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Approximation theorem for evolution operators

by

Rinka Azuma (Osaka)

Abstract. This paper is devoted to the study of the approximation problem for the
abstract hyperbolic differential equation u′(t) = A(t)u(t) for t ∈ [0, T ], where {A(t) :
t ∈ [0, T ]} is a family of closed linear operators, without assuming the density of their
domains.

1. Introduction and the statement of the main theorem. In this
paper we discuss approximation of evolution operators associated with the
initial value problem

(1.1)
{
u′(t) = A(t)u(t), t ∈ [0, T ],

u(0) = u0,

in a general Banach space X with norm ‖ · ‖. Here {A(t) : t ∈ [0, T ]} is
a family of closed linear operators in X with D(A(t)) = Y for t ∈ [0, T ],
where Y is another Banach space with norm ‖ · ‖Y , which is continuously
imbedded in X.

Let D be a subspace of X. By an evolution operator on D generated by
{A(t) : t ∈ [0, T ]} we mean the two-parameter family {U(t, s) : (t, s) ∈ ∆},
where ∆ = {(t, s) : 0 ≤ s ≤ t ≤ T}, given by

U(t, s)z = lim
λ↓0

[t/λ]∏

i=[s/λ]+1

(I − λA(iλ))−1z for z ∈ D and (t, s) ∈ ∆,

which satisfies the following three conditions:

(i) U(t, s) : D → D for (t, s) ∈ ∆.
(ii) U(t, t)z = z and U(t, r)U(r, s)z = U(t, s)z for z ∈ D and for

(r, s), (t, r) ∈ ∆.
(iii) The mapping (t, s) 7→ U(t, s)z is continuous on ∆, for any z ∈ D.
The class of evolution operators mentioned above provides us with mild

solutions of (1.1). It should be noted that Y is not assumed to be dense
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in X. The study of (1.1) in such situations was initiated by Da Prato and
Sinestrari [1], and continued intensively by Tanaka [7].

We are interested in studying approximation of an evolution operator
by a sequence {∏[t/τn]

k=[s/τn]+1 Fn(kτn)} of discrete parameter evolution oper-
ators. Here {τn} is a positive sequence with limn→∞ τn = 0 and Fn(t) is
a bounded linear operator on a Banach space Xn with norm ‖ · ‖n, where
{Xn} approximates X in the following sense: For each n ≥ 1 there exists a
bounded linear operator Pn from X to Xn such that

(1.2) lim
n→∞

‖Pnu‖n = ‖u‖ for every u ∈ X.

The notion of approximation sequences {Xn, Pn} is due to Trotter [8]. Such
approximation problems arise when the solution of a differential equation
whose coefficients depend on time is computed numerically by a finite differ-
ence method. In the case where A(t) is independent of t and Y is dense in X,
some interesting results for the approximation stated above were obtained
by Kurtz [4]. (See also [2] and [6].) We note that property (1.2) implies the
existence of a constant K such that

(1.3) ‖Pnu‖n ≤ K‖u‖ for u ∈ X and n ≥ 1.

We also use the notation limn→∞ un = u, un ∈ Xn, u ∈ X, which means
limn→∞ ‖un − Pnu‖n = 0.

To state the main result of this paper we need the notions of stability
of {Fn(t) : t ∈ [0, T ]} and of convergence of a sequence of operators. The
family {Fn(t) : t ∈ [0, T ]} is said to be stable for time scale τn → 0 if there
exist M ≥ 1 and ω ≥ 0, independent of n, such that

∥∥∥
m∏

k=1

Fn(tk)
∥∥∥
n
≤Meωτnm

for every finite sequence {tk}mk=1 with 0 ≤ t1 ≤ . . . ≤ tm ≤ T and m =
1, 2, . . . Here and below we use the conventions

∏i+1
k=p Tk = Ti+1(

∏i
k=p Tk)

if i ≥ p and
∏i
k=p Tk = I if i < p. We call {M,ω} the stability constant. We

set

An(t) =
Fn(t)− I

τn
for t ∈ [0, T ] and n ≥ 1.

We write A(t) ⊂ lim infn→∞An(t) for t ∈ [0, T ] if for each y ∈ Y there
exist yn ∈ Xn such that limn→∞ yn = y and limn→∞An(t)yn = A(t)y for
all t ∈ [0, T ].

We are now in a position to state the main result in this paper.

