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Diameter-preserving maps on various classes
of function spaces

by

Bruce A. Barnes (Eugene, OR) and Ashoke K. Roy (Calcutta)

Abstract. Under some mild assumptions, non-linear diameter-preserving bijections
between (vector-valued) function spaces are characterized with the help of a well-known
theorem of Ulam and Mazur. A necessary and sufficient condition for the existence of
a diameter-preserving bijection between function spaces in the complex scalar case is
derived, and a complete description of such maps is given in several important cases.

Introduction. Several papers on diameter-preserving linear bijections
of function spaces have appeared in recent years (see, for example, [GM],
[GU], [S], [RR]). The present paper is a contribution to this circle of ideas,
its principal motivation coming from an attempt to clarify and extend
some of the results in [RR] in response to an interesting question raised
there.

To give a summary in this introduction to our main results, let us first
explain briefly the notations and terminology that we use (unexplained terms
and notations will be found in [RR]). K, L, and S will generally denote
compact convex sets in a Hausdorff locally convex topological vector space
X over C or R, as the context will make clear. The (non-empty) set of
extreme points of K will be denoted by ext(K), and A(K) will stand for the
space of complex-valued continuous affine functions on K endowed with the
sup-norm. Our general references for facts concerning compact convex sets
are [A] and [AE].

Let Q be a compact Hausdorff space, and X a Banach space. Then the
diameter of f ∈ C(Q,X) is defined by d(f) = supx,y∈Q ‖f(x) − f(y)‖. If
A1 ⊆ C(Q1,X1) and A2 ⊆ C(Q2,X2) are function spaces, i.e. sup-norm
closed subspaces, containing the constant functions, and separating points,
then a (not necessarily linear) map T : A1 → A2 is called a diameter-
preserving (d-preserving) bijection if T is a 1-1 map of A1 onto A2, and
d(a) = d(Ta) for all a ∈ A1.
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We begin, in Section 1, by discussing non-linear d-preserving bijections
between (vector-valued) function spaces A1 and A2 of the kind described
in the last paragraph and show, with the help of a well-known theorem of
Mazur and Ulam (see [MU] and [B]), that under certain mild assumptions,
T can be characterized as T +ϕ where T : A1 → A2 is a linear d-preserving
bijection, and ϕ : A1 → X2 is a function, generally non-linear, with well-
defined properties. We give several examples of such maps in Section 2.

In [RR, Theorem 1, p. 5], it was found that all linear d-preserving bijec-
tions between the spaces A(K) and A(L) are essentially induced by affine
homeomorphisms between K and L when K,L are compact convex sets
with all points of ext(K) and ext(L) split. It was asked there whether the
same conclusion could be derived by assuming the “splittability” property
only for ext(K). We exhibit in Section 3 a very simple two-dimensional
counterexample to this question involving a simplex K and a hexagon S
for which a linear d-preserving bijection exists between AR(K) and AR(S).
[Here the subscript R signifies real-valued functions.] The problem therefore
naturally arises of characterizing compact convex sets K1 and K2 for which
linear d-preserving bijections exist between A(K1) and A(K2). We consider
the question more generally for function spaces Ai ⊆ C(Qi), i = 1, 2, and
show that the existence of an affine homeomorphism between certain com-
pact convex sets in A∗1 and A∗2—these sets being associated in a very natural
manner with the state spaces of A1 and A2—is necessary and sufficient for
this purpose. (For example, for the spaces AR(K) and AR(S) as above, the
condition is that K −K must be affinely homeomorphic to S−S.) We pur-
sue this further by describing in Theorem 9 (in Section 4) the precise form
of these d-preserving bijections from A(K) to A(S) where all the points in
ext(K) are split and S is any compact convex set when the aforementioned
condition is satisfied.

The discussion in Section 3 leads naturally to the question of solvability
in S (a compact convex set) of the equation S − S = K −K where K is a
given compact convex set with all points of ext(K) split. The question in
general appears too difficult, but we can exhibit, in Rn, the class of polytopes
S for which S − S = K −K when K is a given simplex in Rn. This is the
content of Section 5.

1. d-Preserving maps on function spaces. Assume that E is a
normed linear space. Let C(X,E) be the space of all continuous E-valued
functions on X. For v ∈ E, we also denote by v the constant function,
v(x) = v for all x ∈ X. Thus, vectors and constant functions are denoted in
the same way; the meaning can be determined from the context. Also, we
use E to denote the closed subspace of C(X,E) consisting of all the constant
functions.
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A subspace A ⊆ C(X,E) is a (vector-valued) function space if A is
closed in the sup-norm, E ⊆ A, and A separates points of X. For a ∈ A, let
[a] = a+E be the residue class of a in the quotient space A/E. We remark
that A is linearly isomorphic to (A/E)⊕ E. For let ψ : A→ (A/E)⊕ E be
defined by ψ(a) = [a]⊕ a(x0) where x0 ∈ X is fixed. Then ψ is 1-1 since if
a, b ∈ A with ψ(a) = ψ(b), then [a] = [b], so a and b differ by a constant, and
also a(x0) = b(x0). Thus, a = b. The linear map ψ maps A onto (A/E)⊕E,
since given [a]⊕ v, setting c = a+ (v − a(x0)), we have ψ(c) = [a]⊕ v.

The diameter of a ∈ A is defined by d(a) ≡ supx,y∈X ‖a(x)− a(y)‖.
Note that d(a) = 0 if, and only if, a is a constant function. For [a] ∈ A/E,

define d[a] = d(a). Then [a] 7→ d[a] is a norm on A/E which we call the
d-norm.

Proposition 1. Assume that A1 ⊆ C(X1, E1) and A2 ⊆ C(X2, E2)
are function spaces. Make the linear identifications A1 ≈ (A1/E1 ⊕ E1 and
A2 ≈ (A2/E2) ⊕ E2 as above, using the maps ψ1 and ψ2, ψk(ak) = [ak] ⊕
ak(xk) where xk ∈ Xk are fixed points, ak ∈ Ak for k = 1, 2. Assume that
D : A1/E1 → A2/E2 and J : E1 → E2 are linear bijections, and that D is
an isometry with respect to the d-norms. Define D ⊕ J : (A1/E1) ⊕ E1 →
(A2/E2)⊕ E2 by (D ⊕ J)([a]⊕ v) = D[a]⊕ J(v). Finally , define D : A1 →
A2 by D(a) = ψ−1

2 (D ⊕ J)ψ1(a). Then D is a linear bijection which is d-

preserving and has the property that the induced map D̃ : A1/E1 → A2/E2

defined by D̃([a]) = [D(a)] is D.

