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Quotients of indecomposable Banach spaces
of continuous functions

by

Rogério Augusto dos Santos Fajardo (São Paulo)

Abstract. Assuming ♦, we construct a connected compact topological space K such
that for every closed L ⊂ K the Banach space C(L) has few operators, in the sense that
every operator on C(L) is multiplication by a continuous function plus a weakly compact
operator. In particular, C(K) is indecomposable and has continuum many non-isomorphic
indecomposable quotients, and K does not contain a homeomorphic copy of βN.

Moreover, assuming CH we construct a connected compact K where C(K) has few
operators and K contains a homeomorphic copy of βN.

1. Introduction. A Banach space X is called indecomposable if there
are no infinite-dimensional subspaces Y and Z such that X = Y ⊕ Z.

The first example of an indecomposable Banach space is due to Gowers
and Maurey [GM]. Their space is hereditarily indecomposable, which means
that all its subspaces are also indecomposable. Ferenczi [Fe] modified Gowers
and Maurey’s construction in order to obtain a quotient hereditarily inde-
composable Banach space, which means that all its quotients are hereditarily
indecomposable.

We may ask similar questions about Banach spaces of the form C(K),
i.e., the space of all real continuous functions on a compact topological space
K normed by the supremum. The first indecomposable C(K) was built by
Koszmider [Ko1], using the concept of few operators.

Since C(K) always contains an isomorphic copy of c0, it cannot be hered-
itarily indecomposable. By a result of Lacey and Morris [LM], every C(K) ei-
ther contains a complemented copy of c0 or has l2 as quotient. So, C(K) can-
not be quotient indecomposable, i.e., it always has a decomposable quotient.

Although it is not possible to make the properties of indecomposability or
having few operators hereditary to all quotients, one may ask if it is possible
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to make these properties hereditary to a large class of quotients. In this paper
we answer a question posed at the end of [Ko1], obtaining, under axiom ♦,
an indecomposable C(K) such that for all closed L ⊂ K the space C(L) has
few operators. Since a closed subspace of K induces a quotient of C(K), we
conclude that C(K) has many quotients which also have few operators, and
several of them are indecomposable (whenever L is connected).

This result is related to Efimov’s problem, which asks whether a compact
space K can have neither a non-trivial convergent sequence nor a homeomor-
phic copy of βN. The problem was solved affirmatively under CH (see [Ta])
and remains open in ZFC. Our construction provides an alternative solu-
tion (under ♦, which implies CH) to Efimov’s problem, because the space K
cannot have a convergent sequence, since this would imply having c0 as a
complemented subspace, and cannot have a homeomorphic copy of βN, since
C(βN) ≡ l∞, which has many operators.

All topological spaces appearing in this paper are Hausdorff.

2. Weak multipliers. Indecomposable Banach spaces are closely re-
lated to the property of having few operators. In Gowers and Maurey’s con-
struction, every operator is multiplication by a real number plus a weakly
compact operator. Assuming the continuum hypothesis (which was further
eliminated by Plebanek [Pl]), Koszmider built an indecomposable C(K)
space such that every operator on it is multiplication by a continuous func-
tion plus a weakly compact operator. With no extra set-theoretical assump-
tion, he showed that all operators on the space he constructed have a special
property, similar to the above one, and which we will describe in this section.

Definition 2.1 ([Ko1, 2.1]). An operator T : C(K) → C(K) is called
a weak multiplier if for every bounded sequence (en)n∈N of pairwise disjoint
elements of C(K) (i.e., en ·em = 0 for n 6= m) and any sequence (xn)n∈N ⊂ K
such that en(xn) = 0 we have

lim
n→∞

T (en)(xn) = 0.

Lemma 2.2 ([Ko1, 2.3]). Let T : C(K) → C(K) be a weak multiplier.
Then T is onto if and only if T is an isomorphism onto its range.

Recall that Y ⊂ X is C∗-embedded in X if every bounded continuous
function from Y into R extends to a bounded continuous function from X
to R.

Lemma 2.3 ([Ko1, 2.8]). Let K be a compact topological space such that
for any disjoint open sets U1 and U2 we have either U1∩U2 = ∅ or |U1∩U2|
≥ 2. Then for every x ∈ K the space K r {x} is C∗-embedded in K.



Quotients of indecomposable Banach spaces 261

Theorem 2.4 ([Ko1, 2.7]). The following are equivalent for a compact
space K:

(i) All operators T : C(K) → C(K) are of the form gI + S where
g ∈ C(K) and S is weakly compact.

(ii) All operators on C(K) are weak multipliers and for every x ∈ K the
space K r {x} is C∗-embedded in K.

We will use a definition which was first introduced in [Sc].

Definition 2.5. A compact space K is a Koszmider space if all oper-
ators on C(K) have the form gI + S, where g ∈ C(K) and S is weakly
compact.

The following lemma is an adaptation of Lemma 2.5 of [Ko1].

Lemma 2.6. If K is a connected Koszmider space then C(K) is inde-
composable.

Proof. Let K be as in the hypothesis and suppose that there are closed
subspaces X and Y of C(K) such that C(K) = X ⊕ Y . We will show that
either X or Y is finite-dimensional.

Let P be the projection on C(K) such that Im(P ) = X and Ker(P )
= Y . By hypothesis there are g ∈ C(K) and S weakly compact such that
P = gI + S. Since P 2 = P we have g2I + S2 + gS + Sg = gI + S. Hence
S′ = (g2 − g)I is weakly compact, and so strictly singular (see [Pe]).

Suppose (g2 − g)(x) 6= 0 for some x ∈ K. Then there is an open neigh-
borhood V of x such that |(g2 − g)(y)| > ε for some ε > 0 and every y ∈ V .
Let Z be the subspace of C(K) consisting of all continuous functions whose
supports are included in V . Since K is connected and therefore it has no
isolated point, Z is infinite-dimensional. But S′|Z is an isomorphism onto its
range, since (g2− g)−1 is well defined and continuous on V , and provides an
inverse of S′. This contradicts S′ being strictly singular.

Therefore (g2 − g)(x) = 0 for every x ∈ K, so g(x) ∈ {0, 1} for every
x ∈ K. Since K is connected, g ≡ 0 or g ≡ 1. So we have either P = S or
P = I + S, which implies that either P or I − P is weakly compact. In the
first case, P |Im(P ) is an isomorphism onto its range and so Im(P )) has finite
dimension. In the second case, (I − P )|Ker(P ) is the identity and so Ker(P )
is finite-dimensional, concluding the proof.

3. Extensions by continuous functions. The first construction of
C(K) having few operators, in the sense described below, was made in [Ko1]
withK being the Stone space of a boolean algebra. The algebra was obtained
by transfinite induction, adding the supremum of a pairwise disjoint sequence
of elements of the algebra at each step.
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Although this construction provides a Banach space C(K) with few op-
erators, it cannot provide an indecomposable Banach space, since the Stone
space of a boolean algebra is always zero-dimensional, i.e., it has a basis of
closed-open sets. If K can be written as the union of two infinite disjoint
closed-open sets L1 and L2, then C(K) is isomorphic to C(L1)⊕C(L2) and
therefore it cannot be indecomposable.

To fix this problem and get an indecomposable C(K), Koszmider created
an analogous procedure to add suprema of continuum many pairwise disjoint
functions defined on a connected compact space. In this section we describe
Koszmider’s main results and develop some new lemmas that will be useful
in our constructions.

We now introduce some notation. Let K be a compact space and (fn)n∈N
be a pairwise disjoint sequence of continuous functions from K into [0, 1].
We denote by D((fn)n∈N) the set of all x ∈ K such that there exists an open
neighborhood U of x such that U ∩ supp(fn) = ∅ for all but finitely many
n ∈ N. We denote its complement K rD((fn)n∈N) by ∆((fn)n∈N).

We recall that f is the supremum of {fn : n ∈ N} in C(K) if fn ≤ f for
all n ∈ N and f ≤ g whenever g ∈ C(K) satisfies fn ≤ g for every n ∈ N.

Lemma 3.1 ([Ko1, 4.1]). Let K be a compact space and let (fn)n∈N be a
pairwise disjoint sequence of continuous functions from K into [0, 1]. Then:

(i) f ∈ C(K) is sup{fn : n ∈ N} in the lattice C(K) if and only if{
x ∈ K :

∑
n∈N

fn(x) 6= f(x)
}

is nowhere dense in K.
(ii) D((fn)n∈N) is an open dense set in K and

∑
n∈N fn is continuous

on D((fn)n∈N).