Main Theorem. Assume that {Fn(t) : t ∈ [0, T ]} is stable, with stabil-
ity constant {M,ω}, for time scale τn → 0, and satisfies the condition
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(a) there is a continuous function f : [0, T ] → X which is of bounded
variation on [0, T ] such that for t, s ∈ [0, T ], x ∈ Xn and n ≥ 1,

(1.4) ‖An(t)x− An(s)x‖n ≤ ‖f(t)− f(s)‖(‖x‖n + ‖An(s)x‖n).

Assume that for all t ∈ [0, T ],

(b) (λ0I − A(t))Y is dense in X for some λ0 > ω.

Then, if A(t) ⊂ lim infn→∞An(t) for t ∈ [0, T ] then the family {A(t) : t ∈
[0, T ]} generates an evolution operator {U(t, s) : (t, s) ∈ ∆} on Y such that
for each y ∈ Y and 0 ≤ s ≤ t ≤ T ,

(1.5) lim
n→∞

[t/τn]∏

k=[s/τn]+1

Fn(kτn)Pny = U(t, s)y,

where the convergence is uniform on the triangle ∆.

Corollary. Let {hn} be a null sequence and let {Tn} be a family with
Tn ∈ B(Xn) satisfying the condition that there exist M ≥ 1 and ω ≥ 0 such
that

‖T kn‖n ≤Meωkhn for k ≥ 1 and n ≥ 1.

Let An = (Tn− I)/hn for n ≥ 1, and let A be a closed linear operator in X
such that the range R(λ0I −A) of λ0I −A is dense in X for some λ0 > ω.
If A ⊂ lim infn→∞An then the part of A into D(A) is the infinitesimal
generator of a (C0)-semigroup {T (t) : t ≥ 0} on D(A) such that

T (t)x = lim
n→∞

T [t/hn]
n Pnx for x ∈ D(A) and t ≥ 0,

where the limit is uniform on every compact subinterval of [0,∞).

Proof. By the Main Theorem, there exists a (C0)-semigroup {T (t) :
t ≥ 0} on D(A) given by the formula

(1.6) T (t)x = lim
λ↓0

(I − λA)−[t/λ]x for x ∈ D(A) and t ≥ 0,

where the limit is uniform on every compact subinterval of [0,∞). We only
have to show that the part of A into D(A) is the infinitesimal generator of
a (C0)-semigroup {T (t) : t ≥ 0} on D(A). For this purpose, we denote the
part of A into D(A) by Ã. By (1.6), we have

T (t)x− x = A

t�

0

T (r)x dr for x ∈ D(A) and t ≥ 0,(1.7)

T (t)x− x =
t�

0

T (r)Ãx dr for x ∈ D(Ã) and t ≥ 0.(1.8)
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Let Â be the infinitesimal generator of {T (t) : t ≥ 0} on D(A). If x ∈ D(Â)
then it follows from the closedness of A that x ∈ D(A) and Ax = Âx ∈
D(A), by dividing (1.7) by t and letting t ↓ 0; hence Â ⊂ Ã. Conversely,
let x ∈ D(Ã). By the strong continuity of T (t) the limit limt↓0(T (t)x− x)/t
exists and equals Ãx, by (1.8). This means that x ∈ D(Â). It is thus proved
that Ã = Â.

Remark. If B := lim infn→∞An has the property that D(B) is dense
in X and R(λ0I − B) is dense in X for some λ0 > ω, then we can apply
the Corollary with A = B to prove the sufficiency of Kurtz’s theorem [4,
Theorem 2.13]. Kurtz’s theorem improved Trotter’s theorem [8, Theorem
5.3] by extending the notion of the limit of a sequence of operator used by
Trotter to the notion of extended limit. Our main results give an extension
of their results in this sense.

In Section 2 we prove that the family {A(t) : t ∈ [0, T ]} generates an
evolution operator on Y . Section 3 contains the proof of the convergence
(1.5). For simplicity, we use the notation Nλ = [T/λ] and tλi = iλ for λ > 0,
and Jλn (t) = (I − λAn(t))−1 for t ∈ [0, T ] and λ > 0 with λωn < 1, and
Jλ(t) = (I − λA(t))−1 for t ∈ [0, T ] and λ > 0 with λω < 1.

The author wishes to express her thanks to Professors Sato and Tanaka
for suggesting the problem and for many stimulating conversations.

