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Weak Closure Theorem fails for Z2-actions

by

T. Downarowicz (Wrocław) and J. Kwiatkowski (Toruń)

Abstract. We construct an example of a Morse Z2-action which has rank one and
whose centralizer contains elements which cannot be weakly approximated by the trans-
formations of the action.

Introduction. The rank of a measure preserving transformation (i.e., of
a Z-action) was defined by B. V. Chacon in 1970 ([C]). Roughly speaking,
rank is the minimal number of towers needed to approximate the sigma-
algebra, and it is an invariant of measure conjugacy. Chacon proved that
rank is always not smaller than spectral multiplicity, which makes rank an
important parameter. Whether rank is an invariant of spectral isomorphism
is a famous, still unsolved, problem in ergodic theory.

Rank can also be defined for actions of other abelian groups whenever
it is clear what we understand by towers. This is equivalent to a choice of
a Fölner sequence of sets. For Z2 the most natural choice is rectangles (or
parallelepipeds in Zd). With such choice Chacon’s inequality still holds.

The metric centralizer of an abelian group T of measure preserving trans-
formations is defined as the family of all automorphisms of the space which
commute with all elements of T. Endowed with the weak topology, it has the
structure of a complete metric topological group and obviously it contains
T, hence also its closure Wcl(T). The centralizer can be viewed as a family
of special self-joinings and hence has gained a lot of attention in ergodic
theory (see e.g. [K2], [J-R]).

In 1986 J. King ([K1]) proved that for rank-one Z-actions the centralizer
coincides with Wcl(T) (see also [R] for another proof). This theorem is
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known as the Weak Closure Theorem and it has found many important
applications. For example, in the class of Morse flows it allows one to prove
that rank-one is in fact a spectral invariant ([D-K-L]). Whether an analogous
Weak Closure Theorem holds for other group actions (in particular for Zd-
actions) is a natural question (see e.g. [G-R]).

In this paper we construct an example of a rank-one Z2-action which
does not have this property. Moreover, this will be done in the class of Morse
flows. Our method admits a modification with the additional property that
the system is rigid, which implies that Wcl(T) is uncountable.

The authors would like to acknowledge the hospitality of Département de
Mathématiques, Université de Bretagne Occidentale in Brest, France, where
this article was written.

Preliminaries and notation. Let Z2 denote the set of 2-dimensional
integers n = (n1, n2), 0 = (0, 0), 1 = (1, 1). We will write v(n) = |n1n2|. In
Z2 we introduce a partial order by m ≤ n⇔ m1 ≤ n1 & m2 ≤ n2. We shall
say that a sequence (nk) tends to infinity if both coordinates of nk tend to
infinity. For m ≤ n the rectangle {i : m ≤ i ≤ n} will be denoted by [m,n].

Let G be a finite set. A finite G-valued matrix B = (B(i))i∈[0,n−1 ] will
be called a block of size n. The size of B will be denoted by n(B), and we
will write v(B) for v(n(B)) (the number of entries of B).

For two blocks B and C of the same size n the Hamming distance is
defined as

d(B,C) =
1

v(n)
#{i ∈ [0, n− 1] : B(i) 6= C(i)}.

The elements of GZ
2

and of GN
2

are called arrays and quarter-arrays,
respectively. For an array (or quarter-array) x = (x(n)) we denote by x[m,n]
the block B = (x(i))i∈[m,n]. We then say that B occurs in x at position m.
Similarly, a block B may occur in another block C (larger in size). The
Hamming distance between arrays or quarter-arrays x and y is defined as
the upper limit of the distances of the blocks x[−n, n] and y[−n, n] (or x[0, n]
and y[0, n] for quarter-arrays) as n tends to infinity.