Proof. That D(a) is a linear bijection is clear, since ψ−1
2 , D⊕ J and ψ1

are all linear bijections. Let a ∈ A1. Then by a straightforward computation,

D(a) = b+−b(x2) + J(a(x1)) where [b] = D[a].

Thus, d(D(a)) = d(b) = d[b] = d[D[a]] = d[a] = d(a), so D is d-preserving.

Remark. When J : E1 → E2 is a bijection, but not linear, and D ⊕ J
and D are defined as above, then D is still a bijection and a d-preserving
function which is not linear.

Let A1 and A2 be function spaces as above, and assume that T : A1 → A2

is a function (not necessarily linear). Now we prove a result which shows
that with fairly weak assumptions on T plus the assumption that E1 and
E2 are linearly isomorphic, there exists a linear bijection T : A1 → A2 with
T d-preserving. The key tool here is the Ulam–Mazur Theorem [MU, B]
which we state for the convenience of the reader: Assume that (E1, ‖ ‖1)
and (E2, ‖ ‖2) are normed linear spaces and that D : E1 → E2 is a bijection
with the properties: (a) ‖D(x) − D(y)‖2 = ‖x − y‖1 for all x, y ∈ E1,
(b) D(0) = 0, and in the case of complex scalars, (c) D(ia) = iD(a) for all
a ∈ E1. Then D is linear.
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Theorem 2. Assume that T : A1 → A2 is a function with the properties:

(1) T is a bijection;
(2) T has the property d(T (a)− T (b)) = d(a− b) for all a, b ∈ A1;
(3) T (0) = 0;
(4) [in the case of complex scalars] T (ia) = iT (a) for all a ∈ A1.

Also, assume that there exists J : E1 → E2 such that J is a linear bijection.
Then T (a) = T (a) + ϕ(a) where T : A1 → A2 is a d-preserving linear
bijection with T (v) = J(v), v ∈ E1, and ϕ : A1 → E2 is a function with the
properties:

(i) ϕ(0) = 0;
(ii) [in the complex scalar case] for all a ∈ A, ϕ(ia) = iϕ(a);
(iii) the map a 7→ a+ J−1(ϕ(a)) from A1 to A1 is 1-1;
(iv) given a ∈ A1, the equation J(x)+ϕ(a+x) = 0 is solvable for x ∈ E1.

Conversely , assume T : A1 → A2 is a d-preserving linear bijection, and
define J : E1 → E2 by J(v) = T (v), v ∈ E1. Further , assume that ϕ : A1 →
E2 is a function with properties (i)–(iv) above. Then T (a) = T (a) + ϕ(a) is
a (possibly non-linear) map from A1 onto A2 having the properties (1)–(4)
listed in the theorem.

Proof. Assume that T : A1 → A2 has properties (1)–(4). Define T̃ :
A1/E1 → A2/E2 in the obvious way: T̃ ([a]) = [Ta]. From properties (1)
and (2), T̃ is a bijection and has property (a) above (in the statement of the
Ulam–Mazur Theorem). Also, T̃ inherits properties (3) and (4). Therefore
the Ulam–Mazur Theorem applies, so T̃ is linear. Now using the construction
in Proposition 1, define T (a) = ψ−1

2 (T̃ ⊕ J)ψ1(a). By Proposition 1, T is
a linear bijection which is d-preserving. For a ∈ A1, T (a) = T (a) + c for
some c ∈ E2. Define ϕ(a) = T (a) − T (a) ∈ E2. Thus, for all a ∈ A1,
T (a) = T (a) + ϕ(a). It follows from the definition of T that T (a) = J(a)
when a ∈ E1. That ϕ satisfies (i) and (ii) is clear. We verify that (iii) and
(iv) hold:

(iii) The map a 7→ a + J−1(ϕ(a)) from A1 to A1 is 1-1: Suppose a +
J−1(ϕ(a)) = b+J−1(ϕ(b)). Then v = b−a ∈ E1, and v = J−1(ϕ(a)−ϕ(b)).
Thus, T (v) = J(v) = ϕ(a)− ϕ(b). Therefore, T (b)− T (a) = ϕ(a)− ϕ(b), so
T (a) = T (b). Then since T is 1-1, a = b.

(iv) Given a ∈ A1, the equation J(x)+ϕ(a+x) = 0 is solvable for x ∈ E1:
Choose b such that T (b) = T (a) (T is surjective). Then 0 = d(T (a)−T (b)) =
d(a − b), so b = a + v for some v ∈ E1. Thus, T (a) = T (b) = T (a + v) =
T (a + v) + ϕ(a + v) = T (a) + T (v) + ϕ(a + v) = T (a) + J(v) + ϕ(a + v).
Therefore, J(v) + ϕ(a+ v) = 0.

Now we do the converse. Assume that T , J , and ϕ are as stated in the
last paragraph of the theorem. Also, define T : A1 → A1 as above: T (a) =
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T (a) + ϕ(a). That T has properties (2), (3), and (4) follows immediately.
We prove that T is bijective.

T is 1-1: Assume T (a) = T (b), so

(1) T (a) + ϕ(a) = T (b) + ϕ(b).

Then T (a − b) = ϕ(b) − ϕ(a). Therefore, a − b = x ∈ E1. Then T (a) =
T (b) + J(x) (since J = T on E1). Substituting this equality into (1), we
have T (b) + J(x) + ϕ(a) = T (b) + ϕ(b), so J(x) = ϕ(b) − ϕ(a). Thus,
J(x) + ϕ(a) = ϕ(b) = ϕ(a − x). Then a = b + x = b + J−1(ϕ(b) − ϕ(a)).
Finally, this implies a+J−1(ϕ(a)) = b+J−1(ϕ(b)). Applying (iii), it follows
that a = b.

T maps onto A2: Assume c ∈ A2. We want to find a ∈ A1 such that
T (a)+ϕ(a) = c. There exists b ∈ A1 such that c = T (b). Now T (a)+ϕ(a) =
T (b) implies T (b− a) = ϕ(a). Therefore, b− a ∈ E1. Setting x = b− a, we
have T (b) = T (a) +J(x), so T (a) +ϕ(a) = T (a) +J(x). Thus, ϕ(a) = J(x).
Then ϕ(b− x) = J(x) and J(−x) + ϕ(b− x) = 0. Finally, applying (iv), we
can solve this last equation for x. Therefore, a = b− x will be a solution of
T (a) = T (a) + ϕ(a) = c.

Remark. T , the linear part of T , has been characterized in [RR, The-
orem 2 and Proposition 2] for some vector-valued function spaces.

