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Abstract. This paper is devoted to the study of noncommutative weak Orlicz spaces
and martingale inequalities. The Marcinkiewicz interpolation theorem is extended to in-
clude noncommutative weak Orlicz spaces as interpolation classes. As an application, we
prove the weak type Φ-moment Burkholder–Gundy inequality for noncommutative mar-
tingales through establishing a weak type Φ-moment noncommutative Khinchin inequality
for Rademacher random variables.

1. Introduction. Recently, the first two named authors [BC] proved a
Φ-moment Burkholder–Gundy inequality for noncommutative martingales,
i.e., a noncommutative analogue of the following inequality [BDG]: Let Φ be
an Orlicz function with 1 < pΦ ≤ qΦ <∞. If f = (fn)n≥1 is an LΦ-bounded
martingale, then

(1.1)
�

Ω

Φ
[( ∞∑

n=1

|dfn|2
)1/2]

dP ≈ sup
n≥1

�

Ω

Φ(|fn|) dP,

where df = (dfn)n≥1 is the martingale difference of f and “ ≈ ” depends
only on Φ. Notice that for convex powers Φ(t) = tp, (1.1) is the well-known
Burkholder–Gundy inequality (see [BG]). In their remarkable paper [PX1],
Pisier and Xu proved a noncommutative analogue of the Burkholder–Gundy
inequality, which triggered a systematic research of noncommutative mar-
tingale inequalities. We refer to a recent book by Xu [Xu2] for an up-to-date
exposition of the theory of noncommutative martingales. Evidently, the non-
commutative Φ-moment Burkholder–Gundy inequality implies inequalites
for LΦ norms, which were already known as particular cases of more general
ones established by the first named author in [B06].

In this paper, we continue this line of investigation. We will introduce
noncommutative weak Orlicz spaces and prove the associated martingale
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inequalities. In particular, we will prove that noncommutative weak Orlicz
spaces can be renormed as Banach spaces under a mild condition on Φ,
and a weak type version of the Φ-moment inequalities for noncommutative
martingles obtained recently by the first two authors [BC]. To the best of
our knowledge, this kind of weak type Φ-moment inequality is new even in
the commutative setting.

In [LHW], the authors prove the Burkholder–Gundy inequality for weak
Orlicz spaces, using the arguments of stopping times and good-λ inequali-
ties developed by Burkholder et al. [Burk]. However, the concepts of stop-
ping times and good-λ inequalities are, up to now, not well defined in the
general noncommutative setting (there are some works on this topic, see
[AC] and references therein). Instead, interpolation and noncommutative
Khinchin inequalities play crucial roles in the proof of the noncommutative
Burkholder–Gundy inequality mentioned above. Thus, in order to prove the
weak type Φ-moment Burkholder–Gundy inequality in the noncommutative
setting, we need to prove the associated Khinchin type inequality. There
is an extensive literature on various generalizations of the noncommutative
Khinchin inequality in Lp setting (see [LP86, LPP, P09] and the references
therein). Unfortunately, our weak type Φ-moment Khinchin inequality can-
not be obtained directly from the ones established previously. To derive it,
we adapt natural and classical techniques of [LP86, LP92, LPP, LPX, MS].
This is the key point of this paper.

The paper is organized as follows. In Section 2 we present some prelimi-
naries and notation related to noncommutative weak Lp and Orlicz spaces.
Noncommutative weak Orlicz spaces are presented in Section 3. In Section 4
we establish a Marcinkiewicz-type interpolation theorem for noncommuta-
tive weak Orlicz spaces and prove that noncommutative weak Orlicz spaces
can be renormed as Banach spaces when Φ satisfies a mild condition. Fi-
nally, in Section 5, we prove the weak type Φ-moment Burkholder–Gundy in-
equality for noncommutative martingales through establishing a weak type
Φ-moment noncommutative Khinchin inequality for Rademacher random
variables. The proof follows mainly the arguments in [BC].

In what follows, C always denotes a constant, which may be different in
different places. For two nonnegative (possibly infinite) quantities X and Y,
by X . Y we mean that there exists a constant C > 0 such that X ≤ CY,
and by X ≈ Y that X . Y and Y . X.

2. Preliminaries

2.1. Noncommutative weak Lp spaces. We use standard notation
and notions from the theory of noncommutative Lp spaces. Our main ref-
erences are [PX2] and [Xu2] (see [PX2] for more historical references). Let



Noncommutative weak Orlicz spaces 197

M be a semifinite von Neumann algebra acting on a Hilbert space H with
a normal semifinite faithful trace τ. For 0 < p < ∞ let Lp(M) denote
the noncommutative Lp space with respect to (M, τ). As usual, we set
L∞(M, τ) =M equipped with the operator norm. Also, let L0(M) denote
the topological ∗-algebra of measurable operators with respect to (M, τ).

For x ∈ L0(M) we define

λs(x) = τ(e⊥s (|x|)) (s > 0) and µt(x) = inf{s > 0 : λs(x) ≤ t} (t > 0),

where e⊥s (|x|) = e(s,∞)(|x|) is the spectral projection of |x| associated with
the interval (s,∞). The function s 7→ λs(x) is called the distribution function
of x, and µt(x) the generalized singular number of x. We will denote simply
by λ(x) and µ(x) the functions s 7→ λs(x) and t 7→ µt(x), respectively. It
is easy to check that both are decreasing and continuous from the right on
(0,∞). For further information we refer the reader to [FK].

