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Ergodicity of Z2 extensions of irrational rotations

by

Yuqing Zhang (Wien)

Abstract. Let T = [0, 1) be the additive group of real numbers modulo 1, α ∈ T
be an irrational number and t ∈ T. We study ergodicity of skew product extensions
T : T×Z2 → T×Z2, T (x, s1, s2) = (x+α, s1 + 2χ[0,1/2)(x)− 1, s2 + 2χ[0,1/2)(x+ t)− 1).

1. Introduction. The study of irrational rotations of the unit circle has
led to various questions in number theory and ergodic theory. Let T = [0, 1)
be the additive group of real numbers modulo 1. Fix an irrational α ∈ T
and let t ∈ T satisfy the condition that neither t nor t + 1/2 is a multiple
of α mod 1. Define a map f : T→ Z by

(1.1) f(x) =
{

1 for 0 ≤ x < 1/2,
−1 for 1/2 ≤ x < 1

and an irrational rotation T0 of T by

T0x = x+ α mod 1.

Set X = T× Z2 and define T : X→ X by

(1.2) T (x, s1, s2) = (x+ α, s1 + f(x), s2 + f(x+ t)).

It is a skew product extension of irrational rotations on the circle by Z2

determined by f and t. We study ergodicity of T on X relative to Haar
measure, continuing a theme started by Schmidt [S1], [S2] and Veech [V]. It
is known that ergodicity of skew product extensions of an irrational rotation
arises from irregularity of distribution of Zα. For the case of cylinder flows,
Oren [O] gave a complete solution to the problem of ergodicity of the map
F : T× E → T× E defined by

(1.3) F (x, s) = (x+ α, s+ χ[0,β)(x)− β),

where β ∈ T and E is the closed subgroup of R generated by 1 and β.
Earlier, special cases were settled by Schmidt for β = 1/2, α = (

√
5− 1)/4
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in [S2] and for β = 1/2, α irrational in [A], [C2], [S1]. Although ergodicity of
cylinder flows (that is, (1.3)) is thoroughly understood, the situation of Z2

extensions of irrational rotations appears to be more complicated. [L] treated
ergodicity of (1.2) for a proper subset of the set of α’s with bounded partial
quotients and pointed out its numerous applications, e.g. to the study of
joinings of some Rokhlin cocycles. This paper extends the results of [L].

Note that by (1.2), we have

(1.4) Tn(x, s1, s2) = (x+ nα, s1 + an(x), s2 + an(x+ t)), ∀n ∈ Z,

where

(1.5) an(x) =


∑n−1

i=0 f(x+ iα) = 2
∑n−1

i=0 χ[0,1/2)(x+ iα)− n, n ≥ 1,
0, n = 0,
−a−n(T−n0 x), n ≤ −1.

an(x) satisfies the additive cocycle equation

(1.6) an(Tm0 x)− an+m(x) + am(x) = 0, ∀m,n ∈ Z, ∀x ∈ T.

Also note that an(x + t) ≡ an(x) mod 2. The parity of an(x) is always the
same as that of n from (1.5). Hence T cannot be ergodic on the entire
space X. We set G = {(s1, s2) ∈ Z2 | s1 ≡ s2 mod 2}. Then G is cocompact
in Z2.

Following [S1, Definition 2.1] we give

Definition 1.1. (a, t) : Z×T→ Z2 defined by

(1.7) (a, t)(n, x) = (an(x), an(x+ t))

is called a cocycle for T .

[S1] showed that ergodicity of T , or equivalently, ergodicity of the cocycle
(a, t), is determined by the set E2(a, t) of essential values of (a, t). Put Z2 =
Z2 ∪ {∞}, the one-point compactification of Z2. We recall the definition of
essential values.

Definition 1.2. Let µ be Lebesgue measure on T. An element (k1, k2) ∈
Z2 is called an essential value of (a, t) if, for every neighbourhood N(k1, k2)
of (k1, k2) in Z2, and for every measurable set A ⊂ T with µ(A) > 0, we
have

µ
( ⋃
n∈Z

(A ∩ T−n0 A ∩ {x | (a, t)(n, x) ∈ N(k1, k2)})
)
> 0.

