Approximation theorem for evolution operators

by

RINKA AZUMA (Osaka)

Abstract. This paper is devoted to the study of the approximation problem for the abstract hyperbolic differential equation u'(t) = A(t)u(t) for $t \in [0,T]$, where $\{A(t) : t \in [0,T]\}$ is a family of closed linear operators, without assuming the density of their domains.

1. Introduction and the statement of the main theorem. In this paper we discuss approximation of evolution operators associated with the initial value problem

(1.1)
$$\begin{cases} u'(t) = A(t)u(t), & t \in [0,T], \\ u(0) = u_0, \end{cases}$$

in a general Banach space X with norm $\|\cdot\|$. Here $\{A(t) : t \in [0,T]\}$ is a family of closed linear operators in X with D(A(t)) = Y for $t \in [0,T]$, where Y is another Banach space with norm $\|\cdot\|_Y$, which is continuously imbedded in X.

Let D be a subspace of X. By an evolution operator on D generated by $\{A(t) : t \in [0,T]\}$ we mean the two-parameter family $\{U(t,s) : (t,s) \in \Delta\}$, where $\Delta = \{(t,s) : 0 \le s \le t \le T\}$, given by

$$U(t,s)z = \lim_{\lambda \downarrow 0} \prod_{i=\lfloor s/\lambda \rfloor+1}^{\lfloor t/\lambda \rfloor} (I - \lambda A(i\lambda))^{-1}z \quad \text{for } z \in D \text{ and } (t,s) \in \Delta,$$

which satisfies the following three conditions:

(i) $U(t,s): D \to D$ for $(t,s) \in \Delta$.

(ii) U(t,t)z=z and U(t,r)U(r,s)z=U(t,s)z for $z\in D$ and for $(r,s),(t,r)\in \varDelta.$

(iii) The mapping $(t, s) \mapsto U(t, s)z$ is continuous on Δ , for any $z \in D$.

The class of evolution operators mentioned above provides us with mild solutions of (1.1). It should be noted that Y is not assumed to be dense

²⁰⁰⁰ Mathematics Subject Classification: Primary 47D06.

in X. The study of (1.1) in such situations was initiated by Da Prato and Sinestrari [1], and continued intensively by Tanaka [7].

We are interested in studying approximation of an evolution operator by a sequence $\{\prod_{k=[s/\tau_n]+1}^{[t/\tau_n]} F_n(k\tau_n)\}$ of discrete parameter evolution operators. Here $\{\tau_n\}$ is a positive sequence with $\lim_{n\to\infty} \tau_n = 0$ and $F_n(t)$ is a bounded linear operator on a Banach space X_n with norm $\|\cdot\|_n$, where $\{X_n\}$ approximates X in the following sense: For each $n \ge 1$ there exists a bounded linear operator P_n from X to X_n such that

(1.2)
$$\lim_{n \to \infty} \|P_n u\|_n = \|u\| \quad \text{for every } u \in X.$$

The notion of approximation sequences $\{X_n, P_n\}$ is due to Trotter [8]. Such approximation problems arise when the solution of a differential equation whose coefficients depend on time is computed numerically by a finite difference method. In the case where A(t) is independent of t and Y is dense in X, some interesting results for the approximation stated above were obtained by Kurtz [4]. (See also [2] and [6].) We note that property (1.2) implies the existence of a constant K such that

(1.3)
$$||P_n u||_n \le K ||u|| \quad \text{for } u \in X \text{ and } n \ge 1.$$

We also use the notation $\lim_{n\to\infty} u_n = u$, $u_n \in X_n$, $u \in X$, which means $\lim_{n\to\infty} ||u_n - P_n u||_n = 0$.

To state the main result of this paper we need the notions of stability of $\{F_n(t) : t \in [0, T]\}$ and of convergence of a sequence of operators. The family $\{F_n(t) : t \in [0, T]\}$ is said to be *stable for time scale* $\tau_n \to 0$ if there exist $M \ge 1$ and $\omega \ge 0$, independent of n, such that

$$\left\|\prod_{k=1}^{m} F_n(t_k)\right\|_n \le M e^{\omega \tau_n m}$$

for every finite sequence $\{t_k\}_{k=1}^m$ with $0 \le t_1 \le \ldots \le t_m \le T$ and $m = 1, 2, \ldots$ Here and below we use the conventions $\prod_{k=p}^{i+1} T_k = T_{i+1}(\prod_{k=p}^i T_k)$ if $i \ge p$ and $\prod_{k=p}^i T_k = I$ if i < p. We call $\{M, \omega\}$ the stability constant. We set

$$A_n(t) = \frac{F_n(t) - I}{\tau_n} \quad \text{for } t \in [0, T] \text{ and } n \ge 1.$$

We write $A(t) \subset \liminf_{n\to\infty} A_n(t)$ for $t \in [0,T]$ if for each $y \in Y$ there exist $y_n \in X_n$ such that $\lim_{n\to\infty} y_n = y$ and $\lim_{n\to\infty} A_n(t)y_n = A(t)y$ for all $t \in [0,T]$.

