Ip2,C: ai# < C'max (Z%po, Z%p2>~

jq1 jgo  Ojge
Fix an arbitrary index qo; then choose py from (3.15) and ¢; from (3.17);
after that fix arbitrary indices p1, q2.
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Consider an arbitrary pair (4, 7). If aip, /bjq; < @ipy/bjqo, then (3.18)
holds with C' = 1. Otherwise we have

bigr _ Gipy
bjqo Gipg

As K(b) € 2g(K) there exists a Gy, such that (3.17) holds. Since the

family F' dominates G there exists an n such that G,,(t) < C3F,(t), and

since K(a) € DN there exists a pa such that (3.15) holds. Therefore
ib]ﬁ < Gm <b]i> < Gm<aipl> < Can<aip1> < 0301 Qipy )
Cs bjg, bjqo Qipg Qipg Qipy

Hence aip, /bjq, < Caip,/bjq, with C' = C1C2C3, that is, (3.18) holds. =

REMARK. Observe that the assertion of the proposition holds when
F = @ since each family dominates itself. Moreover, it was enough to prove
the proposition only when F' = G because if G < F then K(a) € DNp(K)
implies K (a) € DNg(K).

PROPOSITION 6. If we have L(Kq(B),Kr(a)) = LB(Kq(f), Kr(a)),
then (Kr(a), Kq(B)) € S.

Proof. 1If each continuous linear operator from Kg(3) into Kp(«) is
bounded then by Theorem 4 the space Kp(«) has property LBg(K), so
Kr(a) € DNg(K) by (3.16). Now (Kr(a), Kg(8)) € S by Proposition 5
because the first space satisfies DNg(K) and the second satisfies 2¢(K). m

Krone [10] obtained Proposition 6 with the additional assumption of
nuclearity. Combining Propositions 6 and 3 results in the following statement
(also due to Krone [10] in the nuclear case):

PROPOSITION 7. If the spaces Kp(«) and Kg(B3) have no common basic
subspaces then

L(Ka(B), Kr(a)) = LB(Kg(3), Kr(a))
if and only if
(Kr(a), Kg(B)) € S.

4. Characterization of L(K(a),Kp(a)) = LB(K(a),Kr(a)). We say
that a Kothe space K (a) has property LBY (K) and write K (a) € LB (K)
if

(3.19)  V7(p) T o0 Vp1 Tk Vpo 3Py, D > 0 Vi Ip € (po, Po) :

Qip Al
—~Y < DF .
aik T(p)(az‘p)

THEOREM 8. If Kr(«) is shift-stable, then the following conditions are
equivalent:
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(i) L(K(a), Kp(a)) = LB(K(a), Kp(a)).
(ii) K(a) € LBY(K).

Proof. We may assume that the family I satisfies the growth conditions
(3.3) and (3.4) because (i) and (ii) are invariant conditions and would not
change if we replace F' by an equivalent family.

(i)=(ii). By Theorem 2 condition (i) is equivalent to

(3:20) Vo(p)Too 3k po 3P, 0 > 10 12000 < o g Frl00)

Qig (k) 1<p<R Qg (p)

It is easy to see that (3.20) is equivalent to
(3.21)  V7(p) T oo 3k Vpo 3Py, C > 1:
FT(p) (aj)

F .
Wik 1<p<Py  ajp
Therefore it is enough to prove that (3.21) implies (3.19) with the same 7(-).
By shift stability and the growth conditions (3.3) and (3.4) there exist L > 0
and 7 > 1 such that

(3:22) aj < Fr(ay) < Fr(aj1), =7

We can always think that ; is so large that o;_1 > 1 for j > 3

It is enough to show that (3.19) holds with p; = 1 and k£ > 1 coming
from (3.21). One can easily see by (3.3) and (3.4) that there exists p > k
such that
(323) CFL(t)FT(k—I)(t) < FT(f)) (t)a t>1,

where C'is the constant from (3.21).

