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Compactness properties of Feller semigroups

by

G. Metafune (Lecce), D. Pallara (Lecce) and M. Wacker (Tübingen)

Abstract. We study the compactness of Feller semigroups generated by second order
elliptic partial differential operators with unbounded coefficients in spaces of continuous
functions in RN .

1. Introduction. Given a second order elliptic differential operator

Au(x) :=
N∑

i,j=1

aij(x)Diju(x) +
N∑

i=1

bi(x)Diu(x), x ∈ RN ,(1.1)

we consider the parabolic problem{
Dtu(t, x) = Au(t, x), t > 0, x ∈ RN ,
u(0, x) = f(x), x ∈ RN .(1.2)

We assume that aij = aji, all the coefficients aij , bi are real-valued and
belong to Cαloc(RN ), and the ellipticity condition

N∑

i,j=1

aij(x)ξiξj ≥ ν(x)|ξ|2, ξ ∈ RN ,

holds with infK ν > 0 for every compact K ⊂ RN . The operator A is locally
uniformly elliptic, i.e., it is uniformly elliptic on every compact subset of RN ;
however it is not (globally) uniformly elliptic since we are assuming neither
that ν is bounded away from 0, nor that the coefficients are bounded.

In [22] we have presented the construction of a semigroup (T (t))t≥0 which
gives, for positive f , the minimal solution among all the positive solutions
of (1.2). Even though this semigroup is not strongly continuous in Cb(RN ),
the function u(t, x) = T (t)f(x) is a bounded classical solution of (1.2) such
that u(t, ·) → f uniformly on compact sets as t → 0. This solution is the
unique bounded solution of (1.2) if and only if the operator λ−A is injective
on the maximal domain in Cb(RN )

(1.3) Dmax(A) := {u ∈ Cb(RN )∩W 2,p
loc (RN ) for all p <∞ : Au ∈ Cb(RN )}
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for positive λ. On the other hand, T (t)f gives for every f ∈ Cb(RN ) a
solution vanishing at infinity if and only if λ − A is surjective from the
Dirichlet domain

D(A) := Dmax(A) ∩ C0(RN )(1.4)

onto Cb(RN ) for λ > 0.
The interest in elliptic operators with coefficients unbounded or vanish-

ing at infinity comes both from the theory of partial differential equations
and from diffusion problems in RN . We refer to [22] for more information
and further references. Let us only point out that in the theory of diffusion
processes the parabolic equation Dtu = Au is the Kolmogorov backward
equation, and describes by duality the evolution of the probability distri-
bution, hence it is naturally studied in spaces of continuous functions. In
the one-dimensional case a detailed theory has been developed in the 1950s
by W. Feller (see [13]) who gave an explicit description of all the boundary
conditions that can be added to the differential operator A on a real interval
I so that it generates a positive and contractive semigroup in C(I). Feller’s
results are expressed through a classification of the endpoints of I (see Sub-
section 2.2 below) which in particular distinguishes between accessible and
inaccessible boundaries, i.e., endpoints that can or cannot be reached by the
particle subject to diffusion. An account of the higher-dimensional case is
presented in [22], in an analytical setting.

Here, we are concerned with compactness properties of the resolvent
operator and the semigroup. Compactness properties of elliptic operators in
the whole of RN are not shared by uniformly elliptic operators, and in the
present case depend essentially on the growth of the coefficients at infinity.
In order to give a heuristic explanation of our main results, let us consider
the operator

Au(x) = ∆u(x) +
N∑

i=1

bi(x)Diu(x)

with b(x) := (b1(x), . . . , bN (x)) depending only on |x|.
If b(x) · x ∼= |x|2+ε for some ε > 0, then the drift points outwards and

∞ is accessible, that is, the paths of the underlying Markov process explode
in a finite time, and the semigroup is generated (in a suitable sense) by
(A,D(A)). Then ∞ acts as an absorbing boundary for the process which,
after a change of scale, can be viewed as a process in a bounded set with
Dirichlet boundary conditions. In this situation one expects compactness
and, in fact, this is always the case (see Theorem 3.2) when the semigroup
is generated by (A,D(A)).

On the contrary, if b(x) · x ∼= −|x|2+ε for some ε > 0, then the strong
inward drift given by b forces the particle to stay with high probability in a
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compact set (depending on the time t), no matter what the initial position
is. This yields again the compactness of the semigroup (see Theorem 3.12)
which, in this situation, is generated by (A,Dmax(A)).

Both results above are false if ε = 0. For example, they fail in the case
of Ornstein–Uhlenbeck operators (see [24], [21]).

When λ − A is injective on Dmax(A) our compactness results for the
resolvent follow from those for the semigroup, by standard Laplace transform
methods. However, we do not see how to prove them directly.

As the general discussion in [22], also the results presented here rely
on the existence of suitable Lyapunov functions. This in turn is sometimes
obtained through comparison with radial operators, which are essentially
one-dimensional and allow us to apply Feller’s theory. In Section 2 we recall
from [22] the construction of the semigroup, the basics of Feller’s theory
we need and the construction of radial comparison operators. Section 3
is devoted to the proof of the main compactness results, and is divided
into two subsections, corresponding to the cases where the semigroup is
generated with the Dirichlet or the maximal domain. In Section 4 we draw
some consequences of compactness, in the latter case, also in connection to
the invariant measure associated with the semigroup. Section 5 is entirely
devoted to the discussion of several examples.

Notation. For x ∈ RN , |x| denotes the euclidean norm, and B% =
{x ∈ RN : |x| < %} the open ball with radius % > 0. We use polar coordi-
nates r ≥ 0, ω ∈ ∂B1, so that x = rω. As regards function spaces, Lp spaces
are always meant with respect to the Lebesgue measure, unless otherwise
specified, and are endowed with the usual norm ‖ · ‖p. Moreover, W k,p(Ω)
is the Sobolev space of functions measurable in the open set Ω ⊂ RN which
have weak derivatives p-summable in Ω up to order k, endowed with the
usual norm ‖ · ‖W k,p(Ω). We set u ∈ W k,p

loc (Ω) if ϕu ∈ W k,p(Ω) for every
ϕ ∈ C∞0 (Ω). We denote by Cb(RN ) the space of bounded continuous func-
tions on RN , and by C0(RN ), C0(B%) the spaces

C0(RN ) := {u ∈ C(RN ) : lim
|x|→∞

u(x) = 0},

C0(B%) := {u ∈ C(B%) : u|∂B% = 0},
always endowed with the sup norm ‖ · ‖∞. We also deal with spaces of
(locally) Hölder continuous functions: for k ≥ 0, 0 < α ≤ 1, Ck+α

loc (Ω)
denotes the space of functions k times continuously differentiable, with the
kth derivative Hölder continuous with exponent α in every compact subset
of Ω. For functions of N + 1 variables t ∈ ]a, b[ ⊂ R, x ∈ Ω ⊂ RN , f(t, x) ∈
C

1+α/2,2+α
loc (]a, b[ × Ω) means that Dtf = ∂f/∂t and Dijf = ∂2f/∂xi∂xj

are α-Hölder continuous in every compact subset of ]a, b[× Ω with respect
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to the parabolic distance d((t, x), (τ, y)) := |t − τ |1/2 + |x − y|. Sometimes
we shall use these spaces also with α = 0. In this case Hölder continuity is
replaced by continuity. Finally, in the whole paper λ is a positive parameter.

2. Preliminaries

2.1. Construction of (T (t))t≥0. We briefly recall the construction of a
semigroup (T (t))t≥0 yielding a solution to problem (1.2). We refer the reader
to [22] and the references therein for the proofs of the following results and
further information.

Fix a ball B%. Since A is uniformly elliptic on this ball, we obtain a
unique solution of problem (1.2) in B% with Dirichlet boundary conditions
on ∂B%. In the language of semigroup theory, the operator A with domain

D%(A) = {u ∈ C0(B%) ∩W 2,p(B%) for all p <∞ : Au ∈ C(B%)}
generates an analytic semigroup (T%(t))t≥0 of positive contractions in the
space C(B%) and, for every f ∈ C(B%), the function u%(t, x) = T%(t)f(x)
satisfies 



Dtu% = Au%, t > 0, x ∈ B%,
u%(t, x) = 0, t > 0, x ∈ ∂B%,
u%(0, x) = f(x), x ∈ B%.

Since the domain D%(A) is not dense in C(B%), strong continuity at 0 fails:
in fact, T%(t)f converges uniformly to f in B% as t → 0 (that is, u% is
continuous up to t = 0) if and only if f ∈ C0(B%). However, T%(t)f converges
to f uniformly in Bσ as t→ 0, for every σ < %, hence pointwise in B%.