The assumption in Theorem 2 of the existence of the linear bijection J :
E1 → E2 is not very restrictive. First, it is not assumed that J is continuous,
so the existence of J is equivalent to E1 and E2 having (algebraic) bases of
the same cardinality.

We use card(S) to denote the cardinality of a set S, and set c = card(R).
Also, the dimension of a linear space E is denoted by dim(E). Here is a
useful known result:

If dim(E) ≥ c, then card(E) = dim(E) [LT, Problem 2, p. 43].

Note that because of the hypotheses in Theorem 2, T (E1) = E2, and
T is 1-1. It follows that card(E1) = card(E2). Thus, if dim(E1) ≥ c and
dim(E2) ≥ c, then

dim(E1) = card(E1) = card(E2) = dim(E2).

Conclusion. If dim(E1) ≥ c and dim(E2) ≥ c, then there exists a
linear bijection of E1 onto E2.

Our main concern in this paper being with function spaces whose mem-
bers take values in Banach spaces, it is pertinent to point out that, as a
consequence of the Baire Category Theorem, the algebraic dimension of a
Banach space is either finite or uncountable (≥ c).

Now assume the dimensions of E1 and E2 are both finite, E1 ≈ Rm and
E2 ≈ Rn. Assume that T and T−1 are continuous, so that T is a homeo-
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morphism of E1 ≈ Rm onto E2 ≈ Rn. Then the Invariance of Dimension
Theorem [D, p. 359] implies that m = n.

Conclusion. If E1 and E2 are both finite-dimensional and T is a
homeomorphism, then there exists a linear bijection of E1 onto E2.

2. Examples of non-linear d-preserving maps. In this section we
present several examples of non-linear d-preserving maps T which satisfy
the hypotheses (1)–(4) of Theorem 2. Of course, by that theorem, T must
be the sum of a linear d-preserving bijection and a non-linear part.

First we give an example when E1 = E2 = C. Let A be a function space,
A ⊆ C(X). Note the relations for a function a ∈ A: a = Re(a) + i Im(a);
ia = iRe(a)− Im(a); Re(ia) = − Im(a); Im(ia) = Re(a). Now set

ϕ(a) = sup(Re(a)) + i sup(Im(a))− sup(−Re(a))− i sup(−Im(a)).

For a ∈ A, ϕ(ia) = iϕ(a). Proof:

ϕ(ia) = sup(Re(ia)) + i sup(Im(ia))− sup(−Re(ia))− i sup(−Im(ia))

= sup(−Im(a)) + i sup(Re(a))− sup(Im(a))− i sup(−Re(a))

= i[sup(Re(a))− sup(−Re(a)) + i sup(Im(a))− i sup(−Im(a))]

= iϕ(a).

Note. For b ∈ A, µ ∈ C, ϕ(b+ µ) = ϕ(b) + 2µ. Proof:

ϕ(b+ µ) = [sup(Re(b)) + Re(µ)] + i[sup(Im(b)) + Im(µ)]

− [sup(−Re(b))−Re(µ)]− i[sup(−Im(b))−Im(µ)]

= ϕ(b) + 2µ.

Now define T (a) = a+ ϕ(a). Then T maps onto A. Proof: Given b ∈ A,
we want a ∈ A such that b = a+ϕ(a). Set a = b+µ where µ ∈ C. Then we
want that b = (b+ µ) + ϕ(b+ µ) = b+ µ+ ϕ(b) + 2µ (from Note). Solving,
we see that 3µ = −ϕ(b). Letting µ = − 1

3ϕ(b), we find that T (a) = b.

T is 1-1. Proof: Suppose that a, b ∈ A with a + ϕ(a) = b + ϕ(b), so
a−b = ϕ(b)−ϕ(a). Then a = b+µ where µ ∈ C. Therefore, µ = ϕ(b)−ϕ(a)
= ϕ(a− µ)− ϕ(a) = (from Note) ϕ(a)− 2µ− ϕ(a) = −2µ, so µ = 0.

Thus, T (a) = a + ϕ(a) is non-linear, but satisfies the hypotheses of
Theorem 2.

When the scalar field is R, there is a much simpler example. Assume
that A is a function space of R-valued functions. The reader can check that
T (a) = a + sup(a) or T (a) = a + max[sup(a), 0], a ∈ A, is a non-linear
bijection of A onto A that satisfies the hypotheses of Theorem 2. The latter
definition of T shows that the function ϕ(x) in the statement of Theorem 2
is not generally surjective.
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Now we give an example in the vector-valued case. Let Y be a compact
Hausdorff space, and set E1 = E2 = C(Y ). We construct a function J with
the properties:

(i) J is a bijection of C(Y ) onto C(Y );
(ii) J(0) = 0 and J(if) = iJ(f) for all f ∈ C(Y );
(iii) J is not linear.

For f ∈ C(Y ), define

J(f) = [Re(f)]3 − [Im(f)]3 − i[Re(if)]3 + i[Im(if)]3.

[In the real scalar case, J(f) = f 3 will work.] (ii) follows from a straightfor-
ward computation, and (iii) is clear. We verify (i).

J is 1-1. Proof: Suppose fk ∈ C(Y ), fk = uk + ivk, where uk, vk are
R-valued functions in C(Y ), k = 1, 2. Note that ifk = −vk + iuk, k = 1, 2.
Suppose that J(f1) = J(f2). Then u3

1−v3
1 = u3

2−v3
2 , and u3

1 +v3
1 = u3

2 +v3
2 .

Therefore, 2u3
1 = 2u3

2, so u1 = u2. Then v3
1 = v3

2 , so v1 = v2.
J maps onto C(Y ). Proof: Assume that g = u+iv ∈ C(Y ), u, v R-valued.

Set

f =
[
u+ v

2

]1/3

+ i

[
v − u

2

]1/3

, so if = i

[
u+ v

2

]1/3

−
[
v − u

2

]1/3

.

Then

J(f) =
[
u+ v

2

]
−
[
v − u

2

]
+ i

[
v − u

2

]
+ i

[
u+ v

2

]
= u+ iv = g.

Now let A ⊆ C(X,C(Y )) be a function space. Let I denote the identity
map on A. Use Proposition 1 to define T = ψ−1(I⊕J)ψ where ψ is the map
defined in the discussion just prior to Proposition 1. Then T is a non-linear
bijection with properties (1)–(4) in Theorem 2.