It is enough to prove (3.19) for “large” pg such that 7(pp—1) < 7(po). Fix

po > P. Next choose a jo > j so that if j > jo then the maximum in (3.21)

occurs for p € [1,k — 1] U [po, Py]. Such an index jj exists because otherwise

there would exist sequences (j,), (iv), (py) such that j, T oo, p, € [k, po),
and

| < Y~ o Frwn(25)

T oaik T Frgylag,)

— 0,

which is impossible.
If for some j the maximum in (3.21) occurs for p € [1,k — 1] then

(324) T(pO)(a]) S T(pO)(aJ) S C % S C %
Frg1y(oy) = Frp)(ay) Qip ai1
Therefore, if for some j > jyo we have
FT (0% 4
(3.25) Lo (9) o
Frr-1)(aj) ai1

then the maximum in (3.21) occurs for p € [po, Po].
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Fix an 7; then we have the following two cases:
Case 1. The inequality (3.25) holds with j = jo. Then the maximum in
(3.21) (with j = jp and the fixed i) occurs for some p € [pg, Py, so

4 F , _ _ ,
Gip <C () (o) <00 < CCFT(p)<%>,
i~ Frpg) (o) ai1
where
C = max —FT(p)(ajO) :
po<p<Po Fr(po) ()
Thus (3.19) holds with D = CC.
Case 2. If (3.25) fails for j = jo then (since Fr(p,) () /Fr—1)(a;) — 00
as j — 00) there exists j > jo such that
Frp(@5-1) _ paiw - Frpo(@s)
Fre—1)(aj-1) air  Frp-1)(aj)
Since the right inequality in (3.26) coincides with (3.25) the maximum in
(3.21) occurs for some p € [po, Po.

On the other hand by (3.22), (3.23) and the left inequality in (3.26) we
obtain (since j > jo > j)

(3.26)

Qi
] = )
a;1

therefore from (3.21) it follows that for some p € [po, Po],
Qip FT(p) (aj) <azk>
Yip « o 2101 op () < OF. [ 25,
ae —  Frpg(ag) — (@) < Ol ai1
so (3.19) holds with D = C.
In order to prove that (ii)=-(i) we shall check that (3.19) implies

(3.27)  Vo(p) 1 oo Jk Vpg P, C > 1:
Fy (o) () < ¢ max Fy ()
aip 1<p<R aip

Fix o(p) 1 oo and take an arbitrary pg. Then choose 7(p) so that

(3.28) Fg(po)(t) : Fr(p) [Fg(po) (t)} < Fg(p)(t), t>1.

Such a choice is possible. In order to see that, we can regard o(-) and 7(-)
as bijections mapping the interval [1, 00) into itself. We can also think that
the family f = (F}) is defined for the “continuous” parameter p € [1,00) so
that the growth conditions (3.3) and (3.4) hold.

Now put L = o(pg) and ¢ = 7(p). Then we have to find 7 such that

Fr(t) - Fy(FL(1)) < Foz-1(¢)) (1)-
By (3.3) and (3.4) there exists 11(q) such that

Fr(t) - Fo(FL(t) < Fug(),
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so it is enough to have

Fiua)(8) < For=1(9)) (1)-
That inequality will hold if u(q) < o(771(q)), or equivalently o= (u(q)) <

771(q). Thus, choosing 7! so that the latter condition holds we obtai;
(3.28).

Fix a pair (¢, 7). Either
ik/ain > Fyp) () Fo(ny(ay),
then obviously (3.27) holds, or
ai/air < Fppg) () /Foqry (@)
Then by (3.19) with p; = 1 and (3.28) we obtain, with some p € [po, Po],

)

Qip Fa(p) (ij)
P~ N < _o\WWANTI
air DF"'(I)) [Fa(po)(a])] = D Fo(po) (aj)

that is, (3.27) holds with C = D.

4. Examples and comments
1. Consider the family of power functions
Ft) =t p>1.
Obviously the growth conditions (3.3) and (3.4) hold. For each sequence
a = (oj), aj >0, aj — 00, we have

ajp = Fy(oy) =l =P, 8 =logay,
so the corresponding Kothe space Kp(«) coincides with an infinite type

power series space, namely

Kp(a) = Ax(B), B = (8)).

