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Square functions associated to Schrödinger operators

by

I. Abu-Falahah, P. R. Stinga, and J. L. Torrea (Madrid)

Abstract. We characterize geometric properties of Banach spaces in terms of bound-
edness of square functions associated to general Schrödinger operators of the form L =
−∆+V , where the nonnegative potential V satisfies a reverse Hölder inequality. The main
idea is to sharpen the well known localization method introduced by Z. Shen. Our results
can be regarded as alternative proofs of the boundedness in H1, Lp and BMO of classical
L-square functions.

1. Introduction. Consider the time independent Schrödinger operator
in Rd, d ≥ 3,

(1.1) L := −∆+ V,

where the nonnegative potential V satisfies a reverse Hölder inequality for
some s > d/2 (see (2.1)).

Let X be a Banach space and let {Pt}t>0 = {e−t
√
L}t>0 be the (sub-

ordinated) Poisson semigroup associated to L (see (2.8)). For 2 ≤ q < ∞
consider the generalized square function

gL,qf(x) =
(∞�

0

∥∥∥∥t∂Ptf(x)
∂t

∥∥∥∥q
X

dt

t

)1/q

(1.2)

= ‖t∂tPtf(x)‖Lq
X((0,∞),dt/t), x ∈ Rd.

By using the method described below we prove the following theorem.

Theorem A. Let X be a Banach space and 2 ≤ q < ∞. The following
statements are equivalent.

(i) X admits an equivalent norm for which it is q-uniformly convex.
(ii) The operator gL,q maps BMOL,X into BMOL.
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(iii) The operator gL,q maps LpX(Rd) into Lp(Rd) for any p in the range
1 < p <∞.

(iv) The operator gL,q maps L1
X(Rd) into weak-L1(Rd).

(v) The operator gL,q maps H1
L,X into L1(Rd).

(vi) For every f ∈ L1
X(Rd), gL,qf(x) <∞ for almost every x ∈ Rd.

In 1995 Z. Shen proved Lp-boundedness of the Riesz transforms associ-
ated to the operator L (see [7]). The main idea in that paper is to break the
kernels of the operators into “local” and “global” parts (close to the diago-
nal and far from the diagonal according to a certain distance ρ(x) related
to L). The paper, a nice and exhaustive piece of mathematics, has become
a classic and it has been a source of inspiration for a lot of manuscripts re-
garding harmonic analysis of operators associated to (1.1). However, when
these operators are defined by some formula involving the heat semigroup (as
in the case of the maximal operator supt>0 |e−tLf | and the square function
(
	∞
0 |t∂te

−tLf |2 dt/t)1/2) the word “local” usually refers to the parameter t of
e−tL being small and controlled in some sense by ρ(x) (see [1]).

Beyond the characterization of q-uniformly convex Banach spaces
through boundedness properties of L-square functions, we have another pur-
pose: to enlighten the “localization” technique by sharpening the method in-
troduced in [7] in order to avoid manipulations with the parameter t. At the
same time, we get a unified approach to proving H1, Lp and BMO bounded-
ness results for classical harmonic analysis operators associated to L. Observe
that, in particular, Theorem A gives an alternative proof of the boundedness
of gL,2 in the scalar case.

Let us briefly describe the procedure that is later developed in detail for
the case of the square function gL,q acting on vector-valued functions.

Description of the method. Let ρ(x) be an auxiliary critical radii func-
tion determined by the potential V (see (2.2)), and N be the region con-
sisting of points (x, y) ∈ Rd × Rd such that |x − y| ≤ ρ(x). Given a linear
operator associated to L, that we denote by TL, let T∆ be the parallel oper-
ator associated to the classical Laplacian −∆. Define the localized operator
TLlocf(x) := TL(χN (x, ·)f(·))(x) and analogously T∆locf(x). Then T∆loc inherits
the Lp-boundedness properties from T∆. Even more, if T∆loc is bounded in Lp
then it is also bounded in BMOL. In other words, the operator T∆loc behaves
as a natural operator associated to L. Now the method finishes by observing
that the difference operators T∆loc − TLloc and TLloc − TL are bounded from Lp

into Lp for 1 ≤ p ≤ ∞ and from BMOL into L∞.
In order to make the method uniform, we consider a “local” part, defined

through ρ, where the cutting acts on the heat kernel. This idea allows us
to handle any operator defined via a formula involving the heat kernel, like
Riesz transforms, square functions, etc.
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Besides the uniformization, we believe that our main contribution is to
show that the local part (given in terms of ρ) of an operator associated
to the standard Laplacian −∆ shares the natural boundedness properties
with the corresponding operators associated to L. We emphasize that this
phenomenon is quite surprising in the case of boundedness in BMO. See
Theorems 3.7 and 3.9 in Section 3 for the case of the g-function. The general
ideas are summarized in Remarks 3.8 and 3.10. Observe that the localized
operator always has a rough kernel (see Remark 3.10), and it is not clear a
priori how to prove the necessary smoothness properties in order to get the
desired boundedness in BMO.

In this paper LpX(Rd) denotes the usual Lp-space of Bochner–Lebesgue
p-integrable functions on Rd with values inX. The spacesH1

L,X and BMOL,X
are defined in the same way as in the scalar case just by replacing the absolute
value of C by the norm of X (see (2.12) and (2.9)). For the definition of q-
uniform convexity we refer to Section 4. Throughout the paper the letter C
denotes a positive constant that may change in each appearance and does
not depend on the significant quantities.

The paper is organized as follows. We collect in Section 2 the preliminary
results already known in the context of Schrödinger operators. Section 3 con-
tains the technical results needed for the application of the method. Finally
Section 4 is devoted to the proof of Theorem A.

2. Preliminaries. The nonnegative potential V in (1.1) satisfies a re-
verse Hölder inequality for some s > d/2; that is, there exists a constant
C = C(s, V ) such that

(2.1)
(

1
|B|

�

B

V (y)s dy
)1/s

≤ C

|B|

�

B

V (y) dy,

for all balls B ⊂ Rd. Associated to this potential, Shen defines in [7] the
critical radii function as

(2.2) ρ(x) := sup
{
r > 0 :

1
rd−2

�

B(x,r)

V (y) dy ≤ 1
}
, x ∈ Rd.

Some properties of this function ρ are well known. We are particularly in-
terested in the following.

Lemma 2.1 (see Lemma 1.4 in [7]). There exist c > 0 and k0 ≥ 1 such
that for all x, y ∈ Rd,

(2.3) c−1ρ(x)
(

1 +
|x− y|
ρ(x)

)−k0
≤ ρ(y) ≤ cρ(x)

(
1 +
|x− y|
ρ(x)

)k0/(k0+1)

.
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In particular, there exists a positive constant C1 < 1 such that

if |x− y| ≤ ρ(x) then C1ρ(x) < ρ(y) < C−1
1 ρ(x).

Lemma 2.2 (see Lemma 2.3 in [2]). There exists a sequence {xk}∞k=1 in
Rd such that the balls {Qk}∞k=1 defined by Qk := B(xk, ρ(xk)) satisfy

•
⋃
kQk = Rd;

• there exists N = N(ρ) such that, for every k ≥ 1,

card{j : 2Qj ∩ 2Qk 6= ∅} ≤ N,
where for a ball B and a positive number c we denote by cB the ball with the
same center as B and radius c times the radius of B.

