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Bounded and unbounded operators between Köthe spaces

by

P. B. Djakov (Sofia) and M. S. Ramanujan (Ann Arbor, MI)

Abstract. We study in terms of corresponding Köthe matrices when every continu-
ous linear operator between two Köthe spaces is bounded, the consequences of the exis-
tence of unbounded continuous linear operators, and related topics.

1. Introduction. If a = (aip) and b = (bjq) are Köthe matrices we
denote by K(a) and K(b) the Köthe spaces defined by a and b. As usual,
L(K(a),K(b)) and LB(K(a),K(b)) denote, respectively, the space of all
continuous linear operators and the space of all bounded continuous linear
operators from K(a) to K(b). Our aim here is to characterize in terms of
the matrices a and b when

L(K(a),K(b)) = LB(K(a),K(b)),

and to study the consequences of the existence of unbounded continuous linear
operators betweenK(a) andK(b). The same questions were studied by many
mathematicians; here we mention only some results that inspired our work.

Zahariuta [18, 19] discovered that if the matrices a and b satisfy con-
ditions d2 and d1, respectively, then each continuous linear operator from
K(a) to K(b) is bounded.

This phenomenon was studied later by many authors (see, e.g., [1, 4–
9, 12, 14]); comprehensive results were obtained by Vogt [17] not only for
Köthe spaces but also for the general case of Fréchet spaces (for further
generalizations see also [2, 3]).

On the other hand Nurlu and Terzioğlu [15] proved (under some condi-
tions) that the existence of unbounded continuous linear operators between
nuclear Köthe spaces K(a) and K(b) implies the existence of a common
basic subspace of K(a) and K(b).
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Our present research is highly influenced by the papers of Krone [10],
Nurlu and Terzioğlu [15] and Vogt [17]. We sharpen some results of Nurlu
and Terzioğlu by proving analogous statements without the nuclearity as-
sumption. Modifying a construction of Krone [10] we consider a class of
Köthe spaces that generalizes not only infinite type power series spaces, but
also Dragilev spaces of infinite type, and extend Theorems 3.2 and 5.2 of
[17]. It seems to us that in this more general setting it is easier to see the
role of various linear topological invariants.

2. General results on Köthe spaces. We consider only `1-Köthe
spaces; if (anp)∞n,p=1 is a Köthe matrix we denote by K(anp) the correspond-
ing Köthe sequence space, that is,

K(anp) =
{
x = (xn) : ‖x‖p =

∑

n

|xn|anp <∞ ∀p
}
.

Equipped with the system of seminorms ‖x‖p, p = 1, 2, . . . , K(anp) is a
Fréchet space.

As usual, we denote by {en : n = 1, 2, . . .} the canonical basis of K(anp),
that is, en = (δnk)∞k=1; then obviously ‖en‖p = anp for all n, p. We associate
with each infinite subset {en : n ∈ N1 ⊂ N} of the canonical basis the
corresponding basic subspace, that is, the closed linear span [en : n ∈ N1].
If (ni) is a strictly increasing sequence such that {n1, n2, . . .} = N1, then
we may identify the corresponding basic subspace with the Köthe space
K(anip).

Recall that an operator T : K(anp)→ K(bmq) is bounded if and only if

∃p0 ∀q ∃Cq : ‖Ten‖q ≤ Cq‖en‖p0 ∀n.(2.1)

An operator T : K(anp)→ K(bmq) is called quasi-diagonal if it satisfies

T (en) = tnem(n), m(·) : N→ N.(2.2)

Dragilev [5] and Nurlu [13] proved that if X and Y are nuclear Köthe
spaces and there exists a continuous linear unbounded operator T : X → Y,
then there exists a continuous unbounded quasi-diagonal operator D : X →
Y. We sharpen that result by omitting the nuclearity condition:

Proposition 1. If K(anp) and K(bkp) are Köthe spaces such that there
exists a continuous linear unbounded operator T : K(anp) → K(bkp), then
there exists a continuous unbounded quasi-diagonal operator D : K(anp) →
K(bkp).

Proof. Since T is continuous and unbounded, we may assume that

‖Tx‖p ≤ 2−p‖x‖p ∀x ∈ K(anp), p = 1, 2, . . . ,(2.3)

sup
n

‖Ten‖p+1

‖en‖p
=∞, p = 1, 2, . . .(2.4)
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Indeed, one may achieve (2.3) and (2.4) by using appropriate multipliers
and passing to a subsequence of seminorms, if necessary.

Let (pj) be a sequence of integers in which each p ∈ N appears infinitely
many times. In view of (2.4) we may choose inductively a subsequence n1 <
n2 < . . . such that

‖Tenj‖pj+1

‖enj‖pj
≥ 2j ∀j.(2.5)

Let Ten =
∑

k tnkẽk; then by (2.3) we have
∑

k

|tnk| sup
p

‖ẽk‖p
‖en‖p

≤
∑

k

|tnk|
∑

p

‖ẽk‖p
‖en‖p

=
∑

p

‖Ten‖p
‖en‖p

≤ 1.

Thus, for each j = 1, 2, . . . , we obtain, in view of (2.5),
∑

k

|tnjk| sup
p

‖ẽk‖p
‖enj‖p

≤ 1 ≤ 2−j
∑

k

|tnjk|
‖ẽk‖pj+1

‖enj‖pj
,

hence there exists a kj such that

λj := sup
p

‖ẽkj‖p
‖enj‖p

≤ 2−j
‖ẽkj‖pj+1

‖enj‖pj
.

Consider the quasi-diagonal operator D : K(anp)→ K(bkp) defined by

Denj = λ−1
j ẽkj , j = 1, 2, . . . , Den = 0 if n 6= nj .