We are now in a position to state the main result in this paper.

MAIN THEOREM. Assume that $\{F_n(t) : t \in [0,T]\}$ is stable, with stability constant $\{M, \omega\}$, for time scale $\tau_n \to 0$, and satisfies the condition (a) there is a continuous function $f : [0,T] \to X$ which is of bounded variation on [0,T] such that for $t, s \in [0,T], x \in X_n$ and $n \ge 1$,

(1.4)
$$||A_n(t)x - A_n(s)x||_n \le ||f(t) - f(s)|| (||x||_n + ||A_n(s)x||_n).$$

Assume that for all $t \in [0, T]$,

(b)
$$(\lambda_0 I - A(t))Y$$
 is dense in X for some $\lambda_0 > \omega$.

Then, if $A(t) \subset \liminf_{n\to\infty} A_n(t)$ for $t \in [0,T]$ then the family $\{A(t) : t \in [0,T]\}$ generates an evolution operator $\{U(t,s) : (t,s) \in \Delta\}$ on \overline{Y} such that for each $y \in \overline{Y}$ and $0 \leq s \leq t \leq T$,

(1.5)
$$\lim_{n \to \infty} \prod_{k=[s/\tau_n]+1}^{[t/\tau_n]} F_n(k\tau_n) P_n y = U(t,s) y_n$$

where the convergence is uniform on the triangle Δ .

COROLLARY. Let $\{h_n\}$ be a null sequence and let $\{T_n\}$ be a family with $T_n \in B(X_n)$ satisfying the condition that there exist $M \ge 1$ and $\omega \ge 0$ such that

$$||T_n^k||_n \le M e^{\omega k h_n}$$
 for $k \ge 1$ and $n \ge 1$.

Let $A_n = (T_n - I)/h_n$ for $n \ge 1$, and let A be a closed linear operator in Xsuch that the range $R(\lambda_0 I - A)$ of $\lambda_0 I - A$ is dense in X for some $\lambda_0 > \omega$. If $A \subset \liminf_{n\to\infty} A_n$ then the part of A into $\overline{D(A)}$ is the infinitesimal generator of a (C_0) -semigroup $\{T(t) : t \ge 0\}$ on $\overline{D(A)}$ such that

$$T(t)x = \lim_{n \to \infty} T_n^{[t/h_n]} P_n x \quad \text{for } x \in \overline{D(A)} \text{ and } t \ge 0,$$

where the limit is uniform on every compact subinterval of $[0,\infty)$.

Proof. By the Main Theorem, there exists a (C_0) -semigroup $\{T(t) : t \ge 0\}$ on $\overline{D(A)}$ given by the formula

(1.6)
$$T(t)x = \lim_{\lambda \downarrow 0} (I - \lambda A)^{-[t/\lambda]} x$$
 for $x \in \overline{D(A)}$ and $t \ge 0$,

where the limit is uniform on every compact subinterval of $[0, \infty)$. We only have to show that the part of A into $\overline{D(A)}$ is the infinitesimal generator of a (C_0) -semigroup $\{T(t) : t \ge 0\}$ on $\overline{D(A)}$. For this purpose, we denote the part of A into $\overline{D(A)}$ by \widetilde{A} . By (1.6), we have

(1.7)
$$T(t)x - x = A \int_{0}^{t} T(r)x \, dr \quad \text{for } x \in \overline{D(A)} \text{ and } t \ge 0,$$

(1.8)
$$T(t)x - x = \int_{0}^{t} T(r)\widetilde{A}x \, dr \quad \text{for } x \in D(\widetilde{A}) \text{ and } t \ge 0.$$

Let \widehat{A} be the infinitesimal generator of $\{T(t) : t \ge 0\}$ on $\overline{D(A)}$. If $x \in D(\widehat{A})$ then it follows from the closedness of A that $x \in D(A)$ and $Ax = \widehat{A}x \in \overline{D(A)}$, by dividing (1.7) by t and letting $t \downarrow 0$; hence $\widehat{A} \subset \widetilde{A}$. Conversely, let $x \in D(\widetilde{A})$. By the strong continuity of T(t) the limit $\lim_{t\downarrow 0} (T(t)x - x)/t$ exists and equals $\widetilde{A}x$, by (1.8). This means that $x \in D(\widehat{A})$. It is thus proved that $\widetilde{A} = \widehat{A}$.

REMARK. If $B := \liminf_{n\to\infty} A_n$ has the property that D(B) is dense in X and $R(\lambda_0 I - B)$ is dense in X for some $\lambda_0 > \omega$, then we can apply the Corollary with A = B to prove the sufficiency of Kurtz's theorem [4, Theorem 2.13]. Kurtz's theorem improved Trotter's theorem [8, Theorem 5.3] by extending the notion of the limit of a sequence of operator used by Trotter to the notion of extended limit. Our main results give an extension of their results in this sense.