Let {Tt}t>0 be the heat-diffusion semigroup associated to L acting on
X-valued functions:

(2.4) Ttf(x) ≡ e−tLf(x) =
�

Rd

kt(x, y)f(y) dy, f ∈ L2
X(Rd), x ∈ Rd, t > 0.

The following lemmas are known.

Lemma 2.3 (see [3, 4]). For every α > 0 there exists a constant Cα such
that

(2.5) 0 ≤ kt(x, y) ≤ Cα
1
td/2

e−|x−y|
2/(5t)

(
1 +

√
t

ρ(x)
+
√
t

ρ(y)

)−α
for all x, y ∈ Rd, t > 0.

Let
ht(x) :=

1
(4πt)d/2

e−|x|
2/(4t), x ∈ Rd, t > 0,

be the kernel of the classical heat semigroup {Tt}t>0 = {et∆}t>0 in Rd.

Lemma 2.4 (see Proposition 2.16 in [3]). There exists a nonnegative
Schwartz class function ω in Rd such that

(2.6) |kt(x, y)− ht(x− y)| ≤
( √

t

ρ(x)

)δ
ωt(x− y), x, y ∈ Rd, t > 0,

where ωt(x− y) := t−d/2ω((x− y)/
√
t) and

(2.7) δ := 2− d/s > 0.

Given the heat semigroup (2.4), the Poisson semigroup associated to L
is obtained through Bochner’s subordination formula (see [8]):

(2.8) Ptf(x) ≡ e−t
√
Lf(x) =

t

2
√
π

∞�

0

e−t
2/(4u)

u3/2
Tuf(x) du, x ∈ Rd, t > 0.

With this we define, for 2 ≤ q < ∞, the square function related to L as
in (1.2).
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Remark 2.5 (notational convention). The Poisson semigroup associ-
ated to the classical Laplace operator in Rd will be denoted by {Pt}t>0 =
{e−t

√
−∆}t>0. Recall that Ptf(x) = Pt ∗ f(x), where

Pt(x) = cd
t

(t2 + |x|2)(d+1)/2
, x ∈ Rd, t > 0.

The square function considered in (1.2) will be denoted by g∆,qf when we
replace Ptf by Ptf .

A locally integrable function f : Rd → X is in BMOL,X whenever there
exists a constant C such that

(i) |B|−1 	
B ‖f(x)− fB‖X dx ≤ C for every ball B in Rd,

(ii) |B|−1 	
B ‖f(x)‖X dx ≤ C for every B = B(x0, r0), where x0 ∈ Rd

and r0 ≥ ρ(x0).

As usual, fB := |B|−1 	
B f(x) dx for every ball B in Rd. The norm ‖f‖BMOL,X

is defined as

‖f‖BMOL,X
= inf{C ≥ 0 : (i) and (ii) hold}.(2.9)

Let us note that if (ii) is true for some ball B then (i) holds true for the same
ball, so we might require (i) only for balls with radii smaller than ρ(x0). By
using the classical John–Nirenberg inequality it can be seen that if in (i) and
(ii) the L1

X -norms are replaced by LpX -norms, for 1 < p <∞, then the space
BMOL,X does not change and equivalent norms appear (see [1, Corollary 3]).

We define the vector-valued atomic Hardy space related to L following
the scalar-valued definition in [2]. A function a : Rd → X is an H1

L,X -atom
associated with a ball B(x0, r) when supp a ⊂ B(x0, r) and

(2.10) ‖a‖L∞X (Rd) ≤
1

|B(x0, r)|
,

and, in addition,

(2.11)
�

Rd

a(x) dx = 0 whenever 0 < r < ρ(x0).

An X-valued integrable function f in Rd belongs to H1
L,X if and only if it

can be written as f =
∑

j λjaj , where aj are H
1
L,X -atoms and

∑
j |λj | <∞.

The norm is given by

(2.12) ‖f‖H1
L,X

= inf
{∑

j

|λj | : f =
∑
j

λjaj

}
.

In [1] it is shown that BMOL is the dual space of H1
L.
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3. Technical lemmas. As we said in the description of our method, the
following region N will play a fundamental role:

N := {(x, y) ∈ Rd × Rd : |x− y| ≤ ρ(x)}.

Given N we define the “global” and “local” parts of the square function
defined in (1.2) as

gL,qglobf(x) = gL,q(χNc(x, ·)f(·))(x),(3.1)

gL,qloc f(x) = gL,qf(x)− gL,qglobf(x).

Note that

(3.2) gL,qloc f(x) ≤ gL,q(χN (x, ·)f(·))(x) ≤ gL,qf(x)+gL,qglobf(x), a.e. x∈Rd,

or equivalently,

(3.3) |gL,qf(x)− gL,q(χN (x, ·)f(·))(x)| ≤ gL,qglobf(x), a.e. x ∈ Rd.

Lemma 3.1. Let X be any Banach space and α > 0. Then for any f ∈⋃
1≤p≤∞ L

p
X(Rd) we have

gL,qglobf(x) ≤ C
�

Rd

L(x, y)χNc(x, y)‖f(y)‖X dy, x ∈ Rd,

where L(x, y) = ρ(x)α/|x− y|d+α for x, y ∈ Rd.

Proof. Using Bochner’s subordination formula (2.8) it can be checked
that for any function h,

‖∂tPth(x)‖X ≤ C
∞�

0

e−t
2/(8u)

u3/2
‖Tuh(x)‖X du,

where we applied the inequality rηe−r ≤ Cηe
−r/2, valid for η ≥ 0, r > 0.

Hence, by Minkowski’s inequality,

gL,qglobf(x) ≤ C
∞�

0

∥∥∥∥te−t2/(8u)

u3/2

∥∥∥∥
Lq((0,∞),dt/t)

‖Tu(χNc(x, ·)f(·))(x)‖X du

= C

∞�

0

‖Tu(χNc(x, ·)f(·))(x)‖X
du

u

≤ C
∞�

0

�

Rd

ku(x, y)χNc(x, y)‖f(y)‖X dy
du

u
.

From (2.5) and the change of variables r = |x− y|2/(cu) we get
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∞�

0

ku(x, y)
du

u
≤ C

∞�

0

1
ud/2

e−|x−y|
2/(cu)

(
ρ(x)√
u

)α du
u

= C
ρ(x)α

|x− y|d+α

∞�

0

r(d+α)/2e−r
dr

r
.

Lemma 3.2. Let X be any Banach space. Then the global operator gL,qglob
maps

(a) LpX(Rd) into Lp(Rd) for any p, 1 ≤ p ≤ ∞,
(b) BMOL,X into L∞(Rd),
(c) H1

L,X into L1(Rd).

Proof. Let L(x, y), x, y ∈ Rd, be as in Lemma 3.1. Observe that
�

Rd

L(x, y)χNc(x, y) dy = ρ(x)α
�

|x−y|>ρ(x)

1
|x− y|d+α

dy = C

for all x ∈ Rd. On the other hand, by Lemma 2.1, there exists a positive
number ε < 1 such that

L(x, y) ≤ C ρ(y)α

|x− y|d+α

(
1 +
|x− y|
ρ(y)

)εα
(3.4)

≤ C
(

ρ(y)α

|x− y|d+α
+

ρ(y)(1−ε)α

|x− y|d+(1−ε)α

)
.