Since
‖Denj‖p = λ−1

j ‖ẽkj‖p ≤ ‖enj‖p ∀p,
the operator D is continuous. In addition, D is unbounded, because if p is
fixed, then for some subsequence (js) we have pjs = p, s = 1, 2, . . . , so by
(2.4),

‖Denjs‖p+1/‖enjs‖p ≥ 2js →∞ as s→∞.
The next theorem gives a necessary and sufficient condition for

L(K(a),K(b)) = LB(K(a),K(b))

in terms of the Köthe matrices a = (aip) and b = (bνq). Formally this
condition coincides with the one given by Vogt (see [17], Satz 1.5), but
there it is assumed that the second Köthe space is regarded with (weighted)
`∞-norms instead of the usual `1-norms. So, in the case where the space
K(b) is nuclear the next theorem follows from that result of Vogt, since
then the systems of `∞-norms and `1-norms in K(b) are equivalent. But in
the general case, when the Köthe space K(b) is not nuclear, the theorem
does not follow from Vogt’s result.

Theorem 2. If K(a) and K(b) are Köthe spaces then

L(K(a),K(b)) = LB(K(a),K(b))
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if and only if

∀p(q)↑∞ ∃k ∀r ∃q0, C :
bνr
aik
≤ C max

1≤q≤q0

bνq
aip(q)

∀i, ν.(2.6)

Proof. In view of Proposition 1 it is enough to prove the claim for quasi-
diagonal operators. Suppose (2.6) holds and T : K(a) → K(b) is a contin-
uous quasi-diagonal operator defined by T (ei) = tiẽν(i), i ∈ Z+. Since T is
continuous there exists an increasing sequence p(q) ↑ ∞ such that

sup
i

‖Tei‖q
‖ei‖p(q)

= sup
i

|ti|bν(i)q

aip(q)
= Cq <∞.

Thus by (2.6) there exists a k such that for every r there exist q0 and C
with

|ti|bν(i)r

aik
≤ C max

1≤q≤q0

|ti|bν(i)q

aip(q)
≤ C max

1≤q≤q0
Cq,

so the operator T is bounded.
Conversely, suppose that condition (2.6) does not hold. Then

∃p(q)↑∞ ∀k ∃rk ∀n ∈ N ∃in, νn :
bνnrk
aink

≥ n max
1≤q≤n

bνnq
ainp(q)

,

where the sequences (in) = (in(k)) and (νn) = (νn(k)) depend on k.

There exist new sequences (for convenience we use the same notations
(in) and (νn)) such that the sequence (in) is strictly increasing and for each
k there exists a subsequence (nj) with inj = inj(k), νnj = νnj(k) for all j.
Indeed, to obtain such a sequence (in) one may choose an element from
the first sequence (in(1)), say i1 = ik1(1), then an element from the sec-
ond sequence (in(2)), say i2 = ik2(2) > i1, then again an element from
the first sequence i3 = ik3(1) > i2, after that from the second sequence
i4 = ik4(2) > i3, then from the third sequence i5 = ik5(3) > i4, and af-
ter that again return to choose an element from the first sequence, and so
on.

So, briefly, we may describe the construction as follows. Suppose N =⋃
sBs, where each subset Bs is infinite; then we choose consecutively ele-

ments in = ikn(s) and νn = νkn(s) for n ∈ Bs so that in > in−1.

Consider the quasi-diagonal operator T : K(a)→ K(b) defined by

Tei = 0 for i 6= in, T ein = tnẽνn ,

where

t−1
n := max

1≤q≤n
bνnq
ainp(q)

.

By the choice of the constants tn the operator T is continuous. On the other
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hand for each k there exists rk such that for some subsequence (nj) we have

tnjbνnj rk/ainj k ≥ nj ,
hence the operator T is unbounded.

Following [11] we say that an ordered pair (K(b),K(a)) of Köthe spaces
satisfies condition S if

∀p ∃q, k ∀s, l ∃r, C :
bms
ank
≤ C max

(
bmq
anp

,
bmr
anl

)
.(2.7)

We say that Köthe spaces K(a) and K(b) have a common basic subspace
if there exists a quasi-diagonal operator T : X → Y such that the restriction
of T to some infinite-dimensional basic subspace of X is an isomorphism.

Our next proposition sharpens Proposition 3 of [15]. We prove a sim-
ilar claim but without the nuclearity assumption. In addition, we require
a weaker assumption on the pair of Köthe spaces: condition S instead of
Apiola’s splitting condition used in [15].

Proposition 3. If a pair (K(b),K(a)) of Köthe spaces satisfies condi-
tion S and there exists a continuous unbounded operator T : K(a)→ K(b),
then K(a) and K(b) have a common basic subspace.

Proof. Let (ei)i∈N and (ẽi)i∈N be, respectively, the canonical bases in
K(a) and K(b). In view of Proposition 1 we may assume that there exists a
continuous unbounded quasi-diagonal operator T : K(a)→ K(b) given by

Tei = tiẽj(i), i ∈ N.
In addition we may assume that the mapping j(i) is injective. Otherwise,
since T is unbounded, there exists an infinite subset N1 of indices such that
the restriction of j(i) to N1 is injective and the restriction of T to the basic
subspace E1 generated by ei, i ∈ N1, is unbounded. So, one may consider
E1 instead of K(a).

Observe that if there exist sequences (pk) and (qk) with pk → ∞, and
infinite sets N1 ⊃ N2 ⊃ . . . of indices i such that

‖Tei‖qk ≥ ‖ei‖pk ∀i ∈ Nk,(2.8)

then the claim holds. Indeed, choose a sequence (ik) with ik ↑ ∞ and ik ∈ Nk

for all k, and let E be the basic subspace generated by {eik : k = 1, 2, . . .}
Then, since the operator T is quasi-diagonal, T (E) is a basic subspace of
K(b), and (2.8) shows that T maps E isomorphically onto T (E).

Let us try to construct (pk), (qk) and Nk so that (2.7) holds with p = pk
and q = qk, and

Nk = {i ∈ Nk−1 : ‖Ten‖qk ≥ ‖en‖pk},
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where N0 = N. We can choose p1 in an arbitrary way and assume that q1
is chosen so that supN ‖Tei‖q1/‖ei‖p1 =∞ and (2.7) holds with p = p1 and
q = q1. Then the set N1 is obviously infinite.