An argument based on the classical maximum principle shows that for
every f ∈ Cb(RN ) the limit lim%→∞ T%(t)f exists uniformly on compact sets
in RN and defines a semigroup (T (t))t≥0 of positive contractions in Cb(RN ).
The main properties of (T (t))t≥0 are listed in the following proposition.

Proposition 2.1. The semigroup (T (t))t≥0 is irreducible and has the
strong Feller property. It is represented by an integral kernel p, that is,

T (t)f(x) =
�
RN

p(t, x, y)f(y) dy, f ∈ Cb(RN ),(2.1)

where for every fixed x, t, p(t, x, ·) is a positive L1-function. Moreover , if
we set u(t, x) = T (t)f(x) for t ≥ 0, x ∈ RN , then u belongs to the space
C

1+α/2,2+α
loc (]0,∞[× RN ) ∩ C([0,∞[× RN ) and solves (1.2).

We recall that (T (t))t≥0 is irreducible if T (t)f(x) > 0 for every t > 0,
x ∈ RN whenever f ≥ 0, f 6≡ 0. Moreover, (T (t))t≥0 has the strong Feller
property if for every bounded Borel function f one has T (t)f ∈ Cb(RN ) for
t > 0, where T (t)f is defined as in (2.1). For the sake of brevity, we shall
write p(t, x,B) instead of � B p(t, x, y) dy for Borel sets B ⊂ RN .
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If f ≥ 0, then u(t, x) = T (t)f(x) is minimal among the positive solutions
of problem (1.2). For this reason, in [2], the semigroup (T (t))t≥0 is called
the minimal semigroup generated by A. With the semigroup (T (t))t≥0 can
be associated a unique (up to equivalence) Markov process with continuous
paths in RN having the family (p(t, x, ·)) of measures as transition probabil-
ities. This process is conservative, that is, no explosion occurs, if and only
if T (t)1 = p(t, x,RN ) = 1. In this case u(t, x) = T (t)f(x) yields, for every
f ∈ Cb(RN ), the unique bounded solution of (1.2). When explosion may
occur, our construction of (T (t))t≥0 corresponds to a Markov process with
absorbing barrier at infinity, that is, the particle is absorbed at the explo-
sion time. We refer to [2] for a proof of these properties of the underlying
process; see in particular [2, Theorem 1.6] and [2, Remark 1.14], where the
continuity of paths and the existence of left limits at the explosion time are
proved.

The generator of (T (t))t≥0 can be defined through the Laplace transform
of the semigroup, following the approach of [4]. For λ > 0, f ∈ Cb(RN ), we
define bounded operators on Cb(RN ) by the formula

R(λ)f(x) =
∞�
0

e−λtT (t)f(x) dt, x ∈ RN .(2.2)

The family (R(λ))λ>0 satisfies the resolvent identity and every operatorR(λ)
is injective, so that there exists a (unique) operator (Â, D̂) such that R(λ) =
R(λ, Â). We call the operator Â the generator of (T (t))t≥0, in analogy with
the terminology used for strongly continuous semigroups.

The above approach leads to the definition of the resolvent of the gen-
erator rather than to that of the generator itself. In some cases it is more
practical to use the following direct description of (Â, D̂), whose proof can
be found in [25]:

(2.3)

D̂ =
{
u ∈ Cb(RN ) : sup

t>0

∥∥∥∥
T (t)u− u

t

∥∥∥∥
∞
<∞, ∃g ∈ Cb(RN )

such that lim
t→0

T (t)u(x)− u(x)
t

= g(x) ∀x ∈ RN
}
,

Âu(x) = lim
t→0

T (t)u(x)− u(x)
t

for u ∈ D̂.

Keeping the terminology of [12], we say that a sequence (fn) ⊂ Cb(RN )
converges boundedly pointwise to f ∈ Cb(RN ) if supn ‖fn‖∞ < ∞ and
fn(x) → f(x) as n → ∞ for every x ∈ RN . It turns out that the opera-
tor (Â, D̂) is closed with respect to this kind of convergence (see [25]).

Given f ∈ Cb(RN ), the function u(t, x) = T (t)f(x) is a classical solution
of (1.2), by construction of the semigroup (T (t))t≥0. On the other hand, a
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stronger property holds if f ∈ D̂. In this case T (t)f ∈ D̂ for every t ≥ 0 and
the equality

DtT (t)f(x) = AT (t)f(x) = T (t)Af(x), t > 0, x ∈ RN ,(2.4)

holds (see [25, Proposition 3.2]). To the function u we may apply the interior
Schauder estimates for parabolic equations in the following form (see [15,
Chapter 3, Section 2]). Fix positive numbers ε, τ, σ, δ with 0 < δ < ε < τ .
Then there is a constant C such that for every classical solution v of (1.2)
we have the inequality

‖v‖C1+α/2,2+α([ε,τ ]×Bσ) ≤ C‖v‖C([ε−δ,τ+δ]×Bσ+δ).(2.5)

Let us now clarify the connections between A and Â. It turns out that
D̂ ⊂ Dmax(A) and that Âu = Au for every u ∈ D̂. For this reason, hence-
forth we write A, R(λ,A) instead of Â, R(λ, Â). On the other hand, the
identification of D̂ is more difficult and can be done explicitly only in some
cases. For example, the equality D̂ = Dmax(A) holds if and only if λ − A
is injective on Dmax(A) for some (and hence every) positive λ, whereas
D̂ = D(A) if and only if R(λ,A) maps Cb(RN ) into C0(RN ).

Clearly (T (t))t≥0 is not strongly continuous in Cb(RN ). The maximal
subspace of strong continuity is given by

Z = {f ∈ Cb(RN ) : ‖T (t)f − f‖∞ → 0 as t→ 0}.(2.6)

Z is T (t)-invariant, contains C0(RN ) and coincides with the closure of D̂ in
Cb(RN ).

2.2. Radial operators. Sometimes we shall use comparison arguments
with radial operators, i.e., operators A such that Au depends only upon |x|
if u depends only upon |x|. This technique is classical and goes back to
Has’minskĭı (see [17], [18]). It is presented e.g. in [26, Sec. 10.2].

Let us now recall some definitions and results from Feller’s theory of
one-dimensional diffusion processes.

We consider a general second order ordinary differential operator Ay =
a(y′′+ by′) on a (possibly unbounded) open interval I := ]r1, r2[ a, b contin-
uous functions in I, a positive, and the associated abstract Cauchy problem
in C(I) {

Dty(t) = Ay(t), t > 0,
y(0) = f,

(2.7)

where f ∈ C(I). Using the Wronskian

W (r) := exp
{
−

r�
r0

b(s) ds
}
,(2.8)
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with a fixed r0 ∈ I, we define the following functions:

Q(r) :=
1

a(r)W (r)

r�
r0

W (s) ds, R(r) := W (r)
r�
r0

1
a(s)W (s)

ds,(2.9)

and recall Feller’s classification of the endpoints r1, r2, according to the
boundary behaviour of Q and R. The endpoint r2 is said to be

regular if Q ∈ L1(]r0, r2[), R ∈ L1(]r0, r2[),

an exit boundary if Q 6∈ L1(]r0, r2[), R ∈ L1(]r0, r2[),

an entrance boundary if Q ∈ L1(]r0, r2[), R 6∈ L1(]r0, r2[),

natural if Q 6∈ L1(]r0, r2[), R 6∈ L1(]r0, r2[).

Of course, analogous definitions are understood for r1. If r2 is regular or an
exit boundary, then it is called accessible, because, in terms of Markov pro-
cesses, there is a positive probability that the particle reaches the endpoint
r2 in a finite time. Otherwise, r2 is inaccessible (see [14]). Observe that r2 is
accessible if and only if R ∈ L1(]r0, r2[). In [11, Section VI.4.c] the relation
between the type of endpoint and the boundary behaviour of the solutions
of

λy − [a(y′′ + by′)] = 0(2.10)

is discussed in a comprehensive way. Here we state a summary of the results,
due to W. Feller ([13]).

Theorem 2.2. (i) The boundary point r2 is regular if and only if there
exist two positive decreasing solutions y1 and y2 of (2.10) satisfying

lim
r→r2

y1(r) = 0, lim
r→r2

y′1(r)
W (r)

= −1, lim
r→r2

y2(r) = 1, lim
r→r2

y′2(r)
W (r)

= 0.