For 0 < p <∞, we have the Kolmogorov inequality

(2.1) λs(x) ≤ ‖x‖pp/sp, ∀s > 0,

for any x ∈ Lp(M). If x, y in L0(M), then

(2.2) λ2s(x+ y) ≤ λs/2(x) + λs/2(y), ∀s > 0.

We will frequently use these two inequalities in what follows.
For 0 < p <∞, the noncommutative weak Lp space Lwp (M) is defined as

the space of all measurable operators x such that

‖x‖Lwp := sup
t>0

t1/pµt(x) <∞.

Equipped with ‖ · ‖Lwp , L
w
p (M) is a quasi-Banach space. However, for p > 1,

Lwp (M) can be renormed as a Banach space by

x 7→ sup
t>0

t−1+1/p
t�

0

µs(x) ds.

On the other hand, the quasi-norm admits the following useful description:

(2.3) ‖x‖Lwp = inf{c > 0 : t(µt(x)/c)p ≤ 1, ∀t > 0}.
Also, we have a description in terms of the distribution function:

(2.4) ‖x‖Lwp = sup
s>0

sλs(x)1/p.

Recall that noncommutative weak Lp spaces can be defined through
noncommutative Lorenz spaces; for details see Dodds et al. [DDP] and Xu
[Xu1].

2.2. Noncommutative Orlicz spaces. Recall that noncommutative
Orlicz spaces were defined by Kunze [Kun] in an algebraic way (see also
[ARZ] for more general cases), and by Dodds et al. [DDP] and Xu [Xu1]



198 T. N. Bekjan et al.

employing Banach space theory. The second approach, based on the con-
cept of Banach function spaces, among other properties readily indicates
similarities with the classical origins. We will take the second approach.

Let Φ be an Orlicz function on [0,∞), i.e., a continuous increasing and
convex function satisfying Φ(0) = 0 and limt→∞ Φ(t) = ∞. Recall that
Φ is said to satisfy the 42-condition if there is a constant C such that
Φ(2t) ≤ CΦ(t) for all t > 0. In this case, we write Φ ∈ 42. It is easy to
check that Φ ∈ 42 if and only if for any a > 0 there is a constant Ca > 0
such that Φ(at) ≤ CaΦ(t) for all t > 0.

We will work with some standard indices associated to Orlicz functions.
Let Φ be an Orlicz function. Since Φ is convex, Φ′(t) is defined for each
t > 0 except for a countable set of points at which we take Φ′(t) to be the
derivative from the right. We define

aΦ = inf
t>0

tΦ′(t)
Φ(t)

and bΦ = sup
t>0

tΦ′(t)
Φ(t)

.

Note the following properties:

(1) 1 ≤ aΦ ≤ bΦ ≤ ∞.
(2) The following characterizations of aΦ and bΦ hold:

aΦ = sup{p > 0 : t−pΦ(t) is nondecreasing for all t > 0},
bΦ = inf{q > 0 : t−qΦ(t) is nonincreasing for all t > 0}.

(3) Φ ∈ 42 if and only if bΦ <∞.
See [M85, M89] for more information on Orlicz functions and Orlicz spaces.

For an Orlicz function Φ, the noncommutative Orlicz space LΦ(M) is
defined as the space of all measurable operators x with respect to (M, τ)
such that

τ(Φ(|x|/c)) <∞
for some c > 0. The space LΦ(M), equipped with the norm

‖x‖Φ = inf{c > 0 : τ(Φ(|x|/c)) < 1},
is a Banach space. If Φ(t) = tp with 1 ≤ p <∞ then LΦ(M) = Lp(M). Non-
commutative Orlicz spaces are symmetric spaces of measurable operators as
defined in [DDP, Xu1].

3. Noncommutative weak Orlicz spaces. Unless otherwise speci-
fied, we always denote by Φ an Orlicz function. Motivated by (2.3), we give
the following definition:

Definition 3.1. For an Orlicz function Φ, define

LwΦ(M) = {x ∈ L0(M) : ∃c > 0 such that sup
t>0

tΦ(µt(x)/c) <∞},
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equipped with

‖x‖LwΦ = inf{c > 0 : tΦ(µt(x)/c) ≤ 1,∀t > 0}.
LwΦ(M) is called a noncommutative weak Orlicz space.

Remark 3.2.

(1) It is easy to check that

‖x‖LwΦ = inf
{
c > 0 :

1
Φ−1(1/t)

µt(x)/c ≤ 1, ∀t > 0
}
.

(2) For 0 < p < ∞, if Φ(t) = tp then LwΦ(M) is the noncommutative
weak Lp space with the norm (2.3).

(3) Note that LΦ(M) has the following description:

LΦ(M) =
{
x ∈ L0(M) : ∃ c > 0,

∞�

0

[
tΦ

(
µt(x)
c

)]
dt

t
<∞

}
with the norm

‖x‖LΦ = inf
{
c > 0 :

∞�

0

[
tΦ

(
µt(x)
c

)]
dt

t
≤ 1
}
.

This shows that LwΦ(M) has a close connection with LΦ(M).

We have the following useful characterization of LwΦ(M).

Proposition 3.1. Let Φ be an Orlicz function. For any c > 0 we have

(3.1) sup
t>0

tΦ(µt(x)/c) = sup
s>0

λs(x)Φ(s/c), ∀x ∈ L0(M).

