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Erratum to “A class of Fourier multipliers on H1(R2)”

(Studia Math. 140 (2000), 289–298)

by

M. Wojciechowski (Warszawa)

As was observed by Prof. Waldemar Hebisch, Theorem 1 of [W] is false.
A counterexample is as follows. Let φ, ψ ∈ D(R) and suppφ, suppψ ⊂
[−1/2, 1/2] and ψ(ξ) = 1 for [−1/4, 1/4]. Let ψn(ξ) = ψ((ξ − 2n)/2n) and
φn(η) = φ(2nη) and Φn(ξ, η) = ψn(ξ)φn(η). For f ∈ D(R2) we put

Tf =
∞∑

n=1

Φ∨n ∗ f.

It is easy to check that T satisfies the assumptions of Theorem 1 from [W].
Let g(ξ, η) = g1(ξ)g2(η) where g1, g2 ∈ D(R), supp g1, supp g2 ⊂ [−1, 1], and
g2(η) = 1 for η ∈ [−1/2, 1/2]. Let

f̂ =
∞∑

k=1

akg(ξ − 2nk , η)

where (ak) ∈ `2 \ `1, and (nk) is a sequence such that n1 > 1 and
∥∥∥
N∑

k=1

akφ
∨
nk

∥∥∥
1
→∞ as N →∞.

Then f ∈ H1(R2). Indeed, since the functions g(ξ − 2nk , η) (k = 1, 2, . . .)
are supported on disjoint dyadic frames,

‖f‖H1 '
� (∑

|akg∨|2
)1/2

=
(∑

a2
k

)1/2( �
|g∨|2

)1/2
<∞.

On the other hand

(Tf)∧(ξ, η) =
∑

k

akψnk(ξ)φnk(η)g1(ξ − 2nk)g2(η)

=
∑

k

akφnk(η)g1(ξ − 2nk).
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Hence

‖Tg‖1 =
∥∥∥
∑

k

akφ
∨
nk

(y)g∨1 (x)e2πi2nkx
∥∥∥

1
= ‖g∨1 ‖1 ·

∥∥∥
∑

akφ
∨
nk

∥∥∥
1

=∞.

Similarly one can prove that Corollaries 1 and 2 of [W] do not hold.
The author is deeply grateful to Waldemar Hebisch for pointing out the

mistake.
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