(ii) The boundary point r2 is an exit boundary if and only if every so-
lution of (2.10) is bounded at r2 and every positive decreasing solution y1
satisfies

lim
r→r2

y1(r) = 0, lim
r→r2

y′1(r)
W (r)

≤ 0.

(iii) The boundary point r2 is an entrance boundary if and only if there
exists a positive decreasing solution y1 of (2.10) satisfying

lim
r→r2

y1(r) = 1, lim
r→r2

y′1(r)
W (r)

= 0

and every solution of (2.10) independent of y1 is unbounded at r2. In this
case, no nonzero solution tends to 0 as r tends to r2.
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(iv) The boundary point r2 is natural if and only if there exists a positive,
decreasing solution y1 of (2.10) satisfying

lim
r→r2

y1(r) = 0, lim
r→r2

y′1(r)
W (r)

= 0

and every solution of (2.10) independent of y1 is unbounded at r2.

In cases (i) and (ii), all solutions of (2.10) are bounded near r2 and there
is a positive, increasing solution z such that limr→r2 z(r) = 1. In cases (iii)
and (iv), every positive increasing solution z satisfies limr→r2 z(r) =∞.

The following lemma (see [22, Lemma 2.2]) allows us to compare the
boundaries of different operators when the coefficients satisfy suitable in-
equalities.

Lemma 2.3. Suppose that the coefficients b1, b2 of the operators A1y =
a1(y′′ + b1y

′), A2y = a2(y′′ + b2y
′) satisfy the inequality b1 ≤ b2 in I. Let

R1, Q1, R2, Q2 be the functions defined in (2.9) relative to A1, A2, respec-
tively. If a1 ≤ a2 in I, then R2(r) ≤ R1(r) for r ≥ r0, whereas if a1 ≥ a2
in I, then Q1(r) ≤ Q2(r) for r ≥ r0.

We exploit the above information on the one-dimensional case in the
study of the N -dimensional situation. Let us introduce polar coordinates in
RN , r ≥ 0 and ω ∈ ∂B1, so that |x| = r and x = rω. For radial functions
u(x) = y(r), we may write Au in a more convenient way. Observe that for
such a function u,

uxi =
xi
r
y′(r), uxixj =

xixj
r2 y′′(r) +

(
δij −

xixj
r2

)
y′(r)
r

,

whence

Au(x) =
1
r2

N∑

i,j=1

aij(x)xixjy′′(r)

+
1
r

( N∑

i=1

aii(x)− 1
r2

N∑

i,j=1

aij(x)xixj +
N∑

i=1

bi(x)xi

)
y′(r).

To simplify the expression, we set, keeping the notation of [23],

Q(x) :=
1
r2

N∑

i,j=1

aij(x)xixj , A(x) :=
1
Q(x)

N∑

i=1

(aii(x) + bi(x)xi),

so that we may write

Au(x) = Q(x)
[
y′′(r) +

A(x)− 1
r

y′(r)
]
.(2.11)
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Define the maximal and minimal radial symmetrisations of Q and A as

Q+(r) := max
|x|=r

Q(x), Q−(r) := min
|x|=r

Q(x),

A+(r) := max
|x|=r

A(x), A−(r) := min
|x|=r

A(x).

Putting them in place of Q, A in (2.11), we may introduce various ordinary
differential operators on (0,∞) that can be used for comparison with A,
thinking of the real variable as the radial variable r = |x| and of the unknown
as a function on RN independent of ω. Set

B+y(r) = Q+(r)[y′′(r) + r−1(A+(r)− 1)y′(r)],(2.12)

B−y(r) = Q−(r)[y′′(r) + r−1(A−(r)− 1)y′(r)],(2.13)

C+y(r) = Q+(r)[y′′(r) + r−1(A−(r)− 1)y′(r)](2.14)

C−y(r) = Q−(r)[y′′(r) + r−1(A+(r)− 1)y′(r)].(2.15)

In what follows, with a slight abuse which should not create any confusion,
we feel free to think of the above operators as ordinary differential operators
on the half-line or as radial operators in RN , when dealing with functions
depending only upon |x|.

In the following proposition, whose proof can be found in [22, Proposition
2.3], we compare the boundary ∞ for the operators above.

Proposition 2.4. (i) If ∞ is accessible for B− then it is accessible for
C−, C+ and B+. Similarly , if ∞ is accessible for C− or for C+, then it is
accessible for B+ as well.

(ii) If ∞ is regular for B− or C− then it is regular for C+ or B+,
respectively. Conversely , if ∞ is natural for C+ or B+ then it is natural
for B− or C−, respectively.

(iii) If ∞ is an entrance boundary for C− then it is an entrance boundary
for C+, B− and B+. Similarly , if ∞ is an entrance boundary for B− or
B+, then it is an entrance boundary for C+.

3. Compactness of the semigroup

3.1. The case where (T (t))t≥0 is generated by (A,D(A)). In this section
we show the compactness of (T (t))t≥0 when (A,D(A)) is its generator. As
we have already observed in the preceding section, this is the case if and
only if R(λ,A) maps Cb(RN ) into C0(RN ).

We recall the following result from [22, Section 3]; see also [10, Theorems
6.4, 6.5] and [17], [18].

Proposition 3.1. Suppose that there exists a positive function V ∈
C2(RN \B%), for some % > 0, such that V (x) → 0 as |x| → ∞ and
V − AV ≥ 1. Then the generator of (T (t))t≥0 is (A,D(A)). In particular
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this happens if

lim
|x|→∞

∑N
i=1(aii(x) + bi(x)xi)− [2 + (α+ 1)(log |x|)−1]Q(x)

|x|2(log |x|)α+1 =∞(3.1)

for some α > 0 or if ∞ is accessible for B−.

An easy example of application of the preceding result is given by the
operator Au = ∆u+ crγur; in this case, (3.1) holds if and only if c > 0 and
γ > 1.

Part (i) of the following result is proved in [10, Theorem 6.1] if A is
self-adjoint.

Theorem 3.2. If (A,D(A)) is the generator of (T (t))t≥0, then the fol-
lowing statements hold :

(i) R(λ,A) is a compact operator.
(ii) For every t > 0, T (t) maps Cb(RN ) into C0(RN ) and is a compact

operator.
(iii) ‖T (t)‖ → 0 exponentially as t→∞.
(iv) The semigroup is norm-continuous for t > 0, that is,

lim
h→0
‖T (t+ h)− T (t)‖ = 0 for every t > 0.

Proof. (i) Let U be the unit ball of Cb(RN ). Set uf := R(λ,A)f and
v = R(λ,A)1. The positivity of R(λ,A) yields |uf | ≤ v for all f ∈ U . Fix
ε > 0; by hypothesis, there is σ > 0 such that |uf (x)| ≤ v(x) ≤ ε for |x| ≥ σ
for all f ∈ U . From the inequality

‖uf‖W 2,p(Bσ) ≤ c[‖f‖Lp(B%) + ‖uf‖Lp(B%)] ≤ c1 ∀f ∈ U ,
with p > N , σ < %, it follows that the norms of uf in C1(Bσ) are uniformly
bounded. Then, by Ascoli’s theorem, the family {uf |Bσ : f ∈ U} is totally
bounded in C(Bσ). From these facts it is easy to see that the family {uf :
f ∈ U} can be covered by a finite number of 2ε-balls of C0(RN ). This yields
the compactness of R(λ,A).

(ii) First we show that w(t, x) := T (t)1(x) belongs to C0(RN ) for every
fixed t > 0. Observe that 0 ≤ w(t+ τ, x) ≤ w(t, x) for all t, τ ≥ 0, x ∈ RN .
In fact

w(t+ τ, x) =
�
RN

p(t, x, y)w(τ, y) dy ≤
�
RN

p(t, x, y) dy = w(t, x).

Recall moreover that

R(λ,A)1(x) =
∞�
0

e−λtw(t, x) dt
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belongs to C0(RN ), i.e.,

lim
|x|→∞

∞�
0

e−λtw(t, x) dt = 0.

Let (xn) ⊂ RN be such that |xn| → ∞ as n→∞. By the Fatou lemma
∞�
0

e−λt lim inf
n→∞

w(t, xn) dt ≤ lim inf
n→∞

∞�
0

e−λtw(t, xn) dt = 0,

whence lim infn→∞ w(t, xn) = 0 for almost every t ≥ 0. Choosing t1 > 0 such
that lim infn→∞w(t1, xn) = 0, since 0 ≤ w(t1 + τ, xn) ≤ w(t1, xn) for every
τ > 0, we deduce that lim infn→∞w(t, xn) = 0 for all t ≥ t1. Since t1 can be
chosen as close to 0 as we want, it follows that lim infn→∞w(t, xn) = 0 for
all t > 0. By the arbitrariness of the sequence (xn), we conclude that w(t, ·)
lies in C0(RN ).