We will consider the Z2-action of the group T = {Tn : n ∈ Z2} of shifts
on GZ

2
defined by

Tnx(m) = x(m+ n)

as a topological flow (GZ
2

is endowed with the product topology). We will
restrict the phase space to the set Xx, where x is a quarter-array, of arrays y
such that every block appearing in y occurs in x at infinitely many positions.
(Clearly, Xx is closed and T-invariant.) We will be dealing mainly with
strictly ergodic flows (Xx,T), i.e., such that Xx is a minimal (nonempty)
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closed T-invariant set and there exists a unique T-invariant Borel probability
measure µ on Xx.

Let (X,µ,T) be a measure preserving Z2-action represented in symbolic
form, i.e., in the form of the shift action on arrays over a finite alphabet G.
We will now specify what we mean by saying that (X,µ,T) is of rank one.
The definition below is an equivalent interpretation of the abstract definition
(involving towers along rectangles) in the case of symbolic systems.

Let y be an array. We say that a block B ε-occurs in y at position m if

d(B, y[m,m+ n(B)− 1]) ≤ ε.
We say that B ε-covers y if there exists a subset P ⊂ Z2 with the following
properties:

• [m,m+ n(B)− 1] ∩ P = {m} for each m ∈ P,
• the density of P in Z2 is at least (1− ε)/v(B),
• B ε-occurs in y at every position m ∈ P.

Roughly speaking, some disjoint ε-occurrences of B in y cover nearly all of
Z2. The system (X,µ,T) is said to be of rank one if for every ε > 0 there
exists a block Bε such that µ-almost every y ∈ X can be ε-covered by Bε,
and the blocks can be chosen so that n(Bε) tends to infinity as ε→ 0.

By the centralizer C(X,µ,T) (or briefly C(X,T) in strictly ergodic sys-
tems) of (X,µ,T) we mean the set of all automorphisms of the Borel measure
space (X,µ) which commute with every element of the acting group T. Ob-
viously, T ⊂ C(X,µ,T). In C(X,µ,T) we will consider the weak topology
defined as follows:

Sn → S ⇔ for every Borel set F ⊂ X,
µ(Sn(F )4 S(F )) −→

n→∞
0 and µ(S−1

n (F )4 S−1(F )) −→
n→∞

0.

It is known (see e.g. [K1]) that in the symbolic case Sn → S if and only if
d(Sn(y), S(y)) → 0 and d(S−1

n (y), S−1(y)) → 0 for µ-almost every y ∈ X.
With this topology the centralizer has the structure of a complete metric
topological group. We denote by Wcl(T) the closure of T in C(X,µ,T).

Our next subject is the definition of a Morse Z2-action. From now on we
will assume that G is a finite abelian group (denoted multiplicatively) with
unity e. If g ∈ G then B · g is obtained by multiplying each entry of B by
g (the rule for arrays is analogous). Let B and C be two blocks of symbols
from G; set n = n(B), m = n(C). The product B × C of these blocks is a
block of size mn = (m1n1,m2n2), defined by

(B × C)(s+ nt) = B(s)C(t)

(s ∈ [0, n− 1], t ∈ [0,m− 1]). Clearly, v(B × C) = v(B)v(C).
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For a given sequence (Bq)q∈N of blocks such that nq = n(Bq) ≥ (2, 2)
and Bq(0) = e for each q we define the products

Aq = B1 × . . .×Bq.
They have sizes pq = n1 . . . nq → ∞ and these blocks converge at each
coordinate to a quarter-array denoted by A or B1 ×B2 × . . . If A happens
not to be periodic in any direction, then it is called a Morse quarter-array.
If x = A is a Morse quarter-array then the symbolic Z2-action of T on Xx

is called a Morse Z2-action generated by the sequence (Bq) of blocks. The
proof of the following fact is analogous to the one-dimensional case, and will
be omitted:

Fact 1. A sufficient condition for a Morse Z2-action generated by a
sequence (Bq) of blocks to be strictly ergodic is that there exists an ε > 0 such
that , for every q and g ∈ G, g appears in Bq at at least εv(nq) positions.