If the restriction of T to the basic subspace EN1 = [ei : i ∈ N1]
is unbounded, then we can take any p2 > p1 and choose a q2 so that
supN1

‖Tei‖q2/‖ei‖p2 = ∞ and (2.7) holds with p = p2 and q = q2. Then
the set

N2 = {i ∈ N1 : ‖Tei‖q2 ≥ ‖ei‖p2}
will be infinite.

Obviously one can proceed by induction, provided at each step the re-
striction of the operator T to the corresponding basic subspace ENk = [ei :
i ∈ Nk] is unbounded.

Otherwise, there exists k0 ≥ 1 such that the restriction of T to ENk0
is

bounded, while the restriction of T to ENk0−1 is unbounded. Consider the
set

M0 = Nk0−1 \Nk0 = {i ∈ Nk0−1 : ‖Tei‖q0 < ‖ei‖p0},(2.9)

where p0 = pk0 , q0 = qk0 . Then the restriction of the operator T to EM0 =
[ei : i ∈M0] is unbounded.

Since (K(b),K(a)) ∈ S we have

∃r1 ∀s1, r ∃s, C :
‖Tei‖s1
‖ei‖r1

≤ C max
(‖Tei‖q0
‖ei‖p0

,
‖Tei‖s
‖ei‖r

)
.(2.10)

Choose s1 so that

sup{‖Tei‖s1/‖ei‖r1 : i ∈M0} =∞.
Then there exists a sequence (iν)∞ν=1, iν ∈M0, such that

‖Teiν‖s1
‖eiν‖r1

> ν, ν = 1, 2, . . .(2.11)

Consider the basic subspace E = [eiν : ν = 1, 2, . . .]. Take an arbitrary r
and choose s so that (2.10) holds. By (2.9) we have ‖Teiν‖q0/‖eiν‖p0 < 1,
so from (2.10) and (2.11) it follows that

∀r ∃s : ‖eiν‖r ≤ ‖Teiν‖s for ν ≥ C.
This means that the operator T−1 maps continuously T (E) onto E, hence
the basic subspaces E and T (E) are isomorphic.

3. Properties of Köthe spaces KF (α)

1. In this section we consider a wide class of Köthe spaces that includes,
in particular, infinite type power series spaces and Dragilev spaces of infinite
type. We define that class by slightly modifying a construction due to Krone
[10].
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Suppose
F = (Fp)∞p=1, Fp : (0,∞)→ (0,∞),

is a family of increasing unbounded functions such that Fp(t) ≤ Fp+1(t).
For any increasing sequence α = (αi)∞i=1 of positive numbers with αi ↑ ∞

we denote by KF (α) the Köthe space defined by the matrix

ajp = Fp(αj), j, p ∈ N.
In addition, we always require the following growth conditions:

∀p ∃p1, C1 : tFp(t) ≤ C1Fp1(t), t ≥ 1,(3.1)

∀p, L ∃p2, C2 : Fp(FL(t)) ≤ C2Fp2(t), t ≥ 1.(3.2)

If F = (Fp) and G = (Gq) are two families of functions we say that F
dominates G and write G ≺ F if

∀q ∃p,C : Gq(t) ≤ CFp(t), t ≥ 1.

The families F and G are said to be equivalent if F ≺ G and G ≺ F.
Obviously, if F and G are equivalent then KF (α) ' KG(α).

It is easy to see that for every sequence of functions with (3.1) and
(3.2) one may obtain (by using appropriate multipliers and passing to a
subsequence) an equivalent family satisfying the following conditions:

∀p : 1 ≤ tFp(t) ≤ Fp+1(t), t ≥ 1,(3.3)

∀p, L ∃p2 : Fp(FL(t)) ≤ Fp2(t), t ≥ 1.(3.4)

Since in the following we are interested in some relations involving F that
are invariant under equivalence we may think that (3.3) and (3.4) hold.

Remark. We can always think, if necessary, that the family F = (Fp)
is defined for p ∈ [1,∞) by setting in case p is not a whole number

Fp(t) = F 1−α
[p] (t) · Fα[p]+1(t),

where [p] means the integer part of p and α = p − [p]. Let us mention,
however, that in the most interesting examples Fp is “naturally” defined for
p ∈ [1,∞). For example, consider the family of power functions Fp(t) = tp.

2. Characterization of L(KF (α),K(a)) = LB(KF (α),K(a)). The space
KF (α) is called shift-stable if

∀p ∃p1, j̃ : Fp(αj+1) ≤ Fp1(αj), j ≥ j̃.(3.5)

We say that a Köthe space K(a) has property LBF (K) and write K(a) ∈
LBF (K) if

(3.6) ∀τ(p)↑∞ ∃k ∀p0 ∃P0,D > 0 ∀i ∃p ∈ (p0, P0) :

Fτ(p)

(
aip0

aik

)
≤ D aip

aip0

.
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Theorem 4. If KF (α) is shift-stable, then the following conditions are
equivalent :

(i) Each continuous linear operator from KF (α) into K(a) is bounded.
(ii) K(a) ∈ LBF (K).

Proof. One can easily see that if F ≺ G then LBG(K)⇒LBF (K). There-
fore if F and G are equivalent then properties LBF (K) and LBG(K) are
also equivalent, so we can assume that (3.3) and (3.4) hold.

By Theorem 2 condition (i) is equivalent to

∀σ(p)↑∞ ∃k ∀p0 ∃P0, C :
aip0

Fσ(k)(αj)
≤ C max

1≤p≤P0

aip
Fσ(p)(αj)

.(3.7)

So, it is enough to prove that (3.6) and (3.7) are equivalent. Observe that
we may consider in (3.7) only “large” indices j such that F1(αj) ≥ 1.