Definition 3.2 ([Ko1, 4.2]). Suppose that K is a compact space, L ⊂
K× [0, 1] and (fn)n∈N is a pairwise disjoint sequence of continuous functions
from K into [0, 1]. We say that L is an extension of K by (fn)n∈N, written
L = K((fn)n∈N), if L is the closure of the graph

∑
n∈N fn|D((fn)n∈N).

The next lemma is an easy consequence of Lemma 3.1 and the above
definition.

Lemma 3.3. Let (fn)n∈N be a pairwise disjoint sequence of continuous
functions from a compact space K into [0, 1], and let L be the extension of
K by (fn)n∈N. Then

{x ∈ K : |π−1L,K(x)| > 1} ⊂ ∆((fn)n∈N).

Lemma 3.4 ([Ko1, 4.3]). Let (fn)n∈N be a pairwise disjoint sequence
of continuous functions from a compact space K into [0, 1], and take L =
K((fn)n∈N). Let π be the projection of L to K. Then:
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(i) If M ⊂ K is nowhere dense in K then π−1[M ] is nowhere dense
in L.

(ii) sup{fn ◦ π : n ∈ N} exists in C(L).

Part (i) of the above lemma guarantees that the supremum obtained at
some step of the inductive construction is not spoiled at further steps. One
may easily verify that the supremum in (ii) is the function which maps the
pair (x, t) ∈ L ⊂ K × [0, 1] into t ∈ [0, 1].

The main problem of working with extensions by continuous functions
is the preservation of connectedness. We do not know yet if extensions, in
general, preserve connectedness. Koszmider proved [Ko1] that this occurs
when the extension contains the graph of

∑
n∈N fn. But for our purpose we

need the following definition:

Definition 3.5. Let L be an extension ofK. We say that L is a complete
extension of K if for every x ∈ K, π−1L,K [{x}] is either a singleton or {x} ×
[0, 1].

Lemma 3.6. If K is a compact connected space and L is a complete
extension of K, then L is also connected.

Proof. Let π be the standard projection from L to K. Suppose that L is
not connected. Let U and V be non-empty open sets of L such that U∩V = ∅
and U ∪ V = L. Since U and V are closed, and therefore compact, π[U ] and
π[V ] are closed inK. It is clear that π[U ]∪π[V ] = K, because U∪V = L and
π[L] = K. Hence, by connectedness of K, we conclude that π[U ]∩π[V ] 6= ∅.
Let x be in this intersection. Then we have x ∈ K, π−1[{x}] ∩ U 6= ∅ and
π−1[{x}]∩V 6= ∅. But π−1[{x}] ⊂ U∪V and π−1[{x}]∩(U∩V ) = ∅, proving
that π−1[{x}] is not connected, contradicting the hypothesis that it is either
a singleton or homeomorphic to [0, 1].

We recall the definition of the inverse limit of topological spaces. Let∏
α<κXα be a product of topological spaces, where κ is a limit ordinal. Let

Yα be subspaces of
∏
β<αXβ such that πβ[Yα] = Yβ whenever β < α. We

define the inverse limit of (Yα)α<κ as

lim←− (Yα)α<κ =
{
(yα)α<κ ∈

∏
α<κ

Xα : ∀α < κ ((yβ)β<α ∈ Yα)
}
.

Inverse limits preserve compactness and connectedness (see [Eng, 2.5.1]).

Lemma 3.7. Suppose that β is an ordinal and let (Kα)α≤β be a sequence
such that K2 = [0, 1]2, Kα ⊂ [0, 1]α is compact, Kα is the inverse limit of
(Kγ)γ<α if α is a limit ordinal, and Kα+1 is a complete extension of Kα

by a pairwise disjoint sequence of continuous functions from Kα into [0, 1].
Then:
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(i) If f, fn ∈ C(Kα) for n ∈ N and α ≤ β are such that

f = sup{fn : n ∈ N},
then

f ◦ πβ,α = sup{fn ◦ πβ,α : n ∈ N}.
(ii) For every compact connected K ′ ⊂ K2, π−1Kβ ,K2

[K ′] is connected. In
particular, Kβ is connected.

Proof. Item (i) follows from Lemma 3.1 and Lemma 3.4(i). Item (ii)
is a consequence of Lemma 3.6 and the fact that inverse limits preserve
connectedness.

We now present three variations of Lemma 4.5 from [Ko1].

Lemma 3.8. Let K be a metric compactum without isolated points. Sup-
pose that (εn)n∈N is a sequence of positive real numbers, (gn)n∈N is a pairwise
disjoint sequence of continuous functions from K into [0, 1], (µn)n∈N is a se-
quence of regular measures on K and (xn)n∈N is a sequence of points in K
such that gn(xn) = 1. Then there exist continuous functions fn : K → [0, 1]
such that:

(i) For every n ∈ N,

supp(fn) ⊂ supp(gn), fn(xn) = 1,
�
|fn − gn| d|µn| < εn.

(ii) For every x ∈ KrD((fn)n∈N) we have π−1[{x}] = {x}×[0, 1], where
π is the standard projection from K((fn)n∈N) into K.

Proof. Let d be a metric on K. For each n ∈ N we fix a finite cover {V i
n :

i ∈ In} of K such that each V i
n has diameter at most 1/n (i.e., sup{d(x, y) :

x, y ∈ V i
n} ≤ 1/n). We take

I ′n = {i ∈ In : {j ∈ N : V i
n ∩ supp(gj) 6= ∅} is finite}.

We construct, by induction on n, pairwise disjoint finite sets Fn ⊂ N and
functions {fk : k ∈ Fn} from K into [0, 1] satisfying:

1. For every k ∈ Fn, fk(xk) = 1.
2. For every k ∈ Fn, supp(fk) ⊂ supp(gk).
3. For every k ∈ Fn,

	
|fk − gk| d|µk| < εk.

4. For all m ≤ n and i ∈ I ′n there exist k ∈ Fn and y ∈ V i
n such that

fk(y) = m/n.

At the inductive step n, suppose that we already have Fj and {fk :
k ∈ Fj} for every j < n. We will define Fn and {fk : k ∈ Fn}.

For every i ∈ I ′n and m ≤ n we fix kni,m ∈ N r
⋃
j<n Fj such that

supp(gkni,m) ∩ V
i
n 6= ∅. We may assume that kni,m 6= kni′,m′ whenever i 6= i′ or

m 6= m′.
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Define
Ukni,m = {x ∈ K : gkni,m(x) > 0} ∩ V i

n.

Since K has no isolated points, Ukni,m is infinite. Hence there exists ykni,m ∈
Ukni,m such that ykni,m 6= xkni,m and |µkni,m |({ykni,m}) < εkni,m . Using regularity of
the measures we may choose an open neighborhood Vkni,m ⊂ Ukni,m r {xkni,m}
of ykni,m such that |µkni,m |(Vkni,m) < εkni,m .

Define Fn = {kni,m : i ∈ I ′n, m ≤ n}. By Urysohn’s lemma, for each i ∈ I ′n
and m ≤ n we may define a continuous function fkni,m : K → [0, 1] such that
fkni,m |KrVkn

i,m
= gkni,m |KrVkn

i,m
and fkni,m(ykni,m) = m/n. Properties 1 to 4 of

the inductive construction clearly hold for Fn and {fk : k ∈ Fn}.
At the end of the construction we have defined fn for every n ∈

⋃
j∈N Fj .

For n ∈ Nr
⋃
j∈N Fj we take fn = gn. We will prove (i) and (ii).

Item (i) follows immediately from hypotheses 1 to 3 of the inductive
step. Now we prove (ii). Suppose x ∈ K r D((fn)n∈b). In particular x /∈
D((gn)n∈b), since supp(fn) ⊂ supp(gn). Let us show that π−1K((fn)n∈b),K

(x) =

{x} × [0, 1]. It is sufficient to prove that for every t ∈ [0, 1] and n ∈ N there
exist j ∈ N and y ∈ K such that d(x, y) < 1/n and |fj(y)− t| < 1/n.

Take i ∈ In such that x ∈ V i
n. Since x /∈ D((gn)n∈b) we have i ∈ I ′n,

because every open neighborhood of x intersects supp(gn) for infinitely many
n’s. Fix m ≤ n such that |t − m/n| < 1/n. By item (iv) of the inductive
hypothesis there exist y ∈ V i

n and j ∈ N such that fj(y) = m/n. Since
diam(V i

n) = 1/n we have d(x, y) < 1/n, concluding the proof.

