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Calkin algebras for Banach spaces with finitely
decomposable quotients

by

Manuel González and José M. Herrera (Santander)

Abstract. For a Banach space X such that all quotients only admit direct decom-
positions with a number of summands smaller than or equal to n, we show that every
operator T on X can be identified with an n× n scalar matrix modulo the strictly cosin-
gular operators SC(X). More precisely, we obtain an algebra isomorphism from the Calkin
algebra L(X)/SC(X) onto a subalgebra of the algebra of n× n scalar matrices which is
triangularizable when X is indecomposable. From this fact we get some information on
the class of all semi-Fredholm operators on X and on the essential spectrum of an operator
acting on X.

1. Introduction. A Banach space is indecomposable if each comple-
mented subspace of X is finite-dimensional or finite-codimensional. Gow-
ers and Maurey [7] constructed a Banach space XGM which is hereditarily
indecomposable, i.e., every subspace of XGM is indecomposable. This ex-
ample gives a negative answer to several long-standing open problems; for
example, XGM contains no unconditional basic sequences. We refer to [1, 8]
for other examples of hereditarily indecomposable spaces. We say that a
Banach space is n-decomposable if it can be written as a direct sum of n
infinite-dimensional closed subspaces.

Here we study the structure of the Calkin algebra L(X)/SC(X), where
SC(X) stands for the strictly cosingular operators on an (infinite-dimen-
sional) Banach space X which has n-decomposable quotients but has no
(n+1)-decomposable quotients. We denote by QDn the class of such spaces
and we call the class QD1 the quotient indecomposable spaces. The space
XGM is quotient indecomposable [3]. If the dual space X∗ is hereditarily
decomposable, then X is quotient indecomposable. Moreover, the product
of n copies of QD1 spaces is a QDn space [6, Theorem 1]. However, these
examples do not exhaust the class QDn (see Remark 3.3(c)).
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We show that for each complex space X ∈ QDn, there exists an algebra
isomorphism from L(X)/SC(X) onto a subalgebra of the algebra Mn(C)
of n× n scalar matrices. Since the class Φ(X) of Fredholm operators on X
coincides with the class of those T ∈ L(X) such that the corresponding
class in L(X)/SC(X) is invertible, we identify Φ(X) with the set of all in-
vertible elements of a subalgebra of Mn(C) and we prove that the essential
spectrum of an operator T ∈ L(X) coincides with the spectrum of an n× n
matrix.

We also show that a complex Banach space is n-decomposable if and
only if there is an operator T on it whose essential spectrum admits a par-
tition into n non-empty compact subsets. Applying this result to the case
where X is an indecomposable QDn space, we deduce that the Calkin alge-
bra L(X)/SC(X) can be identified with a subalgebra of the algebra of all
upper triangular n× n matrices with constant diagonal.

For this purpose, we study the quotient spaces L(X,Y )/SC(X,Y ) when
X ∈ QDn and Y ∈ QDm. First we consider the case in which X and Y
are products of QD1 spaces. Then we apply the results to the general case.
Whenever Y ∈ QDm is isomorphic to a quotient of X ∈ QDn we show that
L(X,Y )/SC(X,Y ) can be identified with a subspace of the space of m× n
scalar matrices. From this result we obtain a representation of the Calkin
algebra L(X)/SC(X) for X a QDn space.

Some of the results and ideas behind this paper are a dual version of the
results of Ferenczi [2], who considers hereditarily indecomposable spaces and
strictly singular operators. However, our development is more closely related
to operator theory. In this way our proofs are shorter and our presentation
is more transparent. Moreover, we obtain a representation of L(X)/SC(X)
as an algebra of matrices, which gives additional information on the Calkin
algebra. We observe that our scheme could be applied to the case considered
in [2], improving in this way the results contained there.

Along the paper X,Y,Z, . . . will denote Banach spaces over the field
of real or complex numbers. All statements are valid in both cases unless
explicitly mentioned otherwise. X∗ will stand for the dual space of X and
L(X,Y ) for the (continuous linear) operators from X into Y . We set L(X) =
L(X,X), and I is the identity map. Given operators S ∈ L(Z,X) and
T ∈ L(Z, Y ), we define their product S×T ∈ L(Z,X×Y ) by (S×T )(z) :=
(S(z), T (z)).