(3.7)⇒(3.6). Fix τ(p) ↑ ∞ and choose σ(p) ↑ ∞ so that

∀L ∃pL : FL(t) · Fτ(p)(FL(t)) ≤ Fσ(p)(t) ∀p ≥ pL.(3.8)

Such a choice is possible. Indeed, by the growth conditions (3.3) and (3.4),

∀L ∃τ1(p) ↑ ∞, σL(p) ↑ ∞ :

FL(t) · Fτ(p)(FL(t)) ≤ Fτ1(p)(FL(t)) ≤ FσL(p)(t) ∀p.
In addition, we may assume that if L1 < L2 then σL1(p) ≤ σL2(p). Take
σ(p) = σp(p); then

∀L : FσL(p)(t) ≤ Fσ(p)(t) for p ≥ L.
Now for σ(p) as in (3.8) there exists a k such that (3.7) holds. We shall

show that (3.6) holds with that k. By shift stability (3.5),

∃L1, j̃1 : Fσ(k)(αj+1) ≤ FL1(αj) for j ≥ j̃1.(3.9)

Fix by (3.3) a constant L so that

tFL1(t) ≤ FL(t), t > 1.(3.10)

Obviously, it is enough to prove (3.6) for “large” p0. Fix a p0>max(k, pL),
where pL is the constant from (3.8); then (3.7) holds with some P0 and
C > 1. Choose j̃ > j̃1 so that cj̃ > C. Then from (3.9) and (3.10) it follows
that

CFσ(k)(αj+1) ≤ FL(αj) for j ≥ j̃.(3.11)

Observe that there exists a j0 such that if j ≥ j0 then the maximum in
(3.7) occurs for p ∈ [1, k] ∪ (p0, P0]. Indeed, otherwise there exist sequences
(jν), (iν), (pν) with pν ∈ (k, p0] and jν →∞ such that (in view of (3.3))

1 ≤ aiνp0

aiνpν
≤

Fσ(k)(αjν )

Fσ(pν)(αjν )
→ 0 as ν →∞,

which is impossible.
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Choose a j0 with the above property so that j0 > j̃ and F1(αj0) ≥ 1. Fix
an i; then one of the following two cases can occur:

Case 1: aip0/aik ≤ CFσ(k)(αj0). Then

Fτ(p)

(
aip0

aik

)
≤ Fτ(p)(CFσ(k)(αj0))

and (3.6) holds with

D = max
p0≤p≤P0

Fτ(p)(CFσ(k)(αj0)).

Case 2 : aip0/aik > CFσ(k)(αj0). Then, since Fσ(k)(αj) ↑ ∞, there exists
j ≥ j0 such that

CFσ(k)(αj) < aip0/aik ≤ CFσ(k)(αj+1).(3.12)

Observe that the maximum in (3.7) does not occur for p ∈ [1, k] because
otherwise

CFσ(k)(αj) <
aip0

aik
≤ aip0

aip
≤ C

Fσ(k)(αj)

Fσ(p)(αj)
< CFσ(k)(αj),

which is impossible. Therefore the maximum occurs for some p ∈ (p0, P0],
that is,

Fσ(p)(αj)

Fσ(k)(αj)
≤ C aip

aip0

.(3.13)

By (3.11) the right inequality in (3.12) implies
aip0

aik
≤ FL(αj).(3.14)

Therefore (since j > j0 > j̃), from (3.8), (3.11) and (3.13) it follows that

Fτ(p)

(
aip0

aik

)
≤ Fτ(p)(FL(αj)) ≤

Fσ(p)(αj)

Fσ(k)(αj)
≤ C aip

aip0

,

hence (3.6) holds with D = C.

(3.6)⇒(3.7). Take τ(·) = σ(·); then there exists a k such that (3.6) holds.
Choose k̃ by (3.3) so that

tFσ(k)(t) ≤ Fσ(k̃)(t), t > 1.

Fix any p0 and choose P0 ≥ k and D so that (3.6) holds; then (3.7) also
holds with k̃, p0, P0. Indeed, for every pair (i, j) one of the following two
cases can occur:

(a)
F
σ(k̃)(αj)

Fσ(k)(αj)
>
aip0

aik
; (b)

F
σ(k̃)(αj)

Fσ(k)(αj)
≤ aip0

aik
.



20 P. B. Djakov and M. S. Ramanujan

In case (a),
aip0

Fσ(k̃)(αj)
<

aik
Fσ(k)(αj)

≤ max
1≤p≤P0

aip
Fσ(p)(αj)

,

thus (3.7) holds with C = 1.
If (b) occurs we have, by the choice of k̃,

αj ≤
F
σ(k̃)(αj)

Fσ(k)(αj)
≤ aip0

aik
.

So from (3.6) it follows that, for some p ∈ [p0, P0],

Fσ(p)(αj)

F
σ(k̃)(αj)

≤ Fσ(p)(αj) ≤ Fσ(p)

(
aip0

aik

)
≤ D aip

aip0

,

hence (3.7) holds with C = D.

3. Let F = (Fn) and G = (Gm) be two families of increasing functions
that satisfy the growth conditions (3.1) and (3.2). Krone [10] showed (as-
suming nuclearity) that if two spaces of the kind KF (α) and KG(β) have
no common basic subspace then the relations (KF (α),KG(β)) ∈ S and
L(KG(β),KF (α)) = LB(KG(β),KF (α)) are equivalent. Using Theorem 4
we provide another approach to Krone’s result that allows us to remove the
nuclearity assumption.

We say that a Köthe space K(a) has property DNF (K) and write K(a) ∈
DNF (K) if

∃p0 ∀p1 ∀Fn ∃p2, C1 > 0 : Fn

(
aip1

aip0

)
≤ C1

aip2

aip1

.(3.15)

It is easy to see by (3.1) and (3.2) that KF (α) ∈ DNF (K) and that

LBF (K) ⇒ DNF (K).(3.16)

We say that a Köthe space K(b) has property ΩG(K) and write K(b) ∈
ΩG(K) if

∀q0 ∃q1 ∀q2 ∃Gm, C2 > 0 :
bjq2
bjq1
≤ C2Gm

(
bjq1
bjq0

)
.(3.17)

It is easy to see by (3.1) and (3.2) that KG(β) ∈ ΩG(K).

Proposition 5. If K(a) ∈ DNF (K) and K(b) ∈ ΩG(K), where G ≺ F,
then (K(a),K(b)) ∈ S.