Lemma 3.9. Let K be a compact metric space without isolated points.
Let {Xn : n ∈ N} and {Yn : n ∈ N} be families of countable subsets of K
such that Xn ∩Yn = ∅ and Xn ∩Y n 6= ∅. Let (xn)n∈N be a relatively discrete
sequence in K which is disjoint from

⋃
m∈N(Xm ∪ Ym). Then there exists a

pairwise disjoint sequence (fn)n∈N of continuous functions from K into [0, 1]
such that:

(i) fn(xn) = 1 for every n ∈ N.
(ii) For every x ∈ K rD((fn)n∈N), π−1[{x}] = {x} × [0, 1], where π is

the standard projection from K((fn)n∈N) into K.
(iii) For every n ∈ N, X ′n ∩ Y ′n 6= ∅ in K((fn)n∈N), where

X ′n =
{(
x,
∑
n∈N

fn(x)
)
: x ∈ Xn

}
and Y ′n =

{(
x,
∑
n∈N

fn(x)
)
: x ∈ Yn

}
.

(iv) K((fn)n∈N) is a complete extension of K.

Proof. Take a pairwise disjoint sequence (gn)n∈N of functions from K
into [0, 1] such that gn(xn) = 1. We will modify the functions gn in order to
obtain (ii) and (iii).
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By metrizability there are {qmn : n ∈ N} ⊂ Xm and {rmn : n ∈ N} ⊂ Ym
for every m, where qmn1

6= qmn2
and rmn1

6= rmn2
whenever n1 6= n2, and there

are qm ∈ K such that qmn
n→ qm and rmn

n→ qm for each m.
If qm ∈ D((gn)n∈N) and supp(fn) ⊂ supp(gn) for every n ∈ b, item (iii)

clearly holds for X ′m and Y ′m in K((fn)n∈b), since, in that case,
∑

n∈b fn is
continuous on an open neighborhood of qm. Therefore we may assume with-
out loss of generality that qm /∈ D((gn)n∈b) for every m ∈ N. So gn(qm) = 0
for all n,m ∈ N. Hence, reducing supp(gn) for every n, we may assume
qm /∈ supp(gn) for all n,m.

Let us build (fn)n∈N such that fn(xn) = 1, supp(fn) ⊂ supp(gn), fn(qmi )
= 0 and fn(rmj ) = 0 for every n,m ∈ N and for all but finitely many i ∈ N
and j ∈ N.

Using induction on n, we build finite sets Fn ⊂ N, continuous functions
{fi : i ∈ Fn} from K into [0, 1] and positive integers {kn,m : m ≤ n} and
{ln,m : m ≤ n} such that:

1. If j ≤ n then Fj ⊂ Fn.
2. kn,m > kn′,m′ and ln,m > ln′,m′ for all m,m′, n′ such that m ≤ n,
m′ ≤ n′ and n > n′.

3. hi ≤ gi and hi(xi) = 1 for every i ∈ Fn.
4. qmkj,m , r

m
lj,m

/∈ supp(hi) for all i ∈ Fn, m ≤ j ≤ n.
5. qmkj,m , r

m
lj,m

/∈ supp(hi) for all i ∈ Nr Fn, m ≤ j ≤ n.

For n = 0 we define F0 = ∅ and k0,0 = l0,0 = 0. Suppose we have Fn,
{hi : i ∈ Fn}, {kn,m : m ≤ n} and {ln,m : m ≤ n}. We will define Fn+1,
{hi : i ∈ Fn+1}, {kn+1,m : m ≤ n+ 1} and {ln+1,m : m ≤ n+ 1}.

Since supp(hi) ⊂ supp(gi) for every i ∈ Fn, and qm /∈ supp(gi) for
all i ∈ N, for each m ≤ n + 1 we may fix integers km and lm such that
hi(q

m
km

) = hi(r
m
lm
) = 0, km > kj,m′ and lm > lj,m′ for every m′ ≤ j ≤ n and

every i ∈ Fn. For m ≤ n + 1 take im ∈ N r Fn such that gim(qmkm) 6= 0 and
jm ∈ N r Fn such that gjm(rmlm) 6= 0, when they exist. Otherwise, take any
im or jm in Nr Fn. Note that we may have im = im′ for some m 6= m′.

Define Fn+1 = Fn ∪ {im : m ≤ n+ 1} ∪ {jm : m ≤ n+ 1}, kn+1,m = km
and ln+1,m = lm. We have already defined hi for i ∈ Fn. It remains to define
him for every m ≤ n + 1 in such a way that him ≤ gim , him(xim) = 1 and,
for every m′ ≤ n + 1, there exist open neighborhoods Um′ and Vm′ of qm

′
km′

and rm′km′ , respectively, satisfying him |Um′ = him |Vm′ = 0. To find him , we use
that xi 6= qmj for all i, j,m, and apply Urysohn’s lemma. The functions hjm
are defined analogously. Properties 1 to 5 will be clearly preserved at step
n+ 1.

For i /∈
⋃
n∈N Fn we define hi = gi.
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Using Lemma 3.8 we build fn with supp(fn) ⊂ supp(hn), satisfying
(ii) and preserving (i). Items 4 and 5 are clearly preserved for fn in place
of hn. From (ii) it follows that (qm, 0) ∈ K((fn)n∈N, as we assumed qm /∈
D((fn)n∈N). So, by 1 to 5 we conclude (qm, 0) ∈ X ′m ∩ Y

′
m, proving (iii).

Item (iv) follows immediately from (ii) and (iii).

Lemma 3.10. Let K be a compact metric space with no isolated points.
Given

(a) a pairwise disjoint sequence (fn)n∈N of continuous functions from K
into [0, 1];

(b) a sequence (xn)n∈N in K;
(c) an ε > 0;
(d) a bounded sequence (µn)n∈N of regular measures on K such that
|
	
fn dµn| > ε for every n ∈ N,

there exist δ > 0, a ⊂ N infinite, and continuous functions f ′n : K → [0, 1]
such that supp(f ′n) ⊂ supp(fn) and, for every b ⊂ a, we have:

(e) |
	
f ′n dµn| > δ and

∑
{
	
f ′m d|µn| : m 6= n, m ∈ a} < δ/3 for every

n ∈ a;
(f) L = K((f ′n)n∈b) is a complete extension;
(g) ∆((f ′n)n∈b) is a singleton or disjoint from {xn : n ∈ N}.
Proof. Given a pairwise disjoint sequence (An)n∈N of open sets of K,

define ∆((An)n∈N) = {x ∈ K : every open neighborhood of x intersects
infinitely many An’s}.

Take An = {x ∈ K : fn(x) > 0} for every n ∈ N. Clearly ∆((An)n∈N) =
∆((fn)n∈N).

Note that if An’s are closed open sets,∆((An)n∈N)=
⋃
n∈NAnr

⋃
n∈NAn,

as stated in Lemma 7 of [Ko2].
The next case is an adaptation for the non-0-dimensional case.

Claim 1. There exist N1 ⊂ N infinite, δ > 0, and open sets A′n for
n ∈ N1, such that A′n ⊂ An, |µn(A′n)| > δ and

1. ∆((A′n)n∈N1) is a singleton, and
2. xm /∈ ∆((A′n)n∈N1) for every m ∈ N1.

We prove the claim dividing it into two cases:

Case 1: There exist δ′ > 0 and x ∈ K such that, for every open
neighborhood V of x and for every m ∈ N there exists k > m such that
|µk|(Ak ∩ V ) > δ′.

In this case, as K is metrizable, we take a decreasing open basis (Vn)n∈N
of neighborhoods of x. If x = xn for some n ∈ N, in order to take care of part
2 of the claim, we define N0 = Nr {n}. Otherwise we take N0 = N. We will
build, by induction, an infinite N1 ⊂ N0 and integers kn with no repetitions
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such that |µn|(An ∩ Vkn) > δ′ for every n ∈ N1. Take A′n = An ∩ Vkn . Using
the definition of variation of measures we may assume that |µn(A′n)| > δ′

for every n ∈ N1, replacing δ′ by δ′/2. Then we have ∆((A′n)n∈N) = {x},
since every open neighborhood of x contains all but finitely many A′n’s, by
the fact that (Vkn)n∈N1 is an open basis at x. This proves the claim, where
δ = δ′.

Case 2: Case 1 does not occur. For every n ∈ N and δ′ > 0 there exist
m(n, δ′) ∈ N and an open neighborhood V (n, δ′) of xn such that

|µk|(Ak ∩ V (n, δ′)) < δ′

for every k > m(n, δ′). Replacing V (n, δ′) by V ′(n, δ′) such that xn ∈
V ′(n, δ′) ⊂ V ′(n, δ′) ⊂ V (n, δ′), we may asume that

(1) |µk|(Ak ∩ V (n, δ′)) < δ′

for every k > m(n, δ′).
We choose by induction a strictly increasing sequence (kn)n∈N of integers

such that kn > m(j, ε/2j+2) for every j < n. Let

A′kn = Akn r
⋃
{V (j, ε/2j+2) : j < n}.