At this point the proof goes along the same lines as for (i). Keeping the
above notation we fix ε > 0 and obtain |T (t)f(x)| ≤ T (t)1(x) ≤ ε for all
f ∈ U and |x| ≥ % for a suitable % > 0. The interior Schauder estimates
(2.5) imply that

‖T (t)f‖C1(B%) ≤ C
for every f ∈ U so that, by Ascoli’s theorem and the above estimate, one con-
cludes that T (t)U can be covered by a finite number of 2ε-balls in C0(RN ).

(iii) Since T (t)1 belongs to C0(RN ) and T (t)1(x) < 1 for every x ∈ RN ,
from the parabolic strong maximum principle (see [15]) we deduce that
‖T (t)‖ = ‖T (t)1‖∞ < 1 for t > 0. The semigroup law now yields the expo-
nential decay.

(iv) Since T (t) maps Cb(RN ) into C0(RN ), and C0(RN ) ⊂ Z, where Z is
the maximal subspace of strong continuity defined in (2.6), we deduce that

lim
h→0
‖(T (h)− I)T (t)f‖∞ = 0(3.2)

for every t > 0 and f ∈ Cb(RN ). Since T (t) is a compact operator, equal-
ity (3.2) holds uniformly on the unit ball of Cb(RN ) and the statement is
proved.

Corollary 3.3. If T (t) maps Cb(RN ) into C0(RN ) for t > 0 then
(A,D(A)) is the generator of (T (t))t≥0 and therefore Theorem 3.2 applies.

Proof. By the proof of Theorem 3.2(iv), T (t) is norm-continuous for
t > 0. Therefore the integral yielding the representation

R(λ,A) =
∞�
0

e−λtT (t) dt



190 G. Metafune et al.

converges in the operator norm of Cb(RN ) and shows that R(λ,A) maps
Cb(RN ) into C0(RN ), hence the generator of (T (t))t≥0 is (A,D(A)).

A partial converse to the above theorem is stated in the following propo-
sition.

Proposition 3.4. If R(λ,A) preserves C0(RN ) and is compact as an
operator from C0(RN ) into itself , then R(λ,A) maps Cb(RN ) into C0(RN ),
the generator of (T (t))t≥0 is (A,D(A)) and ∞ is accessible for B+.

Proof. Given f ∈ Cb(RN ), let (fn) be a bounded sequence in C0(RN )
such that fn → f uniformly on compact subsets of RN . Since (fn) is bounded
in C0(RN ), by hypothesis, possibly extracting a subsequence, the sequence
(R(λ,A)fn) converges to a function u ∈ C0(RN ). The interior Lp estimates
(see [16, Theorem 9.11] and the proof of Theorem 3.4 in [22]) give u ∈ D0(A)
and λu − Au = f . Since D0(A) ⊂ D̂ (see [22, Proposition 3.5]), we obtain
R(λ,A)f = u ∈ C0(RN ). The last statement follows from Corollary 3.15
in [22].

3.2. The case where (T (t))t≥0 is generated by (A,Dmax(A)). In this sub-
section we assume that (T (t))t≥0 is generated by (A,Dmax(A)). We give two
sufficient conditions, the first (Theorem 3.10) based upon the existence of a
suitable Lyapunov function, the second (Theorem 3.12) relying upon com-
parison with a radial operator. We recall that the generator of (T (t))t≥0 is
(A,Dmax(A)) if and only if λ− A is injective on Dmax(A) or, in an equiva-
lent way, if T (t)1 = 1 for every t ≥ 0. A sufficient condition is the existence
of a function V ∈ C2(RN \ B%), for some % > 0, such that V (x) → ∞ as
|x| → ∞, and λV − AV ≥ 0 for some positive λ. The existence of such a
function is in turn ensured by various conditions. Some of them are collected
in the following proposition, whose proof can be found in [22] (see also [10]
and [17], [18]).

Proposition 3.5. Suppose that

N∑

i=1

(aii(x) + bi(x)xi)− 2Q(x) ≤ C|x|2 log |x|(3.3)

for some C > 0 and x large, or that ∞ is inaccessible for B+. Then λ−A
is injective on Dmax(A).

Consider again the operator Au = ∆u+ crγur; in this case, (3.3) holds
if and only if c ≤ 0 or c > 0 and γ ≤ 1.

The following proposition is the basic tool for our investigation of com-
pactness when (T (t))t≥0 is generated by (A,Dmax(A)).



Compactness properties of Feller semigroups 191

Proposition 3.6. Suppose that λ−A is injective on Dmax(A). Then the
semigroup (T (t))t≥0 is compact in Cb(RN ) if and only if for every t, ε > 0
there exists a radius % = %(t, ε) such that

p(t, x,B%) ≥ 1− ε(3.4)

for all x ∈ RN , where p is the integral kernel of (T (t))t≥0 given by Proposi-
tion 2.1.

Proof. Suppose that the operators T (t) are compact for all t > 0. Con-
sider functions f% ∈ C0(RN ) satisfying χB%−1 ≤ f% ≤ χB% for % > 1.
Since f% → 1 uniformly on compact sets and T (t)1 = 1, it follows that
lim%→∞ ‖T (t)f% − 1‖∞ = 0. Since

p(t, x,B%) ≥ T (t)f%(x),

for any ε > 0 and t > 0 there is % > 0 such that (3.4) holds.
Fix now ε > 0 and t > 0, and write t = τ + h with τ, h > 0. Let % > 0

be such that (3.4) holds with τ instead of t. We have

T (t)f(x) = T (τ + h)f(x) =
�
RN

p(τ, x, y)T (h)f(y) dy

for every f ∈ Cb(RN ). Define now

Tεf(x) :=
�
B%

p(τ, x, y)T (h)f(y) dy = (S ◦ R ◦ T (h)f)(x),

where S : C(B%)→ Cb(RN ) is defined by

Sf(x) =
�
B%

p(τ, x, y)f(y) dy

and R is the restriction operator R : Cb(RN ) → C(B%). From the interior
Schauder estimates (2.5) we deduce the compactness of the operatorR◦T (h)
(see the proof of Theorem 3.2(ii)) and of Tε. Since ‖T (t)− Tε‖ ≤ ε, T (t) is
compact.

Remark 3.7. Let λ−A be injective on Dmax(A) and fix ε, % > 0. If (3.4)
holds for some t̄ > 0 and every x ∈ RN then it holds for every t > t̄ and
x ∈ RN . In fact, writing t = t̄+ τ , with τ > 0, we have

p(t, x,B%) =
�
RN

p(τ, x, y)p(t̄, y, B%) dy ≥ (1− ε)
�
RN

p(τ, x, y) dy = 1− ε.

In order to prove our first compactness condition we need some prelimi-
nary lemmas.

Let V ∈ C2(RN ) be a positive function such that lim|x|→∞ V (x) = ∞;
for α ≥ 0, set Vα = V ∧ α and uα(t, x) = T (t)Vα(x).
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Lemma 3.8. With the notation above, the inequality

Dtuα(t, x) ≤
�

{V≤α}
p(t, x, y)AV (y) dy

holds for every t ≥ 0 and x ∈ RN .

Proof. For every ε > 0 let ψε ∈ C∞(R) be such that ψε(t) = t for t ≤ α,
ψε constant in [α + ε,∞[, ψ′ε ≥ 0, ψ′′ε ≤ 0. Observe that ψε(t) → t ∧ α and
ψ′ε(t)→ χ]−∞,α](t) pointwise as ε→ 0. Since the function ψε ◦ V belongs to
Dmax(A), we have

DtT (t)(ψε ◦ V )(x) =
�
RN

p(t, x, y)A(ψε ◦ V )(y) dy.

On the other hand,

A(ψε ◦ V )(x) = ψ′ε(V (x))AV (x) + ψ′′ε (V (x))
N∑

i,j=1

aij(x)DiV (x)DjV (x)

≤ ψ′ε(V (x))AV (x)

and hence

DtT (t)(ψε ◦ V )(x) ≤
�
RN

p(t, x, y)ψ′ε(V (y))AV (y) dy.(3.5)

Observe that ψε ◦ V ≤ α + 1 and ψε ◦ V → Vα pointwise as ε → 0. From
Proposition 4.6 in [22] we deduce that T (t)(ψε ◦ V ) → uα uniformly on
compact sets of ]0,∞[ × RN , hence the interior Schauder estimates (2.5)
imply that DtT (t)(ψε ◦ V ) → Dtuα pointwise. Letting ε → 0 in (3.5) we
obtain the assertion by dominated convergence.