Notice that the centralizer C(Xx,T) of a Morse Z2-action satisfying the
condition of Fact 1 always contains the transformations σg (g ∈ G) defined
by coordinatewise multiplication by g, σg(y) = y · g.

Formulation of the main result. The aim of this paper is to prove
the following

Theorem. There exists a strictly ergodic rank-one Morse Z2-action
(Xx,T) for which

{σg : g ∈ G, g 6= e} ⊂ C(Xx,T) \Wcl(T).

We begin with a sketch of proof. The details will be provided after the
section concerning autocorrelations and their properties.

The idea of the construction is as follows: G is the group of complex
roots of unity of degree r ≥ 2, G = {1, ξ, ξ2, . . . , ξr−1}. We find a sequence
(Eq)q≥1 of blocks, increasing in size, which satisfy three conditions:

• Eq(0) = 1;
• the Hamming distance between Eq · g and T k(Eq) is bounded from

below for every q, g, and for k 6= 0 not too large;
• the left half of each block Eq consists of constant columns, the right

half consists of constant rows (as in Figure 2).

Next we take the cyclic square block D of size (r, r) given by D(i, j) =
ξi+j and we define Bq as D×Eq. This completes the construction. Obviously,
the blocks Bq satisfy all requirements to define a strictly ergodic Morse Z2-
action (see Fact 1).

The proof of the rank-one property is based on the simple observation
that the product of D with a constant row (or column) produces a “strap”
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of the form (D · hD · h . . .D · h) which, except for some small (initial and
final) parts, can be covered by copies of D.

Suppose that σg can be weakly approximated by some shifts T k. This
implies that there exist y ∈ Xx and k such that the Hamming distance
between y · g and T ky is very small. But y is built as a concatenation of the
blocks Aq ·h (h ∈ G) and we can use q so large that k is very small compared
to the size of Aq. Thus, in order to obtain a contradiction, it suffices to prove
that the Hamming distance between Aq ·g and T k(Aq) is uniformly bounded
from below for all q, g, and for k 6= 0 not too large. At this moment the
second property of Eq will be used. As a tool allowing uniform control of the
Hamming distance between a block multiplied by some g and the same block
shifted by some vector k we will use the so called autocorrelations. The main
advantage of this parameter is that there exists a convenient estimate for
autocorrelations of a product of blocks in terms of autocorrelations of the
factors. For clarity, some objects appearing in the construction are visualised
in figures.

Autocorrelations of two-dimensional blocks. Let B be a block of
size n, and pick some k ∈ [−n+ 1, n− 1]. Define

PB(k) = [0, n− 1] ∩ [−k, n− k − 1]

(the overlap of the domain of B with the domain of T k(B)). Notice that
#PB(k) = v(n− |k|) (where |k| = (|k1|, |k2|)). It is easy to see that if |k| ≤
n/2 then #PB(k) ≥ 1

4v(B), while in the opposite case #PB(k) < 1
2v(B).

From now on we will assume that G is the cyclic group of complex roots
of unity of degree r ≥ 2, G = {1, ξ, ξ2, . . . , ξr−1}.

Definition. The normalized autocorrelation of B at distance k is de-
fined as

ΨB(k) =
1

#PB(k)

∑

i∈PB(k)

B(i+ k)(B(i))−1.

The following fact is derived directly from the definitions of the autocor-
relation and of the Hamming distance.

Fact 2. If |ΨB(k)| ≤ 1− % then for every g ∈ G,

d((B · g)[PB(k)], B[PB(k) + k]) ≥ %/2.
Proof. Suppose for some g the above d distance is less than %/2. This

means that B(i + k) = gB(i) for a fraction of at least 1 − %/2 indices i ∈
PB(k). That means that the same fraction of the terms B(i+ k)(B(i))−1 in
the sum in the definition of the autocorrelation are equal to g. The remaining
terms of this sum lie on the unit disk, in the worst case they are all −g, and
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then the modulus of the autocorrelation equals∣∣∣∣
(

1− %

2

)
g +

%

2
(−g)

∣∣∣∣ = 1− %.