By (1) we have |µkn |(Akn ∩ V (j, ε/2j+2)) < ε/2j+2 for j < n, and

(2) |µkn |(A′kn) > ε/2.

Take N1 = {kn : n ∈ N} and δ = ε/2. Since V (n, ε/2n+2) is disjoint
from A′ki for every i > n, we have xn /∈ ∆((A′n)n∈N1), proving the claim.

For every n ∈ N1 we fix δn > δ such that |µn(A′n)| > δn. By regularity of
µn there are closed Bn ⊂ A′n such that |µn(Bn)| > δn and |µn|(Bn − A′n) <
δn − δ. By Tietze’s theorem there are continuous functions f ′n from K into
[0, 1] such that f ′n|Bn = 1 and f ′n|KrA′n = 0. So we have |

	
f ′n dµn| > δ and

supp(f ′n) ⊂ supp(fn). Since ∆((f ′n)n∈N1) ⊂ ∆((A′n)n∈N1) we obtain (g).
By Rosenthal’s lemma (see [Di, p. 82]) and the fact that

	
f ′m d|µn| <

|µn|(Am), there is an infinite N2 ⊂ N1 satisfying the second part of (e). To
get (f), we use Lemma 3.8 to modify f ′n’s in order to obtain (f) preserving (b).
Item (g) is preserved, since we did not increase supp(f ′n).

4. Axiom ♦. In this section we briefly discuss a set-theoretical axiom
that will be used in our construction. As the continuum hypothesis (CH),
axiom ♦ provides an enumeration of countable sets, but in a way stronger
than the one given by CH.

Axiom ♦ is relatively consistent with ZFC, it holds in the constructible
universe, and implies CH. See [Ku] or [Ve] for references.

Before stating axiom ♦ we need some definitions.
We say that a subset C of ω1 is a cub if it is closed and unbounded,

i.e., it is uncountable and for every increasing countable sequence in C, its
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supremum in ω1 belongs to C. And we say that a subset S of ω1 is stationary
if it intersects every cub.

All stationary sets are uncountable (equivalently, unbounded in ω1), since
{α < ω1 : α > β} is a cub, for a fixed β < ω1.

The next lemma is proved in [Ku, Chapter II, Lemma 6.8].

Lemma 4.1. A countable intersection of cubs is a cub itself. In particular,
if S is stationary and C is a cub, then S ∩ C is stationary.

Now we recall the axiom.

Axiom ♦. There exists a sequence (Xα)α∈ω1 such that Xα ⊂ α for all
α ∈ ω1, and {α ∈ ω1 : X ∩ α = Xα} is stationary for all X ⊂ ω1.

The sequence (Xα)α∈ω1 is called a ♦-sequence.
The next lemma is an easy consequence of the definition, since we may

identify functions on ω1 into {0, 1} with subsets of ω1.

Lemma 4.2. Axiom ♦ implies:
(i) If (Bα)α<ω1 is a sequence of sets of cardinality ω1, there exists a

sequence (xα)α<ω1 such that xα ∈
∏
β<αBβ for all α < ω1, and

{α < ω1 : x|α = xα} is stationary for all x ∈
∏
α<ω1

Bα.
(ii) There exists a sequence {xn(α) : n ∈ N, α < ω1} such that xn(α) ∈

[0, 1]α for all α < ω1, and {α ∈ ω1 : ∀n ∈ N (xn|α = xn(α))} is
stationary for all sequences (xn)n∈N in [0, 1]ω1.

(iii) There exists (xα)α<ω1 such that xα ∈ [0, 1]α×α for all α < ω1, and
{α < ω1 : x|α×α = xα} is stationary for all x ∈ [0, 1]ω1×ω1.

(iv) There is a sequence (Aα)α<ω1 of subsets of ω1 such that {α ∈ ω1 :
{zβ|α : β < α} = Aα} is stationary whenever (zβ)β∈ω1 is a sequence
in [0, 1]ω1.

The following lemma will be used in a topological application of ♦, in
the construction of K.

Lemma 4.3. Let Y ⊂ [0, 1]ω1 and (xα)α<ω1 be dense sequences in Y .
Then {α < ω1 : (xβ|α)β<α is dense in πα[Y ]} is a cub in ω1.

Proof. First we show that C = {α < ω1 : (xβ|α)β<α is dense in πα[Y ]} is
closed in ω1, i.e., for every countable increasing sequence in C its supremum
belongs to C. Let (αn)n∈N be an increasing sequence in C and let α be the
supremum of (αn)n∈N in ω1. We will prove that α ∈ C, which means that
(xβ|α)β<α is dense in πα[Y ].

Let U be an elementary open set of [0, 1]α which intersects πα[Y ]. Since
U depends on a finite number of coordinates, there exists n ∈ N such that
αn includes all these coordinates. So we have U = π−1αn [παn [U ]] and παn [U ]
is open in [0, 1]αn . Then, since αn ∈ C, there exists β < α such that xβ|αn ∈
παn [U ] and so xβ|α ∈ U .
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Now we will prove that C is unbounded in ω1. Let α0 be an ordinal in ω1.
By the continuity of projection, (xβ|α0)β<ω1 is dense in πα0 [Y ]. Since πα0 [Y ]
has countable basis, choosing one xβ|α for each open set from the countable
basis, we find α1 < ω1, which can be taken greater than α0, such that
(xβ|α0)β<α1 is dense in πα0 [Y ]. Iterating this process, we find an increasing
sequence (αn)n∈ω1 such that (xβ|αn)β<αn+1 is dense in παn [Y ]. Letting α be
the supremum of (αn)n∈N and repeating the argument above, we conclude
that (xβ|α)β<α is dense in πα[Y ], proving that α ∈ C.

5. Construction of K. The construction presented in this section is an
adaptation of the one in [Ko1]. The main improvement is that the separa-
tion obtained in item (g) of Theorem 5.2 is made for any sequence (xn)n∈N
relatively discrete in K, and not only for sequences in a dense set previously
fixed, as in [Ko1]. This allows us to transfer the property of C(K) having
few operators to every closed subspace of K. Nevertheless, we pay the price
of assuming axiom ♦, to enumerate the sequences in K properly.

The construction will be by transfinite induction. The space K obtained
in Theorem 5.2 below is the inverse limit of a sequence (Kα)α<ω1 , where
K0 = [0, 1]2 and Kα is the inverse limit of (Kβ)β<α when α is a limit ordinal.
Theorem 5.1 will take care of the successor step of the induction. Theorem 5.2
will explain the construction itself. In that theorem we will use axiom ♦ to fix
in advance some parameters used in the successor step. Finally, Theorem 5.3
proves that the properties announced in Theorem 5.2 imply that every closed
subspace of K is a Koszmider space.

Before stating Theorem 5.1 we need to introduce some terminology. We
say that a sequence (Fn)n∈N of closed sets converges to a point x if for every
open neighborhood U of x we have Fn ⊂ U for all but finitely many n ∈ N.

Theorem 5.1. Let K be a compact metric space with no isolated points.
Given

(a) a pairwise disjoint sequence (fn)n∈N of continuous functions from K
into [0, 1];

(b) a relatively discrete sequence (xn)n∈N of distinct points of K such
that xn /∈ supp(fm) for all n,m ∈ N;

(c) a countable set P of pairs ((Fn)n∈N, (Gn)n∈N) such that (Fn)n∈N and
(Gn)n∈N are sequences of disjoint closed subsets of K which both
converge to the same point in K;

(d) an ε > 0;
(e) a bounded sequence (µn)n∈N of regular measures on K such that
|
	
fn dµn| > ε for every n ∈ N,

there exist δ > 0, b ⊂ N infinite, and continuous functions f ′n : K → [0, 1]
such that supp(f ′n) ⊂ supp(fn) and:
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(f) |
	
f ′n dµn| > δ and

∑
{
	
f ′m d|µn| : m 6= n, m ∈ a} < δ/3 for every

n ∈ a;
(g) L = K((f ′n)n∈b) is a complete extension;
(h) (π−1L,K [xn])n∈b and (π−1L,K [xn])n∈Nrb converge to the same point in L;
(i) for all ((Fn)n∈N, (Gn)n∈N) ∈ P there exist infinite N ′, N ′′ ⊂ N and

z ∈ L such that (π−1L,K [Fn])n∈N ′ and (π−1L,K [Gn])n∈N ′′ converge to z.

Proof. By metrizability ofK we may assume that (xn)n∈N is a convergent
sequence. By Lemma 3.10 we get an infinite a ⊂ N and continuous functions
(f ′n)n∈a satisfying (f) and (g) for every b ⊂ a. Moreover, letting Z be the
set of all limits of (Fn)n∈N and (Gn)n∈N, for all ((Fn)n∈N, (Gn)n∈N) ∈ P,
by Lemma 3.10(g) we may assume that ∆((f ′n)n∈b) is either a singleton or
disjoint from Z∪{xn : n ∈ N}∪{limn∈N xn}. We may also assume that Nra
is infinite.