In Section 2 we prove that the family $\{A(t) : t \in [0,T]\}$ generates an evolution operator on \overline{Y} . Section 3 contains the proof of the convergence (1.5). For simplicity, we use the notation $N_{\lambda} = [T/\lambda]$ and $t_i^{\lambda} = i\lambda$ for $\lambda > 0$, and $J_n^{\lambda}(t) = (I - \lambda A_n(t))^{-1}$ for $t \in [0,T]$ and $\lambda > 0$ with $\lambda \omega_n < 1$, and $J^{\lambda}(t) = (I - \lambda A(t))^{-1}$ for $t \in [0,T]$ and $\lambda > 0$ with $\lambda \omega < 1$.

The author wishes to express her thanks to Professors Sato and Tanaka for suggesting the problem and for many stimulating conversations.

2. Existence of evolution operators. We begin by introducing the notion of stability of the family $\{A(t) : t \in [0,T]\}$ in order to state the generation theorem for evolution operators. The family $\{A(t) : t \in [0,T]\}$ is said to be *stable* with *stability constant* $\{M,\omega\}$ if $(\omega,\infty) \subset \varrho(A(t))$ for $t \in [0,T]$ and

$$\left\|\prod_{k=1}^{m} (\lambda I - A(t_k))^{-1}\right\| \le M(\lambda - \omega)^{-m} \quad \text{for } \lambda > \omega$$

and every finite sequence $\{t_k\}_{k=1}^m$ such that $0 \leq t_1 \leq \ldots \leq t_m \leq T$ and $m \geq 1$. For brevity, we then write $\{A(t) : t \in [0,T]\} \in S_{\sharp}(X, M, \omega)$.

PROPOSITION 2.1. Assume that the family $\{A(t) : t \in [0,T]\}$ satisfies the following two conditions:

- (a₁) { $A(t): t \in [0,T]$ } $\in S_{\sharp}(X, M, \omega);$
- (a₂) $||A(t)x A(s)x|| \le ||f(t) f(s)||(||x|| + ||A(s)x||)$ for $t, s \in [0, T]$ and $x \in Y$.

Then $\{A(t) : t \in [0,T]\}$ generates an evolution operator $\{U(t,s) : (t,s) \in \Delta\}$ on \overline{Y} .

Once the following lemma is proved, Proposition 2.1 can be obtained just as in the proof of Tanaka [7, Theorem 1.5].

LEMMA 2.2. Assume that all assumptions of Proposition 2.1 are satisfied. Then

(2.1)
$$\left\| A(t_j^{\mu}) \prod_{k=q+1}^j J^{\mu}(t_k^{\mu}) x \right\| \le \overline{M}(\sup_{t \in [0,T]} \|A(t)x\| + \|x\|)$$

for $q \ge 0$, $\mu > 0$ with $\mu \omega \le 1/2$, $0 \le q \le j \le N_{\mu}$ and $x \in Y$, where $\overline{M} = M^2(V_f + 1) \exp(2\omega T + MV_f)$, V_f being the total variation of f over [0, T].

Proof. Let $x \in Y$ and $\mu > 0$ be such that $\mu \omega \leq 1/2$. Fix q and j arbitrarily so that $0 \leq q \leq j \leq N_{\mu}$, and set $a_l^{\mu} = ||A(t_l^{\mu}) \prod_{k=q+1}^l J^{\mu}(t_k^{\mu})x||$ for $q \leq l \leq j$. Similarly to the proof of Tanaka [7, Lemma 1.2], we find that

$$\begin{aligned} (1-\mu\omega)^{l-q}a_l^{\mu} &\leq M \|A(t_q^{\mu})x\| \\ &+ \sum_{i=q}^{l-1} M \|f(t_{i+1}^{\mu}) - f(t_i^{\mu})\|(M\|x\| + (1-\mu\omega)^{i-q}a_i^{\mu}) \end{aligned}$$

for $q \leq l \leq j$. Denoting the right-hand side of this inequality by b_l^{μ} , we see that

$$(1 - \mu\omega)^{l-q} a_l^{\mu} \le b_l^{\mu} \quad \text{for } q \le l \le j$$

and

$$\begin{aligned} b_{l+1}^{\mu} &\leq M^2 \|f(t_{l+1}^{\mu}) - f(t_l^{\mu})\| \, \|x\| \\ &+ \exp(M \|f(t_{l+1}^{\mu}) - f(t_l^{\mu})\|) b_l^{\mu} \quad \text{ for } q \leq l \leq j-1. \end{aligned}$$

Solving this inequality with the first term $b_q^{\mu} = M \|A(t_q^{\mu})x\|$, we find

$$b_j^{\mu} \le M^2(V_f + 1) \exp(MV_f)(\sup_{t \in [0,T]} ||A(t)x|| + ||x||)$$

for $q \leq j \leq N_{\mu}$. Here we have used the following fact: If $a_i \leq b_i + c_i a_{i-1}$ for $p+1 \leq i \leq r$, then

(2.2)
$$a_i \leq \sum_{k=p+1}^i \left(b_k \prod_{j=k+1}^i c_j \right) + \left(\prod_{k=p+1}^i c_k \right) a_p \quad \text{for } p \leq i \leq r.$$

Since $a_j^{\mu} \leq e^{2\omega T} b_j^{\mu}$, by using the fact that $(1-t)^{-1} \leq e^{2t}$ for $0 \leq t \leq 1/2$, we obtain the desired estimate (2.1).