Now, consider two arbitrary blocks B and C over G, and let n and
m denote their respective sizes. The crucial formula in our considerations
concerns autocorrelations of the product B×C. We will present the formula
only for k with nonnegative coordinates. The remaining (three) cases can
be treated by reflection with respect to one or both axes.

Pick a vector k ∈ [0,mn− 1]; then

k = s+ nt,

with s ∈ [0, n−1], t ∈ [0,m−1]. Setting s′ = (s1−n1, s2), s′′ = (s1, s2−n2),
s′′′ = (s1 − n1, s2 − n2) we have the following four representations of k:

s+ nt, s′ + n(t+ (1, 0)), s′′ + n(t+ (0, 1)), s′′′ + n(t+ (1, 1)).

The overlap area PB×C(k) splits into small rectangles of four types of shapes:
PB(s), PB(s′), PB(s′′), and PB(s′′′). The number of times each type occurs

Fig. 1

is #PC(t), #PC(t+(1, 0)), #PC(t+(0, 1)), and #PC(t+(1, 1)), respectively
(see Figure 1). Applying simple arithmetical operations and estimations we
obtain

(∗) |ΨB×C(s+ nt)|
≤ α1|ΨB(s)| · |ΨC(t)|+ α2|ΨB(s′)| · |ΨC(t+ (1, 0))|

+ α3|ΨB(s′′)| · |ΨC(t+ (0, 1))|+ α4|ΨB(s′′′)| · |ΨC(t+ (1, 1))|,
where

α1 =
#PB(s)#PC(t)

#PB×C(k)
, α2 =

#PB(s′)#PC(t+ (1, 0))

#PB×C(k)
,
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α3 =
#PB(s′′)#PC(t+ (0, 1))

#PB×C(k)
, α4 =

#PB(s′′′)#PC(t+ (1, 1))

#PB×C(k)

(note that α1 + α2 + α3 + α4 = 1). Notice also that for large m, if t is
not too large then the above coefficients are nearly equal to #PB(s)/v(B),
#PB(s′)/v(B), #PB(s′′)/v(B), and #PB(s′′′)/v(B), respectively.

Now, for a block B of size n, set

Definition.

1− %(B) = max{|ΨB(k)| : k ∈ [−n/2− 1, n/2 + 1], k 6= 0}.
The fact below is our main tool:

Fact 3. If m is sufficiently large then

1− %(B × C) ≤ max{1− %(B), 1− %(C)/2.1}.
Proof. First suppose that k ∈ [0,mn/2 + 1] (k 6= 0). Then k = s + nt

with s ∈ [0, n− 1], t ∈ [0,m/2]. Consider three cases:

(1) If t 6= 0 then in the formula (∗) we see a subconvex combination of
the numbers |ΨC(t)|, |ΨC(t+ (1, 0))|, |ΨC(t+ (0, 1))| , |ΨC(t+ (1, 1))|, all of
them not larger than 1− %(C).

(2) If t = 0 and s ≤ n/2 + 1 then (∗) can be viewed as a subconvex
combination of |ΨB(s)|, |ΨC(1, 0)|, |ΨC(0, 1)| and |ΨC(1, 1)|, hence it yields
a number not larger than the maximum of 1− %(B) and 1− %(C).

(3) If t = 0 and not s ≤ n/2 + 1 then α1 ≤ 1/1.92 (for m large enough),
while the remaining three terms form a combination of |ΨC(1, 0)|, |ΨC(0, 1)|
and |ΨC(1, 1)|, which are at most 1−%(C) each. The total is hence estimated
by 1− %(C)/2.1.

The estimates for k in the remaining parts of [−mn/2 − 1,mn/2 + 1]
follow by symmetry with respect to one or both axes.