Lemma 3.9. Suppose that AV ≤ KV for some K > 0. Then for every
t > 0, x ∈ RN the functions V and |AV | are summable with respect to the
measure p(t, x, ·). If we set

u(t, x) =
�
RN

p(t, x, y)V (y) dy,(3.6)

the function u belongs to C1,2(]0,∞[×RN )∩C([0,∞[×RN ) and satisfies the
inequalities

u(t, x) ≤ eKtV (x), Dtu(t, x) ≤
�
RN

p(t, x, y)AV (y) dy.

Proof. From Lemma 3.8 we obtain

Dtuα(t, x) ≤
�

{V≤α}
p(t, x, y)AV (y) dy ≤ Kuα(t, x)(3.7)

and hence, by Gronwall’s lemma, uα(t, x) ≤ eKtVα(x). Letting α → ∞
we obtain u(t, x) ≤ eKtV (x) and then V is summable with respect to the
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measure p(t, x, ·). The inequality 0 ≤ uα ≤ u and the interior Schauder
estimates (2.5) show that (uα) is relatively compact in C1,2(]0,∞[ × RN ).
Since uα → u pointwise as α → ∞, it follows that u ∈ C1,2(]0,∞[ × RN ).
Moreover, the inequality uα(t, x) ≤ u(t, x) ≤ eKtV (x) implies that u(t, ·)→
V (·) as t→ 0+, uniformly on compact sets. Set E = {x ∈ RN : AV (x) ≥ 0}.
Clearly �

E

p(t, x, y)AV (y) dy ≤ K
�
E

p(t, x, y)V (y) dy ≤ Ku(t, x) <∞.(3.8)

Moreover, letting α→∞ in (3.7) we obtain

Dtu(t, x) ≤ lim inf
α→∞

�
{V≤α}

p(t, x, y)AV (y) dy.

This fact and (3.8) imply that |AV | is summable with respect to p(t, x, ·)
and that the above lim inf is a limit, so that the proof is complete.

We now prove the announced condition for compactness.

Theorem 3.10. Suppose that there exists V ∈ C2(RN \ B%), for some
% > 0, such that lim|x|→∞ V (x) = ∞, AV ≤ −g(V ) where g : [0,∞[ → R
is a convex function satisfying limx→∞ g(x) = ∞ and such that 1/g is
summable in a neighbourhood of ∞. Then the semigroup (T (t))t≥0 is com-
pact in Cb(RN ).

Proof. Multiplying V by a smooth function equal to 1 in a neighbour-
hood of ∞ and to 0 in the set {V ≤ 0} and, possibly, replacing g with g+ c
for a suitable c ∈ R, we may assume that 0 ≤ V ∈ C2(RN ).

Clearly λV −AV ≥ 0 in RN \B% for some positive λ and hence λ−A is
injective on Dmax(A). From Lemma 3.9 and Jensen’s inequality, for u given
by (3.6), we obtain

Dtu(t, x) ≤
�
RN

p(t, x, y)AV (y) dy ≤ −
�
RN

p(t, x, y)g(V (y)) dy ≤ −g(u(t, x))

and therefore u(t, x) ≤ z(t, x), where z is the solution of the ordinary Cauchy
problem {

Dtz = −g(z),
z(0, x) = V (x).

Since 1/g is summable near ∞, it is easily seen that for every t̄ > 0 there is
a constant C(t̄) such that z(t, x) ≤ C(t̄) for every t ≥ t̄ and x ∈ RN . Let
now t̄ > 0 be fixed, and let ε, % > 0 be such that V (x) ≥ 1/ε for |x| ≥ %.
Then for t ≥ t̄ we have

p(t, x,RN \B%) ≤ ε
�

RN\B%
p(t, x, y)V (y) dy ≤ εu(t, x) ≤ εC(t̄)

for every x ∈ RN and the conclusion follows from Proposition 3.6.
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The choice of (simple) functions V and g in the above theorem gives
explicit conditions on the coefficients.

Corollary 3.11. Suppose that
N∑

i=1

(aii(x) + bi(x)xi)− 2Q(x) ≤ −β|x|2(log |x|)γ(3.9)

for |x| large and some γ > 1, β > 0. Then (T (t))t≥0 is compact.

Proof. It is sufficient to take V (x) = log |x| (with |x| large) and g(s) =
βsγ in Theorem 3.10.

Choosing V (x) = |x|2 instead of log |x|, we may apply Theorem 3.10 if
the inequality

N∑

i=1

(aii(x) + bi(x)xi) ≤ −β|x|γ(3.10)

holds for |x| large and some γ > 2, β > 0. In this case g(s) = βsγ/2. Condi-
tion (3.10) has been assumed in [7] and is clearly stronger than (3.9). The
main difference between (3.9) and (3.10), however, is not the logarithmic
term in (3.9) that allows γ = 2 but rather the presence of −2Q which,
in some cases, can compensate for the growth of

∑N
i=1 aii(x). Such a phe-

nomenon is exhibited in Example 5.5.
If 1/g is not summable near ∞, in general the compactness of (T (t))t≥0

fails. In fact, if A is the one-dimensional Ornstein–Uhlenbeck operator
Au = u′′ − xu′, the function V (x) = e|x| (for |x| large) satisfies AV (x) ≤
−(1/2)V (x) log V (x) for large |x|, but the resolvent (hence the semigroup)
of A is not compact in Cb(R) (see [24], [21]).

We now formulate a compactness result based on comparison with a
radial operator.

Theorem 3.12. If ∞ is an entrance boundary for C−, then the semi-
group (T (t))t≥0 is compact.

Proof. By Proposition 2.4(iii),∞ is inaccessible for B+. Proposition 3.5
then shows that λ− A is injective on Dmax(A) and therefore the generator
of (T (t))t≥0 is (A,Dmax(A)). In order to prove the compactness of (T (t))t≥0,
we fix ε, t̄ > 0 and show that there exists % > 0 such that (3.4) holds for
t = t̄. For clarity reasons we set η = 1 −

√
1− ε and divide the proof into

several steps.

Step 1: There exists %0 such that the (unique) bounded solution of the
problem {

z(r)− C−z(r) = 0, r > %0,
z(%0) = 1,

satisfies z(r) ≥ 1− ηt̄e−t̄ for r ≥ %0.
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In fact, let y be the (unique) positive decreasing solution of the equation
y = C−y in ]0,∞[ such that limr→∞ y(r) = 1 (see Theorem 2.2). Then, if %0
is large enough, the function z(r) = y(r)/y(%0) satisfies the requirements.

Step 2: The operator C−, with domain

D%0 = {u ∈ C2
b([%0,∞[) : u(%0) = 0},

generates a positive contractive semigroup (S(t))t≥0 in Cb([%0,∞[) (not
strongly continuous). Given f ∈ Cb([%0,∞[), the function v(t, r) = S(t)f(r)
belongs to the space C1,2(]0,∞[× ]%0,∞[)∩C([0,∞[×[%0 + δ,∞[) for every
positive δ and solves the problem



Dtv(t, r) = C−v(t, r), t > 0, r > %0,
v(0, r) = f(r), r ≥ %0,
v(t, %0) = 0, t > 0.

(3.11)

The construction of (S(t))t≥0 and the verification of the above properties
can be achieved with the methods outlined in Section 2, that is, by consid-
ering the semigroups (S%(t))t≥0 generated by C− with Dirichlet boundary
conditions in C([%0, %]) and letting %→∞.

In fact, one shows that, for positive f , the family (S%(t)f) is increasing
with respect to % and uniformly bounded by ‖f‖∞, so that S(t)f(r) is de-
fined pointwise as lim%→∞ S%(t)f(r). Using the interior Schauder estimates
(2.5) one deduces that v belongs to C1,2(]0,∞[× ]%0,∞[) and solves (3.11).
The fact that v belongs to C([0,∞[ × [%0 + δ,∞[) for every positive δ can
be proved by arguing as in Theorem 4.5 of [22]. Finally, since %0 is acces-
sible for C−, one concludes that the generator of (S(t))t≥0 is (C−,D%0) by
arguing as in Theorem 3.5(i) of [22].

Step 3: The function v(t, r) = S(t)1(r) is nonincreasing with respect to
t for every fixed r and nondecreasing with respect to r for every fixed t.