In the rest of this section we prove that the family $\{A(t) : t \in [0,T]\}$ generates an evolution operator $\{U(t,s) : (t,s) \in \Delta\}$ on \overline{Y} . We first introduce a family of equivalent norms in X_n , depending on t, with respect to which each $e^{-\omega\tau_n}F_n(t)$ is a contraction on X_n , so that the idea of Miyadera and Kobayashi [5] can be used in our argument. LEMMA 2.3. Assume that $\{F_n(t) : t \in [0,T]\}$ is stable, with stability constant $\{M, \omega\}$, for time scale $\tau_n \to 0$. For each $n \ge 1$, define a family $\{|\cdot|_t^n : t \in [0,T]\}$ of norms in X_n by

(2.3)
$$|x|_t^n = \sup \left\{ e^{-\omega \tau_n m} \left\| \prod_{k=1}^m F_n(t_k) x \right\|_n : m \ge 0, \ t \le t_1 \le \ldots \le t_m \le T \right\}.$$

Then

(2.4)
$$||x||_n \le |x|_t^n \le M ||x||_n$$
 for $x \in X_n$ and $t \in [0,T]$,

$$(2.5) \quad |x|_t^n \le |x|_s^n \quad for \ x \in X_n \ and \ 0 \le s \le t \le T,$$

(2.6)
$$|F_n(t)x|_t^n \le e^{\omega\tau_n}|x|_t^n$$
 for $x \in X_n$ and $t \in [0,T]$,

(2.7)
$$|(\lambda I - A_n(t))^{-1}x|_t^n \le (\lambda - \omega_n)^{-1}|x|_t^n \quad \text{for } x \in X_n, \ t \in [0, T],$$

and
$$\lambda > \omega_n$$
, where $\omega_n = (e^{\omega \tau_n} - 1)/\tau_n$

(2.8)
$$\{A_n(t) : t \in [0,T]\} \in S_{\sharp}(X_n, M, \omega_n).$$

Proof. It is obvious by the definition (2.3) that (2.4) and (2.5) hold. To prove (2.6), let $x \in X_n$ and $t \in [0, T]$. For $t \leq t_1 \leq \ldots \leq t_m \leq T$ and $m \geq 1$ we have

$$e^{-\omega\tau_n m} \left\| \prod_{k=1}^m F_n(t_k) F_n(t) x \right\|_n = e^{\omega\tau_n} e^{-\omega\tau_n (m+1)} \left\| \prod_{k=1}^m F_n(t_k) F_n(t) x \right\|_n$$

 $\leq e^{\omega\tau_n} |x|_t^n,$

which implies (2.6). Since

$$\lambda I - A_n(t) = \frac{\lambda \tau_n + 1}{\tau_n} \left(I - \frac{1}{\lambda \tau_n + 1} F_n(t) \right),$$

(2.7) is a direct consequence of the Neumann series theorem, by using (2.6). To prove (2.8), let $0 \le t_1 \le \ldots \le t_m \le T$, $m \ge 0$, $x \in X_n$ and $\lambda > \omega_n$, and set

$$a_i = \left| \prod_{k=1}^{i} (\lambda I - A_n(t_k))^{-1} x \right|_{t_i}^n \quad \text{for } 1 \le i \le m.$$

By (2.5) and (2.7) we have

$$a_{i} \leq (\lambda - \omega_{n})^{-1} \Big| \prod_{k=1}^{i-1} (\lambda I - A_{n}(t_{k}))^{-1} x \Big|_{t_{i}}^{n} \leq (\lambda - \omega_{n})^{-1} a_{i-1}$$

for $1 \leq i \leq m$. Solving this we find

$$a_m \le (\lambda - \omega_n)^{-m} |x|_{t_1}^n,$$

which implies (2.8), by (2.4).

PROPOSITION 2.4. Assume that the conditions of the Main Theorem are satisfied. Then $\{A(t) : t \in [0,T]\}$ generates an evolution operator $\{U(t,s) : (t,s) \in \Delta\}$ on \overline{Y} .