2. Existence of evolution operators. We begin by introducing the
notion of stability of the family {A(t) : t ∈ [0, T ]} in order to state the
generation theorem for evolution operators. The family {A(t) : t ∈ [0, T ]}
is said to be stable with stability constant {M,ω} if (ω,∞) ⊂ %(A(t)) for
t ∈ [0, T ] and

∥∥∥
m∏

k=1

(λI − A(tk))−1
∥∥∥ ≤M(λ− ω)−m for λ > ω

and every finite sequence {tk}mk=1 such that 0 ≤ t1 ≤ . . . ≤ tm ≤ T and
m ≥ 1. For brevity, we then write {A(t) : t ∈ [0, T ]} ∈ S](X,M,ω).

Proposition 2.1. Assume that the family {A(t) : t ∈ [0, T ]} satisfies
the following two conditions:

(a1) {A(t) : t ∈ [0, T ]} ∈ S](X,M,ω);
(a2) ‖A(t)x−A(s)x‖ ≤ ‖f(t)−f(s)‖(‖x‖+‖A(s)x‖) for t, s ∈ [0, T ] and

x ∈ Y.
Then {A(t) : t∈ [0, T ]} generates an evolution operator {U(t, s) : (t, s)∈∆}
on Y .
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Once the following lemma is proved, Proposition 2.1 can be obtained
just as in the proof of Tanaka [7, Theorem 1.5].

Lemma 2.2. Assume that all assumptions of Proposition 2.1 are satis-
fied. Then

(2.1)
∥∥∥A(tµj )

j∏

k=q+1

Jµ(tµk)x
∥∥∥ ≤M( sup

t∈[0,T ]
‖A(t)x‖+ ‖x‖)

for q ≥ 0, µ > 0 with µω ≤ 1/2, 0 ≤ q ≤ j ≤ Nµ and x ∈ Y, where
M = M2(Vf + 1) exp(2ωT + MVf ), Vf being the total variation of f over
[0, T ].

Proof. Let x ∈ Y and µ > 0 be such that µω ≤ 1/2. Fix q and j

arbitrarily so that 0 ≤ q ≤ j ≤ Nµ, and set aµl = ‖A(tµl )
∏l
k=q+1 J

µ(tµk)x‖
for q ≤ l ≤ j. Similarly to the proof of Tanaka [7, Lemma 1.2], we find that

(1− µω)l−qaµl ≤M‖A(tµq )x‖

+
l−1∑

i=q

M‖f(tµi+1)− f(tµi )‖(M‖x‖+ (1− µω)i−qaµi )

for q ≤ l ≤ j. Denoting the right-hand side of this inequality by bµl , we see
that

(1− µω)l−qaµl ≤ b
µ
l for q ≤ l ≤ j

and
bµl+1 ≤M2‖f(tµl+1)− f(tµl )‖ ‖x‖

+ exp(M‖f(tµl+1)− f(tµl )‖)bµl for q ≤ l ≤ j − 1.

Solving this inequality with the first term bµq = M‖A(tµq )x‖, we find

bµj ≤M2(Vf + 1) exp(MVf )( sup
t∈[0,T ]

‖A(t)x‖+ ‖x‖)

for q ≤ j ≤ Nµ. Here we have used the following fact: If ai ≤ bi + ciai−1 for
p+ 1 ≤ i ≤ r, then

(2.2) ai ≤
i∑

k=p+1

(
bk

i∏

j=k+1

cj

)
+
( i∏

k=p+1

ck

)
ap for p ≤ i ≤ r.

Since aµj ≤ e2ωT bµj , by using the fact that (1 − t)−1 ≤ e2t for 0 ≤ t ≤ 1/2,
we obtain the desired estimate (2.1).

In the rest of this section we prove that the family {A(t) : t ∈ [0, T ]}
generates an evolution operator {U(t, s) : (t, s) ∈ ∆} on Y . We first intro-
duce a family of equivalent norms in Xn, depending on t, with respect to
which each e−ωτnFn(t) is a contraction on Xn, so that the idea of Miyadera
and Kobayashi [5] can be used in our argument.
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Lemma 2.3. Assume that {Fn(t) : t ∈ [0, T ]} is stable, with stability
constant {M,ω}, for time scale τn → 0. For each n ≥ 1, define a family
{| · |nt : t ∈ [0, T ]} of norms in Xn by

(2.3) |x|nt = sup
{
e−ωτnm

∥∥∥
m∏

k=1

Fn(tk)x
∥∥∥
n

: m≥ 0, t ≤ t1 ≤ . . . ≤ tm≤ T
}
.