Consequently,

LwΦ(M) = {x ∈ L0(M) : ∃c > 0 such that sup
s>0

λs(x)Φ(s/c) <∞},

and

‖x‖LwΦ = inf{c > 0 : λs(x)Φ(s/c) ≤ 1,∀s > 0}.
Proof. Since λs(x) = λµ(x)(s), where λµ(x) is the distribution function

of the function t 7→ µt(x) with respect to the Lebesgue measure on [0,∞),
it suffices to prove that

(3.2) sup
t>0

tΦ(f∗(t)/c) = sup
s>0

λf (s)Φ(s/c)

for any nonnegative measurable function f on (0,∞), where λf is the dis-
tribution function of f with respect to the Lebesgue measure on [0,∞) and
f∗ is the rearrangement function of f defined by

f∗(t) = inf{s > 0 : λf (s) ≤ t}.
To this end, we consider a simple function f =

∑
k akχAk , where ak > 0 and

Ak are measurable subsets of [0,∞) such that |Ak| < ∞ and Ak ∩ Aj = ∅
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whenever k 6= j. An immediate computation yields (3.2) for such a function.
Since each nonnegative measurable function can be approximated almost
everywhere from below by a sequence of nonnegative simple functions, a
standard argument proves (3.2) for any nonnegative measurable function.

We collect some basic properties of noncommutative weak Orlicz spaces.

Proposition 3.2. Let Φ be an Orlicz function.

(1) If ‖x‖LwΦ > 0 then

sup
t>0

tΦ(µt(x)/‖x‖LwΦ ) ≤ 1 and sup
s>0

λs(x)Φ(s/‖x‖LwΦ ) ≤ 1.

(2) ‖ · ‖LwΦ is a quasi-norm on LwΦ(M). In particular,

(3.3) ‖x+ y‖LwΦ ≤ 2(‖x‖LwΦ + ‖y‖LwΦ ), ∀x, y ∈ LwΦ(M).

(3) If ‖x‖LwΦ ≤ 1, then

sup
t>0

tΦ(µt(x)) ≤ ‖x‖LwΦ and sup
s>0

λs(x)Φ(s) ≤ ‖x‖LwΦ .

(4) ‖x‖LwΦ ≤ ‖x‖LΦ for any x ∈ LΦ(M). Consequently, LΦ(M) ⊂
LwΦ(M).

Proof. (1) By the definition of ‖x‖LwΦ , there is a sequence (ck) ⊂ R+ such
that ck ↓ ‖x‖LwΦ and tΦ(µt(x)/ck) ≤ 1 for all t > 0. Since Φ is continuous,
taking k → ∞ we obtain the first inequality. The second inequality follows
from (3.1) and the first one.

(2) If ‖x‖LwΦ = 0, then there is a sequence (ck) ⊂ R+ such that ck ↓ 0
and tΦ(µt(x)/ck) ≤ 1 for all t > 0. Since Φ(t)→∞ as t→∞, it follows that
µt(x) = 0 for all t > 0, which implies x = 0 because limt→0+ µt(x) = ‖x‖.

It is clear that ‖αx‖LwΦ = |α| ‖x‖LwΦ . To prove the generalized triangle
inequality, let x, y ∈ LwΦ(M), with ‖x‖LwΦ = a, ‖y‖LwΦ = b where a, b > 0.
By (1), we have

tΦ

(
µt(x+ y)
2(a+ b)

)
≤ tΦ

(
µt/2(x) + µt/2(y)

2(a+ b)

)
≤ t

2
Φ

(
µt/2(x)
a+ b

)
+
t

2
Φ

(
µt/2(y)
a+ b

)
≤ a

a+ b

t

2
Φ

(
µt/2(x)
a

)
+

b

a+ b

t

2
Φ
(µt/2(y)

b

)
≤ 1.

Hence, ‖x+ y‖LwΦ ≤ 2(a+ b) = 2(‖x‖LwΦ + ‖y‖LwΦ ).
(3) If ‖x‖LwΦ = 0, by (2) the first inequality holds. Suppose ‖x‖LwΦ = a ≤ 1

and a 6= 0. By (1) we have tΦ(µt(x)/a) ≤ 1 for all t > 0. From the convexity
of Φ and the fact that Φ(0) = 0, we have Φ(at) ≤ aΦ(t) for all t > 0, which
implies that

t

a
Φ(µt(x)) ≤ tΦ(µt(x)/a) ≤ 1, ∀t > 0.

This gives the first inequality. The second follows from (3.1) and the first.
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(4) Let x ∈ LΦ(M), x 6= 0. Then, for any t > 0,

tΦ

(
µt(x)
‖x‖LΦ

)
≤

t�

0

Φ

(
µs(x)
‖x‖LΦ

)
ds ≤

∞�

0

Φ

(
µs(x)
‖x‖LΦ

)
ds ≤ 1.

Hence, ‖x‖LwΦ ≤ ‖x‖LΦ and LΦ(M) ⊂ LwΦ(M).

Recall that for measurable operators xn, x with respect to (M, τ), xn
converges to x in measure if and only if limn µt(xn − x) = 0 for all t > 0.

Proposition 3.3. Let Φ be an Orlicz function.

(1) If ‖xn − x‖LwΦ → 0, then xn → x in measure.
(2) LwΦ(M) is a quasi-Banach space.

Proof. (1) Suppose ‖xn − x‖LwΦ → 0. Then there is a sequence (cn) of
positive numbers with limn cn = 0 such that

tΦ

(
µt(xn − x)

cn

)
≤ 1, ∀t > 0,

for all n. Since Φ(t)→∞ as t→∞, it follows that limn µt(xn − x) = 0 for
any t > 0. Hence, xn → x in measure.