2. More generally, let f : (0,00) — (0,00) be a continuous strictly in-
creasing function; then =1 : (0,00) — (0, 00) is also continuous and strictly
increasing. Consider the family

Fp(t):expofopof*lolog(t)7 p>1,¢t>1.

(One can define Fj,(t) for t € (0,1] in an arbitrary way because the values of
F,(t) on that interval determine only the norms on some finite-dimensional
subspace.)

Since F), o F},, = F),;,, the growth condition (3.4) holds. It is easy to
see that (3.3) would hold if the function f satisfies

(4.1) de>1,p>1: cf(t) < f(pt).
Indeed, (4.1) implies immediately
(4.2) I 2f(@) < f(p),
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thus
Fy(t) = exp{f[pf " (log t)]} > exp{2f[f " (logt)]} = t*.
Since F(t) = t we obtain, for any p,
LFy(t) = FL(O)Fp(t) < (Fy(t)® < Fy(Fp(t)) = Fypl),
0 (3.3) holds.
For each sequence a = (), a;j > 1, aj — o0, we have

ajp = Fplay) = /0%, g = [~ (logay),
so K («a) coincides with the Dragilev space of infinite type generated by the
function f and the sequence 3. Usually in the definition of Dragilev spaces
it is supposed that f is a logarithmically convex function (that is, log f(e*)
is a convex function). Then condition (4.1) holds because the logarithmic
convexity of f implies that f(pt)/f(t) is an increasing function of t.

3. For each family of increasing functions @ = (pg(t)), t > 0, such that
(4.3) 2 <ei(t) <ga(t) <oy 2o,

and each sequence a = («;) of positive numbers with «; T oo Krone [10]
considers the Kéthe space Ag(a) = K(asp), where

ait = p1(ei),  aip =pp(aip-1), p>1.
It is easy to see that the construction of the spaces Kr(«a) is equivalent to
Krone’s construction in the following sense:
(a) Set
Fy=@popp10...001;
then the growth conditions (3.1) and (3.2) hold and Kr(a) = Ag(«).

(b) Conversely, if F' is a family of functions such that the growth con-
ditions (3.1) and (3.2) hold, then there exists a subsequence (pg) such that
the family @ of functions ¢1 = F},,, ¢ = Fj, 0 Fp_]il, k > 1, satisfies (4.3).
Obviously the Kothe spaces Ag(a) and Kp(«) are isomorphic.

4. In the previous sections we consider only Kothe spaces, but many of
the theorems proved there have “versions” for general Fréchet spaces. Of
course, the theorems for Kothe spaces are formulated in terms of Koéthe
matrices, while the corresponding claims for Fréchet spaces have to be for-
mulated in terms of seminorms. In general, these Fréchet space theorems do
not generalize the corresponding Kothe space versions, because a condition
given in terms of a Ko6the matrix is less restrictive than the corresponding
condition formulated in terms of seminorms of arbitrary elements. More-
over, it often seems easier to prove separately a Koéthe space version than
to derive it from the corresponding Fréchet space theorem.

For example, Theorem 4 characterizes the Kéthe spaces K (a) such that

L(Kr(a), K(a)) = LB(Kp(a), K(a)).
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In an analogous way it is possible to characterize the Fréchet spaces X with
L(Kr(a), X) = LB(Kr(a), X).
We say that a Fréchet space X has property LBr and write X € LBp if
(4.4)  V71(p) T o0 Ik Vpo 3Py, D > 0Vz € X Ip € (po, ) :
]| ) ]
F. ( ¢ ) <D
AN [

In case F' is the family of power functions Fj,(t) = t” property LBp coincides
with property LBo introduced by Vogt [17]. Our next theorem extends
Theorem 3.2 of [17].

THEOREM 9. If Kp(«) is shift-stable, then the following conditions are
equivalent:

(i) Each linear continuous operator from Kp(a) into X is bounded.
(i) X € LBp.