Proof. We are to prove

∀q0 ∃p0, q1 ∀p1, q2 ∃p2, C :
aip1

bjq1
≤ C max

(
aip0

bjq0
,
aip2

bjq2

)
.(3.18)

Fix an arbitrary index q0; then choose p0 from (3.15) and q1 from (3.17);
after that fix arbitrary indices p1, q2.
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Consider an arbitrary pair (i, j). If aip1/bjq1 ≤ aip0/bjq0 , then (3.18)
holds with C = 1. Otherwise we have

bjq1
bjq0

<
aip1

aip0

·

As K(b) ∈ ΩG(K) there exists a Gm such that (3.17) holds. Since the
family F dominates G there exists an n such that Gm(t) ≤ C3Fn(t), and
since K(a) ∈ DNF there exists a p2 such that (3.15) holds. Therefore

1
C2

bjq2
bjq1
≤ Gm

(
bjq1
bjq0

)
≤ Gm

(
aip1

aip0

)
≤ C3Fn

(
aip1

aip0

)
≤ C3C1

aip2

aip1

.

Hence aip1/bjq1 ≤ Caip2/bjq2 with C = C1C2C3, that is, (3.18) holds.

Remark. Observe that the assertion of the proposition holds when
F = G since each family dominates itself. Moreover, it was enough to prove
the proposition only when F = G because if G ≺ F then K(a) ∈ DNF (K)
implies K(a) ∈ DNG(K).

Proposition 6. If we have L(KG(β),KF (α)) = LB(KG(β),KF (α)),
then (KF (α),KG(β)) ∈ S.

Proof. If each continuous linear operator from KG(β) into KF (α) is
bounded then by Theorem 4 the space KF (α) has property LBG(K), so
KF (α) ∈ DNG(K) by (3.16). Now (KF (α),KG(β)) ∈ S by Proposition 5
because the first space satisfies DNG(K) and the second satisfies ΩG(K).

Krone [10] obtained Proposition 6 with the additional assumption of
nuclearity. Combining Propositions 6 and 3 results in the following statement
(also due to Krone [10] in the nuclear case):

Proposition 7. If the spaces KF (α) and KG(β) have no common basic
subspaces then

L(KG(β),KF (α)) = LB(KG(β),KF (α))

if and only if
(KF (α),KG(β)) ∈ S.

4. Characterization of L(K(a),KF (α)) = LB(K(a),KF (α)). We say
that a Köthe space K(a) has property LBF (K) and write K(a) ∈ LBF (K)
if

(3.19) ∀τ(p) ↑ ∞ ∀p1 ∃k ∀p0 ∃P0,D > 0 ∀i ∃p ∈ (p0, P0) :
aip
aik
≤ DFτ(p)

(
aik
aip1

)
.

Theorem 8. If KF (α) is shift-stable, then the following conditions are
equivalent :
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(i) L(K(a),KF (α)) = LB(K(a),KF (α)).
(ii) K(a) ∈ LBF (K).

Proof. We may assume that the family F satisfies the growth conditions
(3.3) and (3.4) because (i) and (ii) are invariant conditions and would not
change if we replace F by an equivalent family.

(i)⇒(ii). By Theorem 2 condition (i) is equivalent to

∀σ(p)↑∞ ∃k ∀p0 ∃P0, C > 1 :
Fp0(αj)
aiσ(k)

≤ C max
1≤p≤P0

Fp(αj)
aiσ(p)

.(3.20)

It is easy to see that (3.20) is equivalent to

(3.21) ∀τ(p) ↑ ∞ ∃k ∀p0 ∃P0, C > 1 :
Fτ(p0)(αj)

aik
≤ C max

1≤p≤P0

Fτ(p)(αj)

aip
.

Therefore it is enough to prove that (3.21) implies (3.19) with the same τ(·).
By shift stability and the growth conditions (3.3) and (3.4) there exist L > 0
and j̃ > 1 such that

αj ≤ FR(αj) ≤ FL(αj−1), j ≥ j̃.(3.22)

We can always think that j̃ is so large that αj−1 > 1 for j ≥ j̃.
It is enough to show that (3.19) holds with p1 = 1 and k > 1 coming

from (3.21). One can easily see by (3.3) and (3.4) that there exists p̃ > k
such that

CFL(t)Fτ(k−1)(t) ≤ Fτ(p̃)(t), t > 1,(3.23)

where C is the constant from (3.21).
It is enough to prove (3.19) for “large” p0 such that τ(p0−1) < τ(p0). Fix

p0 > p̃. Next choose a j0 > j̃ so that if j ≥ j0 then the maximum in (3.21)
occurs for p ∈ [1, k− 1]∪ [p0, P0]. Such an index j0 exists because otherwise
there would exist sequences (jν), (iν), (pν) such that jν ↑ ∞, pν ∈ [k, p0),
and

1 ≤ aiνpν
aiνk

≤ C
Fτ(pν)(αjν )

Fτ(p0)(αjν )
→ 0,

which is impossible.
If for some j the maximum in (3.21) occurs for p ∈ [1, k − 1] then

Fτ(p0)(αj)

Fτ(k−1)(αj)
≤
Fτ(p0)(αj)

Fτ(p)(αj)
≤ C aik

aip
≤ C aik

ai1
.(3.24)

Therefore, if for some j ≥ j0 we have
Fτ(p0)(αj)

Fτ(k−1)(αj)
> C

aik
ai1

(3.25)

then the maximum in (3.21) occurs for p ∈ [p0, P0].
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Fix an i; then we have the following two cases:
Case 1. The inequality (3.25) holds with j = j0. Then the maximum in

(3.21) (with j = j0 and the fixed i) occurs for some p ∈ [p0, P0], so

aip
aik
≤ C

Fτ(p)(αj0)

Fτ(p0)(αj0)
≤ CC ≤ CCFτ(p)

(
aik
ai1

)
,

where

C = max
p0≤p≤P0

Fτ(p)(αj0)

Fτ(p0)(αj0)
.

Thus (3.19) holds with D = CC.
Case 2. If (3.25) fails for j = j0 then (since Fτ(p0)(αj)/Fτ(k−1)(αj)→∞

as j →∞) there exists j > j0 such that

Fτ(p0)(αj−1)

Fτ(k−1)(αj−1)
≤ C aik

ai1
<

Fτ(p0)(αj)

Fτ(k−1)(αj)
.(3.26)

Since the right inequality in (3.26) coincides with (3.25) the maximum in
(3.21) occurs for some p ∈ [p0, P0].