We denote the set of essential values of (a, t) by E2(a, t). Set E2(a, t) =
E2(a, t) ∩ Z2.
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From [S1] we derive the following properties:

• E2(a, t) is a closed subgroup of Z2 under addition. (k1, k2) ∈ E2(a, t)
only if k1 ≡ k2 mod 2.
• (a, t) is a coboundary (that is, (a, t)(n, x) = c(Tn0 x) − c(x) for a mea-

surable map c : T→ Z2) if and only if E2(a, t) = {(0, 0)}.
We say that two cocycles (a, t), (b, t) : Z × T → Z2 are cohomologous if
(a, t)−(b, t) is a coboundary. In this case, E2(a, t) = E2(b, t). Given a cocycle
(a, t) : Z × T → Z2, let (a, t)∗ : Z × T → Z2/E2(a, t) be the corresponding
quotient cocycle. We have the following important result from [S1, Lem-
ma 3.10]:

Lemma 1.3. E2(a, t)∗ = {(0, 0)}.

We say that the cocycle (a, t) is regular if E2(a, t)∗ = {(0, 0)}. Otherwise
(a, t) is called nonregular and in this case E2(a, t)∗ = {(0, 0),∞}. According
to [L], if (a, t) is regular, then (a, t) is cohomologous to a cocycle (b, t) :
Z × T → E2(a, t) and the latter is ergodic as a cocycle with values in the
closed subgroup E2(a, t) (see also [S1]). In particular, if E2(a, t) is cocompact
in Z2 then (a, t) is regular.

The main results of this paper are the following theorems:

Main Theorem 1.4. For arbitrary irrational α ∈ T, E2(a, t) of the
cocycle (a, t) defined in (1.7) is G = {(s1, s2) ∈ Z2 | s1 ≡ s2 mod 2} for
almost all t ∈ T. In particular, (a, t) is regular for almost all t ∈ T.

Main Theorem 1.5. If α is badly approximable, then the group E2(a, t)
is G if and only if t /∈ Zα and t /∈ Zα+ 1/2.

Theorem 1.5 extends some of the results of [L]. Our methods, however,
are based on those developed in [S1] and [O].

It is not hard to see that in Theorems 1.4 and 1.5, in order for the group
of essential values to be equal to G, we must exclude t ∈ Zα and t ∈ Zα+1/2.
Note that for each nonnegative integer m, |an(x+mα)− an(x)| is bounded
by 2m because for all n > m,

|an(x+mα)− an(x)| =
∣∣∣m−1∑
i=0

f(x+ nα+ iα)−
m−1∑
i=0

f(x+ iα)
∣∣∣

≤
m−1∑
i=0

|f(x+ nα+ iα)|+
m−1∑
i=0

|f(x+ iα)| ≤ 2m.

From (1.1) we also have f(x+ 1/2) = −f(x) and therefore

an(x+ 1/2) = −an(x), ∀x ∈ T, ∀n.
Hence |an(x+ 1/2 +mα) + an(x)| is bounded from above by 2m.
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2. Period approximating sequences, partial convergents and
other preliminaries. For x ∈ R we denote the closest integer to x by [x],
and set 〈x〉 = x − [x] and ‖x‖ = |x − [x]|. Throughout, n is assumed to be
a nonnegative integer.

According to (1.5), an(x) is locally constant except for jumps of +2 at
0,−α,−2α, . . . ,−(n − 1)α and jumps of −2 at 1/2, 1/2 − α, 1/2 − 2α, . . . ,
1/2 − (n − 1)α. Also, an(x + t) is locally constant except for jumps of +2
at −t,−t − α,−t − 2α, . . . ,−t − (n − 1)α and jumps of −2 at 1/2 − t,
1/2− t− α, . . . , 1/2− t− (n− 1)α.

If we set

Sn(x) =
n−1∑
i=0

χ[0,1/2)(x+ iα) = #{0 ≤ i ≤ n− 1 | x+ iα ∈ [0, 1/2)},

then from (1.5),
an(x) = 2Sn(x)− n.