Assume that |x − y| > ρ(x). Then we claim that |x − y| ≥ Cρ(y) for some
positive constant C depending on the constants c and k0 that appear in
Lemma 2.1. Indeed, by Lemma 2.1 and the fact that |x− y|/ρ(x) ≥ 1 and
k0/(k0 + 1) ≤ 1, we have

ρ(y) ≤ Cρ(x)
(

1 +
(
|x− y|
ρ(x)

)k0/(k0+1))
≤ Cρ(x)

(
1 +
|x− y|
ρ(x)

)
≤ C(ρ(x) + |x− y|) ≤ 2C|x− y|.

This together with (3.4) gives
	
Rd L(x, y)χNc(x, y) dx ≤ C. Hence the op-

erator given by the kernel L(x, y)χNc(x, y) maps LpX(Rd) into Lp(Rd) for
every p, 1 ≤ p ≤ ∞. Using Lemma 3.1 we get (a).

To see (b) we observe that for f in BMOL,X , by Lemma 3.1,

gL,qglobf(x) ≤ Cρ(x)α
∞∑
j=0

�

2jρ(x)<|x−y|≤2j+1ρ(x)

1
|x− y|d+α

‖f(y)‖X dy

≤ Cρ(x)α
∞∑
j=0

1
(2jρ(x))d+α

�

|x−y|≤2j+1ρ(x)

‖f(y)‖X dy
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= C

∞∑
j=0

1
2jα

1
(2j+1ρ(x))d

�

|x−y|≤2j+1ρ(x)

‖f(y)‖X dy

≤ C‖f‖BMOL,X

∞∑
j=0

1
2jα

= C‖f‖BMOL,X
for all x ∈ Rd.

For (c) just note that H1
L,X ⊂ L1

X(Rd) and then apply (a).

Lemma 3.3. Let X be any Banach space. Then, for any strongly mea-
surable X-valued function f ,

|gL,qloc f(x)− g∆,qloc f(x)| ≤ C
�

Rd

M(x, y)χN (x, y)‖f(y)‖X dy, x ∈ Rd,

whereM(x, y) = ρ(x)−δ/|x− y|d−δ for x, y ∈ Rd, and δ > 0 is given in (2.7).

Proof. Proceeding as in the proof of Lemma 3.1 it is easy to check that

|gL,qloc f(x)− g∆,qloc f(x)|

≤ C
∞�

0

�

Rd

|ku(x, y)− hu(x− y)|χN (x, y)‖f(y)‖X dy
du

u
.

Using (2.6) and the fact that ω is rapidly decreasing we get
∞�

0

|ku(x, y)− hu(x− y)| du
u

≤ Cρ(x)−δ
∞�

0

1
u(d−δ)/2ω((x− y)/

√
u)
du

u

≤ Cρ(x)−δ
[

1
|x− y|d−δ+ε

|x−y|2�

0

(
|x− y|√

u

)d−δ+ε
ω((x− y)/

√
u)

du

u1−ε/2

+
∞�

|x−y|2

1
u(d−δ)/2

du

u

]

≤ C ρ(x)−δ

|x− y|d−δ

[
1

|x− y|ε

|x−y|2�

0

du

u1−ε/2 + 1
]

= C
ρ(x)−δ

|x− y|d−δ
.

Lemma 3.4. Let X be any Banach space. Then the difference operator
gL,qloc − g

∆,q
loc maps

(a) LpX(Rd) into Lp(Rd) for any p, 1 ≤ p ≤ ∞,
(b) BMOL,X into L∞(Rd),
(c) H1

L,X into L1(Rd).
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Proof. Let M(x, y), x, y ∈ Rd, be as in Lemma 3.3. First note that
�

Rd

M(x, y)χN (x, y) dy = ρ(x)−δ
�

|x−y|≤ρ(x)

1
|x− y|d−δ

dy = C, x ∈ Rd.

On the other hand, by Lemma 2.1,

M(x, y) ≤ C

|x− y|d−δ
ρ(y)−δ

(
1 +
|x− y|
ρ(y)

)k0δ
≤ C

(
ρ(y)−δ

|x− y|d−δ
+

ρ(y)−(1+k0)δ

|x− y|d−(1+k0)δ

)
,

where k0 ≥ 1. This, and the fact that |x− y| > ρ(x) implies |x− y| > Cρ(y)
(see the proof of Lemma 3.2), give

	
Rd M(x, y)χN (x, y) dx ≤ C for all y ∈ Rd.

Applying Lemma 3.3 we deduce (a) and as a consequence also (c).
We shall prove (b). Let f ∈ BMOL,X . Then
�

Rd

M(x, y)χN (x, y)‖f(y)‖X dy

=
∞∑
j=0

�

2−(j+1)ρ(x)<|x−y|≤2−jρ(x)

ρ(x)−δ

|x− y|d−δ
‖f(y)‖X dy

≤ C
∞∑
j=0

1
2jδ

1
(2−jρ(x))d

�

|x−y|≤2−jρ(x)

‖f(y)‖X dy

≤ C
∞∑
j=0

1
2jδ

[
1

(2−jρ(x))d
�

|x−y|≤2−jρ(x)

‖f(y)− fB(x,2−jρ(x))‖X dy

+
j−1∑
k=0

(‖fB(x,2−kρ(x)) − fB(x,2−(k+1)ρ(x))‖X) + ‖fB(x,ρ(x))‖X
]

≤ C
∞∑
j=0

1
2jδ

[‖f‖BMOX
+ j‖f‖BMOX

+ ‖f‖BMOX,L ]

≤ C‖f‖BMOL,X

∞∑
j=0

j + 2
2jδ

= C‖f‖BMOL,X

for all x ∈ Rd. To finish use Lemma 3.3.

Lemma 3.5. Let C1 be the constant that appears in Lemma 2.1 and γ > 0.
Take x, y ∈ Rd such that |x| < γ and |y| < (C2

1/2)ρ(0). Then there exists a
sufficiently large R = Rγ > 0 for which |x/R− y| < ρ(x/R).

Proof. Lemma 2.1 ensures that C1ρ(0) < ρ(y) < C−1
1 ρ(0). Let R > 0

be such that |x/R − y| < C2
1ρ(0) (it is enough to take R > 2γ/(C2

1ρ(0))).
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Hence |x/R − y| < C1ρ(y) < ρ(y). Once more using Lemma 2.1 we obtain
ρ(y) < C−1

1 ρ(x/R) and therefore |x/R− y| < C1C
−1
1 ρ(x/R) = ρ(x/R).

Lemma 3.6. Let f be a function with compact support. For a real number
r denote by f r the dilation of f defined by f r(x) := f(rx), x ∈ Rd. Then for
any given γ > 0 there exists R > 0, depending on γ and the support of f ,
such that

g∆,qf(x) = g∆,q(χN (x/R, ·)fR(·))(x/R) for all |x| < γ.