3. d-Preserving maps on complex-valued function spaces. The
real-scalar version of Theorem 1 in [RR] is:

Let K and S be compact convex sets, both of which have the property
that every extreme point is a split face. IfD : A(K)→ A(S) is a d-preserving
linear bijection, then there exists an affine homeomorphism τ : S → K and
a functional α defined on A(K) such that for all a ∈ A(K),

D(a) = c(a ◦ τ) + α(a), where c = ±1, and α(1) 6= −c.
A question raised in [RR, Remark 1] is: Does the same result hold if the

hypothesis, “every extreme point is a split face”, is assumed only for K? We
now give an example which answers this question in the negative.

In R2, let K = co{(1, 0), (−1, 0), (0, 1)}. The three extreme points of K
are split faces in the sense defined in [A] because K is a simplex, and for
each extreme point x of K, {x}′ (≡ the complementary set of {x}) is a face,
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and every point p ∈ K can be written uniquely as p = αx+ (1−α)y, where
y ∈ {x}′ and 0 ≤ α ≤ 1. [Strictly speaking, to use the definition given in
[A], one should regard K ⊆ {ϕ ∈ A(K)∗ : ϕ(1) = 1}. The analysis could be
done in A(K)∗. But this seems an unnecessary and technical approach to
the elementary example under consideration.]

Now let S = 1
2 (K −K). It is easily checked that S is a hexagon; in fact

S = co{x1, x2,, x3,−x1,−x2,,−x3} where x1 = (1, 0), x2 = (1/2, 1/2), and
x3 = (−1/2, 1/2).

Thus, there is no affine homeomorphism of S onto K. Using the identity

1
2

(z − w)− 1
2

(x− y) =
(
z + y

2

)
−
(
w + x

2

)
,

it is easy to check that K −K = S − S. Then it follows from Corollary 7
of this paper that there exists a d-preserving linear bijection of A(K) onto
A(S).

Now we investigate function spaces Ai ⊆ C(Qi), i = 1, 2, to determine
necessary and sufficient conditions for the existence of a linear d-preserving
T : A1 → A2. First we give some relevant definitions and results which will
be needed for this analysis.

Let S be a compact convex set which is symmetric (s ∈ S ⇒ −s ∈ S).
When the scalar field is R, define A0(S) = {f ∈ A(S) : f(0) = 0}. When
the scalar field is C, assume (s ∈ S, α ∈ C, |α| = 1) ⇒ αs ∈ S. In this
case define A0(S) = {f ∈ A(S) : f(is) = if(s) for all s ∈ S}. Note that if
f ∈ A0(S), then f(i0) = if(0), so f(0) = 0.

Proposition 3. Let X be a Banach space. Assume that f ∈ A0(X∗1 )
(here X∗1 is the closed unit ball of the dual of X, and the topology on X∗1 is
the w∗-topology). Extend f to f̃ by

f̃(ϕ) = ‖ϕ‖f(ϕ/‖ϕ‖), ϕ ∈ X∗.

Then f̃ is a w∗-continuous linear functional on X∗.

Proof. We do the complex scalar case, so it is assumed that f(iϕ) =
if(ϕ) for all ϕ ∈ X∗1 . Also, note that f has the properties: f(−ϕ) = −f(ϕ);
and (0 ≤ α ≤ 1, ϕ ∈ X∗1 )⇒ αf(ϕ) = f(αϕ). To be proved:

(a) f̃(ϕ+ ψ) = f̃(ϕ) + f̃(ψ) for all ϕ,ψ ∈ X∗;
(b) f̃(αϕ) = αf̃(ϕ) for all α ∈ C, ϕ ∈ X∗.
Assume that both (a) and (b) hold. Now ker(f̃) ∩ X∗1 = {the zero set

of f}, which is w*-closed. Therefore by the Krĕın–Shmul’yan Theorem (see
[DS] or [LT]), f̃ is w*-continuous.
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Now we prove (a). Let ϕ,ψ ∈ X∗\{0}. Since ‖ϕ+ ψ‖/(‖ϕ‖+ ‖ψ‖) ≤ 1,
( ‖ϕ+ ψ‖
‖ϕ‖+ ‖ψ‖

)
f

(
ϕ+ ψ

‖ϕ+ ψ‖

)
= f

(
ϕ+ ψ

‖ϕ‖+ ‖ψ‖

)
.

Therefore

f̃(ϕ+ ψ) = ‖ϕ+ ψ‖f
(

ϕ+ ψ

‖ϕ+ ψ‖

)
= (‖ϕ‖+ ‖ψ‖)f

(
ϕ+ ψ

‖ϕ‖+ ‖ψ‖

)

= (‖ϕ‖+ ‖ψ‖)
[ ‖ϕ‖
‖ϕ‖+ ‖ψ‖f

(
ϕ

‖ϕ‖

)
+

‖ψ‖
‖ϕ‖+ ‖ψ‖f

(
ψ

‖ψ‖

)]

= ‖ϕ‖f
(

ϕ

‖ϕ‖

)
+ ‖ψ‖f

(
ψ

‖ψ‖

)
= f̃(ϕ) + f̃(ψ).

To prove (b), first note that

f̃(−ϕ) = ‖ϕ‖f
(−ϕ
‖ϕ‖

)
= −‖ϕ‖f

(
ϕ

‖ϕ‖

)
= −f̃(ϕ).

Now suppose α ∈ R and α > 0. Then f̃(αϕ) = ‖αϕ‖f(αϕ/‖αϕ‖) =
α‖ϕ‖f(ϕ/‖ϕ‖) = αf̃(ϕ). The same equality for α ∈ R and α < 0 follows
from this and the fact that f̃(−ϕ) = −f̃(ϕ). Also, f̃(iϕ) = ‖iϕ‖f(iϕ/‖iϕ‖)
= ‖ϕ‖f(iϕ/‖iϕ‖) = i‖ϕ‖f(ϕ/‖ϕ‖) = if̃(ϕ).

Finally, assume that α = β + iδ, β, δ ∈ R. Then

f̃(αϕ) = f̃(βϕ+ iδϕ) = f̃(βϕ) + f̃(iδϕ) = βf̃(ϕ) + iδf̃(ϕ).

Let A ⊆ C(Q) where Q is a compact Hausdorff space, be a function
space equipped with the usual sup-norm ‖a‖∞. We work in the complex
scalar case. For [a] ∈ A/C, define

‖[a]‖∞ = inf{‖a+ λ‖∞ : λ ∈ C},
the usual quotient norm.

Note 4. The d-norm on A/C is equivalent to the quotient norm.