Then

(2.4) ‖x‖n ≤ |x|nt ≤M‖x‖n for x ∈ Xn and t ∈ [0, T ],

(2.5) |x|nt ≤ |x|ns for x ∈ Xn and 0 ≤ s ≤ t ≤ T,
(2.6) |Fn(t)x|nt ≤ eωτn |x|nt for x ∈ Xn and t ∈ [0, T ],

(2.7) |(λI −An(t))−1x|nt ≤ (λ− ωn)−1|x|nt for x ∈ Xn, t ∈ [0, T ],

and λ > ωn, where ωn = (eωτn − 1)/τn,

(2.8) {An(t) : t ∈ [0, T ]} ∈ S](Xn,M, ωn).

Proof. It is obvious by the definition (2.3) that (2.4) and (2.5) hold. To
prove (2.6), let x ∈ Xn and t ∈ [0, T ]. For t ≤ t1 ≤ . . . ≤ tm ≤ T and m ≥ 1
we have

e−ωτnm
∥∥∥

m∏

k=1

Fn(tk)Fn(t)x
∥∥∥
n

= eωτne−ωτn(m+1)
∥∥∥

m∏

k=1

Fn(tk)Fn(t)x
∥∥∥
n

≤ eωτn |x|nt ,
which implies (2.6). Since

λI −An(t) =
λτn + 1
τn

(
I − 1

λτn + 1
Fn(t)

)
,

(2.7) is a direct consequence of the Neumann series theorem, by using (2.6).
To prove (2.8), let 0 ≤ t1 ≤ . . . ≤ tm ≤ T , m ≥ 0, x ∈ Xn and λ > ωn, and
set

ai =
∣∣∣

i∏

k=1

(λI − An(tk))−1x
∣∣∣
n

ti
for 1 ≤ i ≤ m.

By (2.5) and (2.7) we have

ai ≤ (λ− ωn)−1
∣∣∣
i−1∏

k=1

(λI − An(tk))−1x
∣∣∣
n

ti
≤ (λ− ωn)−1ai−1

for 1 ≤ i ≤ m. Solving this we find

am ≤ (λ− ωn)−m|x|nt1 ,
which implies (2.8), by (2.4).
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Proposition 2.4. Assume that the conditions of the Main Theorem are
satisfied. Then {A(t) : t ∈ [0, T ]} generates an evolution operator {U(t, s) :
(t, s) ∈ ∆} on Y .

Proof. Let ωn be as in Lemma 2.3. Since ωn → ω as n → ∞, we have
λ0 > ωn for sufficiently large n, and hence λ0 ∈ %(An(t)) for t ∈ [0, T ], by
(2.7). As in the proof of Fattorini [2, Theorem 5.7.11] we deduce from (2.8)
that (ω,∞) ⊂ %(A(t)) for t ∈ [0, T ], and

(2.9) lim
n→∞

‖(λI − An(t))−1Pnx− Pn(λI − A(t))−1x‖n = 0

for λ > ω, t ∈ [0, T ] and x ∈ X. Using (2.8) again we find {A(t) : t ∈
[0, T ]} ∈ S](X,M,ω) by (2.9). Since A(t) ⊂ lim infn→∞An(t) for t ∈ [0, T ],
it follows from (1.4) that

(2.10) ‖A(t)x−A(s)x‖ ≤ ‖f(t)− f(s)‖(‖x‖+ ‖A(s)x‖)
for t, s ∈ [0, T ] and x ∈ Y. Now the assertion is a direct consequence of
Proposition 2.1.

3. Appoximation of evolution operators. In this section we assume
that the conditions of the Main Theorem are satisfied.

Lemma 3.1. Let n ≥ 1. Then

(3.1) |Fn(t)x− Jµn (s)y|nt∨s
≤ ατn,µeωτn |x− Jµn (s)y|nt∨s + βτn,µ|Fn(t)x− y|nt∨s

+Mγτn,µ%f (|t− s|){(‖Jµn (s)y‖n + ‖An(s)Jµn (s)y‖n)

∨ (‖x‖n + ‖An(t)x‖n)}
for x, y ∈ Xn, t, s ∈ [0, T ] and µ > 0 with µωn < 1 where we set

%f (r) = sup{‖f(t)− f(s)‖ : |t− s| ≤ r for t, s ∈ [0, T ]},
ατn,µ = µ/(τn + µ), βτn,µ = τn/(τn + µ), γτn,µ = τnµ/(τn + µ).