Proof. The scaling of the classical Poisson semigroup Ptf
R(x/R) =

PtRf(x), R > 0 (see Remark 2.5), implies that the square function satis-
fies g∆,qf(x) = g∆,qfR(x/R) for all R > 0. In order to get the conclu-
sion it is enough to take a sufficiently large R such that the support of
fR is contained in B(0, (C2

1/2)ρ(0)) and such that Lemma 3.5 can be ap-
plied.

The following result establishes that the boundedness in Lp of the square
function g∆,q related to the Laplacian −∆ implies the same type of bounded-
ness for the ρ-localized operator g∆,qloc . In fact this is a fairly general property:
see Remark 3.8 below.

Theorem 3.7. Assume that g∆,q maps LpX(Rd) into Lp(Rd) for some
p, 1 < p < ∞ (resp. L1

X(Rd) into weak-L1(Rd)). Then the operator f 7→
t∂tPt(χN (x, ·)f(·))(x), x ∈ Rd, t > 0, maps LpX(Rd) into Lp

Lq
X((0,∞),dt/t)

(Rd)

(resp. L1
X(Rd) into weak-L1

Lq
X((0,∞),dt/t)

(Rd)). In particular g∆,qloc maps

LpX(Rd) into Lp(Rd) (resp. L1
X(Rd) into weak-L1(Rd)).

Moreover, if for every f ∈ L1
X(Rd) we have g∆,qf(x) < ∞ for almost

all x ∈ Rd, then ‖t∂tPt(χN (x, ·)f(·))(x)‖Lq
X((0,∞),dt/t) < ∞ for almost all

x ∈ Rd.

Proof. We shall prove only the boundedness in Lp. We leave to the reader
the details of the rest of the proof.

Let {Qk}∞k=1 be the covering of Rd by critical balls whose existence is
guaranteed by Lemma 2.2. Consider the auxiliary operator given by

f 7→ Sf(x) =
∑
k≥1

χQk
(x)t∂tPt(χ2Qk

f)(x), x ∈ Rd, t > 0.

Then S is a bounded operator from LpX(Rd) into Lp
Lq

X((0,∞),dt/t)
(Rd). Indeed,

by using Minkowski’s inequality, the finite overlapping of the balls Qk, the
boundedness of g∆,q in Lp and once more the finite overlapping of 2Qk we
get
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‖Sf‖Lp

L
q
X

((0,∞),dt/t)
(Rd)

≤
( �

Rd

∣∣∣∑
k≥1

χQk
(x)‖t∂tPt(χ2Qk

f)(x)‖Lq
X((0,∞),dt/t)

∣∣∣pdx)1/p

≤
∑
k≥1

‖χQk
g∆,q(χ2Qk

f)‖Lp
X(Rd) ≤ C

∑
k≥1

‖g∆,q(χ2Qk
f)‖Lp

X(Rd)

≤ C
∑
k≥1

‖χ2Qk
f‖Lp

X(Rd) ≤ C‖f‖Lp
X(Rd).

Recall that for a compactly supported function f in L∞X (Rd) we have, as
in (3.2),

g∆,qloc f(x) ≤ g∆,q(χN (x, ·)f(·))(x) = ‖t∂tPt(χN (x, ·)f(·))(x)‖Lq
X((0,∞),dt/t),

a.e. x ∈ Rd. Our idea is to compare the operators f 7→ t∂tPt(χN (x, ·)f(·))(x)
and S. In order to do that we need some geometrical considerations. Let C1

be the constant that appears in Lemma 2.1. Consider the set

Ñ =
{

(x, y) ∈ Rd × Rd : |x− y| < C1

1 + C1
ρ(x)

}
.

It is an exercise to prove that if (x, y) ∈ Ñ then, since {Qk}∞k=1 is a covering
of Rd, there exists a positive integer k such that (x, y) ∈ Qk × 2Qk. On
the other hand, if (x, y) ∈ Qk × 2Qk, then by using Lemma 2.1 we get
|x − y| ≤ |x − xk| + |xk − y| ≤ 3C−1

1 ρ(x). Observe that it follows from the
finite overlapping property of the balls Qk that

‖t∂tPt(χN (x, ·)f(·))(x)‖X ∼
∥∥∥∑
k≥1

χQk
(x)t∂tPt(χN (x, ·)f(·))(x)

∥∥∥
X

for all x ∈ Rd, t > 0. The geometrical comments just made ensure that the
kernel of the difference operator

(3.5) f 7→
∑
k≥1

χQk
(x)t∂tPt(χN (x, ·)f(·))(x)− Sf(x), x ∈ Rd, t > 0,

is supported in the region

A :=
{

(x, y) ∈ Rd × Rd :
C1

1 + C1
ρ(x) ≤ |x− y| ≤ 3C−1

1 ρ(x)
}
.

Consequently, as

(3.6) ‖t∂tPt(x− y)‖Lq((0,∞),dt/t) =
C

|x− y|d
, x, y ∈ Rd,
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we have∥∥∥∑
k≥1

χQk
(x)t∂tPt(χN (x, ·)f(·))(x)− Sf(x)

∥∥∥
Lq((0,∞),dt/t)

≤ C
�

Rd

χA(x, y)
|x− y|d

‖f(y)‖X dy.

Note that
�

Rd

χA(x, y)
|x− y|d

dy =
�

C1
1+C1

ρ(x)≤|x−y|≤3C−1
1 ρ(x)

1
|x− y|d

dy = C log
3(1 + C1)

C2
1

for all x ∈ Rd, and, by Lemma 2.1,
�

Rd

χA(x, y)
|x− y|d

dx ≤
�

α1ρ(y)≤|x−y|≤α2ρ(y)

1
|x− y|d

dx = C log
α2

α1
, y ∈ Rd,

for some constants α1 and α2 independent of y. Therefore the operator

f 7→
�

Rd

χA(x, y)
|x− y|d

‖f(y)‖X dy

is bounded from LpX into Lp for every p, 1 ≤ p < ∞. Hence we get the
conclusion.

Remark 3.8. Consider two Banach spaces X1 and X2. Let T be a lin-
ear operator that maps C∞c (Rd;X1) into X2-valued strongly measurable
functions. Suppose T has an associated kernel which satisfies the standard
Calderón–Zygmund estimates. Define the “ρ-localized” operator

Tlocf(x) = T (χN (x, ·)f(·))(x), x ∈ Rd,

where N is the region determined by |x− y| ≤ ρ(x) as above. Then:

• Assume T has a bounded extension from LpX1
(Rd) into LpX2

(Rd) for
some p, 1 < p <∞. Then Tloc has a bounded extension from LpX1

(Rd)
into LpX2

(Rd).
• Assume T has a bounded extension from L1

X1
(Rd) into weak-L1

X2
(Rd).

Then Tloc has a bounded extension from L1
X1

(Rd) into weak-L1
X2

(Rd).
• Assume that for every f ∈ L1

X1
(Rd) we have ‖Tf(x)‖X2 < ∞ for

almost all x ∈ Rd. Then the same is true for Tloc.

The reader can check the validity of this remark just by replacing X by X1,
LqX((0,∞), dt/t) by X2 and f 7→ t∂tPtf(x) by f 7→ Tf(x) along the lines of
the proof of Theorem 3.7 above.