It remains to prove (h) and (i). Thus, we have to prove that some se-
quences which cannot be separated in K still cannot be separated in L.

By Lemma 3.3, if L is an extension of K by (f ′n)n∈b for some b ⊂ a, then
|π−1L,K(x)| = 1 for every x /∈ ∆((f ′n)n∈a).

Now we separate our construction into two cases.

Case 1: ∆((f ′n)n∈a) is disjoint from Z ∪ {xn : n ∈ N} ∪ {limn∈N xn}. In
this case we take any infinite b ⊂ a such that ar b is also infinite.

Let ((Fn)n∈N, (Gn)n∈N) ∈ P and let z be the limit of both sequences.
Let z′ be the unique point such that πL,K(z′) = z. Since L is the graph of a
continuous function when restricted to an open neighborhood of z, it follows
that π−1[Fn] and π−1[Gn] converge to z′ in L. This yields (h), and (i) is
proved analogously.

Case 2: ∆((f ′n)n∈a) is a singleton. Let y be the single point in this
set. Then supp(f ′n)

n∈a−−→ y. In fact, otherwise there would exist an open
neighborhood V of y and an infinite c ⊂ a such that, for every n ∈ c, there is
yn ∈ supp(f ′n)rV . Letting y′ be a limit point of {yn : n ∈ c} we would have
y′ ∈ ∆((f ′n)n∈a) and y′ 6= y, contradicting that ∆((f ′n)n∈a) is a singleton.

To simplify the notation we assume that ((xkn)n∈N, (xln)n∈N) ∈ P, where
(kn)n∈N and (ln)n∈N are enumerations of a and N r a, respectively. This
allows us to take care just of (h), with (i) being an immediate consequence.
In particular, we assume that limn∈N xn ∈ Z.

If y /∈ Z we proceed as in Case 1. For the elements of P whose limit does
not belong to Z, we also proceed as in Case 1 to prove (h).

Let ((Fn,m)n∈N, (Gn,m)n∈N) be an enumeration (for m ∈ N) of all ele-
ments of P such that limn∈N Fn,m = limn∈NGn,m = y. This enumeration
can have repetitions, so we need not deal separately with the case of only
finitely many elements in P under these conditions.
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Going to a subsequence, we may assume that y /∈ supp(f ′n), y /∈ Fn,m
and y /∈ Gn,m for all n,m.

We need the following claim:

Claim 2. There exist infinite subsets b, cm, dm ⊂ N, for m ∈ N, such
that Fn,m ∩ supp(f ′k) = ∅ and Gn,m ∩ supp(f ′k) = ∅ for all n ∈ cm, m ∈ N
and k ∈ b.

Let U0 be any open neighborhood of y. Suppose we have defined Un,
(kj)j<n and (lj)j<n. We choose kn such that kn > kj for every j < n, and
Fkn,m ⊂ Un, for every m ≤ n. Let Vn ⊂ Un be an open neighborhood of y
disjoint from Fkj ,m for all j ≤ n and m ≤ j. Take ln such that ln > lj for
every j < n, and supp(f ′ln) ⊂ Vn. Let Un+1 be an open neighborhood of y
disjoint from supp(f ′ln).

Define b = {ln : n ∈ N} and cm = {kn : n ≥ m}. For any m, j ∈ N and
n ≥ m we have Fkn,m ⊂ Un r Vn and supp(f ′lj ) ⊂ Vj r Uj+1. If n ≤ j then
Fkn,m∩Vn = ∅ and supp(f ′lj ) ⊂ Vj ⊂ Vn. If n > j then Fkn,m ⊂ Un ⊂ Uj and
supp(f ′lj )∩Uj = ∅. In both cases we have Fkn,m ∩ supp(f ′lj ) = ∅. Proceeding
analogously for Gn,n, we obtain dm and prove the claim.

Take L = K((f ′n)n∈b) and denote πL,K by π.
By the claim, we have limn∈cm π

−1[Fn,m] = (y, 0) and limn∈dm π
−1[Gn,m]

= (y, 0) for every m ∈ N.
Now it remains to prove item (i) for the pairs ((Fn)n∈N, (Gn)n∈N) ∈ P

which do not converge to y. Suppose that (Fn)n∈N and (Gn)n∈N both con-
verge to z 6= y. As in Case 1, π−1 is a homeomorphism on an open neigh-
borhood of z. Thus, π−1[Fn] and π−1[Gn] converge to π−1(z).

Theorem 5.2. Assume ♦. There is a compact connected K such that:

(i) Given

(a) a pairwise disjoint sequence (fn)n∈N of continuous functions from
K into [0, 1];

(b) a relatively discrete sequence (xn)n∈N of distinct points of K such
that fm(xn) = 0 for all n,m ∈ N;

(c) an ε > 0;
(d) a bounded sequence (µn)n∈N of regular measures on K such that
|
	
fn dµn| > ε for every n ∈ N,

there exist δ > 0, infinite b ⊂ a ⊂ N, and continuous functions f ′n with
supp(f ′n) ⊂ supp(fn), such that:

(e) |
	
f ′n dµn| > δ and

∑
{
	
f ′m d|µn| : m 6= n, m ∈ a} < δ/3 for every

n ∈ a;
(f) (f ′n)n∈b has supremum in C(K);
(g) {xn : n ∈ b} ∩ {xn : n ∈ ar b} 6= ∅.
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(ii) If L is a closed subspace of K, and V1 and V2 are disjoint open sets
in L such that V 1 ∩ V 2 6= ∅, then V 1 ∩ V 2 has at least two elements.

Proof. For every α ≤ ω1 let Bα be the basis for [0, 1]α consisting of all
open sets of the form

∏
ξ<α Vξ, where Vξ is an interval with rational endpoints

for all ξ < α, and Vξ = [0, 1] for all but finitely many ξ < α.
By regularity of the measures and compactness of [0, 1]α, for any given

measure µ and any Borel set A, we can approximate µ(A) by finite unions
of basic open sets. Therefore, every regular measure is uniquely determined
by its value on a basis, which allows us to identify all regular measures on
[0, 1]α with functions from Bα into R.

Let Even,Odd be respectively the sets of all even and all odd ordinals
in ω1. Recall that α is an even ordinal if it has the form β + n, where β is a
limit ordinal and n a even integer. Otherwise we say that α is odd.

We know that if X is an uncountable subset of ω1 then it is order-
isomorphic to ω1. So we will use the following terminology: a subset of X
is a cub in X if it is a cub via this isomorphism between X and ω1, and
similarly for stationary in X and ♦-sequence in X.

This terminology will be used for Even and Odd .
Using ♦ and Lemmas 4.1 and 4.2 we fix enumerations {fn(α) : n ∈ N},

ε(α), {µn(α) : n ∈ N}, {xn(α) : n ∈ N}, for α ∈ Even, such that

A.1. {fn(α) : n ∈ N} are continuous functions from [0, 1]ω1 into [0, 1];
A.2. ε(α) > 0;
A.3. (µn(α))n∈N is a bounded sequence of functions from Bα into R;
A.4. (xn(α))n∈N is a sequence in [0, 1]α;

and given β < ω1 and

B.1. a sequence (fn)n∈N of continuous functions from [0, 1]ω1 into [0, 1];
B.2. an ε > 0;
B.3. a bounded sequence (µn)n∈N of functions from Bω1 into R repre-

senting Radon measures;
B.4. a sequence (xn)n∈N relatively discrete in [0, 1]ω1 ,

there exists α > β, with α ∈ Even, such that

C.1. fn(α) = fn for every n;
C.2. ε(α) = ε;
C.3. µn(α) = µn|Bα for every n;
C.4. xn(α) = xn|α for every n.

Using ♦ in Odd we fix sequences (Uα, Vα, Aα, Bα)α∈Odd , where

D.1. Uα and Vα are countable unions of elementary open sets of [0, 1]ω1

such that Uα ∩ Vα = ∅ and Uα ∩ V α 6= ∅;
D.2. Aα and Bα are countable subsets of [0, 1]α,
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and given

E.1. countable unions U and V of elementary open sets of [0, 1]ω1 such
that U ∩ V = ∅ and U ∩ V 6= ∅;

E.2. sequences (xβ)β<ω1 and (yβ)β<ω1 in [0, 1]ω1 ,

the set

{α ∈ Odd : Uα = U, Vα = V, {xβ|α : β ∈ Odd ∩ α} = Aα,{
yβ|α : β ∈ Odd ∩ α} = Bα

}
is stationary in Odd .