We shall also need a general statement concerning the existence of long
one-dimensional blocks with small autocorrelations. Let B be a one-dimen-
sional block of length n. We define

1− %(B) = max
0<k≤n/2+1

∣∣∣∣
1

n− k
n−k−1∑

i=0

B(i+ k)(B(i))−1

∣∣∣∣,

1− %0(B) = max
0<k≤n/2

∣∣∣∣
1

n− k
n−1∑

i=k

B(i)
∣∣∣∣.

Fact 4. For any 0 < % < 1 and each sufficiently large n there exists a
one-dimensional block B over G of length n such that

(a) 1− %(B) ≤ 1− %,
(b) 1− %0(B) ≤ 1− %.
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Proof. Consider an i.i.d. sequence X1,X2, . . . of random variables taking
values in G (viewed as a subset of the complex plane) with the uniform dis-
tribution (1/r, . . . , 1/r). Note that for any natural k the sequence Xi+kX

−1
i

(i = 1, 2, . . .) has the same properties. Applying Hoeffding’s inequality (sep-
arately to the real and imaginary parts; see e.g. [P, pp. 191–192]) we obtain

P

(∣∣∣∣
1

n− k
n−k−1∑

i=0

Xi+kX
−1
i

∣∣∣∣ > 1− %
)
≤ 2e−(n−k)(1−%)2/2,

Summing over k = 1, 2, . . . , [n/2] + 1 we can write

P

(
max

0<k≤n/2+1

∣∣∣∣
1

n− k
n−k−1∑

i=0

Xi+kX
−1
i

∣∣∣∣ > 1− %
)

≤ 2(n/2 + 1)e−(n/2−1)(1−%)2/2,

which is smaller than 1/2 for sufficiently large n. Thus the set of G-valued
blocks of length n satisfying (a) is of probability larger than 1/2. Analo-
gously, the same applies to the set of blocks satisfying (b). Hence the inter-
section of these two sets is nonempty.

Proof of the main result. We are in a position to start the construc-
tion of our example.

Proof of the Theorem. Fix some 0 < % < 1. Pick an increasing sequence
of natural numbers nq. For each q pick two one-dimensional blocks, L′q of
length nq and R′q of length 2nq, as specified in Fact 4 (we assume that
each nq is sufficiently large). Clearly, we can arrange that L′q starts with
the symbol 1. Now let Lq denote the two-dimensional block of size (nq, 2nq)
in which every row is L′q (and there are 2nq such rows), and let Rq be the
block of the same size as Lq in which every column is R′q (and there are nq
such columns). Notice that the columns of Lq as well as the rows of Rq are
constant. Let Eq denote the square block (of size (2nq, 2nq)) which is the
concatenation of Lq (on the left) and Rq (on the right). (The structure of

Fig. 2. Eq
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Eq for r = 4, nq = 5 is visualized in Figure 2; the integers represent the
exponents i of ξi.) We claim that

1− %(Eq) ≤ 1− %

3.1
.

Indeed, since n(Eq)/2=(nq, nq) we need to consider k∈ [(−nq−1,−nq−1),
(nq + 1, nq + 1)], k 6= 0.

Consider separately three cases (shown in Figure 3):

Fig. 3

(a) |k1| ≤ nq/2 + 1, k1 6= 0. Then look at the rows of the overlap area
PEq(k). The sum (as in the definition of the autocorrelation) over every such
row contains the autocorrelation of L′q at distance k1 with a coefficient not
smaller than 1/3.1 (for sufficiently large nq). Thus, the absolute value of the
entire sum is at most 1− %/3.1.

(b) nq/2 + 1 < |k1| ≤ nq + 1. Then the sum over each row contains the
sum of the elements of L′q as in the definition of %0(L′q) (multiplied by a
constant element g), also with a coefficient of at least 1/3.1. Thus the same
estimate as in case (a) applies.