Subspaces will always be closed and infinite-dimensional, and quotients
will be infinite-dimensional. We denote the quotient map from a Banach
space X onto a quotient Y by QY .

Given subsets A ⊆ X, B ⊆ X∗, we denote by A⊥, ⊥B, their respective
annihilators in X∗ and X.
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2. Quasi-maximal quotients. In this section we describe the quasi-
maximal quotients of a Banach space. We also give some results that we will
need later.

Definition 2.1. We say that a quotient Y of X is quasi-maximal if
there is no quotient Z of X such that QY ×QZ is surjective.

We say that the space X is quotient indecomposable if no quotient of X
can be written as the direct sum of two subspaces.

Clearly, X is quotient indecomposable if and only if every quotient of X
is quasi-maximal.

Definition 2.2. An operator T ∈ L(X,Y ) is said to be strictly cosingu-
lar , T ∈ SC(X,Y ), if there is no quotient Z of Y so that QZT is surjective.

An operator T ∈ L(X,Y ) is said to be lower semi-Fredholm, T ∈
Φ−(X,Y ), if R(T ) is closed and Y/R(T ) is finite-dimensional.

The following two results will be useful.

Proposition 2.3 [5, Corollary 1]. Suppose that Y is quotient indecom-
posable. Then for every X,

L(X,Y ) = Φ−(X,Y ) ∪ SC(X,Y ).

Lemma 2.4. Let M and N be subspaces of X. Suppose that M + N is
infinite-codimensional. Let 0 < ε < 1. Then there exists a compact operator
K ∈ L(X) with ‖K‖ < ε such that

(a) I+K induces an isomorphism from a quotient of X/N onto a quotient
of X/M ,

(b) I+K∗ induces an isomorphism from a weak∗ closed subspace of M⊥

into N⊥.

Proof. If M + N is closed, then (M + N)⊥ is a weak∗ closed subspace
contained in both M⊥ and N⊥, and X/(M +N) is a quotient of both X/M
and X/N . Thus, we get the result by setting K = 0.

Suppose that M +N is not closed; then M⊥+N⊥ is also not closed [10,
Theorem IV.4.8]. In particular, M⊥ +N⊥ is not a direct sum. Thus

inf{‖f − g‖ : f ∈M⊥, g ∈ N⊥, ‖f‖ = ‖g‖ = 1} = 0.(1)

By (1) we can find f1 ∈ M⊥, g1 ∈ N⊥ such that ‖f1‖ = ‖g1‖ = 1 and
‖f1−g1‖ < ε/22. Then we choose x1 ∈ X such that ‖x1‖ < 2 and f1(x1) = 1.

Assume that we have selected fi ∈M⊥, gi ∈ N⊥ and xi ∈ X such that

‖fi‖ = ‖gi‖ = 1, fi(xj) = δij , ‖xi‖ ‖fi − gi‖ <
ε

2i

for i, j ≤ n. We set Fn = span{x1, . . . , xn} and Gn = span{f1, . . . , fn}. Then

X = Fn ⊕ ⊥Gn, X∗ = F⊥n ⊕Gn.
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Let Pn be the projection on X with KerPn = Fn and R(Pn) = ⊥Gn. Note
that (M+Fn)+N is not closed. Again by (1) we can choose fn+1 ∈ (M+Fn)⊥

and gn+1 ∈ N⊥ such that ‖fn+1‖ = ‖gn+1‖ = 1 and

‖fn+1 − gn+1‖ <
ε

2n+2‖Pn‖
.

We take yn+1 ∈ X such that ‖yn+1‖ < 2 and fn+1(yn+1) = 1, and set
xn+1 = Pn(yn+1). Clearly fn+1(xi) = δn+1,i for i = 1, . . . , n+ 1. Moreover,

‖xn+1‖ ‖fn+1 − gn+1‖ <
ε

2n+1 .

We define an operator K: X → X by K(x) =
∑∞

n=1(gn − fn)(x)xn. Note
that ‖K‖ ≤ ∑∞n=1 ‖gn − fn‖ ‖xn‖ < ε. Therefore I + K is an isomorphism
on X.