To see that v is nonincreasing with respect to t observe that, since
(S(t))t≥0 is positive and contractive, v(t+τ, r) = S(t)v(τ, ·)(r) ≤ S(t)1(r) =
v(t, r). We now prove that v is nondecreasing with respect to r. Note that, for
fixed t, C−v(t, ·) = g(·) with g = Dtv ≤ 0. We write C− in the self-adjoint
form

C−y = aW (y′/W )′

where

a(r) = Q−(r), W (r) = exp
{
−

r�
%0

A+(s)− 1
s

ds

}
.

It follows that for every r, s with %0 < r < s we have the equality

Drv(t, s)
W (s)

− Drv(t, r)
W (r)

=
s�
r

g(ξ)
a(ξ)W (ξ)

dξ.(3.12)
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Since g ≤ 0, the limit lims→∞Drv(t, s)/W (s) = ` exists with −∞ ≤ ` ≤
+∞. If ` 6= 0, e.g. if ` > 0, then we obtain Drv(t, s) ≥ cW (s) for some
positive constant c and s large. This is impossible since v(t, ·) is bounded
and W is not summable near ∞, which is an entrance boundary for C−.
Therefore ` = 0 and, letting s→∞ in (3.12), we obtain

Drv(t, r)
W (r)

= −
∞�
r

g(ξ)
a(ξ)W (ξ)

dξ ≥ 0

as claimed.

Step 4: For v(t, r) = S(t)1(r), the inequality 0 ≤ v(t̄, r) ≤ η holds for
every r ≥ %0.

Let

ψ(r) =
∞�
0

e−tv(t, r) dt

be the Laplace transform of v at the point 1. The function ψ belongs to D%0

and solves the problem {
ψ − C−ψ = 1,
ψ(%0) = 0.

Then ψ = 1 − z, where z is the function constructed in Step 1, and hence
ψ(r) ≤ ηt̄e−t̄ for r ≥ %0. Let δ > ηe−t̄. Using the Chebyshev inequality we
deduce that the Lebesgue measure of the set

E = {t ≥ 0 : e−t lim
r→∞

v(t, r) ≥ δ}

is less than or equal to ηt̄e−t̄/δ < t̄. Hence, there exists t ≤ t̄ such that
t 6∈ E, that is, e−tv(t, r) ≤ e−t limr→∞ v(t, r) < δ. Since v is nonincreasing
with respect to t, and δ > ηe−t̄ is arbitrary, it follows that e−t̄v(t̄, r) ≤ η for
r ≥ %0.

Step 5 (Conclusion). For every % > 1 consider a nonnegative func-
tion f% ∈ C0(RN ) such that χB%−1 ≤ f% ≤ χB% . Since f% → 1 uniformly
on compact sets as % → ∞, Proposition 4.6 of [22] shows the existence of
a radius % such that u%(t, x) := T (t)f%(x) ≥ 1 − η for every t ≤ t̄ and
|x| ≤ %0 + 1. Consider the function w(t, x) = (1− η)[1− v(t, |x|)] for t ≥ 0
and |x| ≥ %0 + 1. It belongs to C1,2(]0,∞[ × RN \ B%0+1) ∩ C([0,∞[×
RN \ B%0+1). Moreover, w is nondecreasing with respect to t and nonin-
creasing with respect to |x| and satisfies

{
w(t, x) ≤ 1− η, t ≥ 0, |x| ≥ %0 + 1,
w(t̄, x) ≥ (1− η)2, |x| ≥ %0 + 1.

We show that u%(t, x) ≥ w(t, x) for t ≤ t̄, |x| ≥ %0 + 1. First of all, observe
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that

Dtw(t, x)− Aw(t, x)

= Q(x)
[
Dtw(t, x)
Q(x)

−Drrw(t, x)− A(x)− 1
r

Drw(t, x)
]

≤ Q(x)
[
Dtw(t, x)
Q−(x)

−Drrw(t, x)− A
+(x)− 1
r

Drw(t, x)
]

=
Q(x)
Q−(x)

[Dtw(t, x)− C−w(t, x)] = 0,

since Dtw ≥ 0 and Drw ≤ 0. As a consequence, the function h(t, x) =
u%(t, x)− w(t, x) has the following properties:




Dth(t, x)− Ah(t, x) ≥ 0, t > 0, |x| ≥ %0 + 1,
h(0, x) = f%(x) ≥ 0, |x| ≥ %0 + 1,
h(t, x) ≥ 0, 0 ≤ t ≤ t̄, |x| = %0 + 1.

Since h is bounded, it is nonnegative for t ≤ t̄, |x| ≥ %0 + 1, accord-
ing to Lemma 3.13 below. Therefore, since f%(x) ≤ χB% , T (t̄)χB%(x) =
p(t̄, x, B%) ≥ T (t̄)f%(x) = u%(t̄, x) ≥ w(t̄, x) ≥ (1−η)2 = 1−ε for |x| ≥ %0+1.
Since also p(t̄, x, B%) ≥ u%(t̄, x) ≥ 1 − ε for |x| ≤ %0 + 1, the proof is com-
plete.

The following lemma has been used in the proof of the above theorem.
It is a parabolic version of Corollary 3.11 in [22].

Lemma 3.13. Suppose that ∞ is inaccessible for B+ and let h ∈ C([0, τ ]
×RN \B%) be a bounded function of class C1,2 in ]0, τ ]×RN \B%, satisfying




Dth(t, x)− Ah(t, x) ≥ 0, t > 0, |x| > %,
h(0, x) ≥ 0, |x| ≥ %,
h(t, x) ≥ 0, 0 ≤ t ≤ τ, |x| = %.

Then h ≥ 0.

Proof. We consider a positive C2 function V such that V − AV ≥ 0
in RN \ B% and V (x) → ∞ as |x| → ∞ (see the proof of Corollary 3.11
in [22]) and define hε(t, x) = h(t, x) + εetV (x) + εt. Then Dthε − Ahε ≥ ε
and hε(t, x) → ∞ as |x| → ∞, uniformly in t ∈ [0, τ ], so that hε has
an absolute minimum at a point (t0, x0). The case t0 > 0 and |x0| > %
implies Dthε(t0, x0) ≤ 0 and Ahε(t0, x0) ≥ 0, hence cannot occur because
it contradicts the inequality Dt(hε) − Ahε ≥ ε. Then necessarily t0 = 0 or
|x0| = % and obviously hε(t0, x0) ≥ 0. This shows that hε ≥ 0 and, letting
ε→ 0, h ≥ 0 as well.

Let us specialise the above result to the case aij = δij .
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Corollary 3.14. Let Au = ∆u+
∑N

i=1 bi(x)Diu(x) and suppose that

1
r

(
N − 1 +

N∑

i=1

bi(x)xi
)
≤ c(r)

with

exp
{r�

1

c(s) ds
}
·
r�
1

exp
{
−
s�
1

c(ξ) dξ
}
ds ∈ L1(]1,∞[).

Then (T (t))t≥0 is compact.

Proof. In fact ∞ is an entrance boundary for the operator y′′ + c(r)y′

and hence for C−, by Lemma 2.3.

4. Consequences of compactness. In this section we assume that
(T (t))t≥0 is generated by (A,Dmax(A)) and we draw several consequences of
compactness. We start with the following easy result which is not, however,
a consequence of the general theory, since the semigroup is not strongly
continuous.

Proposition 4.1. If λ − A is injective on Dmax(A) and (T (t))t≥0 is
compact , then the following statements hold.

(i) The semigroup (T (t))t≥0 is norm-continuous for t > 0, that is,
‖T (t+ h)− T (t)‖ → 0 as h→ 0 for all t > 0.

(ii) The resolvent R(λ,A) is compact.

Proof. (i) We first show that the semigroup is strongly continuous for
t > 0, i.e., for every t > 0 and f ∈ Cb(RN ), ‖T (t + h)f − T (t)f‖∞ → 0 as
h → 0. Fix f ∈ Cb(RN ), ‖f‖∞ ≤ 1, and let ε > 0 and % > 0 be such that
estimate (3.4) holds. Then

T (t+ h)f(x) =
�
B%

p(t, x, y)T (h)f(y) dy +
�

RN\B%
p(t, x, y)T (h)f(y) dy.

Since T (h)f → f as h → 0, uniformly on B%, we easily deduce from the
above equality that ‖T (t+ h)f − T (t)f‖∞ ≤ 3ε for h close to 0.

The full statement now follows from the standard theory of strongly
continuous semigroups, as in Theorem 3.2(iv).