Proof. Let ω_n be as in Lemma 2.3. Since $\omega_n \to \omega$ as $n \to \infty$, we have $\lambda_0 > \omega_n$ for sufficiently large n, and hence $\lambda_0 \in \varrho(A_n(t))$ for $t \in [0, T]$, by (2.7). As in the proof of Fattorini [2, Theorem 5.7.11] we deduce from (2.8) that $(\omega, \infty) \subset \varrho(A(t))$ for $t \in [0, T]$, and

(2.9)
$$\lim_{n \to \infty} \| (\lambda I - A_n(t))^{-1} P_n x - P_n(\lambda I - A(t))^{-1} x \|_n = 0$$

for $\lambda > \omega$, $t \in [0,T]$ and $x \in X$. Using (2.8) again we find $\{A(t) : t \in [0,T]\} \in S_{\sharp}(X, M, \omega)$ by (2.9). Since $A(t) \subset \liminf_{n \to \infty} A_n(t)$ for $t \in [0,T]$, it follows from (1.4) that

(2.10)
$$||A(t)x - A(s)x|| \le ||f(t) - f(s)|| (||x|| + ||A(s)x||)$$

for $t, s \in [0, T]$ and $x \in Y$. Now the assertion is a direct consequence of Proposition 2.1. \blacksquare

3. Appoximation of evolution operators. In this section we assume that the conditions of the Main Theorem are satisfied.

LEMMA 3.1. Let $n \ge 1$. Then (3.1) $|F_n(t)x - J_n^{\mu}(s)y|_{t\vee s}^n$ $\le \alpha_{\tau_n,\mu}e^{\omega\tau_n}|x - J_n^{\mu}(s)y|_{t\vee s}^n + \beta_{\tau_n,\mu}|F_n(t)x - y|_{t\vee s}^n$ $+ M\gamma_{\tau_n,\mu}\varrho_f(|t-s|)\{(\|J_n^{\mu}(s)y\|_n + \|A_n(s)J_n^{\mu}(s)y\|_n)$ $\lor (\|x\|_n + \|A_n(t)x\|_n)\}$

for $x, y \in X_n, t, s \in [0,T]$ and $\mu > 0$ with $\mu \omega_n < 1$ where we set

$$\begin{split} \varrho_f(r) &= \sup\{\|f(t) - f(s)\| : |t - s| \le r \text{ for } t, s \in [0, T]\},\\ \alpha_{\tau_n, \mu} &= \mu/(\tau_n + \mu), \quad \beta_{\tau_n, \mu} = \tau_n/(\tau_n + \mu), \quad \gamma_{\tau_n, \mu} = \tau_n \mu/(\tau_n + \mu). \end{split}$$

Proof. Let $x, y \in X_n$, $t, s \in [0, T]$, and $\mu > 0$ be such that $\mu \omega_n < 1$. By the definition of $J_n^{\mu}(t)$ we find

 $J_n^{\mu}(s)y = \beta_{\tau_n,\mu}y + \alpha_{\tau_n,\mu}F_n(s)J_n^{\mu}(s)y,$

which we use to obtain

$$F_n(t)x - J_n^{\mu}(s)y = \beta_{\tau_n,\mu}(F_n(t)x - y) + \alpha_{\tau_n,\mu}F_n(t)(x - J_n^{\mu}(s)y) + \alpha_{\tau_n,\mu}(F_n(t) - F_n(s))J_n^{\mu}(s)y.$$

The estimate (3.1) will be proved only in the case where $t \ge s$, because the other case is similar. Let $t \ge s$. We estimate the above quantity by using (2.4), (2.6) and (1.4). This yields

R. Azuma

$$|F_{n}(t)x - J_{n}^{\mu}(s)y|_{t \lor s}^{n} \leq \beta_{\tau_{n},\mu}|F_{n}(t)x - y|_{t \lor s}^{n} + \alpha_{\tau_{n},\mu}e^{\omega\tau_{n}}|x - J_{n}^{\mu}(s)y|_{t \lor s}^{n} + \gamma_{\tau_{n},\mu}M\|f(t) - f(s)\|(\|J_{n}^{\mu}(s)y\|_{n} + \|A_{n}(s)J_{n}^{\mu}(s)y\|_{n}),$$

which proves (3.1) in the case where $t \ge s$, since $||f(t) - f(s)|| \le \rho_f(|t-s|)$.

LEMMA 3.2. Let $x \in X_n$ and $p \ge 0$. Then, for i with $p+1 \le i \le N_{\tau_n}$,

$$\left\|A_n(t_i^{\tau_n})\prod_{k=p+1}^{i-1}F_n(t_k^{\tau_n})x\right\|_n \le \widehat{M}(\sup_{t\in[0,T]}\|A_n(t)x\|_n + \|x\|_n),$$

where $\widehat{M} = M^2(V_f + 1) \exp(2\widehat{\omega}T + MV_f)$ and $\widehat{\omega} = \sup\{\omega_n : n \ge 1\} \lor \omega$.