Proof. By Proposition 1.3 of [17] condition (i) is equivalent to

ol ]lp

(iii) Vo (p) T oo 3k Vpo 3Py, C : Py () < Clgg]go Fo ()
So, it is enough to prove that (ii) and (iii) are equivalent. As in the proof of
Theorem 4 we may assume that F' satisfies the growth conditions (3.3) and
(3.4), and it is enough to consider in (iii) only indices j such that F(a;) > 1.

(iii)=(ii). Fix a sequence 7(p) T oo. There are several steps repeating
parts of the proof of Theorem 4:

Step 1. Choose o(p) T oo so that

(45) VL HpL : FL(t) . FT(p)(FL(t)) < Fa(p)(t) Vp > PL-
Step 2. Choose L > 0 and j; (see (3.9) and (3.10)) so that
(4.6) a;Fyy(ajir) < Frlaj) for j > ji.

Obviously, it is enough to prove (4.4) for “large” pg. Fix po >max(k,pr);
then (iii) holds with some Py and C > 1. Choose j so that oz > C. Then

(4.7) CFyp(aji1) < Fr(a;) for j>j.

Step 3. Choose a jo > j so that for j > jo the maximum in (iii) occurs
for p € [1,k] U (po, Po]. Fix an = € F; then one of the following two cases
can occur:

Case 1: ||z||py /2]l < CFyky(aj,). Then

Froy(zllpo/12]lk) < Frp)(CFoy (o))
and (4.4) holds with

D= max Frq)(CFuw(a)).
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Case 2: ||z|lpo/ 7|k > CFypy(c,). Then, since F,y(aj) T oo, there
exists j > jp such that
(4.8) CFyy () < llzllpo/llzllk < CFyry(ajin)-

Observe that the maximum in (iii) does not occur for p € [1,k] because
otherwise

F .
CFU(k‘)(aj) < HxHPO S H‘THPO S C U(k)(aj)
lzlle = llzlp Fop)(aj)

which is impossible. Therefore the maximum occurs for some p € (pg, Fo],
that is,

< CFO’(k) (O(j)7

Fo (@) <C [zl '
Frey(aj) [[2]lpo
By (4.7) the right inequality in (4.8) implies

(4.9)

]
(4.10) HmHI;: < Fr(ay).

Therefore (since j > jo > j), from (4.5), (4.7) and (4.9) it follows that

||x||po> Fo(p)(aj) ||$Hp
F; < F; (FL(O‘))S <C )
“’)( B PRI = () = Tl

hence (4.4) holds with D = C.
(ii)=-(iii). Take 7(-) = o(-); then there exists a k such that (4.4) holds.
Choose k by (3.3) so that

tFU(k)(t) < FU(E)(t), t>1.

Fix any po and choose Py and D so that (4.4) holds. We shall show that

(iii) holds with k,pg, Py. Indeed, for every pair (z,7) one of the following
two cases can occur:

(@) Le®'9) el g Fo(9) el
Foy(ag) ~ lzllx’ Fogy(ag) = lzlle
In case (a),
12| [k |]lp

Fyiy(es) ~ Fom(ag) ~ 1=0<h Fo(ay)”
thus (iii) holds with C' = 1.
If (b) occurs we have, by the choice of k,
Em ) el
T Fopy () ~ el
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Therefore from (4.4) it follows that for some p € [po, Pol,
Fop) (@) ] [l
oW < () < F < p°><D L
F ey — 7P =T Ol ) = il

hence (iii) holds with C'= D. =

5. Theorem 8 gives a characterization of K&the spaces with
L(K(a), Kr(a)) = LB(K(a), Kr(a)).

In order to obtain a similar result for Fréchet spaces we say that a Fréchet
space X has property LBY and write X € LBY if

(4.11)  V7(p) T 0o Vp1 Tk Vpy 3Py, D >0Vy € X' Ip € (po, Ry) :
lylli/Nylly < DE-q)lylls, /lvll%)-

In case F' is the family of power functions Fj,(t) = t? property LBF coincides
with property LB introduced by Vogt [17]. Our next theorem extends
Theorem 5.2 of [17].