The concept of essential values corresponds to that of periods in [O]. We
have the following definition:

Definition 2.1. For fixed (k1, k2) ∈ Z2, a period approximating se-
quence is a sequence {(nl, Al)}∞l=1 where

(1) Al ⊂ T, each Al is measurable;
(2) anl

is constant on both Al and Al + t, that is, anl
(Al) = k1 and

anl
(Al + t) = k2 for all l;

(3) inf l µ(Al) > 0;
(4) ‖nlα‖ → 0.

The next lemma shows that a period approximating sequence defines an
element in E2(a, t).

Lemma 2.2. For fixed (k1, k2) ∈ Z2, if there exists a period approximat-
ing sequence {(nl, Al)}∞l=1 such that anl

(Al) = k1 and anl
(Al + t) = k2 for

all l, then (k1, k2) ∈ E2(a, t).

Proof. Given the period approximating sequence {(nl, Al)}∞l=1, for arbi-
trary A ⊂ T with µ(A) > 0, because µ(A ∩ T−nl

0 A) → µ(A), there exists a
subsequence {pl}∞l=1 ⊂ {nl}∞l=1 such that the set

(2.1) A0 =
∞⋂
l=1

(A ∩ T−pl
0 A)

has positive measure. Without loss of generality, we assume that {pl}∞l=1 is
the same as {nl}∞l=1.

Set B = lim supl→∞Al =
⋂∞
l=1

⋃∞
i=lAi; µ(B) > 0 because inf l µ(Al) > 0.
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There exist m ∈ Z and A′ ⊂ A0 such that µ(A′) > 0 and Tm0 A
′ ⊂ B

because the action T0 is ergodic. Hence

µ(B ∩ Tm0 A′) = µ(Tm0 A
′) = µ

( ∞⋂
l=1

∞⋃
i=l

(Ai ∩ Tm0 A′)
)

= µ
( ∞⋂
l=1

∞⋃
i=l

(T−m0 Ai ∩A′)
)
> 0.

Hence there exists some fixed positive number ε such that for each l, we
have µ(

⋃∞
i=l(T

−m
0 Ai ∩ A′)) > ε. In other words, for each l, there exists a

measurable set A′pl
⊂ A′ with µ(A′pl

) > ε and for all x ∈ A′pl
we have

apl′ (T
m
0 x) = k1, apl′ (T

m
0 x+ t) = k2, for some l′ ≥ l.

From the cocycle identity

apl′ (x) + am(T pl′
0 x) = am+pl′ (x) = am(x) + apl′ (T

m
0 x),

we derive

|apl′ (T
m
0 x)− apl′ (x)| = |am(T pl′

0 x)− am(x)|(2.2)

=
∣∣∣m−1∑
i=0

f(x+ iα+ pl′α)−
m−1∑
i=0

f(x+ iα)
∣∣∣.

From Tm0 (x+ t) = Tm0 (x) + t, we further derive

|apl′ (T
m
0 x+ t)−apl′ (x+ t)| =

∣∣∣m−1∑
i=0

f(x+ iα+pl′α+ t)−
m−1∑
i=0

f(x+ iα+ t)
∣∣∣.

Noting liml′→∞‖pl′α‖ = 0 as well as the fact that m is fixed and depends on
A0 only, we derive from (2.2) that apl′ (T

m
0 x)− apl′ (x)→ 0 for almost all x.

The set A′ is also fixed and depends on A0 only. Therefore there exist some
pl′ and A′′ ⊂ A′ ⊂ A0 with µ(A′′) > 0 such that

apl′ (x) = apl′ (T
m
0 x) = k1, apl′ (x+ t) = apl′ (T

m
0 x+ t) = k2, ∀x ∈ A′′.

We have T−pl′
0 A′ ⊂ A by (2.1). Hence

µ(A ∩ T−pl′
0 A ∩ {x | apl′ (x) = k1} ∩ {x | apl′ (x+ t) = k2}) > 0,

and so (k1, k2) ∈ E2(a, t).

We recall the Denjoy–Koksma inequality [O, Lemma 2], which plays a
fundamental role in the proof.