Proof. Let $x \in X_n$ and $p \ge 0$ and set

$$a_i^n = \left| A_n(t_i^{\tau_n}) \prod_{k=p+1}^{i-1} F_n(t_k^{\tau_n}) x \right|_{t_i^{\tau_n}}^n \quad \text{for } p+1 \le i \le N_{\tau_n}.$$

By the triangle inequality, (2.4) and (2.5) we have

$$a_{i}^{n} \leq \left| A_{n}(t_{i-1}^{\tau_{n}}) \prod_{k=p+1}^{i-1} F_{n}(t_{k}^{\tau_{n}}) x \right|_{t_{i-1}^{\tau_{n}}}^{n} \\ + M \left\| (A_{n}(t_{i}^{\tau_{n}}) - A_{n}(t_{i-1}^{\tau_{n}})) \prod_{k=p+1}^{i-1} F_{n}(t_{k}^{\tau_{n}}) x \right\|_{n}.$$

We apply (1.4) to the second term on the right-hand side, and then use the stability of $\{F_n(t) : t \in [0,T]\}$ and (2.4). This yields

$$a_{i}^{n} \leq M^{2} e^{\omega T} \|f(t_{i}^{\tau_{n}}) - f(t_{i-1}^{\tau_{n}})\| \|x\|_{n} + (1 + M \|f(t_{i}^{\tau_{n}}) - f(t_{i-1}^{\tau_{n}})\|) \Big| A_{n}(t_{i-1}^{\tau_{n}}) \prod_{k=p+1}^{i-1} F_{n}(t_{k}^{\tau_{n}})x \Big|_{t_{i-1}^{\tau_{n}}}^{n}$$

for $p+1 \leq i \leq N_{\tau_n}$. Since $F_n(t)$ and $A_n(t)$ commute, we have, by (2.6) and the inequality $1+a \leq e^a$ for $a \geq 0$,

$$a_{i}^{n} \leq M^{2} e^{\omega T} \|f(t_{i}^{\tau_{n}}) - f(t_{i-1}^{\tau_{n}})\| \|x\|_{n} + \exp(M \|f(t_{i}^{\tau_{n}}) - f(t_{i-1}^{\tau_{n}})\|) e^{\omega \tau_{n}} a_{i-1}^{n}$$

for $p + 2 \leq i \leq N_{\tau_n}$. Solving the inequality above by using (2.2) and then noting (2.4) we obtain the desired estimate. \blacksquare

LEMMA 3.3. Let $n \geq 1$, $x \in X_n$ and $p, q \geq 0$. If $0 < \eta < \delta \leq T$, $\tau_n \lor \mu < \delta - \eta$ and $\mu > 0$ with $\mu \omega_n \leq 1/2$, then for $p \leq i \leq N_{\tau_n}$ and $q \leq j \leq N_{\mu}$ we have

202

(3.2)
$$e^{-\omega\tau_{n}(i-p)}(1-\mu\omega_{n})^{j-q}a_{i,j}^{\tau_{n},\mu} \leq d_{i,j}^{\tau_{n},\mu}M\sup_{t\in[0,T]}\|A_{n}(t)x\|_{n} + (t_{i}^{\tau_{n}}-t_{p}^{\tau_{n}})\{\eta^{-1}\varrho_{f}(T)(d_{i,j}^{\tau_{n},\mu}+|t_{p}^{\tau_{n}}-t_{q}^{\mu}|)+\varrho_{f}(\delta)\} \times 2M\widehat{M}(\sup_{t\in[0,T]}\|A_{n}(t)x\|_{n}+\|x\|_{n}),$$

where

for

$$a_{i,j}^{\tau_n,\mu} = \Big| \prod_{k=p+1}^{i} F_n(t_k^{\tau_n}) x - \prod_{k=q+1}^{j} J_n^{\mu}(t_k^{\mu}) x \Big|_{t_i^{\tau_n} \vee t_j^{\mu}}^n,$$

$$d_{i,j}^{\tau_n,\mu} = \{ ((t_i^{\tau_n} - t_p^{\tau_n}) - (t_j^{\mu} - t_q^{\mu}))^2 + \tau_n(t_i^{\tau_n} - t_p^{\tau_n}) + \mu(t_j^{\mu} - t_q^{\mu}) \}^{1/2}$$

$$p \le i \le N_{\tau_n}, \ q \le j \le N_{\mu} \ and \ x \in X_n.$$

Proof. We use the idea of Miyadera and Kobayashi [5], applying Lemma 2.3. Let $x \in X_n$, $p, q \ge 0$ and $\mu > 0$ with $\mu \omega_n \le 1/2$. For $q \le j \le N_{\mu}$ we have

$$x - \prod_{k=q+1}^{j} J_{n}^{\mu}(t_{k}^{\mu})x = \sum_{l=q+1}^{j} \left(\prod_{k=l+1}^{j} J_{n}^{\mu}(t_{k}^{\mu})\right)(x - J_{n}^{\mu}(t_{l}^{\mu})x)$$
$$= -\mu \sum_{l=q+1}^{j} \left(\prod_{k=l}^{j} J_{n}^{\mu}(t_{k}^{\mu})\right) A_{n}(t_{l}^{\mu})x;$$