Proof. Let x, y ∈ Xn, t, s ∈ [0, T ], and µ > 0 be such that µωn < 1. By
the definition of Jµn (t) we find

Jµn (s)y = βτn,µy + ατn,µFn(s)Jµn (s)y,

which we use to obtain

Fn(t)x− Jµn (s)y = βτn,µ(Fn(t)x− y) + ατn,µFn(t)(x− Jµn (s)y)

+ ατn,µ(Fn(t)− Fn(s))Jµn (s)y.

The estimate (3.1) will be proved only in the case where t ≥ s, because the
other case is similar. Let t ≥ s. We estimate the above quantity by using
(2.4), (2.6) and (1.4). This yields
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|Fn(t)x− Jµn (s)y|nt∨s ≤ βτn,µ|Fn(t)x− y|nt∨s + ατn,µe
ωτn |x− Jµn (s)y|nt∨s

+ γτn,µM‖f(t)− f(s)‖(‖Jµn (s)y‖n + ‖An(s)Jµn (s)y‖n),

which proves (3.1) in the case where t ≥ s, since ‖f(t)−f(s)‖ ≤ %f (|t−s|).

Lemma 3.2. Let x ∈ Xn and p ≥ 0. Then, for i with p+ 1 ≤ i ≤ Nτn ,
∥∥∥An(tτni )

i−1∏

k=p+1

Fn(tτnk )x
∥∥∥
n
≤ M̂( sup

t∈[0,T ]
‖An(t)x‖n + ‖x‖n),

where M̂ = M2(Vf + 1) exp(2ω̂T +MVf ) and ω̂ = sup{ωn : n ≥ 1} ∨ ω.

Proof. Let x ∈ Xn and p ≥ 0 and set

ani =
∣∣∣An(tτni )

i−1∏

k=p+1

Fn(tτnk )x
∣∣∣
n

tτni

for p+ 1 ≤ i ≤ Nτn .

By the triangle inequality, (2.4) and (2.5) we have

ani ≤
∣∣∣An(tτni−1)

i−1∏

k=p+1

Fn(tτnk )x
∣∣∣
n

tτni−1

+M
∥∥∥(An(tτni )− An(tτni−1))

i−1∏

k=p+1

Fn(tτnk )x
∥∥∥
n
.

We apply (1.4) to the second term on the right-hand side, and then use the
stability of {Fn(t) : t ∈ [0, T ]} and (2.4). This yields

ani ≤M2eωT ‖f(tτni )− f(tτni−1)‖ ‖x‖n

+ (1 +M‖f(tτni )− f(tτni−1)‖)
∣∣∣An(tτni−1)

i−1∏

k=p+1

Fn(tτnk )x
∣∣∣
n

tτni−1

for p+ 1 ≤ i ≤ Nτn . Since Fn(t) and An(t) commute, we have, by (2.6) and
the inequality 1 + a ≤ ea for a ≥ 0,

ani ≤M2eωT‖f(tτni )− f(tτni−1)‖ ‖x‖n + exp(M‖f(tτni )− f(tτni−1)‖)eωτnani−1

for p + 2 ≤ i ≤ Nτn . Solving the inequality above by using (2.2) and then
noting (2.4) we obtain the desired estimate.

Lemma 3.3. Let n ≥ 1, x ∈ Xn and p, q ≥ 0. If 0 < η < δ ≤ T ,
τn ∨ µ < δ − η and µ > 0 with µωn ≤ 1/2, then for p ≤ i ≤ Nτn and
q ≤ j ≤ Nµ we have
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(3.2) e−ωτn(i−p)(1− µωn)j−qaτn,µi,j ≤ dτn,µi,j M sup
t∈[0,T ]

‖An(t)x‖n

+ (tτni − tτnp ){η−1%f (T )(dτn,µi,j + |tτnp − tµq |) + %f (δ)}

× 2MM̂( sup
t∈[0,T ]

‖An(t)x‖n + ‖x‖n),

where

aτn,µi,j =
∣∣∣

i∏

k=p+1

Fn(tτnk )x−
j∏

k=q+1

Jµn (tµk)x
∣∣∣
n

tτni ∨tµj
,

dτn,µi,j = {((tτni − tτnp )− (tµj − tµq ))2 + τn(tτni − tτnp ) + µ(tµj − tµq )}1/2

for p ≤ i ≤ Nτn , q ≤ j ≤ Nµ and x ∈ Xn.