(2) By Proposition 3.2(2), it suffices to prove that LwΦ(M) is complete.
Suppose xn ∈ LwΦ(M) with limm,n→∞ ‖xn − xm‖LwΦ = 0. Then for any
1 > ε > 0 there is an n0 such that ‖xn− xm‖LwΦ < ε for all n,m ≥ n0. Since
L0(M) is complete in the topology of convergence in measure, by (1) there
exists x ∈ L0(M) such that

lim
n→∞

µt(xn − x) = 0, ∀t > 0.

Clearly,
xn − xm → xn − x in measure

as m→∞. By Proposition 3.2(3), for any n ≥ n0 we have

tΦ

(
µt(xn − x)

ε

)
≤ lim

m→∞
tΦ

(
µt(xn − xm)

ε

)
≤ lim inf

m→∞

∥∥∥∥xn − xmε

∥∥∥∥
LwΦ

≤ 1

for any t > 0. This yields ‖xn − x‖LwΦ < ε and so limn→∞ ‖xn − x‖LwΦ = 0.
Also, by (3.3) we obtain x ∈ LwΦ(M). Hence, LwΦ(M) is complete.

Remark 3.3. Clearly, LwΦ(M) is rearrangement invariant. Then, by Pro-
position 3.3(2), LwΦ(M) is a symmetric quasi-Banach space of measurable
operators as defined in [Xu1].

The following two examples illustrate noncommutative weak Orlicz
spaces.

Example 3.4. Let Φ(t) = ta ln(1 + tb) with a > 1 and b > 0. It is easy
to check that Φ is an Orlicz function and pΦ = a and qΦ = a+ b. Thus, LwΦ
cannot coincide with any Lwp .
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Example 3.5. Let Φ(t) = tp(1 + c sin(p ln t)) with p > 1/(1 − 2c) and
0 < c < 1/2. Then Φ is an Orlicz function and pΦ = qΦ = p. It is clear that
Φ is equivalent to tp and hence LwΦ = Lwp .

Let a = (an) be a finite sequence in LwΦ(M). We define

‖a‖LwΦ (M,`2C) =
∥∥∥(∑

n

|an|2
)1/2∥∥∥

LwΦ

and ‖a‖LwΦ (M,`2R) =
∥∥∥(∑

n

|a∗n|2
)1/2∥∥∥

LwΦ

.

Proposition 3.4. ‖ · ‖LwΦ (M,`2C) and ‖ · ‖LwΦ (M,`2R) are two quasi-norms
on the family of all finite sequences in LwΦ(M).

Proof. To see this, let us consider the von Neumann algebra tensor prod-
uct M⊗̄ B(`2) with the product trace τ ⊗̄ tr, where B(`2) is the algebra of
all bounded operators on `2 with the usual trace tr. τ ⊗ tr is a semifinite
normal faithful trace. The associated noncommutative weak Orlicz space is
denoted by LwΦ(M⊗̄B(`2)). Now, any finite sequence a = (an)n≥0 in LwΦ(M)
can be regarded as an element in LwΦ(M⊗̄ B(`2)) via the map

a 7→ T (a) =


a0 0 . . .

a1 0 . . .
...

...
. . .

 ,

that is, the matrix of T (a) has all entries zero except those in the first column
which are the an’s. Such a matrix is called a column matrix, and the closure
in LwΦ(M ⊗̄ B(`2)) of all column matrices is called the column subspace of
LwΦ(M⊗̄ B(`2)). Since

‖a‖LwΦ (M,`2C) =
∥∥|T (a)|

∥∥
LwΦ (M⊗̄B(`2))

= ‖T (a)‖LwΦ (M⊗̄B(`2)),

‖ · ‖LwΦ (M,`2C) defines a quasi-norm on the family of all finite sequences in
LwΦ(M). Similarly, ‖ · ‖LwΦ (M,`2R) defines a quasi-norm on the family of all
finite sequences in LwΦ(M).

We define LwΦ(M, `2C) (resp. LwΦ(M, `2R)) to be the space of all sequences
in LwΦ(M) under the norm ‖ · ‖LwΦ (M,`2C) (resp. ‖ · ‖LwΦ (M,`2R)). Evidently,
both are quasi-Banach spaces, but we will see in Sect. 4 that they can be
renormed as Banach spaces provided Φ satisfies a mild condition.

4. Interpolation. The main result of this section is a Marcinkiewicz
type interpolation theorem for noncommutative weak Orlicz spaces. We first
introduce the following definition.

Definition 4.1. Let M (resp. N ) be a von Neumann algebra with a
normal semifinite faithful trace τ (resp. ν). A map T : L0(M) → L0(N ) is
said to be quasilinear if
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(i) |T (αx)| ≤ |α| |Tx| for all x ∈ L0(M) and α ∈ C;
(ii) there is a constant K > 0 such that for any operators x, y ∈ L0(M),

there exist partial isometries u, v ∈ N such that

|T (x+ y)| ≤ K(u∗|Tx|u+ v∗|Ty|v).

In addition, if K = 1 we call T a sublinear operator.