On the other hand by (3.22), (3.23) and the left inequality in (3.26) we
obtain (since j > j0 ≥ j̃)

αj ≤
aik
ai1

,

therefore from (3.21) it follows that for some p ∈ [p0, P0],

aip
aik
≤ C

Fτ(p)(αj)

Fτ(p0)(αj)
≤ CFτ(p)(αj) ≤ CFτ(p)

(
aik
ai1

)
,

so (3.19) holds with D = C.
In order to prove that (ii)⇒(i) we shall check that (3.19) implies

(3.27) ∀σ(p) ↑ ∞ ∃k ∀p0 ∃P0, C > 1 :
Fσ(p0)(αj)

aik
≤ C max

1≤p≤P0

Fσ(p)(αj)

aip
.

Fix σ(p) ↑ ∞ and take an arbitrary p0. Then choose τ(p) so that

Fσ(p0)(t) · Fτ(p)[Fσ(p0)(t)] ≤ Fσ(p)(t), t > 1.(3.28)

Such a choice is possible. In order to see that, we can regard σ(·) and τ(·)
as bijections mapping the interval [1,∞) into itself. We can also think that
the family f = (Fp) is defined for the “continuous” parameter p ∈ [1,∞) so
that the growth conditions (3.3) and (3.4) hold.

Now put L = σ(p0) and q = τ(p). Then we have to find τ such that

FL(t) · Fq(FL(t)) ≤ Fσ(τ−1(q))(t).

By (3.3) and (3.4) there exists µ(q) such that

FL(t) · Fq(FL(t)) ≤ Fµ(q)(t),
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so it is enough to have

Fµ(q)(t) ≤ Fσ(τ−1(q))(t).

That inequality will hold if µ(q) ≤ σ(τ−1(q)), or equivalently σ−1(µ(q)) ≤
τ−1(q). Thus, choosing τ−1 so that the latter condition holds we obtain
(3.28).

Fix a pair (i, j). Either

aik/ai1 > Fσ(p0)(αj)/Fσ(1)(αj),

then obviously (3.27) holds, or

aik/ai1 ≤ Fσ(p0)(αj)/Fσ(1)(αj).

Then by (3.19) with p1 = 1 and (3.28) we obtain, with some p ∈ [p0, P0],

aip
aik
≤ DFτ(p)[Fσ(p0)(αj)] ≤ D

Fσ(p)(αj)

Fσ(p0)(αj)
,

that is, (3.27) holds with C = D.

4. Examples and comments

1. Consider the family of power functions

Fp(t) = tp, p ≥ 1.

Obviously the growth conditions (3.3) and (3.4) hold. For each sequence
α = (αj), αj > 0, αj →∞, we have

ajp = Fp(αj) = αpj = epβj , βj = logαj ,

so the corresponding Köthe space KF (α) coincides with an infinite type
power series space, namely

KF (α) = Λ∞(β), β = (βj).

2. More generally, let f : (0,∞) → (0,∞) be a continuous strictly in-
creasing function; then f−1 : (0,∞)→ (0,∞) is also continuous and strictly
increasing. Consider the family

Fp(t) = exp ◦f ◦ p ◦ f−1 ◦ log(t), p ≥ 1, t > 1.

(One can define Fp(t) for t ∈ (0, 1] in an arbitrary way because the values of
Fp(t) on that interval determine only the norms on some finite-dimensional
subspace.)

Since Fp1 ◦ Fp2 = Fp1p2 , the growth condition (3.4) holds. It is easy to
see that (3.3) would hold if the function f satisfies

∃c > 1, p > 1 : cf(t) ≤ f(pt).(4.1)

Indeed, (4.1) implies immediately

∃p̃ : 2f(t) ≤ f(p̃t),(4.2)
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thus
Fp̃(t) = exp{f [p̃f−1(log t)]} ≥ exp{2f [f−1(log t)]} = t2.

Since F1(t) = t we obtain, for any p,

tFp(t) = F1(t)Fp(t) ≤ (Fp(t))2 ≤ Fp̃(Fp(t)) = Fpp̃(t),

so (3.3) holds.
For each sequence α = (αj), αj > 1, αj →∞, we have

ajp = Fp(αj) = ef(pβj), βj = f−1(logαj),

so KF (α) coincides with the Dragilev space of infinite type generated by the
function f and the sequence β. Usually in the definition of Dragilev spaces
it is supposed that f is a logarithmically convex function (that is, log f(ex)
is a convex function). Then condition (4.1) holds because the logarithmic
convexity of f implies that f(pt)/f(t) is an increasing function of t.

3. For each family of increasing functions Φ = (ϕk(t)), t > 0, such that

t2 ≤ ϕ1(t) ≤ ϕ2(t) ≤ . . . , t ≥ t0,(4.3)

and each sequence α = (αi) of positive numbers with αi ↑ ∞ Krone [10]
considers the Köthe space ΛΦ(α) = K(aip), where

ai1 = ϕ1(αi), aip = ϕp(ai,p−1), p > 1.

It is easy to see that the construction of the spaces KF (α) is equivalent to
Krone’s construction in the following sense:

(a) Set
Fp = ϕp ◦ ϕp−1 ◦ . . . ◦ ϕ1;

then the growth conditions (3.1) and (3.2) hold and KF (α) = ΛΦ(α).
(b) Conversely, if F is a family of functions such that the growth con-

ditions (3.1) and (3.2) hold, then there exists a subsequence (pk) such that
the family Φ of functions ϕ1 = Fp1 , ϕk = Fpk ◦ F−1

pk−1
, k > 1, satisfies (4.3).

Obviously the Köthe spaces ΛΦ(α) and KF (α) are isomorphic.

4. In the previous sections we consider only Köthe spaces, but many of
the theorems proved there have “versions” for general Fréchet spaces. Of
course, the theorems for Köthe spaces are formulated in terms of Köthe
matrices, while the corresponding claims for Fréchet spaces have to be for-
mulated in terms of seminorms. In general, these Fréchet space theorems do
not generalize the corresponding Köthe space versions, because a condition
given in terms of a Köthe matrix is less restrictive than the corresponding
condition formulated in terms of seminorms of arbitrary elements. More-
over, it often seems easier to prove separately a Köthe space version than
to derive it from the corresponding Fréchet space theorem.