The next theorem permits us to pass, for ρ-localized operators related to
−∆, from Lp-boundedness to BMOL and H1

L-L
1 boundedness.
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Theorem 3.9. Let X be a Banach space such that the operator

f 7→ Tf(x) = t∂tPt(χN (x, ·)f(·))(x), x ∈ Rd, t > 0,

is bounded from LpX(Rd) into Lp
Lq

X((0,∞),dt/t)
(Rd) for some p, 1 < p < ∞.

Then T maps

BMOL,X into BMOL,Lq
X((0,∞),dt/t) and H1

L,X into L1
Lq

X((0,∞),dt/t)
(Rd).

Proof. Boundedness from BMOL,X into BMOL,Lq
X((0,∞),dt/t). We first

analyze the behavior over “small” balls. Consider a ball B = B(x0, r0) such
that 5r0 < C1ρ(x0), where C1 < 1 is the constant that appears in Lemma 2.1.
Given a function f we decompose it as

f = (f − fB)χ4B + (f − fB)χ(4B)c + fB =: f1 + f2 + f3.

Before entering the proof proper, we need a preparation. For x, z ∈ B,

Tf(x)− Tf(z) = Tf1(x)− Tf1(z) + Tf2(x)− Tf2(z) + Tf3(x)− Tf3(z).

We begin by observing that

Tf2(x)− Tf2(z) + Tf3(x)− Tf3(z)

=
�

Rd

(t∂tPt(x− y)− t∂tPt(z − y))χ|x−y|≤ρ(x)(y)f2(y) dy

+
�

Rd

t∂tPt(z − y)(χ|x−y|≤ρ(x)(y)− χ|z−y|≤ρ(x)(y))f2(y) dy

+
�

Rd

t∂tPt(z − y)(χ|z−y|≤ρ(x)(y)− χ|z−y|≤ρ(z)(y))f2(y) dy

+ fB
�

Rd

(t∂tPt(x− y)− t∂tPt(z − y))χ|x−y|≤ρ(x)(y) dy

+ fB
�

Rd

t∂tPt(z − y)(χ|x−y|≤ρ(x)(y)− χ|z−y|≤ρ(x)(y)) dy

+ fB
�

Rd

t∂tPt(z − y)(χ|z−y|≤ρ(x)(y)− χ|z−y|≤ρ(z)(y)) dy.

By Lemma 2.1,

χ(4B)c(y)(χ|z−y|≤ρ(x)(y)− χ|z−y|≤ρ(z)(y)) = χ|z−y|≤ρ(x)(y)− χ|z−y|≤ρ(z)(y).

Therefore,
�

Rd

t∂tPt(z − y)(χ|z−y|≤ρ(x)(y)− χ|z−y|≤ρ(z)(y))f2(y) dy

=
�

Rd

t∂tPt(z − y)(χ|z−y|≤ρ(x)(y)− χ|z−y|≤ρ(z)(y))(f(y)− fB) dy.
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As a consequence,

Tf2(x)− Tf2(z) + Tf3(x)− Tf3(z)

=
�

Rd

(t∂tPt(x− y)− t∂tPt(z − y))χ|x−y|≤ρ(x)(y)f2(y) dy

+
�

Rd

t∂tPt(z − y)(χ|x−y|≤ρ(x)(y)− χ|z−y|≤ρ(x)(y))f2(y) dy

+
�

Rd

t∂tPt(z − y)(χ|z−y|≤ρ(x)(y)− χ|z−y|≤ρ(z)(y))f(y) dy

+ fB
�

Rd

(t∂tPt(x− y)− t∂tPt(z − y))χ|x−y|≤ρ(x)(y) dy

+ fB
�

Rd

t∂tPt(z − y)(χ|x−y|≤ρ(x)(y)− χ|z−y|≤ρ(x)(y)) dy

=: A1(x, z) +A2(x, z) +A3(x, z) +A4(x, z) +A5(x, z).

After these remarks, we can start the actual proof of the boundedness in
BMO. We have

1
|B|

�

B

‖Tf(x)− (Tf)B‖Lq
X((0,∞),dt/t) dx

≤ 2
|B|

�

B

‖Tf1(x)‖Lq
X((0,∞),dt/t) dx

+
5∑
i=1

1
|B|2

�

B

�

B

‖Ai(x, z)‖Lq
X((0,∞),dt/t) dx dz.

By hypothesis, T is bounded from LpX(Rd) into Lp
Lq

X((0,∞),dt/t)
(Rd), so

1
|B|

�

B

‖Tf1(x)‖Lq
X((0,∞),dt/t)dx ≤ C

(
1
|B|

�

B

‖Tf1(x)‖p
Lq

X((0,∞),dt/t)
dx

)1/p

≤ C
(

1
|B|

�

Rd

‖f1(x)‖pX dx
)1/p

= C

(
1
|B|

�

4B

‖f(x)− fB‖pX dx
)1/p

≤ C‖f‖BMOX
≤ C‖f‖BMOL,X

,

where in the penultimate inequality we applied an argument as in (3.7)
below. Let us now estimate all the Ai(x, z), i = 1, . . . , 5, for x, z ∈ B =
B(x0, r0). By the Mean Value Theorem and (3.6),
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‖A1(x, z)‖Lq
X((0,∞),dt/t)

≤ C
�

Rd

|x− z|
|x− y|d+1

‖f2(y)‖X dy

≤ Cr0

�

|x0−y|>4r0

1
|x0 − y|d+1

‖f(y)− fB‖X dy

= Cr0

∞∑
j=2

�

2jr0<|x0−y|≤2j+1r0

1
|x0 − y|d+1

‖f(y)− fB‖X dy

≤ C
∞∑
j=0

1
2j

1
(2j+1r0)d

�

|x0−y|≤2j+1r0

‖f(y)− fB‖X dy

≤ C‖f‖BMOX
≤ C‖f‖BMOX,L .

Again by (3.6),

‖A2(x, z)‖Lq
X((0,∞),dt/t)

≤ C
�

Rd

1
|z − y|d

|χ|x−y|≤ρ(x)(y)− χ|z−y|≤ρ(x)(y)| ‖f2(y)‖X dy.

Observe that A2 will be nonzero in the following cases:

(i) |x− y| ≤ ρ(x) and |z − y| > ρ(x),
(ii) |x− y| > ρ(x) and |z − y| ≤ ρ(x).