This definition of sublinear operators in the noncommutative setting is
due to Q. Xu and first appeared in Ying Hu’s thesis [Hu07] (see also [Hu09]).
Recall that for any x, y ∈ L0(N ) there exist partial isometries u, v ∈ N such
that

(4.1) |x+ y| ≤ u∗|x|u+ v∗|y|v
(see [AAP]) and so every linear operator is sublinear. We recall that a quasi-
linear operator T : L0(M) → L0(N ) is of weak type (p, q) with 0 < p ≤ q
≤ ∞ if

‖Tx‖Lwq ≤ C‖x‖Lp , ∀x ∈ Lp(M).

The classical Marcinkiewicz interpolation theorem has been extended to
include Orlicz spaces as interpolation classes by A. Zygmund, A. P. Calderón,
S. Koizumi, I. B. Simonenko, W. Riordan, H. P. Heinig and A. Torchinsky (for
references see [M89]). The following result is a noncommutative analogue of
the Marcinkiewicz type interpolation theorem for weak Orlicz spaces.

Theorem 4.2. Let M (resp. N ) be a von Neumann algebra with a nor-
mal semifinite faithful trace τ (resp. ν). Suppose 0 < p0 < p1 ≤ ∞. Let
T : L0(M)→ L0(N ) be a quasilinear operator which is of weak type (pi, pi)
for i = 0, 1 if p1 < ∞, and of weak type (p0, p0) and strong type (p1, p1) if
p1 =∞. If Φ is an Orlicz function with p0 < aΦ ≤ bΦ < p1, then there exists
a constant C > 0 such that

(4.2) sup
t>0

tΦ[µt(Tx)] ≤ C sup
t>0

tΦ[µt(x)]

for all x ∈ LwΦ(M). Consequently,

(4.3) ‖Tx‖LwΦ (N ) . ‖x‖LwΦ (M), ∀x ∈ LwΦ(M).

Proof. We choose θ1, θ2, r0, r1 such that

p0 < r0 < aΦ ≤ bΦ < r1 < p1

and

0 < θ1, θ2 < 1,
1
rk

=
1− θk
p0

+
θk
p1
, k = 0, 1.

Then, by real interpolation of noncommutative Lp spaces (cf. Corollary
1.6.11 of [Xu2]), we have

(Lp0(M), Lp1(M))θk,q = Lrk,q(M), k = 0, 1,
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with equivalent quasi-norms. Since T is simultaneously of weak type (pi, pi)
for i = 0 and i = 1, we obtain

‖Tx‖Lwr0 ≤ A0‖x‖Lwr0 , ∀x ∈ Lwp0(M),(4.4)

‖Tx‖Lwr1 ≤ A1‖x‖Lwr1 , ∀x ∈ Lwp1(M),(4.5)

where A0, A1 are constants which depend only on p0, p1, r0, r1 and the weak
type (pi, pi) norms of T for i = 0 and i = 1.

Now, take x ∈ LwΦ(M). For any α > 0 let x = xα0 + xα1 , where xα0 =
xe(α,∞)(|x|). Since t−r0Φ(t) is an increasing function in (0,∞), by Proposi-
tion 3.2(1) and (4.4) we have

λα(Txα0 ) ≤ α−r0‖Txα0 ‖
r0
Lwr0
≤ α−r0Ar00 ‖x

α
0 ‖

r0
Lwr0

= α−r0Ar00 sup
t>0

tr0λt(xα0 )

≤ Ar00 sup
t>α

(
t

α

)r0
λt(x)≤Ar00 sup

t>α

Φ(t)
Φ(α)

λt(x)≤ Ar00

Φ(α)
sup
t>0

Φ(t)λt(x).

Also, since t−r1Φ(t) is a decreasing function in (0,∞), by Proposition 3.2(1)
and (4.5) we obtain similarly

λα(Txα1 ) ≤ Ar11

Φ(α)
sup
t>0

Φ(t)λt(x).

On the other hand, by the quasilinearity of T and the basic properties of
the distribution function λ(|x|), such as λ(a∗a) = λ(aa∗) and λα+β(x+y) ≤
λα(x) + λβ(y) for any x, y ≥ 0, we have

λ2Kα(Tx) ≤ ν(E(2Kα,∞)[K(u∗|Txα0 |u+ v∗|Txα1 |v)])(4.6)

≤ λα(u∗|Txα0 |u) + λα(v∗|Txα1 |v)
≤ λα(|Txα0 |) + λα(|Txα1 |),

where the first and third inequalities use the fact that 0 ≤ a ≤ b implies
E(α,∞)(a) is equivalent to a subprojection of E(α,∞)(b) (see e.g. [FK]). By
(4.6) we have

λ2Kα(Tx) ≤ Ar00

Φ(α)
sup
t>0

Φ(t)λt(x) +
Ar11

Φ(α)
sup
t>0

Φ(t)λt(x)

≤ C

Φ(2Kα)
sup
t>0

Φ(t)λt(x).

By Proposition 3.1 we obtain the desired inequality (4.2).

Remark 4.3. We set

Lp(N )Her = {x ∈ Lp(N ) : x∗ = x}.
If T is simultaneously of weak types Lpi(M)Her → Lpi(N )Her for i = 0 and
i = 1, then the conclusion of Theorem 4.2 holds for any hermitian operator
x ∈ LΦ(M). The proof is the same as above and is omitted.
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Corollary 4.4. Let M (resp. N ) be a von Neumann algebra with a
normal semifinite faithful trace τ (resp. ν). Suppose 0 < p0 < p1 ≤ ∞. Let
T : L0(M) 7→ L0(N ) be a quasilinear operator of strong type (pi, pi) for
i = 0, 1, i.e.,

‖Tx‖Lp0 . ‖x‖Lp0 , ∀x ∈ Lp0(M),

‖Tx‖Lp1 . ‖x‖Lp1 , ∀x ∈ Lp1(M).