Proof. For a ∈ A, fix x, y ∈ X such that d(a) = |a(x)− a(y)|. Note that
it is clear that d(a) ≤ 2‖a‖∞, so for all λ ∈ C, d(a) = d(a+λ) ≤ 2‖a+λ‖∞.
It follows that d[a] = d(a) ≤ 2‖[a]‖∞. Also, |‖[a]‖∞ ≤ ‖a − a(y)‖∞ =
supz∈X |a(z)− a(y)| = |a(x)− a(y)| = d(a) = d[a].

Note that by the Hahn–Banach Theorem, (A/C)∗ is isometrically isomor-
phic to {ϕ ∈ A∗ : ϕ(1) = 0}. For a ∈ A, ϕ ∈ (A/C)∗, let [̂a](ϕ) = ϕ([a]). De-
fine Γ = {α ∈ C : |α| = 1}, and T = {α(q − r) : α ∈ Γ , q, r ∈ Q} ⊆ (A/C)∗

(here we identify Q as a subset of A∗ via the evaluation map q 7→ eq where
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eq ∈ A∗ is defined by eq(a) = a(q), a ∈ A, q ∈ Q). Then

T 0 = {[a] : Re(α(a(q)− a(r))) ≤ 1 for all α ∈ Γ, and all q, r ∈ Q}
= {[a] : d[a] = d(a) ≤ 1}
= {the closed unit ball in A/C with respect to the d-norm}.

T 00 = {ϕ ∈ (A/C)∗ : Re([̂a](ϕ)) ≤ 1 for all [a] ∈ T 0}
= {the closed unit ball in (A/C)∗ with respect to the dual d-norm},
= co(T ) (by the Bipolar Theorem [LT, Thm. 7.3, p. 162])

= co(Γ (SA − SA)) = aco(SA − SA)

where SA = {ϕ ∈ A∗ : ‖ϕ‖ = ϕ(1) = 1} is the state space of A, and aco(S)
is the absolute convex hull of a set S (⊆ A∗) where the closure is taken with
respect to the w*-topology in A∗.

We use this notation in the theorem below.

Theorem 5. The map [a] 7→ [̂a] is a linear bijection of A/C onto A0(T 00).
Also, it is an isometry of (A/C, d-norm) onto (A0(T 00), ‖ ‖∞) where for
b ∈ A0(T 00),

‖b‖∞ = sup{|b(ϕ)| : ϕ ∈ T 00}.

Proof. Since T 00 = {the closed unit ball in (A/C)∗ with respect to the
dual d-norm}, for a ∈ A, d[a] = sup{|ϕ(a)| : ϕ ∈ T 00} = ‖[̂a]‖∞. Thus,
the map [a] 7→ [̂a] is an isometry. This map is clearly linear and 1-1. Now
assume that b ∈ A0(T 00). Proposition 3 applies with X = (A/C,d-norm).
Therefore b has a w*-continuous extension b̃ in (AC)∗∗. It follows that there
exists [a] ∈ A/C such that [̂a] = b.

Let J and K be convex circled subsets of a complex linear space. We say
that an affine map τ : J → K is a complex affine map if τ(ix) = iτ(x) for
all x ∈ J. [Note that the map z 7→ z on the closed unit disk in the complex
plane is affine, but not complex affine.]

Now let Ak ⊆ C(Qk), k = 1, 2, be function spaces on compact Haus-
dorff spaces Q1 and Q2. Let D be a linear isometry of (A1/C,d-norm) onto
(A2/C,d-norm). Letting Tk = {α(q − r) : α ∈ Γ, q, r ∈ Qk}, k = 1, 2,
we deduce by the discussion prior to Theorem 5 that T 00

k is the closed
unit ball in (AkC)∗. Thus, D∗(T 00

2 ) = T 00
1 , where D∗ is the adjoint of D.

For ϕ ∈ T 00
2 , define τ(ϕ) = D∗(ϕ). Then τ is a complex affine homeo-

morphism (w*-topology) of T 00
2 onto T 00

1 . Also, for ϕ ∈ T 00
2 , [a] ∈ A1/C,

D̂[a](ϕ) = [̂a](D∗(ϕ)) = [̂a](τ(ϕ)), so D̂[a] = [̂a] ◦ τ , [a] ∈ A1/C.
We summarize this discussion in the following theorem.
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Theorem 6. There exists a d-preserving linear bijection of A1 onto A2

if , and only if , there exists a complex affine homeomorphism of the set
aco(SA2 − SA2) onto aco(SA1 − SA1).

Proof. First note that Tk is compact as it is the continuous image of
the compact set Γ × Qk × Qk under the map (α, q, r) 7→ α(q − r). Thus,
T 00
k = aco(SAk − SAk) is compact. Suppose that τ : aco(SA2 − SA2) →

aco(SA1−SA1) is a complex affine homeomorphism. Then for a ∈ A1,D[̂a] =
[̂a]◦τ is a linear bijection of A0(T 00

1 ) onto A0(T 00
2 ) which is an isometry with

respect to the sup-norm. By Theorem 5, this implies the existence of a linear
bijection D̃ which is an isometry of (A1/C,d-norm) onto (A2/C,d-norm).
Then by Proposition 1, D̃ lifts to a linear bijection of A1 onto A2 which is
d-preserving.

Conversely, assume that D is a linear bijection of A1 onto A2 which is
d-preserving. Define D : A1C → A2/C, as usual, by D[a] = [D(a)]. Then
D is a linear bijection which is an isometry with respect to the d-norm.
Then as argued in the discussion before the theorem, D∗ is a complex affine
homeomorphism of T 00

2 = aco(SA2 − SA2) onto T 00
1 = aco(SA1 − SA1).

When Ak is the space A(Kk), i.e., the space of continuous affine functions
on a compact convex set Kk with the sup-norm, then SAk = Kk, k = 1, 2.
In the real scalar case, we see that T 00

k = co(Kk −Kk) = Kk −Kk.
Also note that if τ : K2 −K2 → K1 −K1 is an affine homeomorphism,

then τ carries a point of symmetry to a point of symmetry, and 0 is the
only point of symmetry for both the above sets. Therefore, we must have
τ(0) = 0.

Using the same notation as in Theorem 6, we have the following corollary:

Corollary 7. In the case where the scalar field is R, there exists a
d-preserving linear bijection of A(K1) onto A(K2) if , and only if , there
exists an affine homeomorphism of K2 −K2 onto K1 −K1.

The proof of Theorem 6 applies verbatim to Corollary 7, except that
T 00
k = Kk −Kk, k = 1, 2, as we noted above.

Corollary 7 raises the natural question: When K1 and K2 are compact
convex sets, under what conditions are K1−K1 and K2−K2 affinely homeo-
morphic? This question seems too difficult to answer in general, although in
some cases conditions can be found. For example, the results in [RR] show
that (in the real scalar case), when K1 and K2 both have the property that
all their extreme points are split faces, then K1−K1 and K2−K2 are affinely
homeomorphic if, and only if, K1 and K2 are affinely homeomorphic.