In the first case ρ(x) < |z − y| ≤ |z − x| + |x − y| < 2r0 + |x − y| and
then ρ(x) − 2r0 < |x − y| ≤ ρ(x). While in (ii) we have ρ(x) < |x − y| ≤
|x − z| + |z − y| < 2r0 + ρ(x). On the other hand |x − y| ∼ |z − y|. Let
j0 and j1 be nonnegative integers such that 2j0r0 ≤ ρ(x)/2 < 2j0+1r0 and
2j1r0 ≤ 2ρ(x) < 2j1+1r0. Observe that, since 5r0 < ρ(x) for all x ∈ B(x0, r0),
we have j0 ≥ 1. The Mean Value Theorem gives (ρ(x)−2r0)d−(ρ(x)+2r0)d ≤
Cρ(x)d−1r0, hence applying Hölder’s inequality with some r ∈ (1,∞) we get

‖A2(x, z)‖Lq
X((0,∞),dt/t)

≤ C
�

ρ(x)−2r0<|x−y|<ρ(x)+2r0

1
|x− y|d

‖f2(y)‖X dy

≤ C
( �

ρ(x)−2r0<|x−y|<ρ(x)+2r0

1
|x− y|dr

‖f(y)− fB‖rX dy
)1/r

ρ(x)(d−1)/r′r
1/r′

0

≤ C
( �

ρ(x)/2<|x−y|<2ρ(x)

1
|x− y|dr

‖f(y)− fB‖rX dy
)1/r

ρ(x)(d−1)/r′r
1/r′

0
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≤ C
( j1∑
j=j0

1
(2jr0)(d−1)(r−1)

1
2j(r−1)

1
(2jr0)d

�

|x0−y|<2j+2r0

‖f(y)− fB‖rX dy
)1/r

× ρ(x)(d−1)/r′

≤ C
(

1
(2j0r0)(d−1)(r−1)

j0+2∑
j=j0

1
2j(r−1)

1
(2jr0)d

�

|x0−y|<2j+2r0

‖f(y)− fB‖rX dy
)1/r

× ρ(x)(d−1)/r′

≤ C
( ∞∑
j=0

1
2j(r−1)

1
(2jr0)d

�

|x0−y|<2j+2r0

‖f(y)− fB‖rX dy
)1/r

≤ C‖f‖BMOX
.

Observe that in the penultimate inequality above we pass to the infinite
series since j0 depends on ρ(x) and we want an estimate independent of it.
For the last inequality above we first note that, by the triangle inequality
and Minkowski’s integral inequality,

(3.7)
(

1
(2jr0)d

�

|x0−y|<2j+2r0

‖f(y)− fB‖rX dy
)1/r

≤
(

1
(2jr0)d

�

|x0−y|<2j+2r0

(
‖f(y)− f2j+2B‖X +

j+1∑
k=0

‖f2k+1B − f2kB‖X
)r
dy

)1/r

≤
(

4d

(2j+2r0)d
�

|x0−y|<2j+2r0

‖f(y)− f2j+2B‖rX dy
)1/r

+ C

j+1∑
k=0

‖f2k+1B − f2kB‖X

≤ C(j + 3)‖f‖BMOX
.

Hence,
∞∑
j=0

1
2j(r−1)

1
(2jr0)d

�

|x0−y|<2j+2r0

‖f(y)− fB‖rX dy

≤ C
∞∑
j=0

(j + 3)r

2j(r−1)
‖f‖rBMOX

= C‖f‖rBMOX
.

Since x, z ∈ B,

‖A3(x, z)‖Lq
X((0,∞),dt/t) ≤

�

C1ρ(x0)<|z−y|<C−1
1 ρ(x0)

1
|z − y|d

‖f(y)‖X dy
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≤ C

ρ(x0)d
�

|z−y|<C−1
1 ρ(x0)

‖f(y)‖X dy

≤ C

ρ(z)d
�

|z−y|<Cρ(z)

‖f(y)‖X dy ≤ C‖f‖BMOL,X
.

By dominated convergence,
�

Rd

∂tPt(x− y) dy = ∂t
�

Rd

Pt(x− y) dy = ∂t1 = 0, x ∈ Rd.

Therefore,

‖A4(x, z)‖Lq
X((0,∞),dt/t)

=
∥∥∥fB �

Rd

(t∂tPt(x− y)− t∂tPt(z − y))χ|x−y|≤ρ(x)(y) dy
∥∥∥
Lq

X((0,∞),dt/t)

=
∥∥∥fB �

Rd

(t∂tPt(x− y)− t∂tPt(z − y))χ|x−y|≤ρ(x)(y) dy

− fB
�

Rd

(t∂tPt(x− y)− t∂tPt(z − y)) dy
∥∥∥
Lq

X((0,∞),dt/t)

=
∥∥∥fB �

Rd

(t∂tPt(x− y)− t∂tPt(z − y))χ|x−y|>ρ(x)(y) dy
∥∥∥
Lq

X((0,∞),dt/t)

≤ C‖fB‖X
�

Rd

‖t∂tPt(x− y)− t∂tPt(z − y)‖Lq((0,∞),dt/t)χ|x−y|>ρ(x)(y) dy

≤ C‖fB‖X
�

Rd

|x− z|
|x− y|d+1

χ|x−y|>ρ(x)(y) dy

≤ C‖fB‖X
r0

ρ(x)
≤ C‖fB‖X

r0

ρ(x0)
.

As ‖fB‖X ≤ C(1 + log(ρ(x0)/r0))‖f‖BMOL,X
(see [1, Lemma 2]) we get the

appropriate bound for A4. Finally, by using the arguments for A2,

‖A5(x, z)‖Lq
X((0,∞),dt/t) ≤ C‖fB‖X

�

ρ(x)−2r0<|x−y|<ρ(x)+2r0

1
|x− y|d

dy

≤ C‖f‖BMOL,X

(
1 + log

ρ(x0)
r0

)
log

ρ(x) + 2r0

ρ(x)− 2r0
.

Since r0/ρ(x) < 1/5, we have log ρ(x)+2r0
ρ(x)−2r0

∼ r0/ρ(x) ∼ r0/ρ(x0), which gives
the desired bound for A5.
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Let us now analyze the behavior over “big” balls. Let B1 = B(x0, kρ(x0))
with k ≥ C1/5. Given a function f we decompose it as f = f1 + f2, where
f1 = fχ2B1 . By Hölder’s inequality and the hypothesis,

1
|B1|

�

B1

‖t∂tPt(χN (x, ·)f1(·))(x)‖Lq
X((0,∞),dt/t) dx

≤ C
(

1
|B1|

�

2B1

‖f(x)‖pX dx
)1/p

≤ C‖f‖BMOL,X
.

On the other hand, by Lemma 2.1 and (3.6),

‖t∂tPt(χN (x, ·)f2(·))(x)‖Lq
X((0,∞),dt/t)

≤
�

Rd

1
|x− y|d

χ2kρ(x0)≤|x−y|≤ρ(x)(y)‖f(y)‖X dy

≤ C

ρ(x)d
�

|x−y|≤ρ(x)

‖f(y)‖Xdy ≤ C‖f‖BMOL,X
, x ∈ B1.

This finishes the proof of the BMO boundedness.

Boundedness from H1
L,X into L1

Lq
X((0,∞),dt/t)

(Rd). We begin with the
analysis over atoms supported on “small” balls. Let a be an atom with sup-
port contained in a ball B̃ = B(y0, r0), with r0 < ρ(y0). Then

�

Rd

‖Ta(x)‖Lq
X((0,∞),dt/t) dx

=
�

4B̃

‖Ta(x)‖Lq
X((0,∞),dt/t) dx+

�

(4B̃)c

‖Ta(x)‖Lq
X((0,∞),dt/t) dx

=: A1 +A2.

Since T is bounded in Lp, by (2.10) we have

A1 ≤ C
( �

4B̃

‖Ta(x)‖p
Lq

X((0,∞),dt/t)
dx
)1/p
|B̃|1/p′

≤ C
( �
B̃

‖a(x)‖pX dx
)1/p
|B̃|1/p′ ≤ C.