(c) k1 = 0, k2 6= 0. Then we look at the columns. Half of them contain
the autocorrelation of R′q at distance k2 with |k2| ≤ 2nq/2 + 1, hence not
larger (in absolute value) than 1−%. In such a case the entire autocorrelation
is estimated by 1− %/2, and the claim is proved.

Let D denote the square block of size (r, r) defined by D(i, j) = ξi+j .
(This definition does not depend on q.) We let

Bq = D × Eq.
(The structure of Bq is shown in Figure 4.) We need to estimate 1− %(Bq).
Since 1 − %(D) = 1, we cannot use Fact 3 directly. We need to go back to
its proof (now n = (r, r)). Let k = s+ nt. If t 6= 0 then part (1) of the proof
of Fact 3 applies and the autocorrelation is estimated by 1− %(Eq). If t = 0
then s 6= 0, which means that at least one coordinate of s is at least 1, hence
the size of Ps(D) is at most ((r − 1)/r)v(D). Thus, in (∗), the coefficient
α1 is at most r/(r + 1) (assuming that 2nq is large enough). As in part (3),
this yields the bound 1− %(Eq)/(r + 1). We have proved that

1− %(Bq) ≤ 1− %

3.1(r + 1)
.
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Fig. 4. Bq = D × Eq

By recursive application of Fact 3, we find that 1−%(Aq)≤1−%/(7(r+1))
for every q (recall thatAq = B1×. . .×Bq and its size is pq). By Fact 2, for any
k ∈ [−pq/2−1, pq/2+1] (k 6= 0) and any g ∈ G the d-distance between Aq ·g
and T kAq (both blocks restricted to the overlap area) is not smaller than
%/(14(r + 1)). For fixed k ∈ Z2 with k 6= 0 every element y ∈ Xx can be rep-
resented as an infinite concatenation of the blocks Aq ·h, with q large enough,
so that v(pq − |k|)/v(pq) ≥ 14/15. Thus d(σg(y), T k(y)) ≥ %/(15(r + 1)).
We have proved that none of the maps σg (g 6= 1) belongs to Wcl(T).

It remains to show that the above described Morse Z2-action is of rank
one. We will first show that for every q each of the blocks Bq · g (g ∈ G) can
be 1/nq-covered by the block D. Indeed, the right half Bq · g is D ×Rq · g,
and since the rows of Rq ·g are constant, D×Rq ·g is built of 2nq horizontal
“straps” of the form (D · h . . . D · h) (nq repetitions, h ∈ G). But after
removing a number of initial and terminal columns (r columns together),



Weak Closure Theorem 125

(D · h . . . D · h) coincides with (D . . . D) (nq − 1 repetitions), hence the
“strap” can be r/(rnq)-covered by D. Similarly, analyzing vertical “straps”
of D×Lq ·g we see that this part can be 1/(2nq)-covered by D. (The cover of
Bq ·1 is shown in Figure 4.) Since every element y ∈ Xx is a concatenation of
the blocksAq·h = Aq−1×Bq·h, it can be 1/nq-covered by the blockAq−1×D.
Obviously, the size of the last block escapes to infinity with growing index
q as required in the definition of rank one. The proof is now complete.

Final remark. We remark that our technique allows us to produce a
similar example with the additional property of being rigid, i.e., such that the
identity transformation can be approximated by T k where k is not eventually
constant 0. Recall that for rigid Z2-actions T is highly nondiscrete; namely
Wcl(T) is uncountable. In the construction it suffices to take the square block
Cq of size (nq, nq) filled entirely with the symbols 1 (= ξ0), and define Bq
as Cq ×D×Eq. It is not hard to see that the estimates for autocorrelations
of Bq at distances larger than (nq, nq) are the same as before. For small
distances, however, Bq · g “fits” to T k(Bq) but only for g = 1. We skip the
detailed verification.
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