Let K3°(a) denote the {o-Kothe space defined by a matrix a;, = Fj(a;),
that is,

Kp (o) ={z = (z;) : |z, = sup ajp|z;| < oo Vp}.
j

THEOREM 10. If Kp(«) is shift-stable and nuclear, then the following
conditions are equivalent:

(i) L(X, K (a)) = LB(X, K3 ().

(ii) X € LBF.

Proof. As in the proof of Theorem 8 we may assume that F' satisfies the
growth conditions (3.3) and (3.4).

(i)=(ii). By Proposition 1.4 of [17] condition (i) is equivalent to

(4.12)  Vo(p) 1 oo Ik Vpg 3P, C > 1:

Fro(@))lyllsay < € max. Fy(a) [yl

It is easy to see that (4.12) is equivalent to
(4.13)  V7(p) T 00 3k Vpo 3P, C > 1:

Frpoy()llylli = € max, Fri)(e)llyllp-

We show that (4.13) implies (4.11) with the same 7(-).
As in the proof of Theorem 8 we can choose L and j so that (3.22) holds.

Now, if p; = 1 and k& > 1 comes from (4.13) then there exists p > k such
that (3.23) holds with the constant C' from (4.13).
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It is enough to check (4.11) for “large” pg. Fix py > p. Next choose
a jo > j such that if j > jo then the maximum in (4.13) occurs for p €
[1,k — 1] U [po, Po]. Such an index jo exists, because otherwise there would
exist sequences (j,), (yv), (py) such that j, 1 oo, p, € [k, po), and

1< Nyl SCFT(pu)(O‘ju)
Ny, Fr(po)(@,)

— 0,

which is impossible.

If for some j the maximum in (4.13) occurs for p € [1,k — 1] then
Frpo) () Fro(es) _ oWl Iylli
Frg—n(og) = Fry(oyg) lyll% lyll%
Therefore, if for some 7 > jo we have
Fro(es) _ ol
Fre—1)(ay) Iyl
then the maximum in (4.13) will occur for p € [po, Po].

Fix a y € E’; then we have the following two cases:

Case 1. The inequality (4.15) holds with j = jo. Then the maximum in
(4.13) (with j = jp and the fixed y) occurs for some p € [pg, Py], so

Iyl o Frpy (o)
Iylly = Fripe) (o)

(4.14)

(4.15)

< CC < CCFr <%)

where
C = max 7}77(1))(%0) :
Po<p<PFo FT(pO)(OéjO)
Thus (4.11) holds with D = CC.
Case 2. If (4.15) fails for j = jo then (since F(,)(a;)/Frg—1)(aj) — 00
as j — 00) there exists j > jo such that
FT(po)(O‘jfl) <C ”sz < FT(po)(aj) .
Frr-1y(j-1) Iyl Frie-1(ay)
Since the right inequality in (4.16) coincides with (4.15) the maximum in
(4.13) occurs for some p € [po, Po.
On the other hand by (3.22), (3.23) and the left inequality in (4.16) we
obtain (since j > jo > j)

(4.16)

o < [lylli/llylle,
therefore from (4.13) it follows that for some p € [po, Py],

*

HyHZ FT(p)(O‘J') <!y\|1>
<C < CF(aj) < CF, 1,
Wl = € Frolay) = CFro@) < CFo |

which proves (4.11) with D = C.
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In order to prove that (ii)=-(i) we shall check that (3.19) implies

(4.17)  Vo(p) T oo Tk Vpo 3Py, C > 1

Faoo (@) 4l < € max. Fogy ()l

Fix o(p) T oo and take an arbitrary pg. Then choose 7(p) as in the proof

of Theorem 8 so that (3.28) holds.

Fix a pair (y,7), y € E’, j € N. Either

lyll1 /1wl > Fogp) (@) Fo1) (),

then obviously (4.17) holds, or

19llT/ 119l < Fogpe)(0)/ Foqy(ay).-

Then by (4.11) with p; = 1 and (3.28) we obtain, for some p € [po, Pol,

Fa(p)<aj)
Fo‘(po) (Oé]) ’

Iyl

< DFT(p) [Fa(po)(aj)] <D
vl

that is, (4.17) holds with C = D. =
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