hence (2.4), (2.5) and (2.7) give

$$a_{p,j}^{\tau_n,\mu} \le \mu(j-q)M \sup_{t \in [0,T]} \|A_n(t)x\|_n (1-\mu\omega_n)^{-(j-q)},$$

which proves that $a_{p,j}^{\tau_n,\mu}$ satisfies (3.2) if $q \leq j \leq N_{\mu}$. Since

$$\prod_{k=p+1}^{i} F_n(t_k^{\tau_n}) x - x = \tau_n \sum_{l=p+1}^{i} \Big(\prod_{k=l+1}^{i} F_n(t_k^{\tau_n}) \Big) A_n(t_l^{\tau_n}) x,$$

we find, by (2.4), (2.5) and (2.6), that

$$a_{i,q}^{\tau_n,\mu} \le \tau_n (i-p) M \sup_{t \in [0,T]} \|A_n(t)x\|_n e^{\omega \tau_n (i-p)}$$

for $p \leq i \leq N_{\tau_n}$, which proves that $a_{i,q}^{\tau_n,\mu}$ satisfies (3.2) if $p \leq i \leq N_{\tau_n}$.

Since all assumptions of Lemma 2.2 are satisfied with A(t) and ω replaced by $A_n(t)$ and ω_n , we have

$$\left\|A_n(t_j^{\mu})\prod_{k=q+1}^{j}J_n^{\mu}(t_k^{\mu})x\right\|_n \le \widehat{M}(\sup_{t\in[0,T]}\|A_n(t)x\|_n + \|x\|_n).$$

R. Azuma

Using this estimate and Lemma 3.2 we find by (3.1) that

$$a_{i,j}^{\tau_n,\mu} \leq \beta_{\tau_n,\mu} a_{i,j-1}^{\tau_n,\mu} + \alpha_{\tau_n,\mu} e^{\omega \tau_n} a_{i-1,j}^{\tau_n,\mu} + 2M \widehat{M} \gamma_{\tau_n,\mu} \varrho_f(|t_i^{\tau_n} - t_j^{\mu}|) (\sup_{t \in [0,T]} \|A_n(t)x\|_n + \|x\|_n)$$

for $p+1 \leq i \leq N_{\tau_n}$ and $q+1 \leq j \leq N_{\mu}$. Multiplying by $\omega_{i,j}^{\tau_n,\mu}$ (:= $e^{-\omega \tau_n (i-p)} (1-\mu \omega_n)^{j-q}$) we obtain

$$\omega_{i,j}^{\tau_n,\mu} a_{i,j}^{\tau_n,\mu} \leq \beta_{\tau_n,\mu} \omega_{i,j-1}^{\tau_n,\mu} a_{i,j-1}^{\tau_n,\mu} + \alpha_{\tau_n,\mu} \omega_{i-1,j}^{\tau_n,\mu} a_{i-1,j}^{\tau_n,\mu} \\
+ 2M\widehat{M}\gamma_{\tau_n,\mu} \varrho_f(|t_i^{\tau_n} - t_j^{\mu}|) (\sup_{t \in [0,T]} \|A_n(t)x\|_n + \|x\|_n)$$

for $p + 1 \leq i \leq N_{\tau_n}$ and $q + 1 \leq j \leq N_{\mu}$. Thus we can easily modify the argument of Tanaka [7, Lemma 1.4] to obtain the desired estimate. (See also Kobayasi, Kobayashi and Oharu [3].)

LEMMA 3.4. For $y \in Y$ we have

(3.3)
$$\limsup_{n \to \infty} \sup_{t \in [0,T]} \|A_n(t)y_n\|_n \le K \sup_{t \in [0,T]} \|A(t)y\|$$

if $y_n \in X_n$ satisfy $\lim_{n\to\infty} y_n = y$ and $\lim_{n\to\infty} A_n(t)y_n = A(t)y$ for all $t \in [0,T]$, where K is the constant satisfying (1.3).

Proof. Using (1.4) and the strong continuity of $A(\cdot)$ on Y we can show, by an indirect proof, that

$$\lim_{n \to \infty} \sup_{t \in [0,T]} \|A_n(t)y_n - P_n A(t)y\|_n = 0$$

if $y \in Y$ and $y_n \in X_n$ satisfy $\lim_{n\to\infty} y_n = y$ and $\lim_{n\to\infty} A_n(t)y_n = A(t)y$ for all $t \in [0, T]$. The desired claim (3.3) follows from the fact above and the inequality

$$\sup_{t \in [0,T]} \|A_n(t)y_n\|_n \le \sup_{t \in [0,T]} \|A_n(t)y_n - P_nA(t)y\|_n + K \sup_{t \in [0,T]} \|A(t)y\|. \blacksquare$$