Set M0 =
⋂∞
n=1 Ker fn and N0 =

⋂∞
n=1 Ker gn. Then we have M ⊆ M0

and N ⊆ N0, so M⊥0 ⊆ M⊥ and N⊥0 ⊆ N⊥. It is not difficult to check
that (I + K)∗fn = gn, whence Ker fn = (I + K)(Ker gn). Since I + K is
bijective, (I+K)(

⋂∞
n=1 Ker gn) =

⋂∞
n=1(I+K)(Ker gn) and (I+K)N0 = M0.

Therefore I + K induces an isomorphism from X/N0 onto X/M0, so part
(a) follows. Moreover (I +K)∗M⊥0 = N⊥0 and part (b) follows as well.

Definition 2.5. Let Y and Z be quotients of X. We say that Y and Z
are (I +K)-isomorphic if there is an operator K: X → X such that I +K
induces an isomorphism from Y onto Z.

Proposition 2.6. Let Y and Z be quotients of X and let ε > 0. Sup-
pose that there is no quotient W of Z such that the map QY × QW is
surjective. Then Y and Z have (I+K)-isomorphic quotients with ‖K‖ < ε.
This is the case, in particular , when Y is quasi-maximal.

Proof. Let Y = X/M and Z = X/N . By the hypothesis, for any infinite-
codimensional subspace L of X such that L ⊇ N , we have M+L 6= X. Thus
M +N is infinite-codimensional and Lemma 2.4 applies.

Corollary 2.7. Let X be a quotient indecomposable space and let Y
and Z be quotients of X. Then Y has a quotient isomorphic to a quotient
of Z.

Proposition 2.8. Let Y be a quasi-maximal quotient of X.

(a) An operator S ∈ L(Z,X) is strictly cosingular if and only if QY S
is. Therefore

dimL(Z,X)/SC(Z,X) ≤ dimL(Z, Y )/SC(Z, Y ).

(b) For each T ∈ L(X,Z) there is a quotient Z1 of Z and T1: Y → Z1

such that QZ1T − T1QY is strictly cosingular.
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Proof. (a) If S: Z → X is not strictly cosingular, then we have a quotient
X1 of X such that QX1S is surjective. As Y is a quasi-maximal quotient,
Proposition 2.6 applies so that there exist K ∈ L(X) with ‖K‖ < 1/2 and
(I + K)-isomorphic quotients Y1 of Y and Z1 of X1. Let U ∈ L(Y1, Z1) be
the isomorphism induced by I +K and let Q denote the quotient map from
Y onto Y1. Since ‖K‖ < 1/2, I + K is an isomorphism. Thus QQY S =
U−1QZ1(I + K)S is surjective and QY S is not strictly cosingular. For the
second part, it is enough to observe that the correspondence [S] 7→ [QY S]
defines a one-to-one map from L(Z,X)/SC(Z,X) into L(Z, Y )/SC(Z, Y ).

(b) Let T ∈ L(X,Z). If T is strictly cosingular, then we take Z1 = Z and
T1 = 0. Suppose that T is not strictly cosingular. Then there is a quotient
W of Z such that QWT is surjective. Now Y is a quasi-maximal quotient, so
Proposition 2.6 applies to QWT and QY , and we get quotients Y1 of Y and
Z1 of W , a compact operator K: X → X and an isomorphism φ: Y1 → Z1 so
that QZ1T (I +K) = φQY1 . Let q denote the quotient map from Y onto Y1.
Set T1 = φq. Then QZ1T − T1QY = −QZ1TK ∈ SC(X,Z1).

3. Operators on fundamental QDn spaces. Recall that X and Y are
quotient incomparable if no quotient of X is isomorphic to a quotient of Y ,
and X is said to be n-decomposable if X = X1 ⊕ . . .⊕Xn, with X1, . . . ,Xn

subspaces of X.

Definition 3.1. We say that a Banach space X is a QDn space,
X ∈ QDn, if X has an n-decomposable quotient, but it has no (n + 1)-
decomposable quotient.

We say that X is quotient indecomposable if it is a QD1 space.

Definition 3.2. A QDn space X is fundamental if it is a product X =∏n
i=1Xi of quotient indecomposable spaces such that, for every i, j=1, . . . ,n,

either Xi = Xj , or Xi,Xj are quotient incomparable.
For a fundamental QDn space X =

∏n
i=1Xi including exactly k different

factors, we define the characteristic of X as

χ(X) := (n1, . . . , nk),

where n1 ≤ . . . ≤ nk are the times that each space appears in the product,
arranged in increasing order.