Here is an especially simple situation. Suppose that K is a compact
convex set which is symmetric. Then clearly K+K = K−K. Also, K+K =
2K, since for all x, y ∈ K, x+y = 2

(
x+y

2

)
. Thus,K−K = 2K. It follows that,
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when both K1 and K2 are symmetric, then again K1−K1 and K2−K2 are
affinely homeomorphic if, and only if, K1 and K2 are affinely homeomorphic.

We derive more information concerning this question in the last section.

4. A characterization of some linear d-preserving maps. Assume
that L and S are compact convex sets, that 0 ∈ L, 0 ∈ S, and aco(L−L) =
aco(S − S) [in the case of real scalars, the assumption is L − L = S − S].
For a ∈ A(L), the function â = [̂a] is in A0(aco(L− L)). Now for a ∈ A(L),
define aS ∈ A(S) by aS = â|S + a(0) on S. Since the hypotheses are the
same for L and S, for a ∈ A(S), we define aL in the same way. Note that
aS ∈ A(S) and aL ∈ A(L). Also, aS(0) = aL(0) = a(0). We use this notation
in the next result.

Proposition 8. Assume that L and S are compact convex sets with the
properties above.

(1) For a ∈ A(L), âS = â; for a ∈ A(S), âL = â.
(2) For a ∈ A(L), (aS)L = a; for a ∈ A(S), (aL)S = a.

(3) For a ∈ A(L), d(a) = d(aS); for a ∈ A(S), d(a) = d(aL).

Also, if λ ∈ A(L) is a constant function, then λS = λ (and the same state-
ment with L and S interchanged).

Proof. We do the proof in the complex scalar case.
First we prove (1) when a ∈ A(L). It is enough to verify that âS(ϕ) =

â(ϕ) for all ϕ ∈ aco(S − S) of the form ϕ = t(s1 − s2), |t| = 1, s1, s2 ∈ S,
since these generate aco(S − S). Assume that ϕ = t(s1 − s2) as above, and
a ∈ A(L). Now 1

2 (ϕ+ ts2) = 1
2 ts1, so 1

2 â(ϕ) + 1
2 tâ(s2) = 1

2 tâ(s1). Therefore,
âS(ϕ) = t(aS(s1)− aS(s2)) = t(â(s1)− â(s2)) = â(ϕ).

Now we prove (2) for a ∈ A(L). By definition (aS)L = âS |L + aS(0), so
by (1), (aS)L = â|L + a(0). For l ∈ L, l = l− 0, so â(l) = a(l)− a(0). Thus,
a(l) = â(l) + a(0). Then (aS)L(l) = â(l) + a(0) = a(l). This establishes (2).

Assume that a ∈ A(L). By (1), â = âS . Then d(a) = ‖â‖∞ and d(aS) =
‖âS‖∞ (Theorem 5), so (3) follows from these equalities.

We can now describe the general form of the d-preserving linear bijec-
tion raised in the question in [RR] that we mentioned at the beginning of
Section 3.

Theorem 9. Let D : A(K) → A(S) be a d-preserving linear bijection
where K,S are compact convex sets with the former having the property
that all the points of ext(K) are split. [In particular , K could be a Choquet
simplex.] We assume, as we may by translation in A(S)∗, that 0 ∈ S. Then
there exist a compact convex set L ⊆ aco(S − S) [S − S in the real scalar
case], affinely homeomorphic to K, such that aco(S−S) = aco(L−L), 0 ∈ L,
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and an affine homeomorphism τ : L → K, and α ∈ A(L)′ such that for all
a ∈ A(K),

D(a) = c(a ◦ τ)S + α(a), where |c| = 1, α(1) 6= −c.
Proof. We do the proof in the complex scalar case. First we construct

L. Define D̃ : A(K)/C → A(S)/C in the usual way: D̃[a] = [Da]. Then
as seen in the proof of Theorem 6, D̃∗ maps aco(S − S) onto aco(K −K).
Fix x0 ∈ ext(K). Define L = (D̃∗)−1(K − {x0}). Then for x ∈ L, x 7→
D̃∗(x) + x0 ∈ K, and this map is an affine homeomorphism of L onto K.

Note 0 ∈ L. Observe that ext(L) − ext(L) = (D̃∗)−1(ext(K) − ext(K)),
and consequently, aco(L− L) = (D̃∗)−1(aco(K −K)) = aco(S − S). Thus,
S ⊆ S − S ⊆ aco(S − S), 0 ∈ S, and L ⊆ L − L ⊆ aco(L − L), 0 ∈ L.
Therefore Proposition 8 applies.

Now for a ∈ A(K),D(a) ∈ A(S) and (D(a))L ∈ A(L). By Proposition 8,
a 7→ (D(a))L is a d-preserving linear bijection of A(K) onto A(L). Applying
[RR, Theorem 1], we have (D(a))L = c(a◦τ)+α(a), where |c| = 1, α ∈ A(L)′,
τ : L→ K is an affine homeomorphism, and α(1) 6= −c. Using Proposition 8
again, we have

D(a) = ((D(a))L)S = (c(a ◦ τ) + α(a))S = c(a ◦ τ)S + α(a).

5. A geometric problem involving K−K, K a simplex. Let K be
a simplex. We assume that K is embedded in A(K)∗ as the base of a cone
K̃ which generates A(K)∗; see [P, p. 59]. It is important to keep in mind
that distances between points will be computed in the dual norm on A(K)∗.

First, let K be the simplex, K = co{x1, x2, x3}. A simple observation
using the linear independence of the vectors x1 − x2 and x2 − x3 is that

K −K = {α(x1 − x2) + β(x2 − x3) : α, β ∈ R, |α|+ |α− β|+ |β| ≤ 2}.
Also, representation of points in K−K is unique. These remarks will be

useful in what follows.
The problem is to find polytopes S with the property that K−K = S−S.
We may assume by translating that S ⊆ K̃. Also, we assume that

S = co{s1, s̃1, s2, s̃2, s3, s̃3} ⊆ A(K)∗

is such that

s1 − s̃1 = x1 − x2 (= y1, say), s2 − s̃2 = x2 − x3 = y2,

s3 − s̃3 = x1 − x3 = y3,

where ext(S) = {s1, s̃1, s2, s̃2, s3, s̃3}. Therefore, S − S = K −K. Note that
S − S will have only the extreme points ±y1,±y2,±y3.
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By the decomposition property of vector lattices [P, p. 61], one sees easily
that:

($)
s1 = x1 + ax, s2 = x2 + by, s3 = x1 + cz,

s̃1 = x2 + ax, s̃2 = x3 + by, s̃3 = x3 + cz,

where a, b, c ≥ 0, x, y, z ∈ K.
We first consider the case where the vectors s1 − s̃1, s2 − s̃2, and s3 − s̃3

intersect in distinct points P , P ′, and P ′′; see Fig. 1.