Let α ∈ Odd . If πα[Uα] ∩Aα ∩ πα[Vα] ∩Bα 6= ∅ we fix (xn(α))α∈N such
that xn(α)

n∈N−−−→ z for some z ∈ πα[Uα] ∩Aα ∩ πα[Vα] ∩Bα, and
{xn(α) : n ∈ 2N} ⊂ Aα, {xn(α) : n ∈ Nr 2N} ⊂ Bα.

If πα[Uα] ∩Aα ∩ πα[Vα] ∩Bα = ∅ then we take any sequence (xn(α))n∈N in
Aα ∪Bα.

Now we will construct by induction compact spaces (Kα)α<ω1 with Kα ⊂
[0, 1]α, sequences Pα = {(Lα(β,i), R

α
(β,i), z

α
(β,i)) : (β, i) ∈ α × {0, 1}}, where

Lα(β,i), R
α
(β,i) ⊂ N are disjoint and zα(β,i) ∈ Kα, and closed sets F βn (α) ⊂ Kα

for β ≤ α.
Once Kα is defined, for every β ≤ α we define

F βn (α) = π−1Kα,Kβ [{xn(β)}].

Suppose we have (Kγ)γ<α and (Pγ)γ<α satisfying the following inductive
hypothesis, for every γ < α:

F.1. for every (β, i) ∈ γ × {0, 1},
lim

n∈Lγ
(β,i)

F βn (γ) = lim
n∈Rγ

(β,i)

F βn (γ) = zγ(β,i);

F.2. for every β < γ′ < γ and i ∈ {0, 1}, we have πγ′ [Kγ ] = Kγ′ and
zγ(β,i)|γ

′ = zγ
′

(β,i);

F.3. for every β < γ′ < γ and i ∈ {0, 1}, Lγ(β,i)rL
γ′

(β,i) and R
γ
(β,i)rR

γ′

(β,i)

are finite.

If α is a limit ordinal, we define

G.1. Kα is the inverse limit (Kγ)γ<α;
G.2. zα(β,i) =

⋃
β<γ<α z

γ
β for all β < α and i ∈ {0, 1};

G.3. Lα(β,i) is an infinite pseudointersection of (Lγ(β,i))β<γ<α, that is,
Lα(β,i) r Lγ(β,i) is finite for every γ < α (the existence of such a
pseudointersection is shown in [Do, Theorem 3.1]);

G.4. Rα(β,i) is an infinite pseudointersection of (Rγ(β,i))β<γ<α.
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Now we handle the case of a successor ordinal. Suppose we have defined
(Kγ)γ≤α and (Pγ)γ≤α. We will define Kα+1 and Pα+1.

We say that a step α ∈ Even is non-trivial if:

H.1. (xn(α))n∈N is a relatively discrete sequence of distinct points ofKα;
H.2. there exist continuous functions gn : [0, 1]α → [0, 1] such that

fn(α) = gn ◦ πα;
H.3. (gn|Kα)n∈N as above is pairwise disjoint;
H.4. xn(α) /∈ supp(gm) for all n,m ∈ N and gm as in H.2;
H.5. |

	
Kα

gn dµn(α)| > ε(α) for every n ∈ N.

We say that a step α ∈ Odd is non-trivial if:

I.1. Aα, Bα ⊂ Kα;
I.2. Uα = π−1α [πα[Uα]] and Vα = π−1α [πα[Vα]];
I.3. πα[Uα] ∩Aα ∩ πα[Vα] ∩Bα 6= ∅;

If step α is trivial, we take Kα+1 = Kα × {0}, Lα+1
(β,i) = Lα(β,i), R

α+1
(β,i) =

Rα(β,i), z
α+1
(β,i) = zα(β,i)

_0, Lα+1
(α,i) = Rα+1

(α,i) = ∅ and any zα+1
(α,i).

We assume now that we are in a non-trivial step and α ∈ Even.
Let gn be functions as in H.2. Define hn = gn|Kα .
By Theorem 5.1 there exist infinite b ⊂ N, a δ > 0 and continuous

functions h′n : Kα → [0, 1] for n ∈ b such that

J.1. supp(h′n) ⊂ supp(hn) for every n ∈ b;
J.2. Kα+1 = Kα((h

′
n)n∈b) is a complete extension;

J.3. for every n ∈ b, |
	
h′n dµn(α)| > δ and

∑
{
	
h′nd|µn(α)| : m 6= n,

m ∈ b} < δ/3;
J.4. for every (β, i) ∈ α × {0, 1} there exist infinite Lα+1

(β,i) ⊂ Lα(β,i) and

Rα+1
(β,i) ⊂ R

α
(β,i) and a point zα+1

(β,i) such that limn∈Lα+1
(β,i)

π−1[F βn (α)] =

limn∈Rα+1
(β,i)

π−1[F βn (α)] = zα+1
(β,i), where π is the projection from Kα+1

to Kα;
J.5. (π−1[xn])n∈b and (π−1[xn])n∈Nrb converge to a point zα+1

(α,0) ∈ Kα+1.

We define zαα,0 = zα+1
(α,0)|α, z

α
(α,1) = zα(α,0), z

α+1
(α,1) = zα+1

(α,0) and Lα(α,i) = b

and Rα(α,i) = N r b for i ∈ {0, 1}. Finally, we take Fαn (α) = {xn} and

F βn (α+ 1) = π−1[F βn (α)] for all n ∈ N and β ≤ α.
This concludes the construction of Kα+1 when α ∈ Even.
Let α ∈ Odd be a non-trivial step. Take z = limn→∞ xn(α) in Kα. By

Urysohn’s lemma there is a pairwise disjoint sequence (hn)n∈2N of continuous
functions from Kα into [0, 1] such that ∆((hn)n∈2N) = {z} and, for every
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n ∈ 2N and m ∈ N,

hn(xm(α)) =

{
1 if m = n or m = n+ 1,
0 otherwise.

Define Kα+1 = Kα((hn)n∈b), Lα+1
(α,1) = b, Lα+1

(α,0) = 2Nrb, Rα+1
(α,1) = {n+1 :

n ∈ Lα+1
(α,1)}, R

α+1
(α,0) = {n+ 1 : n ∈ Lα+1

(α,0)}, z
α+1
(α,0) = z_0 and zα+1

(α,1) = z_1.
Note that Fαn (α+1) = {xn(α)_1} if n ∈ Lα+1

(α,1)∪R
α+1
(α,1), and F

α
n (α+1) =

{xn(α)_0} otherwise. Therefore Fαn (α + 1) → zα+1
(α,0) for n ∈ L

α+1
(α,0) ∪ R

α+1
(α,0),

and Fαn (α+ 1)→ zα+1
(α,1) for n ∈ L

α+1
(α,1) ∪R

α+1
(α,1).

The remaining construction of Pα+1—namely, Lα+1
(β,i), R

α+1
(β,i) and z

α+1
(β,i) for

β < α—is made as in Case 2 at a non-trivial step α ∈ Even.
Finally we define K to be the inverse limit of (Kα)α<ω1 . Let (fn)n∈N,

(xn)n∈N, (µn)n∈N and ε be as in the hypothesis of the theorem. Using
Urysohn’s lemma and regularity of µn to reduce the supports of fn preserv-
ing condition (d) of the hypothesis, we may assume without loss of generality
that xn /∈ supp(fm) for all n,m ∈ N.

By Tietze’s theorem we extend fn continuously to f̃n : [0, 1]ω1 → [0, 1].
By a theorem of Mibu (see [Mi]) there exist α < ω1 and continuous functions
gn : [0, 1]α → [0, 1] such that f̃n = gn ◦ π. Note that fn = gn|Kα ◦ πα. As
the existence of such functions still holds for some α′ > α, since f̃n ◦ πα′ =
gn ◦ πα ◦ πα′ , we may choose a non-trivial step α ∈ Even such that:

K.1. fn(α) = f̃n for every n ∈ N;
K.2. xn(α) = xn|α for every n ∈ N;
K.3. ε(α) = ε;
K.4. µn(α) = µn|Bα for every n ∈ N.
Let b = Lα+1

(α,0) and a = Lα+1
(α,0) ∪R

α+1
(α,0). Define f ′n = h′n ◦ π, whith h′n as in

J.1 to J.5, regarding that Kα+1 = Kα((h
′
n)n∈b). Fix δ > 0 as in J.3.

By Lemma 3.4, (h′n ◦ π)n∈b has supremum in C(Kα+1). By Lemma 3.7,
(f ′n)n∈b has supremum in C(K).