For example, Theorem 4 characterizes the Köthe spaces K(a) such that

L(KF (α),K(a)) = LB(KF (α),K(a)).
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In an analogous way it is possible to characterize the Fréchet spaces X with

L(KF (α),X) = LB(KF (α),X).

We say that a Fréchet space X has property LBF and write X ∈ LBF if

(4.4) ∀τ(p) ↑ ∞ ∃k ∀p0 ∃P0,D > 0 ∀x ∈ X ∃p ∈ (p0, P0) :

Fτ(p)

(‖x‖p0

‖x‖k

)
≤ D ‖x‖p‖x‖p0

.

In case F is the family of power functions Fp(t) = tp property LBF coincides
with property LB∞ introduced by Vogt [17]. Our next theorem extends
Theorem 3.2 of [17].

Theorem 9. If KF (α) is shift-stable, then the following conditions are
equivalent :

(i) Each linear continuous operator from KF (α) into X is bounded.
(ii) X ∈ LBF .
Proof. By Proposition 1.3 of [17] condition (i) is equivalent to

(iii) ∀σ(p) ↑ ∞ ∃k ∀p0 ∃P0, C :
‖x‖p0

Fσ(k)(αj)
≤ C max

1≤p≤P0

‖x‖p
Fσ(p)(αj)

.

So, it is enough to prove that (ii) and (iii) are equivalent. As in the proof of
Theorem 4 we may assume that F satisfies the growth conditions (3.3) and
(3.4), and it is enough to consider in (iii) only indices j such that F1(αj) ≥ 1.

(iii)⇒(ii). Fix a sequence τ(p) ↑ ∞. There are several steps repeating
parts of the proof of Theorem 4:

Step 1. Choose σ(p) ↑ ∞ so that

∀L ∃pL : FL(t) · Fτ(p)(FL(t)) ≤ Fσ(p)(t) ∀p ≥ pL.(4.5)

Step 2. Choose L > 0 and j̃1 (see (3.9) and (3.10)) so that

αjFσ(k)(αj+1) ≤ FL(αj) for j ≥ j̃1.(4.6)

Obviously, it is enough to prove (4.4) for “large” p0. Fix p0>max(k, pL);
then (iii) holds with some P0 and C > 1. Choose j̃ so that αj̃ > C. Then

CFσ(k)(αj+1) ≤ FL(αj) for j ≥ j̃.(4.7)

Step 3. Choose a j0 ≥ j̃ so that for j ≥ j0 the maximum in (iii) occurs
for p ∈ [1, k] ∪ (p0, P0]. Fix an x ∈ F ; then one of the following two cases
can occur:

Case 1 : ‖x‖p0/‖x‖k ≤ CFσ(k)(αj0). Then

Fτ(p)(‖x‖p0/‖x‖k) ≤ Fτ(p)(CFσ(k)(αj0))

and (4.4) holds with

D = max
p0≤p≤P0

Fτ(p)(CFσ(k)(αj0)).
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Case 2 : ‖x‖p0/‖x‖k > CFσ(k)(αj0). Then, since Fσ(k)(αj) ↑ ∞, there
exists j > j0 such that

CFσ(k)(αj) < ‖x‖p0/‖x‖k ≤ CFσ(k)(αj+1).(4.8)

Observe that the maximum in (iii) does not occur for p ∈ [1, k] because
otherwise

CFσ(k)(αj) <
‖x‖p0

‖x‖k
≤ ‖x‖p0

‖x‖p
≤ C

Fσ(k)(αj)

Fσ(p)(αj)
< CFσ(k)(αj),

which is impossible. Therefore the maximum occurs for some p ∈ (p0, P0],
that is,

Fσ(p)(αj)

Fσ(k)(αj)
≤ C ‖x‖p‖x‖p0

.(4.9)

By (4.7) the right inequality in (4.8) implies

‖x‖p0

‖x‖k
≤ FL(αj).(4.10)

Therefore (since j ≥ j0 > j̃), from (4.5), (4.7) and (4.9) it follows that

Fτ(p)

(‖x‖p0

‖x‖k

)
≤ Fτ(p)(FL(αj)) ≤

Fσ(p)(αj)

Fσ(k)(αj)
≤ C ‖x‖p‖x‖p0

,

hence (4.4) holds with D = C.

(ii)⇒(iii). Take τ(·) = σ(·); then there exists a k such that (4.4) holds.
Choose k̃ by (3.3) so that

tFσ(k)(t) ≤ Fσ(k̃)(t), t > 1.

Fix any p0 and choose P0 and D so that (4.4) holds. We shall show that
(iii) holds with k̃, p0, P0. Indeed, for every pair (x, j) one of the following
two cases can occur:

(a)
F
σ(k̃)(αj)

Fσ(k)(αj)
>
‖x‖p0

‖x‖k
; (b)

F
σ(k̃)(αj)

Fσ(k)(αj)
≤ ‖x‖p0

‖x‖k
.

In case (a),

‖x‖p0

F
σ(k̃)(αj)

<
‖x‖k

Fσ(k)(αj)
≤ max

1≤p≤P0

‖x‖p
Fσ(p)(αj)

,

thus (iii) holds with C = 1.
If (b) occurs we have, by the choice of k̃,

αj ≤
F
σ(k̃)(αj)

Fσ(k)(αj)
≤ ‖x‖p0

‖x‖k
.



28 P. B. Djakov and M. S. Ramanujan

Therefore from (4.4) it follows that for some p ∈ [p0, P0],

Fσ(p)(αj)

F
σ(k̃)(αj)

≤ Fσ(p)(αj) ≤ Fσ(p)

(‖x‖p0

‖x‖k

)
≤ D ‖x‖p‖x‖p0

,

hence (iii) holds with C = D.

5. Theorem 8 gives a characterization of Köthe spaces with

L(K(a),KF (α)) = LB(K(a),KF (α)).