Lemma 2.3 (Denjoy–Koksma). If p, q ∈ N satisfy∣∣∣∣α− p

q

∣∣∣∣ < 1
q2

and (p, q) = 1,

then |aq(x)| < 4 for all x ∈ T, where aq(x) is defined in (1.5).
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It follows from the proof of the above lemma that every interval of the
form [i/q, (i+ 1)/q) contains exactly one of the points jα for 0 ≤ i, j ≤ q−1.
In other words, the points jα (0 ≤ j ≤ q − 1) are uniformly distributed on
the unit circle.

We denote by [a0; a1, a2, . . . , ] the continued fraction of α and call the
ai the partial quotients of α. Denote by pk

qk
the kth partial convergent of α

where k ≥ 0. It is known from [K] that
pk
qk

= [a0; a1, a2, . . . , ak],

‖qkα‖ <
1

qk+1
<

1
qk
,(2.3)

min
qk≤q<qk+1

‖qα‖ = ‖qkα‖ >
1

qk + qk+1
>

1
2qk+1

,(2.4)

qkpk−1 − pkqk−1 = (−1)k.(2.5)

Set

D(α) = {qk | pk/qk is a partial convergent of α},

q+ = min{q′ ∈ D(α) | q′ > q}, ∀q ∈ D(α).

Adapting arguments of [S1, pp. 229–230] we are able to prove the following
lemma which constitutes the first step in the entire proof:

Lemma 2.4.

E2(a, t) ∩ {(1, 3), (1,−3), (1, 1), (1,−1), (3, 1), (3,−1), (3, 3), (3,−3)} 6= ∅.

Proof. From (2.5) we derive that there are infinitely many odd q ∈ D(α).
For such q, from the Denjoy–Koksma inequality and (1.5) we derive that
aq(x) can only be ±3 or ±1. Consequently, there exists a period approxi-
mating sequence {(ql, Al)}∞l=1 which defines (k1, k2) ∈ E2(a, t) and

±(k1, k2) ∈ {(1, 3), (1,−3), (1, 1), (1,−1), (3, 1), (3,−1), (3, 3), (3,−3)}.

The proof is completed by noting that E2(a, t) is a subgroup of Z2.

A major difficulty in proving Theorem 1.4 is therefore to show that
E2(a, t) is not isomorphic to Z because we aim to show that E2(a, t) is
G for almost all t. We will use period approximating sequences. From the
properties of continued fractions we derive the following lemma:

Lemma 2.5. For any nonzero q ∈ D(α), we have

min{‖1/2− jα‖ | |j| < q} ≥ 1
24q

.



Ergodicity of Z2 extensions 241

Proof. We always have

‖1/2− jα‖ ≥ ‖2(1/2− jα)‖
2

=
‖2jα‖

2
.

We consider five cases separately under the assumption that 0 < |j| < q.

Case 1: q+ ≥ 3q. Then since
∣∣|2j| − q∣∣ < q for 0 < |j| < q, we have

‖(|2j| − q)α‖ > 1/2q from (2.4) and

‖2jα‖ = ‖(|2j|−q)α+qα‖ ≥ ‖(|2j|−q)α‖−‖qα‖ > 1
2q
− 1
q+

>
1
2q
− 1

3q
=

1
6q
.

Here we also used the inequality ‖qα‖ < 1/q+ from (2.3).

Case 2: q+ < 3q and q++ < 3q. Then since |2j| < 2q ≤ q++, from (2.4)
we have

‖2jα‖ ≥ ‖q+α‖ ≥ 1
2q++

>
1
6q
.

Case 3: q+ < 3q, q++ ≥ 3q and
∣∣q+−|2j|∣∣ < q. Then ‖(|2j|−q+)α‖ > 1

2q

from (2.4) and

‖2jα‖ = ‖(|2j| − q+)α+ q+α‖ ≥ ‖(|2j| − q+)α‖ − ‖q+α‖

>
1
2q
− 1
q++

>
1
2q
− 1

3q
=

1
6q
.

Case 4: q+ < 3q, q++ ≥ 3q,
∣∣q+ − |2j|∣∣ ≥ q and |2j| ≤ q. Then from

(2.4) we get

‖2jα‖ ≥ ‖qα‖ > 1
2q+

≥ 1
6q
.