Applying the fact that the atom a has mean zero (see (2.11)), we get

A2 =
�

(4B̃)c

∥∥∥ �

Rd

(
t∂tPt(x− y)χ|x−y|≤ρ(x)(y)− t∂tPt(x− y0)χ|x−y0|≤ρ(x)(x)

)
× a(y) dy

∥∥∥
Lq

X((0,∞),dt/t)
dx
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≤
�

(4B̃)c

∥∥∥ �

Rd

(t∂tPt(x− y)− t∂tPt(x− y0))χ|x−y|≤ρ(x)(y)

× a(y) dy
∥∥∥
Lq

X((0,∞),dt/t)
dx

+
�

(4B̃)c

∥∥∥ �

Rd

t∂tPt(x− y0)(χ|x−y|≤ρ(x)(y)− χ|x−y0|≤ρ(x)(x))

× a(y) dy
∥∥∥
Lq

X((0,∞),dt/t)
dx

≤ C
�

(4B̃)c

�

Rd

|y − y0|
|x− y0|d+1

‖a(y)‖X dy dx

+ C
�

(4B̃)c

�

Rd

1
|x− y0|d

|χ|x−y|≤ρ(x)(y)− χ|x−y0|≤ρ(x)(x)| ‖a(y)‖X dy dx

=: C(A21 +A22).

Fubini’s Theorem and (2.10) give

A21 =
�

Rd

|y − y0| ‖a(y)‖X
[ �

Rd

χ|x−y0|≥4r0(x)
1

|x− y0|d+1
dx

]
dy

=
C

r0

�

|y−y0|<r0

|y − y0| ‖a(y)‖Xdy ≤ C.

A geometric reasoning parallel to the one developed above for the BMO case
gives that in order to have A22 6= 0 we must have 3r0 < ρ(x), ρ(x) − r0 <
|x − y| < ρ(x) + r0 and, in addition, |x − y0| ∼ ρ(x) ∼ ρ(y0). Therefore,
since the atom a is supported in B̃ = B(y0, r0) and is controlled in L∞ norm
by Cr−d0 ,

A22 ≤
C

ρ(y0)d
�

|x−y0|≤Cρ(y0)

�

ρ(x)−r0<|x−y|<ρ(x)+r0

‖a(y)‖X dy dx

≤ C

ρ(y0)d
�

|x−y0|≤Cρ(y0)

�

|y−y0|<r0

‖a(y)‖X dy dx

≤ C

ρ(y0)d
�

|x−y0|≤Cρ(y0)

dx ≤ C.

We continue with the analysis over atoms supported on “big” balls. Let
a be an atom supported in a ball B̄(y0, γρ(y0)) with γ > 1. We begin by
proceeding as in the previous case for A1. For A2, since we do not have the
cancelation property (2.11), we estimate its size as follows:
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A2 =
�

(4B̄)c

‖Ta(x)‖Lq
X((0,∞),dt/t) dx

≤ C
�

(4B̄)c

�

B̄

1
|x− y|d

‖a(y)‖Xχ|x−y|≤ρ(x)(y) dy dx.

The domain of integration above is contained in the set defined by the condi-
tions |x−y0| ≥ 4γρ(y0), |y−y0| < γρ(y0) and |x−y| ≤ ρ(x). These conditions
imply that 4γρ(y0) ≤ |x− y0| ≤ |x− y|+ |y − y0| < |x− y|+ γρ(y0), hence
3γρ(y0) ≤ |x − y|. Note that, by Lemma 2.1, ρ(x) ≤ Cρ(y) ≤ C̄γρ(y0).
Therefore 3γρ(y0) ≤ |x− y| ≤ C̄γρ(y0) and we get

A2 ≤ C
�

B̄

‖a(y)‖X
�

3γρ(y0)≤|x−y|≤C̄γρ(y0)

1
|x− y|d

dx dy ≤ C.

Remark 3.10. Consider two Banach spacesX1 andX2. Let T be a linear
operator that maps LpX1

(Rd) into LpX2
(Rd) for some p, 1 < p <∞, such that

T1 can be defined and T1 = 0. Assume T has an associated kernel which
satisfies the standard estimates of Calderón–Zygmund operators. Define the
operator

Tlocf(x) = T (χN (x, ·)f(·))(x), x ∈ Rd.

Then:
• Tloc is bounded from BMOL,X1 into BMOL,X2 ,
• Tloc is bounded from H1

L,X1
into L1

X2
(Rd).

Parallel to Remark 3.8, the reader can check the validity of these claims
just by replacing, along the lines of the proof of Theorem 3.9, X by X1,
LqX((0,∞), dt/t) by X2 and f 7→ t∂tPtf(x) by f 7→ Tf(x).

4. Proof of Theorem A. Given a Banach space X, define its modulus
of convexity by

δX(ε) = inf
{

1−
∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ X, ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ε

}
for 0 < ε < 2. The Banach space X is called q-uniformly convex, 2 ≤ q <∞,
if δX(ε) ≥ cεq for some positive constant c. By Pisier’s Renorming Theorem
[6], X is q-uniformly convex if and only if X is of martingale cotype q. For
martingale cotype the following theorem holds (see [9] and [5]).

Theorem 4.1. Let X be a Banach space and 2 ≤ q <∞. The following
statements are equivalent:

(1) X is of martingale cotype q.
(2) The operator g∆,q maps BMOc,X into BMO.
(3) The operator g∆,q maps LpX(Rd) into Lp(Rd) for any p in the range

1 < p <∞.
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(4) The operator g∆,q maps L1
X(Rd) into weak-L1(Rd).

(5) The operator g∆,q maps H1
X into L1(Rd).

(6) For every f ∈ L1
X(Rd), g∆,qf(x) <∞ for almost every x ∈ Rd.

Here H1
X denotes the atomic Hardy space in Rd, and BMOc,X is the set

of functions that belong to the classical BMO with values in X and have
compact support.

Proof of Theorem A. Observe that hypothesis (i) is equivalent to one of
the statements in Theorem 4.1.

(i)⇒(ii). We can apply Theorems 3.7 and 3.9 to infer that the operator
f 7→ t∂tPt(χN (x, ·)f(·)) maps BMOL,X into BMOL,Lq

X((0,∞),dt/t). By using

Lemma 3.4 we obtain the boundedness of gL,qloc from BMOL,X into BMOL.
Finally, by Lemma 3.2(b) we arrive at (ii).

(i)⇒(iii). By Theorem 3.7 and Lemma 3.4(a) the local operator gL,qloc is
bounded in Lp. Boundedness of the global part follows from Lemma 3.2(a).

(i)⇒(iv). Theorem 3.7 and Lemma 3.4(a), together with Lemma 3.2(a),
give the conclusion.