(ii) For f ∈ Cb(RN ),

R(λ,A)f =
∞�
0

e−λtT (t)f dt

and by norm-continuity the above integral converges in the operator norm.
Therefore, the compactness of (T (t))t≥0 implies that of R(λ,A).

We now prove a partial converse to Theorem 3.12.
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Theorem 4.2. If λ−A is injective on Dmax(A) and R(λ,A) is compact ,
then neither R(λ,A) nor (T (t))t≥0 preserves C0(RN ). Moreover , ∞ is an
entrance boundary for C+.

Proof. For % > 1, let f% ∈ C0(RN ) be such that χB%−1 ≤ f% ≤ χB% and
u% = R(1, A)f%. Since R(1, A) is compact and f% → 1 uniformly on compact
sets, as in the proof of Proposition 3.4 we deduce that u% converges uniformly
as % → ∞ to a bounded solution of the equation u − Au = 1. Since λ − A
is injective on Dmax(A) it follows that u = 1 and hence u% 6∈ C0(RN ) for
large %. This implies that the resolvent and the semigroup do not preserve
C0(RN ).

We now show that ∞ is an entrance boundary for C+. Fix %0 such that
u%0(x) ≥ 1/2 for every x ∈ RN and consider a positive decreasing solution
v of the problem {

v − C+v = 0, r > %0,
v(%0) = 1.

Then

v − Av = Q(x)
[
v(r)
Q(x)

− v′′(r)− A(x)− 1
r

v′(r)
]

≥ Q(x)
[
v(r)
Q+(x)

− v′′(r)− A
−(x)− 1
r

v′(r)
]

=
Q(x)
Q+(x)

[v − C+v]=0

for |x| > %0 and hence the function w = v − u%0 satisfies
{
w(x)− Aw(x) ≥ 0, |x| > %0,
w(x) ≥ 0, |x| = %0.

We show that w ≥ 0. Suppose that w < 0 at some point and let un solve
the problem {

un(x)− Aun(x) = 0, |x| < n,
un(x) = −‖w‖∞, |x| = n.

Then −‖w‖∞ ≤ un ≤ 0 in Bn and the maximum principle applied to w−un
in the annulus %0 ≤ |x| ≤ n yields un ≤ w for n large. Letting n → ∞ we
obtain a bounded solution of the equation u − Au = 0 such that u(x) ≤
w(x) for |x| ≥ %0, hence different from 0. Since this cannot happen by the
injectivity of 1 − A on Dmax(A), it follows that w ≥ 0, that is, v(|x|) ≥
u%0(x) ≥ 1/2 for |x| ≥ %0. This shows that no nonzero solution of the
equation v − C+v = 0 tends to 0 as r → ∞. Theorem 2.2(iii) then implies
that ∞ is an entrance boundary for C+.

Remark 4.3. We conjecture that the compactness of R(λ,A) implies
that of (T (t))t≥0. If (T (t))t≥0 is compact, then it is easy to see that Lp(RN )
is not preserved under the resolvent and the semigroup. In fact, fix ε, t̄ > 0
and let % be such that (3.4) holds for every x ∈ RN and every t ≥ t̄ (see
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also Remark 3.7). If f ∈ C0(RN ), f ≥ χB% , then T (t)f(x) ≥ 1− ε for every
x ∈ RN , t ≥ t̄ and

R(λ,A)f(x) =
∞�
0

e−λtT (t)f(x) dt ≥ 1− ε
λ

e−λt̄.

The compactness of the semigroup (T (t))t≥0 gives some information also
on its asymptotic behaviour. In order to see this, we recall some basic facts
about invariant measures. A probability measure µ defined on the Borel
subsets of RN is called an invariant measure for (T (t))t≥0 if for every f ∈
Cb(RN ) and t ≥ 0, �

RN
T (t)f dµ =

�
RN

f dµ.

An immediate consequence of the existence of an invariant measure is that
T (t)1 = 1 for every t ≥ 0 and hence λ− A is injective on Dmax(A) and the
generator of (T (t))t≥0 is (A,Dmax(A)). Since (T (t))t≥0 is irreducible and
has the strong Feller property, from [8, Theorem 4.2.1] it follows that, if an
invariant measure exists, it is unique and is also absolutely continuous with
respect to the Lebesgue measure. Moreover, its density is a positive function.
We refer to [3] for regularity results on densities of invariant measures.

The asymptotic behaviour of (T (t))t≥0 is clear when an invariant measure
µ exists. Defining the projection Pµ : Cb(RN )→ Cb(RN ) by

Pµf(x) =
�
RN

f dµ(4.1)

for every f ∈ Cb(RN ) and x ∈ RN , one obtains T (t)f(x) → Pµf(x) point-
wise as t→∞, for every f ∈ Cb(RN ) (see [8, Theorem 4.2.1]).

If (T (t))t≥0 is compact one can prove norm-convergence of T (t) to the
projection Pµ, as we show below.

Proposition 4.4. Assume that (T (t))t≥0 is generated by (A,Dmax(A))
and is compact. Then

(i) (T (t))t≥0 has an invariant measure µ.
(ii) ‖T (t)−Pµ‖ → 0 exponentially as t→∞, where Pµ is the projection

defined in (4.1).
(iii) There exists a positive δ such that Reλ ≤ −δ for every 0 6= λ ∈

σ(A).

Proof. (i) Fix t̄ > 0. From Proposition 3.6 (see also Remark 3.7) we
deduce that for every fixed x0 ∈ RN the family (p(t, x0, ·))t≥t̄ of probability
measures is tight. Hence a suitable sequence (p(tn, x0, ·)) with tn → ∞
converges weakly (with respect to the duality defined by Cb(RN )) to an
invariant measure µ (see [8, Theorem 3.1.1]).



Compactness properties of Feller semigroups 201

(ii) Let G = KerPµ, H = Ker(I − Pµ) and observe that G and H are
(T (t))t≥0 invariant, that H is one-dimensional and that Cb(RN ) is the direct
sum of G and H.

Let us show that the spectral radius of T (1)|G is less than 1. Since T (1)
is contractive and compact, it suffices to show that 1 is not an eigenvalue
of T (1)|G. To prove this, assume that T (1)f = f for some f ∈ G. Then
f = T (n)f → Pµf pointwise as n→∞, hence f = 0.

From the formula for the spectral radius we obtain

lim
n→∞

‖T (1)n|G‖1/n = lim
n→∞

‖T (n)|G‖1/n < 1,

hence ‖T (n)|G‖ < 1 for n large and, by the semigroup law, ‖T (t)|G‖ → 0
exponentially as t→∞. This proves (ii) since T (t)|H is the identity.

(iii) σ(A) consists of isolated eigenvalues, since R(λ,A) is compact, and
is given by σ(A) = σ(A|G) ∪ σ(A|H) = σ(A|G) ∪ {0}. Since ‖T (t)|G‖ → 0
exponentially as t → ∞, there exists δ > 0 such that Reλ ≤ −δ for every
λ ∈ σ(A|G) and (iii) follows.

Since (T (t))t≥0 is a semigroup of contractions in Cb(RN ) and µ is an
invariant measure, it is well known that it extends to a strongly continuous
semigroup of contractions (still denoted by (T (t))t≥0) in Lp(µ) for every
1 ≤ p < ∞. Its generator (Ap,Dp) is an extension of (A,Dmax(A)) as one
can deduce from the description of Dmax(A) given by (2.3), using dominated
convergence.

The asymptotic behaviour of (T (t))t≥0 in Lp(µ) and some of its spectral
properties are easily deduced in the following theorem from the correspond-
ing ones in Cb(RN ).

Theorem 4.5. If (T (t))t≥0 is generated by (A,Dmax(A)) and is compact
in Cb(RN ), then the following statements hold for 1 < p <∞:

(i) (T (t))t≥0 is compact in Lp(µ).
(ii) T (t)→ Pµ exponentially as t→∞ in the operator norm of Lp(µ).

(iii) R(λ,Ap) is compact in Lp(µ).
(iv) The spectrum of (Ap,Dp) consists of isolated eigenvalues and co-

incides with the spectrum of (A,Dmax(A)). Therefore the spectral gap of
Proposition 4.4(iii) holds.