Case 5: q+ < 3q, q++ ≥ 3q,
∣∣q+ − |2j|∣∣ ≥ q and |2j| > q. Then

q+ − |4j| < 3q − 2q = q, 2q − q+ > 2q − 3q = −q;
|2j| ≤ q+ − q ⇒ q+ − |4j| ≥ q+ − 2(q+ − q) = 2q − q+ > −q;

hence
∣∣q+ − |4j|∣∣ < q and from (2.4),

‖4jα‖ = ‖(q+− |4j|)α− q+α‖ ≥ ‖(q+− |4j|)α‖−‖q+α‖ > 1
2q
− 1
q++

≥ 1
6q

;

and ‖2jα‖ ≥ ‖4jα‖/2. The inequality is established.

3. Proof of main theorems. Following [O] we set, for each q ∈ D(α),

ε(q) = qmin{‖−t− jα‖ | |j| < q},
θ(q) = qmin{‖1/2− t− jα‖ | |j| < q}.

(3.1)

We immediately derive that ε(q) < 1 and θ(q) < 1 from the proof of the
Denjoy–Koksma inequality.
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Proposition 3.1. If
(3.2) lim sup

q∈D(α)
q→∞

min{ε(q), θ(q)} > 0,

then E2(a, t) = {(k1, k2) ∈ Z2 | k1 ≡ k2 mod 2} = G.

Proof. Let {qn}∞n=1 ⊂ D(α) be such that min{ε(qn), θ(qn)} > δ > 0 for
all n.

Recall aqn(x) as set in (1.5) is locally constant except for jumps of
+2 at 0,−α,−2α, . . . ,−(qn − 1)α and jumps of −2 at 1/2, 1/2 − α, 1/2 −
2α, . . . , 1/2− (qn − 1)α; and aqn(x+ t) is locally constant except for jumps
of +2 at −t,−t − α,−t − 2α, . . . ,−t − (qn − 1)α and jumps of −2 at
1/2− t, 1/2− t− α, . . . , 1/2− t− (qn − 1)α.

For fixed n, let I1, . . . , I4qn denote the intervals of constancy of both
aqn(x) and aqn(x + t) in cyclic order. Since aqn(·) takes on at most four
values by Lemma 2.3, there exists a union of intervals, An, such that aqn(x)
and aqn(x + t) are constant on An and µ(An) ≥ 1/16. Let A′n be the
union of intervals contiguous on the right to those of An. Note that the
distance between any discontinuity points of aqn(x) and aqn(x+ t) is given
by ‖(i− j)α‖ or ‖1/2 + (i− j)α‖ or ‖−t+ (i− j)α‖ or ‖1/2− t+ (i− j)α‖
for 0 ≤ i, j ≤ qn − 1. From (2.4), Lemma 2.5 and (3.1), we see that
min{1/24qn, ε(qn)/qn, θ(qn)/qn} is a lower bound for the lengths |Ii|, i =
1, . . . , 4qn. Since every interval of length 2/qn must contain a +2 jump point
by the discussion following Lemma 2.3, we have |Ii| < 2/qn. Therefore

|Ii|
|Ij |

>
1
2

min
{

1
24
, ε(qn), θ(qn)

}
, 1 ≤ i, j ≤ 4qn.

By setting ε = min{1/24, δ}, we thus have µ(A′n) ≥ 1
2εµ(An) ≥ 1

32ε for all n.
Next, (a, t)(qn, x) = (aqn(x), aqn(x + t)) can take on A′n only the values
(aqn(An) ± 2, aqn(An + t)) or (aqn(An), aqn(An + t) ± 2) since each interval
of A′n is contiguous on the right to one of An. Thus, we can find A′′n ⊂ A′n
such that aqn(x) and aqn(x+ t) are both constant on A′′n, µ(A′′n) ≥ 1

128ε and

(aqn(A′′n), aqn(A′′n + t)) = (aqn(An)± 2, aqn(An + t))(3.3)
or (aqn(An), aqn(An + t)± 2).