Fig. 1

Consider the point P as a typical case; refer to the quadrilateral {s1, s2,
s̃1, s̃2} in Fig. 1. Here

P = αs1 + (1− α)s̃1 = βs2 + (1− β)s̃2

(it is assumed that 1/2 < α < 1).
Recall that ‖s1 − s̃1‖ = ‖x1 − x2‖ = 1 + 1 = 2 by the splittability of

extreme points for a simplex. Thus, we have α = ‖P − s̃1‖/‖s1 − s̃1‖ =
1
2‖P − s̃1‖. Now P = α(s1 − s̃1) + s̃1 = β(s2 − s̃2) + s̃2. Also, s̃1 − s̃2 =
β(x2 − x3) − α(x1 − x2) = (α + β)x2 − αx1 − βx3. Therefore, ‖s̃1 − s̃2‖ =
α+ β + α+ β = 2(α+ β) ≤ 2, so α+ β ≤ 1. Also,

s1 − s2 = (P − s2) + (s1 − P )

= [βs2 + (1− β)s̃2 − s2] + [s1 − αs1 − (1− α)s̃1]

= (1− β)(s̃2 − s2) + (1− α)(s1 − s̃1)

= (1− β)(x3 − x2) + (1− α)(x1 − x2)

= (1− α)x1 − (2− α− β)x2 + (1− β)x3.
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This implies that ‖s1−s2‖ = 4−2(α+β) ≤ 2, so α+β ≥ 1. Thus, α+β = 1.
By referring to Fig. 1, we have similarly:

P ′ = α′s1 + (1− α′)s̃1

= β′s̃3 + (1− β′)s3, α′ + β′ = 1, where α′ = 1
2‖P ′ − s̃1‖,

P ′′ = α′′s2 + (1− α′′)s̃2

= β′′s̃3 + (1− β′′)s3, α′′ + β′′ = 1, where α′′ = 1
2‖P ′′ − s̃2‖.

To find the relations among α, β, α′, β′, α′′, β′′, argue as follows:

P − s3 = (P − P ′′) + (P ′′ − s3) = (1− β − β′′)(s̃2 − s2) + β′′(s̃3 − s3)

= (α− β′′)(s̃2 − s2) + β′′(s̃3 − s3)

= (β′′ − α)(x2 − x3)− β′′(x1 − x3)

= −β′′(x1 − x2)− α(x2 − x3).

Also,

P − s3 = (P − P ′) + (P ′ − s3) = (1− α′ − β)(s1 − s̃1) + β′(s̃3 − s3)

= (β′ − β)(x1 − x2)− β′(x1 − x3) = −β(x1 − x2)− β′(x2 − x3).

It follows by the uniqueness of representation of points in K−K that β = β ′′

and α = β′. Then 1 = α+ β = β′ + β′′, so α′′ = β′ and α′ = β′′. Therefore,
α = β′ = α′′ and β = α′ = β′′.

Note that now the various distances can be computed. For example,

s2 − s̃1 = (s2 − P ) + (P − s̃1) = α(s2 − s̃2) + α(s1 − s̃1) = α(s3 − s̃3).

Therefore, ‖s2 − s̃1‖ = 2α. This also shows that s2 − s̃1 is not extreme in
S − S. The same kind of argument shows that {si − s̃i}i=1,2,3 are the only
extreme points in S − S.

Returning to equation ($), we can explicitly write down the form of
s1, s̃1, s2, s̃2, s3, s̃3 as follows (from Fig. 1):

P = αs1 + βs̃1 = α(x1 + ax) + β(x2 + ax) = αx1 + βx2 + ax

= αs̃2 + βs2 = α(x3 + by) + β(x2 + by) = αx3 + βx2 + by.

This implies α(x1 − x3) = by − ax, so b = a and by = α(x1 − x3) + ax.
Similarly, c = a and cz = α(x2 − x3) + ax. Thus,

s1 = x1 + ax, s̃1 = x2 + ax,

s2 = x2 + α(x1 − x3) + ax, s̃2 = x3 + α(x1 − x3) + ax,(%)

s3 = x1 + α(x2 − x3) + ax, s̃3 = x3 + α(x2 − x3) + ax.

Remarks. (1) The above is the general solution when α > 1/2. When
α → 1/2, we check that P0 = 1

2 (s1 + s̃1) = 1
2 (s2 + s̃2) = 1

2 (s3 + s̃3) =
1
2 (x1 + x2) + ax, and we get the symmetric solution S = 1

2 (K −K) + P0.
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(2) When α→ 1, we get

s1 = x1 + ax, s2 = x1 + x2 − x3 + ax, s3 = x1 + x2 − x3 + ax,

s̃1 = x2 + ax, s̃2 = x1 + ax, s̃3 = x2 + ax.

Hence, s1 = s̃2, s̃1 = s̃3 and s2 = s3, and we get the simplex co{x1, x1 +
x2 − x3, x2}. Translating by x3, we have the simplex co{x1 + x3, x1 + x2,
x2 + x3}, and the latter is obtained by translating co{−x1,−x2,−x3} by
x1 + x2 + x3.

(3) “Uniqueness” of solutions. To show that there cannot be points in S
other than those specified, take s as a typical point outside co{s1, s̃1, s2, s̃2,
s3, s̃3} of the form

s = s̃1 + t0(s̃1 − s1) + t(s2 − s̃1), t0 > 0, 0 < t < 1.

Then from (%) we obtain s = x2 + t0(x2 − x1) + tα(x1 − x3) + ax and s̃2 =
x3 + α(x1 − x3) + ax. Hence,

s− s̃2 = x2 − x3 + α(t− 1)(x1 − x3)− t0(x1 − x2)

= −[α(1− t) + t0](x1 − x2) + [1− α(1− t)](x2 − x3)

= a(x1 − x2) + b(x2 − x3).

Then |a|+ |b|+ |a− b| = α(1− t)+ t0 +1−α(1− t)+ |1+ t0| = 2(1+ t0) > 2.
It follows that s− s̃2 6∈ K −K.