Let Φ be an Orlicz function with p0 < aΦ ≤ bΦ < p1. Then the conclusion of
Theorem 4.2 holds.

Proof. If T is of strong type (p, p), by the Kolmogorov inequality (2.1) we
immediately conclude that T is of weak type (p, p). An appeal to Theorem
4.2 yields the result.

Corollary 4.5. Let Φ be an Orlicz function with 1 < aΦ ≤ bΦ < ∞.
Then

(4.7) ‖x‖LwΦ ≈ inf
{
c > 0 : tΦ

(
1
t

t�

0

µs(x) ds/c
)
≤ 1, ∀t > 0

}
.

Consequently, LwΦ(M) can be renormed as a Banach space.

Proof. Since µt(x) is decreasing in t ∈ (0,∞), we immediately get

‖x‖LwΦ ≤ inf
{
c > 0 : tΦ

(
1
t

t�

0

µs(x) ds/c
)
≤ 1,∀t > 0

}
.

Conversely, let 1 < p ≤ ∞. Define S : f(t) 7→ 1
t

	t
0 |f(s)| ds for f ∈ Lp(0,∞).

Then by the classical Hardy–Littlewood inequality there exists a constant
Ap > 0 such that

‖Sf‖p ≤ Cp‖f‖p, ∀f ∈ Lp(0,∞).
Consequently,

‖Tx‖p ≤ Ap‖x‖p, ∀x ∈ Lp(M),

where

Tx :=
1
t

t�

0

µs(x) ds, x ∈ L0(M).

Since T is sublinear, by Corollary 4.4 we obtain the reverse inequality and
hence (4.7) holds.

The corollary above implies that LwΦ(0,∞) is a symmetric function space,
so we can consider the associated Boyd indices pwΦ and qwΦ .

Corollary 4.6. Let Φ be an Orlicz function with 1 < aΦ ≤ bΦ < ∞.
Let pwΦ and qwΦ be respectively the lower and upper Boyd indices of LwΦ(M).
Then

(4.8) aΦ ≤ pwΦ ≤ qwΦ ≤ bΦ.
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Proof. Let 1 ≤ p < aΦ ≤ bΦ < q < ∞. Suppose T is a linear operator
defined on Lp,1[0,∞)+Lq,1[0,∞), which is simultaneously of weak type (p, p)
and weak type (q, q) in the sense of [LT]. Take p0, q0 such that p < p0 <
aΦ ≤ bΦ < q0 < q. Then by Theorem 2.b.11 in [LT], T is simultaneously of
strong type (p0, p0) and strong type (q0, q0). Using Corollary 4.4, we see that
T maps LwΦ(M) into itself. Then, by Theorem 2.b.13 in [LT] we conclude
that p < pwΦ ≤ qwΦ < q. This completes the proof.

5. Martingale inequalities. In this section, we will prove the weak
type Φ-moment versions of martingale transformations, Stein inequalities,
Khinchin inequalities for Rademacher random variables, and Burkholder–
Gundy martingale inequalities in the noncommutative setting. We mainly
follow the arguments in [BC] using Theorem 4.3 and Corollary 4.4.

In the following, unless otherwise specified, we always denote by M a
finite von Neumann algebra with a normalized normal faithful trace τ. Let
(Mn)n≥0 be an increasing sequence of von Neumann subalgebras ofM such
that

⋃
n≥0Mn generates M (in the w∗-topology). Then (Mn)n≥0 is called

a filtration of M. The restriction of τ to Mn is still denoted by τ. Let
En = E(·|Mn) be the conditional expectation of M with respect to Mn.

Moreover, we let Φ be an Orlicz function with 1 < aΦ ≤ bΦ < ∞. In
this case, since LwΦ(M) ⊂ L1(M), the conditional expectation En extends
to LwΦ(M).

A noncommutative LwΦ-martingale with respect to (Mn)n≥0 is a sequence
x = (xn)n≥0 such that xn ∈ LwΦ(Mn) and

En(xn+1) = xn

for any n ≥ 0. Let ‖x‖LwΦ = supn≥0 ‖xn‖LwΦ . If ‖x‖LwΦ <∞, then x is said to
be a bounded LwΦ-martingale.

For convenience, we denote the weak type Φ-moment of x by

‖x‖Φw(M) := sup
t>0

tΦ(µt(x)), x ∈ L0(M).

We write ‖x‖Φw = ‖x‖Φw(M) for short when no confusion occurs.
Let α = (αn) ⊂ C be a sequence. Recall that a map Tα on the family

of martingale difference sequences defined by Tα(dx) = (αndxn) is called
the martingale transform of symbol α. It is clear that (αndxn) is indeed a
martingale difference sequence. The corresponding martingale is Tα(x) =∑

n αndxn.

Theorem 5.1. Let α = (αn) ⊂ C be a bounded sequence and Tα the
associated martingale transform. Let Φ be an Orlicz function such that 1 <
aΦ ≤ bΦ <∞. Then, for all bounded LwΦ-martingales x = (xn),

(5.1) ‖Tαx‖Φw . ‖x‖Φw ,
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where . depends only on Φ and supn |αn|. Consequently,

(5.2) ‖x‖Φw ≈
∥∥∥∑ εndxn

∥∥∥
Φw
, ∀εn = ±1,

for any bounded LwΦ-martingale x = (xn), where “ ≈ ” depends only on Φ.