In order to obtain a similar result for Fréchet spaces we say that a Fréchet
space X has property LBF and write X ∈ LBF if

(4.11) ∀τ(p) ↑ ∞ ∀p1 ∃k ∀p0 ∃P0,D > 0 ∀y ∈ X ′ ∃p ∈ (p0, P0) :

‖y‖∗k/‖y‖∗p ≤ DFτ(p)(‖y‖∗p1
/‖y‖∗k).

In case F is the family of power functions Fp(t) = tp property LBF coincides
with property LB∞ introduced by Vogt [17]. Our next theorem extends
Theorem 5.2 of [17].

Let K∞F (α) denote the `∞-Köthe space defined by a matrix ajp = Fp(αj),
that is,

K∞F (α) = {x = (xj) : |x|p = sup
j
ajp|xj | <∞ ∀p}.

Theorem 10. If KF (α) is shift-stable and nuclear , then the following
conditions are equivalent :

(i) L(X,K∞F (α)) = LB(X,K∞F (α)).
(ii) X ∈ LBF .

Proof. As in the proof of Theorem 8 we may assume that F satisfies the
growth conditions (3.3) and (3.4).

(i)⇒(ii). By Proposition 1.4 of [17] condition (i) is equivalent to

(4.12) ∀σ(p) ↑ ∞ ∃k ∀p0 ∃P0, C > 1 :

Fp0(αj)‖y‖∗σ(k) ≤ C max
1≤p≤P0

Fp(αj)‖y‖∗σ(p).

It is easy to see that (4.12) is equivalent to

(4.13) ∀τ(p) ↑ ∞ ∃k ∀p0 ∃P0, C > 1 :

Fτ(p0)(αj)‖y‖∗k ≤ C max
1≤p≤P0

Fτ(p)(αj)‖y‖∗p.

We show that (4.13) implies (4.11) with the same τ(·).
As in the proof of Theorem 8 we can choose L and j̃ so that (3.22) holds.

Now, if p1 = 1 and k > 1 comes from (4.13) then there exists p̃ > k such
that (3.23) holds with the constant C from (4.13).
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It is enough to check (4.11) for “large” p0. Fix p0 > p̃. Next choose
a j0 > j̃ such that if j ≥ j0 then the maximum in (4.13) occurs for p ∈
[1, k − 1] ∪ [p0, P0]. Such an index j0 exists, because otherwise there would
exist sequences (jν), (yν), (pν) such that jν ↑ ∞, pν ∈ [k, p0), and

1 ≤ ‖yν‖
∗
k

‖yν‖∗pν
≤ C

Fτ(pν)(αjν )

Fτ(p0)(αjν )
→ 0,

which is impossible.
If for some j the maximum in (4.13) occurs for p ∈ [1, k − 1] then

Fτ(p0)(αj)

Fτ(k−1)(αj)
≤
Fτ(p0)(αj)

Fτ(p)(αj)
≤ C

‖y‖∗p
‖y‖∗k

≤ C ‖y‖
∗
1

‖y‖∗k
.(4.14)

Therefore, if for some j ≥ j0 we have

Fτ(p0)(αj)

Fτ(k−1)(αj)
> C

‖y‖∗1
‖y‖∗k

(4.15)

then the maximum in (4.13) will occur for p ∈ [p0, P0].
Fix a y ∈ E′; then we have the following two cases:
Case 1. The inequality (4.15) holds with j = j0. Then the maximum in

(4.13) (with j = j0 and the fixed y) occurs for some p ∈ [p0, P0], so

‖y‖∗k
‖y‖∗p

≤ C
Fτ(p)(αj0)

Fτ(p0)(αj0)
≤ CC ≤ CCFτ(p)

(‖y‖∗1
‖y‖∗k

)
,

where

C = max
p0≤p≤P0

Fτ(p)(αj0)

Fτ(p0)(αj0)
.

Thus (4.11) holds with D = CC.
Case 2. If (4.15) fails for j = j0 then (since Fτ(p0)(αj)/Fτ(k−1)(αj)→∞

as j →∞) there exists j > j0 such that

Fτ(p0)(αj−1)

Fτ(k−1)(αj−1)
≤ C ‖y‖

∗
1

‖y‖∗k
<

Fτ(p0)(αj)

Fτ(k−1)(αj)
.(4.16)

Since the right inequality in (4.16) coincides with (4.15) the maximum in
(4.13) occurs for some p ∈ [p0, P0].

On the other hand by (3.22), (3.23) and the left inequality in (4.16) we
obtain (since j > j0 ≥ j̃)

αj ≤ ‖y‖∗1/‖y‖∗k,
therefore from (4.13) it follows that for some p ∈ [p0, P0],

‖y‖∗k
‖y‖∗p

≤ C
Fτ(p)(αj)

Fτ(p0)(αj)
≤ CFτ(p)(αj) ≤ CFτ(p)

(‖y‖∗1
‖y‖∗k

)
,

which proves (4.11) with D = C.
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In order to prove that (ii)⇒(i) we shall check that (3.19) implies

(4.17) ∀σ(p) ↑ ∞ ∃k ∀p0 ∃P0, C > 1 :

Fσ(p0)(αj)‖y‖∗k ≤ C max
1≤p≤P0

Fσ(p)(αj)‖y‖∗p.

Fix σ(p) ↑ ∞ and take an arbitrary p0. Then choose τ(p) as in the proof
of Theorem 8 so that (3.28) holds.

Fix a pair (y, j), y ∈ E′, j ∈ N. Either

‖y‖∗1/‖y‖∗k > Fσ(p0)(αj)/Fσ(1)(αj),

then obviously (4.17) holds, or

‖y‖∗1/‖y‖∗k ≤ Fσ(p0)(αj)/Fσ(1)(αj).

Then by (4.11) with p1 = 1 and (3.28) we obtain, for some p ∈ [p0, P0],

‖y‖∗k
‖y‖∗p

≤ DFτ(p)[Fσ(p0)(αj)] ≤ D
Fσ(p)(αj)

Fσ(p0)(αj)
,

that is, (4.17) holds with C = D.
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