Note that
	
f ′n dµm =

	
h′n dµm(α) for all n,m, since f ′n is determined by

the coordinates below α. So we infer (e).
Connectedness of K follows from Lemma 3.7.
It remains to prove (g). Suppose that there exist open subsets U1 and

U2 of K such that xn(α) ∈ U1 for every n ∈ b, and xn(α) ∈ U2 for
every n ∈ a r b. By compactness, we may assume that U1 and U2 are
finite unions of elementary open sets. Hence there exists β < ω1, which
may be taken greater than α, such that the separation occurs below β, i.e.,
{xn|β : n ∈ b} ∩ {xn|β : n ∈ ar b} = ∅ in Kβ . Since xn|α = xn(α), we have
xn|β ∈ Fαn (β). By the construction, Lβ(α,0) r Lα+1

(α,0) is finite. Since L
α+1
(α,0) = b
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and lim
n∈Lβ

(α,0)

Fαn (β) = zβ(α,0), we have zβ(α,0) ∈ {xn|β : n ∈ b}. We conclude

analogously that zβ(α,0) ∈ {xn|β : n ∈ ar b}, contradicting {xn|β : n ∈ b} ∩
{xn|β : n ∈ ar b} = ∅.

Now we prove part (ii) of the theorem. Let L be a closed subset of K
and let V1 and V2 be disjoint open subsets of L such that V 1 ∩V 2 6= ∅. Take
open subsets U and V of [0, 1]ω1 such that V1 = U ∩L and V2 = V ∩L. Since
L is closed, V 1 ∩ V 2 = U ∩ V ∩ L, because U ∩ L = U ∩ L.

By separability of [0, 1]ω1 (see [Eng, 2.3.16]), [0, 1]ω1 satisfies the count-
able chain condition, i.e., it does not contain an uncountable pairwise disjoint
sequence of open sets. So, if we let U ′ ⊂ U be the union of a maximal family
of elementary open subsets of U , we have U ′ = U , and the same holds for V .
Therefore we may assume that U and V are countable unions of elementary
open sets.

Let (yα)α<ω1 and (zα)α<ω1 be dense sequences in V1 and V2, respectively.
Take β < ω1 containing all coordinates which determine U and V , i.e.,
satisfying π−1[πβ[U ]] = U and π−1[πβ[V ]] = V . By Lemma 4.3 there is
α > β such that α ∈ Odd , Uα = U , Vα = V , (yβ|α)β<α is dense in πα[V1],
(zβ|α)β<α is dense in πα[V2], and

{yβ|α : β < α} = Aα, {zβ|α : β < α} = Bα.

Let x ∈ V 1 ∩ V 2. Since Aα and Bα are dense in πα[V1] and πα[V2],
respectively, we have x|α ∈ πα[Uα] ∩Aα ∩ πα[Vα] ∩Bα. So α ∈ Odd is a
non-trivial step. Therefore xn(α)

n∈N−−−→ x|α and xn(α) ∈ πα[V1] if n is even,
while xn(α) ∈ πα[V2] if n is odd.

For every even n, take αn such that yαn |α = xn(α). For every odd n,
take αn such that zαn |α = xn(α). As in the proof of item (g) of part (i), we
have

{yαn : n ∈ Lα+1
(α,0)} ∩ {zαn : n ∈ Rα+1

(α,0)} 6= ∅,

{yαn : n ∈ Lα+1
(α,1)} ∩ {zαn : n ∈ Rα+1

(α,1)} 6= ∅.

Let z1 ∈ {yαn : n ∈ Lα+1
(α,0)}∩{zαn : n ∈ Rα+1

(α,0)} and z2∈{yαn : n ∈ Lα+1
(α,1)}

∩ {zαn : n ∈ Rα+1
(α,1)}. We have z1, z2 ∈ V 1 ∩ V 2 and

z1|(α+ 1) = zα+1
(α,0) 6= zα+1

(α,1) = z2|(α+ 1).

So |V 1 ∩ V 2| ≥ 2, proving the theorem.

Theorem 5.3. Assuming ♦ there exists a compact connected space K
such that every closed L ⊂ K is a Koszmider space. In particular, C(L) is
indecomposable whenever L is a closed connected subspace of K.
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Proof. Let K be the space of Theorem 5.2. Let L be a closed subspace of
K and T : C(L)→ C(L) be a bounded operator. We will prove that T is a
weak multiplier. The following proof is an adaptation of Lemma 5.2 of [Ko1].

Suppose that T is not a weak multiplier, i.e., there exist a pairwise disjoint
sequence (en)n∈N in C(L) with ranges included in [−1, 1], an ε > 0 and
points xn ∈ L such that en(xn) = 0 for every n ∈ N, and |T (en)(xn)| > ε
for infinitely many n’s. Taking a subsequence, we assume that this holds for
all n.

Since finite sums of en are uniformly bounded, if xn were constant for
infinitely many n’s, T would not be bounded. Hence we may assume that
xn 6= xm whenever n 6= m.

We may assume without loss of generality that em(xn) = 0 for all
n,m ∈ N. In fact, if there exists k0 such that ek0(xn) 6= 0 for n belonging
to some infinite N ′ ⊂ N, we pass to the subsequence indexed by N ′ r {k0}
and use disjointness of (en)n to show that em(xn) = 0 for all n,m. Oth-
erwise, we can easily construct by induction a subsequence with this prop-
erty, namely, for each n we find kn > kn−1 such that em(xkn) = 0 for all
m ≤ kn−1.

Taking max(en, 0)−min(en, 0) instead of en, we may assume that en has
its range included in [0, 1].

For every n, let µn = T ∗(δxn), i.e., µn is the measure given by the relation

T (f)(xn) =
�
f dµn

for all f ∈ C(L). We have |
	
en dµn| > ε for every n. Note that (µn)n∈N

is bounded. By Rosenthal’s lemma (see [Di, p. 82]) we find some infinite
N ′ ⊂ N such that∑{∣∣∣� em dµn∣∣∣ : n 6= m, m ∈ N ′

}
< ε/3.

Now we use Tietze’s theorem and Urysohn’s lemma to extend en contin-
uously to K preserving disjointness and range in [0, 1].

Since L ⊂ K, we view µn as measures on K, i.e., µn(A) = µ′n(A∩L) for
every Borel A ⊂ K. So, for all n,m ∈ N, we have�

K

fm dµn =
�

L

em dµn.

Applying Theorem 5.2 for (fn)n∈N ′ , (xn)n∈N ′ , (µn)n∈N ′ and ε, we find
b ⊂ a ⊂ N ′, δ > 0 and functions (f ′n)n∈a as stated in the theorem.

We may assume that�
sup{f ′m : m ∈ b} dµn =

�∑
m∈b

f ′m dµn

for every n ∈ N. In fact, take a family (Nξ)ξ<ω1 of infinite subsets of N ′
such that Nξ ∩Nη is finite for all ξ 6= η (we may construct such a family by
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identifying N with Q and ω1 with R, and taking for Nξ a rational sequence
converging to ξ). For any ξ take bξ ⊂ aξ ⊂ Nξ as a and b of Theorem 5.2.

For every ξ < ω1 and n ∈ bξ fix f ξn as f ′n in the theorem, i.e., properties
(e)–(g) of Theorem 5.2 hold for f ′n = f ξn, a = aξ and b = bξ.

Claim 3. There exists ξ < ω1 such that� [
sup{f ξm : m ∈ bξ} −

∑
m∈bξ

f ξm

]
dµn = 0

for every n ∈ N.

For every ξ < ω1 and c ⊂ bξ we define f ξc = sup{f ξm : m ∈ c}−
∑

m∈c f
ξ
m

whenever the supremum exists. Note that, for any finite F ⊂ bξ, we have

sup{f ξm : m ∈ bξ} = sup{f ξm : m ∈ bξ r F}+
∑
m∈F

f ξm

and therefore f ξbξrF = f ξbξ . In particular f ξbξ = f ξbξrbξ′
for all ξ 6= ξ′ in ω1,

once bξ ∩ bξ′ is finite.
Let ξ and ξ′ be different ordinals in ω1. Take g = sup{f ξn : n ∈ bξ r bξ′}

and h = sup{f ξ
′
n : n ∈ bξ′ r bξ}. Since supp(fηn) ⊂ supp(fn) for every n ∈ N

and η < ω1, we have f ξn · f ξ
′
m = 0 for all n 6= m. We will prove that g · h = 0.