Proof. By the Lp-boundedness of martingale transforms (see [PX1]) and
Corollary 4.4, we immediately deduce (5.1) and so (5.2).

As in [PX1], consider the mapping T defined in Lp(M⊗̄ B(`2)) by

T



a11 . . . a1n . . .

a21 . . . a2n . . .
...

...
...

...
an1 . . . ann . . .

...
...

...
. . .


=



E1(a11) 0 0 . . .

E2(a21) 0 0 . . .
...

...
...

...
En(an1) 0 0 . . .

...
...

...
. . .


.

It is proved in [PX1] that T is bounded on Lp(M⊗̄B(`2)) for any 1 < p <∞.
Then, by Corollary 4.4 we have

Theorem 5.2. Let Φ be an Orlicz function with 1 < aΦ ≤ bΦ < ∞.
Then

(5.3)
∥∥∥(∑

n

|En(an)|2
)1/2∥∥∥

Φw
.
∥∥∥(∑

n

|an|2
)1/2∥∥∥

Φw

for any finite sequence (an) in LwΦ(M). Similarly,

(5.4)
∥∥∥(∑

n

|En(a∗n)|2
)1/2∥∥∥

Φw
.
∥∥∥(∑

n

|an|2
)1/2∥∥∥

Φw

for any finite sequence (an) in LwΦ(M).

The following is the weak type Φ-moment version of noncommutative
Khinchin inequalities for Rademacher sequences.

Theorem 5.3. Let Φ be an Orlicz function and (εk) a Rademacher se-
quence on a probability space (Ω,P ).

(1) If 1 < aΦ ≤ bΦ < 2, then for any finite sequence (xk) in LwΦ(M),

(5.5)
∥∥∥∑

k

εkxk

∥∥∥
Φw(L∞(Ω)⊗̄M)

≈ inf
{∥∥∥(∑

k

|yk|2
)1/2∥∥∥

Φw(M)
+
∥∥∥(∑

k

|z∗k|2
)1/2∥∥∥

Φw(M)

}
where the infimum runs over all decompositions xk = yk + zk with
yk, zk ∈ LwΦ(M) and “ ≈ ” depends only on Φ.
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(2) If 2 < aΦ ≤ bΦ <∞, then for any finite sequence (xk) in LwΦ(M),

(5.6)
∥∥∥∑

k

εkxk

∥∥∥
Φw(L∞(Ω)⊗̄M)

&
∥∥∥(∑

k

|xk|2
)1/2∥∥∥

Φw(M)
+
∥∥∥(∑

k

|x∗k|2
)1/2∥∥∥

Φw(M)

where “ & ” depends only on Φ.

Proof. (1) By the argument in [BC], we only need to prove the lower
estimate of (5.5). By the analogous argument in [LPP], we are reduced to
showing that for any finite sequence (xk) in LwΦ(M),

(5.7) inf
{∥∥∥( n∑

k=0

|yk|2
)1/2∥∥∥

Φw
+
∥∥∥( n∑

k=0

|z∗k|2
)1/2∥∥∥

Φw

}
.
∥∥∥ n∑
k=0

xkz
3k
∥∥∥
Φw(L∞(T)⊗̄M)

,

where the infimum is taken over all decompositions xk = yk + zk with yk
and zk in LwΦ(M).

To this end, we consider N = L∞(T) ⊗̄ M equipped with the tensor
product trace ν =

	
⊗τ and A = H∞(T) ⊗̄M. Then A is a finite maximal

subdiagonal algebra of N with respect to E =
	
⊗ IM : N → M (see e.g.

[PX2]). Since L1(N ) = L1(T, L1(M)) we can define the Fourier coefficients
for any f ∈ L1(N ) by

f̂(n) =
1

2π

�

T
f(z)z̄n dm(z), ∀n ∈ Z,

where dm is the normalized Lebesgue measure on T. It is easy to check that

A = {f ∈ N : f̂(n) = 0, ∀n < 0}.

For any n ∈ Z we define the linear mapping Fn such that Fn(f) = f̂(n)
for any L1(N ). Then Fn is a contraction both from L1(N ) into L1(M) and
from N intoM. Hence, for an Orlicz function Φ with 1 < aΦ ≤ bΦ <∞, by
Corollary 4.4 we have

(5.8) ‖f̂(n)‖Φw . ‖f‖Φw , ∀f ∈ LwΦ(N ),

for any n ∈ Z.

Lemma 5.4. Let Φ be an Orlicz function with 1 < aΦ ≤ bΦ < ∞. For
any finite sequence (fk) in LwΦ(N ) and any n ∈ Z, we have∥∥∥(∑

k

|f̂k(n)|2
)1/2∥∥∥

Φw(M)
.
∥∥∥(∑

k

|fk|2
)1/2∥∥∥

Φw(N )
.
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Proof. Let 1 ≤ k ≤ K. Applying (5.8) on MK(M) instead of M with

f =
K∑
k=1

Ek1 ⊗ fk =


f1 0 . . . 0
f2 0 . . . 0
...

...
...

...
fK 0 . . . 0


K×K

yields the required inequality.