(i)⇒(v). By using Theorems 3.7, 3.9 and 3.4(c) we see that gL,qloc maps
H1
L,X into L1(Rd). Then Lemma 3.2(c) gives the result.
(i)⇒(vi). Apply Theorem 3.7 and Lemmas 3.4(a) and 3.2(a).
(ii)⇒(i). Theorem 4.1 tells us that it is enough to prove the boundedness

of g∆,q from BMOc,X into BMO. From the hypothesis, Lemma 3.2(b) and
(3.3) we can deduce that the operator f(x) 7→ gL,q(χN (x, ·)f(·))(x), x ∈ Rd,
is bounded from BMOL,X into BMOL. On the other hand, the proof of
Lemma 3.4 shows that the difference operator f(x) 7→ gL,q(χN (x, ·)f(·))(x)−
g∆,q(χN (x, ·)f(·))(x) is bounded from BMOL,X into L∞. Thus the operator
f(x) 7→ g∆,q(χN (x, ·)f(·))(x) is bounded from BMOL,X into BMOL ⊂ BMO.
Let f be a function in BMOc,X . Given a ball B(x0, s), by Lemma 3.6 there
exists R > 0 depending on s and the support of f such that supp fR ⊂
B(0, ρ(0)/2) (see the proof of Lemma 3.6) and

1
|B(x0, s)|

�

B(x0,s)

g∆,qf(x) dx

=
1

|B(x0, s)|

�

B(x0,s)

g∆,q(χN (x/R, ·)fR(·))(x/R) dx

=
1

|B(x0/R, s/R)|

�

B(x0/R,s/R)

g∆,q(χN (z, ·)fR(·))(z) dz.

Since R can be arbitrarily large, we fix it so that (Rρ(0))−d‖f‖L1
X(Rd)

≤ ‖f‖BMOX
. Therefore,
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1
|B(x0, s)|

�

B(x0,s)

|g∆,qf(x)− (g∆,q(χN (z, ·)fR(·))(z))B(x0/R,s/R)| dx

=
1

|B(x0/R, s/R)|

�

B(x0/R,s/R)

∣∣g∆,q(χN (x, ·)fR(·))(x)

− (g∆,q(χN (z, ·)fR(·))(z))B(x0/R,s/R)

∣∣ dx
≤ C‖fR‖BMOL,X

≤ C‖f‖BMOX
,

where for the last inequality above the following argument is applied. Note
that to have such an inequality we only have to compare the integral means
of fR with the BMOX -norm of f . Let α ≥ 1. If B(x, αρ(x)) does not intersect
B(0, ρ(0)/2) then

	
B(x,αρ(x)) ‖f

R(y)‖X dy = 0 and there is nothing to prove.
In case B(x, αρ(x)) ∩B(0, ρ(0)/2) 6= ∅, by Lemma 2.1, ρ(x) ∼ ρ(0) and, by
the choice of R,

1
|B(x, αρ(x))|

�

B(x,αρ(x))

‖fR(y)‖X dy

≤ Cn
(Rαρ(x))d

�

B(0,Rρ(0)/2)

‖f(z)‖X dz

≤ C

(Rρ(0))d
‖f‖L1

X(Rd) ≤ C‖f‖BMOX
;

here the constant C is independent of f .
(iii)⇒(i). Lemmas 3.2(a) and 3.4(a) show that g∆,q (χNf) is bounded

from LpX(Rd) into Lp(Rd). Let f ∈ LpX(Rd) with support in a ball BM =
B(0,M), M > 0. By Lemma 3.6 we can find R > 0 such that g∆,qf(x) =
g∆,q(χN (x/R, ·)fR(·))(x/R) for all |x| < M . Hence

‖χBM
g∆,qf‖p

Lp(Rd)
=

�

Rd

|χBM
(x)g∆,q(χN (x/R, ·)fR(·))(x/R)|p dx

≤ Rd
�

Rd

|g∆,q(χN (x/R, ·)fR(·))(x/R)|p dx

≤ CRd
�

Rd

‖fR(x)‖pX dx = C‖f‖p
Lp

X(Rd)
.

As the constant C does not depend on M we can let M → ∞ to conclude
that ‖g∆,qf‖Lp(Rd) ≤ C‖f‖Lp

X(Rd).
(iv)⇒(i). We leave this case to the reader.
(v)⇒(i). By Theorem 4.1 it is enough to prove the boundedness of g∆,q

from H1
X into L1(Rd). Lemmas 3.2(c) and 3.4(c) imply that the localized

operator f 7→ ‖t∂tPt(χN (x, ·)f(·))(x)‖Lq
X((0,∞),dt/t) is bounded from H1

L,X
into L1(Rd). Therefore we only have to prove the boundedness overH1-atoms
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with cancelation but supported in big balls. Let a be such an atom, namely
a function supported in a ball B(y0, γρ(y0)) with γ > 1 and

	
Rd a(y) dy = 0.

Consider the function ãR(x) := RdaR(x) = Rda(Rx), x ∈ Rd, R > 0. The
function ãR is an atom with support contained in the ball B(y0/R, γy0/R).
GivenM > 0, Lemma 3.6 allows us to choose a sufficiently large R such that
g∆,qa(x) = g∆,q(χN (x/R, ·)aR(·))(x/R) for |x| < M . Hence

�

|x|<M

|g∆,qa(x)| dx =
�

|x|<M

|g∆,q(χN (x/R, ·)aR(·))(x/R)| dx

=
�

|z|<M/R

|g∆,q(χN (z, ·)ãR(·))(z)| dz

≤ C‖ãR‖H1
L,X

= C‖ãR‖H1
X
≤ C,

where C does not depend on M . To conclude, let M →∞.
(vi)⇒(i). We will prove that g∆,qf(x) <∞ for almost every x ∈ Rd (see

Theorem 4.1). By Lemma 3.2(a) we have gL,qloc f(x) <∞ for almost all x ∈ Rd.
Hence by Lemma 3.4(a) we have g∆,qloc f(x) < ∞ for almost all x ∈ Rd. In
fact, from the proof of Lemma 3.4 it can be deduced that

‖t∂tPt(χN (x, ·)f(·))(x)‖Lq
X((0,∞),dt/t) <∞,

for almost all x ∈ Rd. The arguments in the proof of Theorem 3.7 can be
used to conclude that∥∥∥∑

k≥1

χQk
(x)t∂tPt(χ2Qk

f)(x)
∥∥∥
Lq

X((0,∞),dt/t)

is finite for almost all x ∈ Rd. By the finite overlapping property of the balls
Qk we get the finiteness for almost every x of each term

‖χQk
(x)t∂tPt(χ2Qk

f)(x)‖Lq
X((0,∞),dt/t).

On the other hand, observe that

‖χQk
(x)t∂tPt((1− χ2Qk

)f)(x)‖q
Lq

X((0,∞),dt/t)

≤ C
∞�

0

( �

|x−y|>ρ(xk)

t‖f(y)‖X
(t+ |x− y|)d+1

dy

)q dt
t

≤ C‖f‖q
L1

X(Rd)

∞�

0

tq

(t+ ρ(xk))(d+1)q

dt

t
≤ Ck‖f‖qL1

X(Rd)
.

Putting together the last two observations we find that for every k and al-
most every x ∈ Rd the norm ‖χQk

(x)t∂tPtf(x)‖Lq
X((0,∞),dt/t) is finite. Hence

‖t∂tPtf(x)‖Lq
X((0,∞),dt/t) = g∆,qf(x) is finite for almost all x.
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