Proof. We use the idea of Miyadera and Kobayashi [5], applying Lem-
ma 2.3. Let x ∈ Xn, p, q ≥ 0 and µ > 0 with µωn ≤ 1/2. For q ≤ j ≤ Nµ
we have

x−
j∏

k=q+1

Jµn (tµk)x =
j∑

l=q+1

( j∏

k=l+1

Jµn (tµk)
)

(x− Jµn (tµl )x)

=− µ
j∑

l=q+1

( j∏

k=l

Jµn (tµk)
)
An(tµl )x;

hence (2.4), (2.5) and (2.7) give

aτn,µp,j ≤ µ(j − q)M sup
t∈[0,T ]

‖An(t)x‖n(1− µωn)−(j−q),

which proves that aτn,µp,j satisfies (3.2) if q ≤ j ≤ Nµ. Since

i∏

k=p+1

Fn(tτnk )x− x = τn

i∑

l=p+1

( i∏

k=l+1

Fn(tτnk )
)
An(tτnl )x,

we find, by (2.4), (2.5) and (2.6), that

aτn,µi,q ≤ τn(i− p)M sup
t∈[0,T ]

‖An(t)x‖neωτn(i−p)

for p ≤ i ≤ Nτn , which proves that aτn,µi,q satisfies (3.2) if p ≤ i ≤ Nτn .
Since all assumptions of Lemma 2.2 are satisfied with A(t) and ω replaced

by An(t) and ωn, we have

∥∥∥An(tµj )
j∏

k=q+1

Jµn (tµk)x
∥∥∥
n
≤ M̂( sup

t∈[0,T ]
‖An(t)x‖n + ‖x‖n).
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Using this estimate and Lemma 3.2 we find by (3.1) that

aτn,µi,j ≤ βτn,µaτn,µi,j−1 + ατn,µe
ωτnaτn,µi−1,j

+ 2MM̂γτn,µ%f (|tτni − tµj |)( sup
t∈[0,T ]

‖An(t)x‖n + ‖x‖n)

for p + 1 ≤ i ≤ Nτn and q + 1 ≤ j ≤ Nµ. Multiplying by ωτn,µi,j (:=
e−ωτn(i−p)(1− µωn)j−q) we obtain

ωτn,µi,j aτn,µi,j ≤ βτn,µωτn,µi,j−1a
τn,µ
i,j−1 + ατn,µω

τn,µ
i−1,ja

τn,µ
i−1,j

+ 2MM̂γτn,µ%f (|tτni − tµj |)( sup
t∈[0,T ]

‖An(t)x‖n + ‖x‖n)

for p + 1 ≤ i ≤ Nτn and q + 1 ≤ j ≤ Nµ. Thus we can easily modify the
argument of Tanaka [7, Lemma 1.4] to obtain the desired estimate. (See also
Kobayasi, Kobayashi and Oharu [3].)

Lemma 3.4. For y ∈ Y we have

(3.3) lim sup
n→∞

sup
t∈[0,T ]

‖An(t)yn‖n ≤ K sup
t∈[0,T ]

‖A(t)y‖

if yn ∈ Xn satisfy limn→∞ yn = y and limn→∞An(t)yn = A(t)y for all
t ∈ [0, T ], where K is the constant satisfying (1.3).

Proof. Using (1.4) and the strong continuity of A(·) on Y we can show,
by an indirect proof, that

lim
n→∞

sup
t∈[0,T ]

‖An(t)yn − PnA(t)y‖n = 0

if y ∈ Y and yn ∈ Xn satisfy limn→∞ yn = y and limn→∞An(t)yn = A(t)y
for all t ∈ [0, T ]. The desired claim (3.3) follows from the fact above and the
inequality

sup
t∈[0,T ]

‖An(t)yn‖n ≤ sup
t∈[0,T ]

‖An(t)yn − PnA(t)y‖n +K sup
t∈[0,T ]

‖A(t)y‖.