Proof of the Main Theorem. Let $x \in \overline{Y}$, $0 < \eta < \delta \leq T$ and $\mu > 0$ be such that $\mu\omega < 1/2$, and consider sufficiently large integers n so that $\tau_n \lor \mu < \delta - \eta$ and $\mu\omega_n < 1/2$. Then by (1.3) we have

(3.4)
$$\left\| \prod_{k=[s/\tau_n]+1}^{[t/\tau_n]} F_n(k\tau_n) P_n x - P_n U(t,s) x \right\|_n$$
$$\leq \left\| \prod_{k=[s/\tau_n]+1}^{[t/\tau_n]} F_n(k\tau_n) P_n x - \prod_{k=[s/\mu]+1}^{[t/\mu]} J_n^{\mu}(k\mu) P_n x \right\|_n$$

Approximation theorem

$$+ \left\| \prod_{k=[s/\mu]+1}^{[t/\mu]} J_n^{\mu}(k\mu) P_n x - P_n \prod_{k=[s/\mu]+1}^{[t/\mu]} J^{\mu}(k\mu) x \right\|_n$$
$$+ K \left\| \prod_{k=[s/\mu]+1}^{[t/\mu]} J^{\mu}(k\mu) x - U(t,s) x \right\|.$$

Let $y \in Y$. Since $A(t) \subset \liminf_{n \to \infty} A_n(t)$ for $t \in [0, T]$, there exist $y_n \in X_n$ such that $\lim_{n \to \infty} y_n = y$ and $\lim_{n \to \infty} A_n(t)y_n = A(t)y$ for all $t \in [0, T]$. Using (3.2) with $i = [t/\tau_n]$, $j = [t/\mu]$, $p = [s/\tau_n]$ and $q = [s/\mu]$ we see that the first term on the right-hand side of (3.4) is less than or equal to

$$2Me^{2\omega_n T} (K||x-y|| + ||P_n y - y_n||_n) + e^{4\omega_n T} ((\tau_n + \mu)^2 + T(\tau_n + \mu))^{1/2} M \sup_{t \in [0,T]} ||A_n(t)y_n||_n + e^{4\omega_n T} T \{\eta^{-1} \varrho_f(T) (((\tau_n + \mu)^2 + T(\tau_n + \mu))^{1/2} + \tau_n + \mu) + \varrho_f(\delta)\} \times 2M\widehat{M}(\sup_{t \in [0,T]} ||A_n(t)y_n||_n + ||y_n||_n).$$

The second term on the right-hand side of (3.4) is dominated by

$$\max_{0 \le p \le i \le N_{\mu}} \left\| \prod_{k=p+1}^{i} J_{n}^{\mu}(k\mu) P_{n}x - P_{n} \prod_{k=p+1}^{i} J^{\mu}(k\mu)x \right\|_{n}$$

and we deduce from (2.9) that it converges to zero as $n \to \infty$. Taking the limit in (3.4) as $n \to \infty$, and then letting $\mu \downarrow 0$, we have, by Lemma 3.4,

$$\begin{split} \limsup_{n \to \infty} \sup_{(t,s) \in \Delta} \left\| \prod_{k=[s/\tau_n]+1}^{[t/\tau_n]} F_n(k\tau_n) P_n x - P_n U(t,s) x \right\|_n \\ &\leq 2M e^{2\omega T} K \|x-y\| + e^{4\omega T} T \varrho_f(\delta) 2M \widehat{M}(K \sup_{t \in [0,T]} \|A(t)y\| + \|y\|) \end{split}$$

for any $y \in Y$ and $\delta > 0$. Since $x \in \overline{Y}$ and $\rho_f(\delta) \downarrow 0$ as $\delta \downarrow 0$, we conclude that (1.5) holds and the convergence is uniform on Δ .

References

- G. Da Prato and E. Sinestrari, Differential operators with non dense domain, Ann. Scuola Norm. Sup. Pisa 14 (1987), 285–344.
- [2] H. O. Fattorini, The Cauchy Problem, Addison-Wesley, Reading, MA, 1983.
- [3] K. Kobayasi, Y. Kobayashi and S. Oharu, Nonlinear evolution operators in Banach spaces, Osaka J. Math. 21 (1984), 281–310.
- T. G. Kurtz, Extensions of Trotter's operator semigroup approximation theorems, J. Funct. Anal. 3 (1969), 354–375.

R. Azuma

- [5] I. Miyadera and Y. Kobayashi, Convergence and approximation of nonlinear semigroups, in: Proc. Japan-France Seminar on Functional Analysis and Numerical Analysis, 1978, 277–295.
- [6] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
- [7] N. Tanaka, Quasilinear evolution equations with non-densely defined operators, Differential Integral Equations 9 (1996), 1067–1106.
- [8] H. F. Trotter, Approximation of semi-groups of operators, Pacific J. Math. 8 (1958), 887–919.

Senrioka higashi, 2-14-13-402 Settu-shi, Osaka 566-0011, Japan E-mail: dbjiang@nifty.com

> Received August 23, 1999 Revised version June 13, 2002

(4386)