Suppose that there exists x ∈ K such that g(x) > 0 and h(x) > 0. Then
there exists an open neighborhood V of x such that the restrictions of g and
h to V are both strictly positive. Hence there exist y ∈ V and n ∈ bξ r bξ′

such that f ξn(y) > 0. Let ϕ be a continuous function from K into [0, 1] such
that ϕ(y) = 1 and ϕ is null wherever f ξn is null. Since f ξn · f ξ

′
m = 0 for every

m ∈ bξ′ r bξ, we have f ξ
′
m ≤ h · ϕ < h for every m ∈ bξ′ r bξ, contradicting

the definition of h.
Since f ξbξ = f ξbξrbξ′

≤ g and f ξ
′

bξ′
= f ξ

′

bξ′rbξ
≤ h, it follows that f ξbξ ·f

ξ′

bξ′
= 0

for all ξ 6= ξ′. So there exists ξ < ω1 such that�
f ξbξ dµn = 0

for all n, proving the claim.
Taking f = sup{f ′n : n ∈ b} and n ∈ b we have

|T (f |L)(xn)| =
∣∣∣ �
K

f dµn

∣∣∣ = ∣∣∣ � f ′n dµn + �∑
{f ′m : m 6= n, m ∈ b} dµn

∣∣∣
≥ δ − δ/3 = 2δ/3.

On the other hand, if n ∈ ar b then

|T (f |L)(xn)| =
∣∣∣ �
K

∑
m∈b

f ′m dµn

∣∣∣ ≤ δ/3.
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By continuity of T (f |L), we conclude that the closures of {xn : n ∈ b}
and {xn : n ∈ ar b} are disjoint, contradicting Theorem 5.2(g).

We have proved that all operators on C(L) are weak multipliers, for all
closed L ⊂ K. Connectedness of K is Theorem 5.2(ii). By Lemmas 2.3 and
2.6, and Theorem 2.4, we conclude that C(L) is indecomposable whenever
L is a connected closed subspace of K.

Corollary 5.4. The space C(K) as above has at least continuum many
non-isomorphic indecomposable quotients of the form C(L).

Proof. First we note that a Banach space C(L) with few operators cannot
be isomorphic to any of its proper quotients. Indeed, suppose that X is a
proper quotient of C(L). Let T : C(L)→ X be a surjective and non-injective
bounded linear transformation. Suppose that there exists an isomorphism
S : X → C(L). Since C(L) has few operators, S ◦ T is a weak multiplier
and, by Lemma 2.2, S ◦T is surjective iff it is an isomorphism onto its range.
But S and T are both surjective, which implies that S ◦ T is surjective, and
therefore it is an isomorphism on C(K). This leads to a contradiction, since
T is not injective.

Now, for every r ∈ [0, 1] take Kr = π−1
K,[0,1]2

([0, r]2). By Lemma 3.7
we conclude that Kr is connected for every r ∈ [0, 1], and Theorem 5.3
states that C(Kr) has few operators. If r < s we have Kr ⊂ Ks, and so
C(Kr) is a proper quotient of C(Ks). Therefore, these are non-isomorphic
indecomposable quotients of C(L).

6. An indecomposable C(K) where K contains a homeomorphic
copy of βN. Theorem 5.3 shows that, under ♦, there exists a compact K
such that, for every L ⊂ K, C(L) has few operators. In particular, K does
not contain a homeomorphic copy of βN. In this section, assuming CH, we
construct a connected compact K containing βN such that C(K) has few
operators.

The next lemma is quite standard and we will omit the proof.
Lemma 6.1. Let K be a compact space. The following statements are

equivalent:

(i) K contains a subspace which is homeomorphic to βN.
(ii) There exists a relatively discrete sequence (xn)n∈N in K such that,

for every a ⊂ N, {xn : n ∈ a} ∩ {xn : n ∈ Nr a} = ∅.
Theorem 6.2. (CH) There exists a compact connected K such that

C(K) is indecomposable and K contains a homeomorphic copy of βN.
Proof. As in [Ko1], we will construct by induction compact connected

spaces (Kα)α≤ω1 , sequences {qn|α : n ∈ N} ⊂ Kα, and sets bα ⊂ aα ⊂ N
for α < ω1. We construct (Kα)α≤ω1 so that K0 = [0, 1]2 and Kα+1 is an
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extension of Kα by a pairwise disjoint sequence of functions from Kα into
[0, 1]. If α is a limit ordinal, we define Kα as the inverse limit of (Kβ)β<α. For
every ordinal α we have bβ ⊂ aβ ⊂ N for β < α, and the set {qn|α : n ∈ N}
is dense in Kα and such that {qn|α : n ∈ aβ} is relatively discrete and

{qn|α : n ∈ bβ} ∩ {qn|α : n ∈ aβ r bβ} 6= ∅
in Kα.

In K0 = [0, 1]2 let {xn|0 : n ∈ N} be a relatively discrete sequence which
is disjoint from {qn|0 : n ∈ N}. Let Even be the set of even ordinals in ω1

and Odd the set of odd ordinals in ω1. In every Kα we have constructed a
relatively discrete sequence {xn|α : n ∈ N} of points that extend xn|0. In
the inductive construction, if α ∈ Even we proceed as in [Ko1] to get Kα+1,
identifying Even with ω1. Let us fix an enumeration {Nα : α ∈ Odd} of all
subsets of N. Let α ∈ Odd . By CH, Kα has countable weight, and no isolated
points since it is connected. So, we can apply Lemma 3.9 to Kα, obtaining
pairwise disjoint functions fn from Kα into [0, 1], for n ∈ Nα, such that
fn(xm|α) = 1 if n = m, and fn(xm|α) = 0 if n 6= m, and the extension of
Kα by (fn)n∈Nα is strong (see [Ko1, Definition 4.2]). Define Kα+1 to be that
extension, and xn|(α+ 1) = (xn|α, 1) if n ∈ Nα, and xn|(α+ 1) = (xn|α, 0)
otherwise. We have

{xn|(α+ 1) : n ∈ Nα} ∩ {xn|(α+ 1) : n ∈ NrNα} = ∅
in Kα+1. For α ∈ Even, take for xn|(α+ 1) any extension of xn(α).

For all β < α < ω1 we have

{xn|α : n ∈ Nβ} ∩ {xn|α : n ∈ NrNβ} = ∅

in Kα. Setting xn =
⋃
α<ω1

xn|α, for every a ⊂ N we have {xn : n ∈ a} ∩
{xn : n ∈ Nr a} = ∅ in K = Kω1 . From Lemma 6.1 we conclude that K
contains a subspace homeomorphic to βN.

7. Final remarks. It remains open whether CH is necessary for The-
orem 6.2 to hold. The necessity of axiom ♦ for 5.3 also remains open. We
remark that a construction in ZFC of a compact K as in 5.3 would com-
pletely solve Efimov’s problem, which has only consistent answers until now
(assuming CH, which is weaker than ♦).

We say that a 0-dimensional compact space K has the Subsequential
Completeness Property (SCP) if for any pairwise disjoint sequence of closed-
open sets there is a subsequence which has supremum in the algebra of
closed-open sets in K. By a result of Haydon (see [Ha, Proposition 1G]),
this implies, under CH, that K contains a homeomorphic copy of βN. It is
easy to see that the 0-dimensional Koszmider space constructed in [Ko1] has
the SCP. In the connected construction, an analogous property holds, with
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suprema of sequences of closed-open sets replaced by suprema of continuous
functions. If the result of Haydon can be adapted to the connected case, we
can prove that the construction of Koszmider, under CH, also satisfies the
condition of Theorem 6.2.

Note that, in the construction of Theorem 5.2, it was necessary to change
the functions (fn)n∈N before adding the supremum. This can be related to
the result of Haydon, and one may investigate whether the connected version
of SCP implies (under CH, perhaps) the presence of βN as a subspace.

Both Theorems 5.3 and 6.2 at first sight state topological properties
of K which seem not to be preserved by isomorphisms of Banach spaces.
Nevertheless, Schlakow proved ([Sc, Theorem 1.44]) that if C(K) and C(L)
have few operators and are isomorphic, for perfect compact sets K and L,
then K and L are homeomorphic.

Although we know that, at least for compact sets with no isolated points,
those properties are preserved by isomorphisms, we do not know yet if the
property stated in Theorem 5.3 is preserved by isomorphism.

Problem 7.1. Suppose that C(K1) is isomorphic to C(K2) and that
all closed L ⊂ K1 are Koszmider spaces. Does this imply that every closed
L ⊂ K2 is a Koszmider space?

The most important open problem that stems from this paper is the
following question, which would generalize Theorem 5.3:

Problem 7.2. Is there an indecomposable Banach space C(K) whose
quotients of the form C(L) also have few operators?

A weaker but still important version of the above problem is the following:

Problem 7.3. Is there an indecomposable Banach space C(K) which
does not have l∞ as quotient?

The answers to Problems 7.2 and 7.3 are negative under Martin’s axiom
and the negation of continuum hypothesis, since it is proved in [HLO] that,
under MA+¬CH, non-reflexive Grothendieck spaces do have l∞ as quotient.
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