Proof. Since the density of µ (with respect to the Lebesgue measure) is
positive and (T (t))t≥0 has the strong Feller property, it follows that T (t)
maps L∞(µ) into Cb(RN ) for every t > 0. Moreover, by the semigroup law,
it is compact from L∞(µ) into Cb(RN ), hence from L∞(µ) into itself. By
interpolation (see the next proposition) we deduce that (T (t))t≥0 is com-
pact in Lp(µ) for 1 < p < ∞. The same property holds for the resolvent,
since (T (t))t≥0 is strongly continuous in Lp(µ). This proves (i) and (iii).
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By interpolation again, we deduce (ii) from Proposition 4.4(ii). Finally, an
application of [1, Proposition 2.6] yields (iv).

We now state and prove the version of the interpolation theorem used in
the above proof; see [19] where, however, the case p =∞ is excluded. Even
though this result is probably known, we give a simple, direct proof.

Proposition 4.6. Let µ be a probability measure on RN and T be a
compact operator in L∞(µ), bounded in L1(µ). Then T is compact in Lp(µ)
for every 1 < p <∞.

Proof. Let K = T (U), where U is the unit ball of L∞(µ). Fix ε > 0 and
let si (i = 1, . . . ,m) be simple functions such that the set {s1, . . . , sm} is
an ε-net for U . Choose now a partition Γ1, . . . , Γk of RN of measurable sets
having positive measure such that Pεsi = si for i = 1, . . . ,m, where

Pεf =
k∑

i=1

(
1

µ(Γi)

�
Γi

f dµ

)
· χΓi .

It follows that ‖PεT − T‖∞ ≤ 2ε, ‖PεT − T‖1 ≤ 2‖T‖1 and hence

‖PεT − T‖p ≤ (2‖T‖1)1/p(‖PεT − T‖∞)1−1/p,

by the Riesz–Thorin interpolation theorem. Letting ε → 0 we deduce the
compactness of T in Lp(µ), since the operators PεT have finite rank.

5. Examples. In this section we present some examples that can be
discussed using the results of this paper. We start with the case of radial
operators where our conditions become necessary and sufficient for compact-
ness.

Example 5.1. Recalling that by radial operators we mean operators A
such that Au is independent of ω if u is so, we notice that from (2.11) it is
easily seen that A is radial if and only if the functions Q and A are indepen-
dent of ω. In this case, obviously, all the operators B±, C± coincide with A
itself. On radial functions they are given by the one-dimensional operator

By(r) := Q(r)
[
y′′(r) +

A(r)− 1
r

y′(r)
]
.

From Propositions 3.1, 3.4 and Theorem 3.2, it follows that (T (t))t≥0 is
generated by (A,D(A)) (hence it is compact) if and only if ∞ is accessible
for B. In particular, if Au = ∆u + crγur, this happens if and only if c > 0
and γ > 1.

On the other hand, the generator of (T (t))t≥0 is (A,Dmax(A)) if and
only if ∞ is inaccessible for B and, in this case, (T (t))t≥0 is compact if
and only if ∞ is an entrance boundary for B; see Theorems 3.12, 4.2. If
Au = ∆u+ crγur, then the generator is (A,Dmax(A)) if and only if c ≤ 0 or
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c > 0, γ ≤ 1, and moreover, (T (t))t≥0 is compact if and only if c < 0, γ > 1.
We also refer to Examples 7.3 and 7.4 in [22] where wider classes of radial
operators are discussed.

For one-dimensional operators the results of this paper can be generalised
to the case of arbitrary intervals.

Example 5.2. Let
Ay = a(y′′ + by′)

on a (possibly unbounded) open interval I = ]r1, r2[. By a straightforward
generalisation of the proofs of Theorems 3.2, 3.12, 4.2 and Proposition 3.4,
we conclude that (T (t))t≥0 is generated by (A,D(A)) and is compact if
and only if both r1, r2 are accessible boundaries, whereas (T (t))t≥0 is gener-
ated by (A,Dmax(A)) and is compact if and only if both r1, r2 are entrance
boundaries.

Let us now analyse some nonradial situations.

Example 5.3. Consider operators A as in (1.1) assuming that the ma-
trix (aij) is uniformly elliptic. In this case, Proposition 3.1 implies that the
generator of (T (t))t≥0 is (A,D(A)), hence (T (t))t≥0 is compact, provided
that

N∑

i=1

bi(x)xi ≥ β|x|2+γ

for some β, γ > 0 and |x| large. On the other hand, if there are positive β, γ
such that, for large |x|,

N∑

i=1

bi(x)xi ≤ −β|x|2+γ,

then (T (t))t≥0 is generated by (A,Dmax(A)) and is compact, by Corollary
3.11.

In the following example we show that if the diffusion matrix grows at
most quadratically and the radial drift at most linearly, then the semigroup
is not compact in Cb(RN ).

Example 5.4. Consider operators A as in (1.1) satisfying the condition
N∑

i=1

aii(x) +
∣∣∣
N∑

i=1

bi(x)xi
∣∣∣ ≤ C(1 + |x|2)

for some C > 0. From Proposition 3.5 we deduce that (A,Dmax(A)) is
the generator of (T (t))t≥0. Since the semigroup preserves C0(RN ) (see [22,
Corollary 3.18]), from Theorem 4.2 it follows that neither the semigroup nor
the resolvent is compact.
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Particular cases of the above situation are uniformly elliptic operators
and the Ornstein–Uhlenbeck operator

A =
N∑

i,j=1

qijDij +
N∑

i,j=1

bijxjDi,

where Q = (qij) is a real, symmetric and positive definite matrix and B =
(bij) is a nonzero real matrix. It should be noted, however, that if Reλ < 0
for every eigenvalue of the matrix B, then the Ornstein–Uhlenbeck semi-
group has an invariant measure µ and it is compact in Lp(µ) for 1 < p <∞
(see [9] and [6]). This shows that Theorem 4.5 yields only sufficient condi-
tions for compactness in Lp(µ).

In the above examples the compactness of (T (t))t≥0 is a consequence
of the growth (at infinity) of the vector field b = (b1, . . . , bN ). It is worth
mentioning that the semigroup can be compact even though b = 0.

Example 5.5. Writing a point x ∈ RN in the form x = rω, we consider
an operator A as in (1.1) such that Au = ∆u + rγDrru for r ≥ 1, with
γ > 2. Clearly b = 0 and aij(x) = 1 + rγωiωj for r ≥ 1. The matrix (aij(x))
has eigenvalues 1 with multiplicity N − 1 and 1 + rγ with multiplicity 1
and eigenvector ω. It follows that

∑N
i=1 aii(x)− 2Q(x) = N − 2 − |x|γ and

hence Corollary 3.11 shows that (T (t))t≥0 is generated by (A,Dmax(A)) and
is compact.

In the following two-dimensional examples the combination of a strong
radial drift outside an angle S and of a tangential drift in S yields the
compactness of (T (t))t≥0. The domain of the generator depends on the sign
of the radial drift.

We use polar coordinates r, ϑ, identifying the point x ∈ R2 with the
complex number reiϑ. For α > 0, let S be the angle S := {r ≥ 0, 0 ≤ ϑ ≤ α}.
Let moreover ϕ be any smooth function such that 0 ≤ ϕ ≤ 1, ϕ(ϑ) = 0 for
ϑ 6∈ ]0, α[ and ϕ(ϑ) > 0 for ϑ ∈ ]0, α[.

Example 5.6. Consider the operator

Au := ∆u− ϕ(ϑ)rτ−1uϑ − (1− ϕ(ϑ))rσur

with σ, τ > 1. Taking V (r, ϑ) = h(ϑ) log r (with r ≥ 2 and h being 2π-
periodic) we obtain

AV (r, ϑ) = h′′(ϑ)r−2 log r − ϕ(ϑ)h′(ϑ)rτ−1 log r − (1− ϕ(ϑ))h(ϑ)rσ−1.

Choosing h positive and such that h′(ϑ) > 0 if ϑ ∈ [0, α] we see that AV ≤
c1−c2V

2 for some c1, c2 > 0. Theorem 3.10 shows that (T (t))t≥0 is generated
by (A,Dmax(A)) and is compact.
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Example 5.7. Consider now

Au := ∆u− ϕ(ϑ)rτ−1uϑ + (1− ϕ(ϑ))rσur

with σ, τ > 1 and the function V (r, ϑ) = h(ϑ)/log r (with r ≥ 1), where h
is as in Example 5.6. Then ∆V is bounded and

AV (r, ϑ) = ∆V − ϕ(ϑ)h′(ϑ)rτ−1(log r)−1 − (1− ϕ(ϑ))h(ϑ)rσ−1(log r)−2

diverges to −∞ as r →∞. From Proposition 3.1 we deduce that D̂ = D(A)
and hence the semigroup is compact.
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