First we assume that aqn(An) = 1 and aqn(An + t) = 3 and consequently
(1, 3) lies in E2(a, t). We need to prove both (2, 0) and (0, 2) lie in E2(a, t).
From (3.3) and the Denjoy–Koksma inequality, we derive that there ex-
ists a period approximating sequence {(q′n, A′′n)}∞n=1 which defines either
(1 + 2, 3) = (3, 3) or (1 − 2, 3) = (−1, 3) or (1, 3 − 2) = (1, 1). We treat
the three cases separately.

Case 1: Suppose that apart from (1, 3) ∈ E2(a, t), we also have (3, 3) ∈
E2(a, t). Then (±2, 0) lies in E2(a, t) because E2(a, t) is a subgroup of Z2.
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Moreover, from our assumption, there exists a period approximating se-
quence {(qn, An)}∞n=1 which defines (1, 3) ∈ E2(a, t). That is, we have

(1) An ⊂ T;
(2) aqn is constant on both An and An+ t,

and aqn(An) = 1, aqn(An+ t) = 3, for all n;
(3) infn µ(An) > 0;
(4) ‖qnα‖ → 0.

Therefore there exists a period approximating sequence {(q′n, B′n)}∞n=1 which
defines (k, 1) ∈ E2(a, t) for some k ∈ {±1,±3}. That is, we have

(a) {q′n} is a subsequence of {qn}, B′n + t ⊂ A′n, µ(B′n) ≥ 1
4µ(A′n);

(b) aq′n is constant on both B′n and B′n + t,
and aq′n(B′n) = k, aq′n(B′n + t) = aq′n(A′n) = 1, for all n;

(c) infn µ(B′n) > 0;
(d) ‖q′nα‖ → 0.

Because E2(a, t) is a subgroup of Z2 under addition, we have

(1, 3) ∈ E2(a, t) and (2, 0) ∈ E2(a, t) ⇒ (k, 3) ∈ E2(a, t);

(k, 1) ∈ E2(a, t) and (k, 3) ∈ E2(a, t) ⇒ (0, 2) ∈ E2(a, t).

Consequently, both (2, 0) and (0, 2) lie in E2(a, t).

Case 2: Suppose (−1, 3) and (1, 3) both lie in E2(a, t). Then so does
(±2, 0) because E2(a, t) is a subgroup of Z2.

Moreover, there exists a period approximating sequence {(qn, An)}∞n=1

which defines (1, 3) ∈ E2(a, t), so (1)–(4) hold again.
Therefore there exists a period approximating sequence {(q′n, B′n)}∞n=1

which defines (k, 1) ∈ E2(a, t) for some k ∈ {±1,±3}, so (a)–(d) hold.
From the above arguments we derive that

(1, 3) ∈ E2(a, t) and (2, 0) ∈ E2(a, t) ⇒ (k, 3) ∈ E2(a, t);

(k, 1) ∈ E2(a, t) and (k, 3) ∈ E2(a, t) ⇒ (0, 2) ∈ E2(a, t).

Consequently, both (2, 0) and (0, 2) lie in E2(a, t).

Case 3: Suppose (1, 1) and (1, 3) both lie in E2(a, t). Then (0, 2) lies
in E2(a, t). Moreover, (2, 2) also lies in E2(a, t) and therefore (2, 0) lies
in E2(a, t).

In all three cases we have shown both (2, 0) and (0, 2) lie in E2(a, t). Along
with the assumption that (1, 3) lies in E2(a, t), we derive that E2(a, t) = G
as desired. Other possibilities when infinitely many q’s appearing in (3.2)
are odd can be proved analogously.

Next, we assume that only finitely many q’s appearing in (3.2) are odd.
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We first assume that there exists a period approximating sequence
{(qn, An)}∞n=1 which defines (2, 0) ∈ E2(a, t), so (1)–(4) hold with (2) re-
placed by

(2′) aqn is constant on both An and An + t,
and aqn(An) = 2, aqn(An + t) = 0, for all n.

Therefore from the Denjoy–Koksma inequality, there exists a period ap-
proximating sequence {(q′n, B′n)}∞n=1 which defines (k, 2) ∈ E2(a, t) for some
k ∈ {±2, 0}, so (a)–(d) hold with (b) replaced by

(b′) aq′n is constant on both B′n and B′n + t,
and aq′n(B′n) = k, aq′n(B′n + t) = aq′n(A′n) = 2, for all n.