Since Φ is an Orlicz function with 1 < aΦ ≤ bΦ < ∞, by Corollary 4.6
we have LwΦ(N ) ⊂ L1(N ). We define

HwΦ(A) = {f ∈ LwΦ(N ) : f̂(n) = 0, ∀n < 0},

equipped with the quasinorm ‖ · ‖LwΦ (N ). In this case,

(5.9) H1(A) ∩ LwΦ(N ) = HwΦ(A).

Lemma 5.5. Let Φ be an Orlicz function with 1 < aΦ ≤ bΦ < ∞. Let
Φ(2)(t) = Φ(t2). Then, for any f ∈ HwΦ(A) and ε > 0, there exist g, h ∈
Hw
Φ(2)(A) such that f = gh with

max
{∥∥|g|2∥∥

Φw(N )
,
∥∥|h|2∥∥

Φw(N )

}
.
∥∥|f |∥∥

Φw(N )
+ ε.

Proof. We can prove this lemma by slightly modifying the proof of
Lemma 4.1 in [BC]; we omit the details.

Lemma 5.6. Let Φ be an Orlicz function with 2 < aΦ ≤ bΦ < ∞. Let
{In = (3n/2, 3n] : n ∈ N} and 4n the Fourier multiplier by the indicator
function χIn , i.e.

4n(f)(z) =
∑
k∈In

f̂(k)zk

for any trigonometric polynomial f with coefficients in LwΦ(M). Then∥∥∥(∑
n

4n(f)∗4n(f)
)1/2∥∥∥

Φw(N )
. ‖f‖Φw(N )

for any f ∈ HwΦ(N ).

Proof. The proof is similar to the one of Lemma 4.2 in [BC] by using
Corollary 4.4; the details are omitted.

Now, we are ready to prove (5.7). Indeed, the proof can be obtained by
using Lemmas 5.4–5.6 and is similar to the one of Theorem 4.1 in [BC]. We
omit the details.



210 T. N. Bekjan et al.

(2) In order to prove the inequality (5.6), using the argument for the
proof of Lemma 4.3(2) in [BC] we have

(5.10)
∥∥∥∑

k

εkxk

∥∥∥
Φw(L∞(Ω)⊗̄M)

&
∥∥∥(∑

k

|xk|2
)1/2∥∥∥

Φw(M)
+
∥∥∥(∑

k

|x∗k|2
)1/2∥∥∥

Φw(M)
.

This completes the proof.

Remark 5.7.

(1) Note that the Khinchin inequality is valid for the L1 norm in both
commutative and noncommutative settings (cf. [LPP]). We could
conjecture that the right condition in Theorem 5.3(1) should be bΦ<2
without the additional restriction 1<aΦ. However, our argument
seems to be inefficient in this case. We need new ideas to approach it.

(2) Evidently, the weak type Φ-moment Khinchin inequalities in Theo-
rem 5.3 imply those for LwΦ norms, which, by Corollary 4.5, can be
considered as particular cases of more general ones in [LP92] and in
[LPX, MS].

(3) In the previous version of the paper, we claimed that the converse
to the inequality (5.6) held true. Unfortunately, there was a gap in
the proof as pointed out by the referee. At the time of this writing,
this question remains open.

Now, we are in a position to state and prove the weak type Φ-moment
version of noncommutative Burkholder–Gundy martingale inequalities.

Theorem 5.8. Let M be a finite von Neumann algebra with a normal-
ized normal faithful trace τ and (Mn)n≥0 an increasing filtration of subalge-
bras of M. Let Φ be an Orlicz function and x = (xn)n≥0 a noncommutative
LwΦ-martingale with respect to (Mn)n≥0.

(1) If 1 < aΦ ≤ bΦ < 2, then

(5.11) ‖x‖Φw ≈ inf
{∥∥∥( ∞∑

n=0

|dyn|2
)1/2∥∥∥

Φw
+
∥∥∥( ∞∑

n=0

|dz∗n|2
)1/2∥∥∥

Φw

}
,

where the infimum is taken over all decompositions xn = yn+zn with
(dyn) in LwΦ(M, `2C) and {dzn} in LwΦ(M, `2R) and “ ≈ ” depends only
on Φ.

(2) If 2 < aΦ ≤ bΦ <∞, then

(5.12) ‖x‖Φw &
∥∥∥( ∞∑

n=0

|dxn|2
)1/2∥∥∥

Φw
+
∥∥∥( ∞∑

n=0

|dx∗n|2
)1/2∥∥∥

Φw
,

where “ & ” depends only on Φ.
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Proof. The proof is similar to the one of Theorem 5.1 in [BC] through
the use of Theorem 5.3; the details are omitted.

Remark 5.9.

(1) All inequalities in Theorems 5.3 and 5.8 are left open for 1 < aΦ ≤
2 ≤ bΦ < ∞, except for the case aΦ = bΦ = 2 in which Φ(t) = ct2

and the corresponding inequalities hold. At the time of this writing,
we do not see how to formulate a meaningful statement for this case.
However, our argument works in the commutative case for all cases
1 < aΦ ≤ bΦ <∞.

(2) We expect that the converse to the inequality (5.12) holds true. This
would be the case if one could prove the converse to (5.6).

Acknowledgements. We are grateful to the anonymous referee for
many helpful corrections and suggestions, which have been incorporated
into this version of the paper. This research was partly supported by NSFC
(grants No. 11071204 and No. 11071190).

References

[AAP] C. A. Akemann, J. Anderson and G. K. Pedersen, Triangle inequalities in operator
algebras, Linear Multilinear Algebra 11 (1982), 167–178.
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