The problem in R3. Consider the simplex K = co{x1, x2, x3, x4} in R3.
Let S = {s1, s̃1, s2, s̃2, . . . , s6, s̃6}. Again, we want to find conditions under
which S − S = K − K. For this purpose we use the equations in (%). By
(%), for co{x1, x2, x3}, with 1/2 < α1 < 1, we have:

s1 = x1 + ax, s̃1 = x2 + ax,

s2 = x2 + α1(x1 − x3) + ax, s̃2 = x3 + α1(x1 − x3) + ax,(A)

s3 = x1 + α1(x2 − x3) + ax, s̃3 = x3 + α1(x2 − x3) + ax.

Similarly, for co{x1, x2, x4}, with 1/2 < α1 < 1, a1x, we have:

s1 = x1 + a1x, s̃1 = x2 + a1x,

s5 = x2 + α2(x1 − x4) + a1x, s̃5 = x4 + α2(x1 − x4) + a1x,(B)

s6 = x1 + α2(x2 − x4) + a1x, s̃6 = x4 + α2(x2 − x4) + a1x.

Note that from the first two equations in the systems (A) and (B), it is
clear that ax = a1x. For co{x1, x3, x4}, with 1

2 < α3 < 1, a2x, we have:

s3 = x1 + α3(x4 − x1) + a2x, s̃3 = x3 + α3(x4 − x1) + a2x,

s4 = x4 + a2x, s̃4 = x3 + a2x,(C)

s6 = x1 + α3(x3 − x1) + a2x, s̃6 = x4 + α3(x3 − x1) + a2x.
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Equating s6 from (B) and (C), we have

s6 = x1 + α2(x2 − x4) + a1x = s6 = x1 + α3(x3 − x1) + a2x,

and this implies a = a2 and a2x = α2(x2 − x4) + α3(x1 − x3) + ax. Then
using the fifth equation in (C), we obtain

s3 = x1 +α3(x4−x1)+α2(x2−x4)+α3(x1−x3)+ax = x1 +α1(x2−x3)+ax

(by the fifth equation in (A)). It follows that

α3(x4 − x1) + α2(x2 − x4) + α3(x1 − x3) = α1(x2 − x3),

or

α3(x4 − x1)−α2(x4 − x2) +α3(x1 − x4 + x4 − x3) = α1(x2 − x4 + x4 − x3),

or
(α1 − α2)(x2 − x4) + (α1 − α3)(x4 − x3) = 0.

By the linear independence of the vectors {x1−x4, x2−x4, x3−x4}, we
must have α1 − α2 = 0 = α1 − α3, which implies α1 = α2 = α3 (= α, say),
and the solution can now be written
s1 = x1 + ax, s̃1 = x2 + ax,

s2 = x2 + α(x1 − x3) + ax, s̃2 = x3 + α(x1 − x3) + ax,

s3 = x1 + α(x2 − x3) + ax, s̃3 = x3 + α(x2 − x3) + ax,

s4 = x4 + a(x1 + x2 − x3 − x4) + ax, s̃4 = x3 + a(x1 + x2 − x3 − x4) + ax,

s5 = x2 + α(x1 − x4) + ax, s̃5 = x4 + α(x1 − x4) + ax,

s6 = x1 + α(x2 − x4) + ax, s̃6 = x4 + α(x2 − x4) + ax.

The form of this solution simplifies if one translates by α(x3 + x4):

s1 = x1 + α(x3 + x4) + ax, s̃1 = x2 + α(x3 + x4) + ax,

s2 = x2 + α(x1 + x4) + ax, s̃2 = x3 + α(x1 + x4) + ax,

s3 = x1 + α(x2 + x4) + ax, s̃3 = x3 + α(x2 + x4) + ax,

s4 = x4 + a(x1 + x2) + ax, s̃4 = x3 + a(x1 + x2) + ax,

s5 = x2 + α(x1 + x3) + ax, s̃5 = x4 + α(x1 + x3) + ax,

s6 = x1 + α(x2 + x3) + ax, s̃6 = x4 + α(x2 + x3) + ax.

As before, one checks easily that si− sj , si− s̃j , and s̃i− s̃j are not extreme
for i 6= j.

Remarks. (1) The points {si − s̃i}6i=1 are the extreme points of S − S.
It is a curious fact that the points in this set are equidistant from x1 +x2 +
x3 + x4 [in the A(K)∗ metric].

(2) It is more or less clear that the set S is non-symmetric, but here is
a formal proof of this fact: If P0 were the centre of symmetry of S, then for
each extreme point (say, s1), there exists t1 ∈ S such that (s1 + t1)/2 = P0.
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This implies s1 − P0 = P0 − t1. Similarly, s̃1 − P0 = P0 − t2 for some
t2 ∈ S. Then we must have s1 − s̃1 = t2 − t1, and so s1 = t2 and s̃1 = t1
(by the uniqueness of the expression of an extreme point in S − S). Thus,
P0 = (s1 + s̃1)/2 = 1

2 (x1 + x2) + ax. But (s2 + s̃2)/2 is something different,
which is a contradiction (unless α = 1/2).

(3) α→ 1/2 gives the symmetric solution as before with centre of sym-
metry 1

2 (x1 + x2).
(4) α→ 1 gives a translate of K as a solution.

Uniqueness. Since the solution for the simplex K = co{x1, x2, x3, x4} in
R3 was obtained by solving for each face, the solution should therefore be
unique, modulo translation and the ordering of the points s1, s̃1, s2, s̃2, . . . ,
s6, s̃6.

It is now apparent what the solution for K = co{x1, x2, x3, x4, x5} in R4

will be like:
{x1, x2} → s1 = x1 + α(x3 + x4 + x5) + ax,

s̃1 = x2 + α(x3 + x4 + x5) + ax,

{x1, x3} → s2 = x1 + α(x1 + x4 + x5) + ax,

s̃2 = x3 + α(x1 + x4 + x5) + ax,

{x1, x4} →
{x1, x5} →

...

{x4, x5} → s10 = x4 + α(x1 + x2 + x3) + ax,

s̃10 = x5 + α(x1 + x2 + x3) + ax.

It is now clear that a solution S for a simplex K = co{x1, x2, . . . , xn+1}
in Rn can be written down by inspection.

This paper was written while the first author was a Visiting Scientist at
ISI-Calcutta. He thanks ISI-Calcutta for this opportunity, and he especially
thanks his colleagues at ISI for their very warm hospitality.

We would like to thank Professor T. S. S. R. K. Rao for some helpful
correspondence on the subject of this paper. Also, we thank the referee for
his comments.
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[GU] F. González and V. Uspenskij, On homomorphisms of groups of integer-valued

functions, Extracta Math. 14 (1999), 19–29.
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