From the above argument we derive that

(k, 2) ∈ E2(a, t) and (2, 0) ∈ E2(a, t) ⇒ (0, 2) ∈ E2(a, t).

Consequently, both (2, 0) and (0, 2) lie in E2(a, t). Along with Lemma 2.4,
we have E2(a, t) = G.

If there exists a period approximating sequence {(qn, An)}∞n=1 which de-
fines (0, 0) ∈ E2(a, t), then from the Denjoy–Koksma inequality and (3.3) we
can assume that there exists a period approximating sequence {(q′n, A′n)}∞n=1

which defines (±2, 0) or (0,±2) ∈ E2(a, t). The rest of the argument is sim-
ilar to what appeared above.

Other possibilities when only finitely many q’s appearing in (3.2) are odd
can be handled analogously.

Proposition 3.2. For every α the set of t satisfying (3.2) has full
Lebesgue measure.

Proof. For any positive δ and any q ∈ D(α), the size of the set of t with

min{‖−t− jα‖, ‖1/2− t− jα‖ | |j| < q} < δ/q

is bounded from above by const · δ. And the set of t not satisfying (3.2) has
zero measure because δ can be arbitrarily small.

Therefore for almost all t ∈ T, we have E2(a, t) = G and Theorem 1.4 is
established. Next we prove Theorem 1.5. Note that α is badly approximable
if and only if its partial quotients are bounded.

Proposition 3.3. If α is badly approximable and

(3.4) lim
q∈D(α)
q→∞

min{ε(q), θ(q)} = 0,

then t ∈ Zα or t ∈ Zα+ 1/2.

Proof. For each q ∈ D(α), let |iq|, |jq| < q be such that

ε(q) = q‖−t− iqα‖, θ(q) = q‖1/2− t− jqα‖.
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Then by assumption we have

lim
q∈D(α)
q→∞

min{q‖−t− iqα‖, q‖1/2− t− jqα‖} = 0.

Because α is badly approximable, q+/q and q++/q have a uniform upper
bound and

lim
q∈D(α)
q→∞

min{q++‖−t− iqα‖, q++‖1/2− t− jqα‖} = 0.

Also for arbitrary n1 and n2 we have the following inequalities:

‖n1α− n2α‖ ≤ ‖−t− n1α‖+ ‖−t− n2α‖,(3.5)
‖1/2 + n1α− n2α‖ ≤ ‖1/2− t− n1α‖+ ‖−t− n2α‖.(3.6)

If q++‖−t− iq+α‖ < 1/100 and q++‖1/2− t− jqα‖ < 1/100, then by (3.6),

q++‖1/2 + iq+α− jqα‖ <
1
50
.

Because
|iq+ − jq| ≤ |iq+ |+ |jq| < q+ + q ≤ q++,

this contradicts Lemma 2.5, which asserts that q++‖1/2 + iq+α − jqα‖
≥ 1/24. Hence

(3.7) lim
q∈D(α)
q→∞

q‖−t− iqα‖ = 0 or lim
q∈D(α)
q→∞

q‖1/2− t− jqα‖ = 0.

Suppose the first limit is zero. Then by (3.5),

lim
q∈D(α)
q→∞

q++‖iq+α− iqα‖ = 0.

From (2.4) we derive that for q large enough iq+ = iq, that is, iq is constant.
Hence t ∈ Zα.

Suppose the second limit in (3.7) is zero. Then

lim
q∈D(α)
q→∞

q++‖jq+α− jqα‖ = 0.

From (2.4) we derive that for q large enough jq+ = jq, that is, jq is constant.
Hence t ∈ Zα+ 1/2.

When α is not badly approximable, Merrill [M] showed that if t belongs
to an uncountable set of zero measure containing numbers well approximable
by multiples of α, the cocycle v = χ[0,t) − χ[1/2,1/2+t) is a coboundary. This
implies E2(a, t) cannot be cocompact in Z2 for such t. More importantly,
when α is not badly approximable, [C1] showed that under certain circum-
stances, there exist cocycles similar to (1.7) that are not regular.
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