Proof of the Main Theorem. Let x ∈ Y , 0 < η < δ ≤ T and µ > 0
be such that µω < 1/2, and consider sufficiently large integers n so that
τn ∨ µ < δ − η and µωn < 1/2. Then by (1.3) we have

(3.4)
∥∥∥

[t/τn]∏

k=[s/τn]+1

Fn(kτn)Pnx− PnU(t, s)x
∥∥∥
n

≤
∥∥∥

[t/τn]∏

k=[s/τn]+1

Fn(kτn)Pnx−
[t/µ]∏

k=[s/µ]+1

Jµn (kµ)Pnx
∥∥∥
n
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+
∥∥∥

[t/µ]∏

k=[s/µ]+1

Jµn (kµ)Pnx− Pn
[t/µ]∏

k=[s/µ]+1

Jµ(kµ)x
∥∥∥
n

+K
∥∥∥

[t/µ]∏

k=[s/µ]+1

Jµ(kµ)x− U(t, s)x
∥∥∥.

Let y ∈ Y. Since A(t) ⊂ lim infn→∞An(t) for t ∈ [0, T ], there exist yn ∈ Xn

such that limn→∞ yn = y and limn→∞An(t)yn = A(t)y for all t ∈ [0, T ].
Using (3.2) with i = [t/τn], j = [t/µ], p = [s/τn] and q = [s/µ] we see that
the first term on the right-hand side of (3.4) is less than or equal to

2Me2ωnT (K‖x− y‖+ ‖Pny − yn‖n)

+ e4ωnT ((τn + µ)2 + T (τn + µ))1/2M sup
t∈[0,T ]

‖An(t)yn‖n

+ e4ωnTT{η−1%f (T )(((τn + µ)2 + T (τn + µ))1/2 + τn + µ) + %f (δ)}

× 2MM̂( sup
t∈[0,T ]

‖An(t)yn‖n + ‖yn‖n).

The second term on the right-hand side of (3.4) is dominated by

max
0≤p≤i≤Nµ

∥∥∥
i∏

k=p+1

Jµn (kµ)Pnx− Pn
i∏

k=p+1

Jµ(kµ)x
∥∥∥
n

and we deduce from (2.9) that it converges to zero as n → ∞. Taking the
limit in (3.4) as n→∞, and then letting µ ↓ 0, we have, by Lemma 3.4,

lim sup
n→∞

sup
(t,s)∈∆

∥∥∥
[t/τn]∏

k=[s/τn]+1

Fn(kτn)Pnx− PnU(t, s)x
∥∥∥
n

≤ 2Me2ωTK‖x− y‖+ e4ωTT%f (δ)2MM̂(K sup
t∈[0,T ]

‖A(t)y‖+ ‖y‖)

for any y ∈ Y and δ > 0. Since x ∈ Y and %f (δ) ↓ 0 as δ ↓ 0, we conclude
that (1.5) holds and the convergence is uniform on ∆.

References

[1] G. Da Prato and E. Sinestrari, Differential operators with non dense domain, Ann.
Scuola Norm. Sup. Pisa 14 (1987), 285–344.

[2] H. O. Fattorini, The Cauchy Problem, Addison-Wesley, Reading, MA, 1983.
[3] K. Kobayasi, Y. Kobayashi and S. Oharu, Nonlinear evolution operators in Banach

spaces, Osaka J. Math. 21 (1984), 281–310.
[4] T. G. Kurtz, Extensions of Trotter’s operator semigroup approximation theorems,

J. Funct. Anal. 3 (1969), 354–375.



206 R. Azuma

[5] I. Miyadera and Y. Kobayashi, Convergence and approximation of nonlinear semi-
groups, in: Proc. Japan-France Seminar on Functional Analysis and Numerical Anal-
ysis, 1978, 277–295.

[6] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential
Equations, Springer, New York, 1983.

[7] N. Tanaka, Quasilinear evolution equations with non-densely defined operators, Dif-
ferential Integral Equations 9 (1996), 1067–1106.

[8] H. F. Trotter, Approximation of semi-groups of operators, Pacific J. Math. 8 (1958),
887–919.

Senrioka higashi, 2-14-13-402
Settu-shi, Osaka 566-0011, Japan
E-mail: dbjiang@nifty.com

Received August 23, 1999
Revised version June 13, 2002 (4386)