Remark 3.3. (a) The definition of a fundamental QDn space looks very
restrictive, since we require some spaces to be equal, not just isomorphic.
However, it will allow us to simplify some arguments.

(b) It follows readily from the definition that X ∈ QDn if and only if it
has a quasi-maximal quotient isomorphic to a fundamental QDn space.

(c) The product of n quotient indecomposable spaces is a QDn space [6,
Theorem 1]. However, these products do not exhaust the class of all QDn
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spaces: for each n there exists a hereditarily indecomposable space X̂ which
is a QDn space.

Indeed, it was proved by Ferenczi [3, Appendix] that for each n ∈ N,
there exist complex spaces X1, . . . ,Xn such that every quotient of each Xi

is hereditarily indecomposable, and a subspace Z of X1 × . . .×Xn so that

X̂ :=
X1 × . . .×Xn

Z

is hereditarily indecomposable. Moreover, X̂ has a quotient which is n-
decomposable. Thus X̂ is a QDn space.

Let X =
∏n
j=1Xj ∈ QDn and Y =

∏m
i=1 Yi ∈ QDm be fundamental

spaces and let Ψ : X → Y be an operator. We will identify Ψ with the m×n
matrix (Ψij), where Ψij : Xj → Yi is the ith coordinate of the restriction of Ψ
to Xj . The operator Ψ is strictly cosingular if and only if every Ψij is strictly
cosingular; in this case we will say that (Ψij) is a strictly cosingular matrix .
In the case n = m, we say that Ψ is diagonal when Ψij = 0 for i 6= j.

We denote by MX,Y the set of all m×n scalar matrices A = (aij) ∈Mm,n

such that aij = 0 when Xj and Yi are quotient incomparable. Sometimes
we will write Mm,n(C) to emphasize that we are considering the field of
complex numbers.

If χ(X) = (n1, . . . , nk), then it is clear that

dimMX,X = n2
1 + . . .+ n2

k.

Given a product space X =
∏n
j=1Xj and a permutation σ of {1, . . . , n}

such that Xσ(i) = Xi for every i, we denote by Vσ the operator defined
by Vσ(x1, . . . , xn) := (xσ(1), . . . , xσ(n)), and we say that Vσ is an allowable
permutation of the factors of X.

If A ∈ Mm,p we denote by (A|0) ∈ Mm,p+q the matrix whose first p
columns are those of A and the rest of the entries are 0.

Proposition 3.4. Let X =
∏n
j=1Xj ∈ QDn and Y =

∏m
i=1 Yi ∈ QDm

be fundamental spaces. Suppose that Y is isomorphic to a quotient of X.
Then there exists a quotient Z of Y which is a fundamental QDm space
and a surjective operator from X onto Z with matrix (D|0)Vσ, where D is
an m×m diagonal surjective matrix and Vσ is an allowable permutation of
the factors of X.

Proof. Let Ψ = (Ψij): X → Y be a surjective operator, where Ψij ∈
L(Xj, Yi). Clearly, for each i there is at least one j so that Ψij is not strictly
cosingular. Hence Ψij is lower semi-Fredholm, by Proposition 2.3. Thus, if
we pass to a finite-codimensional subspace of Yi, which we also denote by Yi,
then there exists a surjective map qi: Xj → Yi. We take as Z the product
of these new spaces Yi.
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Suppose that Ψij and Ψkl are not strictly cosingular. Then the definition
of a fundamental QDn space and Corollary 2.7 imply that

Yi = Yk if and only if Xj = Xl.(2)

Since the sum of a lower semi-Fredholm operator and a strictly cosingular
operator is lower semi-Fredholm [11, Chap. V, Theorem 3.4], the operator
from the product of copies of Xj into the product of copies of Yi induced
by Ψ is lower semi-Fredholm. Thus, taking into account that the product
of k quotient indecomposable spaces is a QDk space [6, Theorem 1], we
conclude that the number of copies of Yi in Y is smaller than or equal to
the number of copies of Xj in X.

It is enough to select a suitable Vσ and take as D a diagonal matrix with
a number of copies of qi on the diagonal as necessary.

Remark 3.5. Similarly to [2, Lemma 5], we could have proved a re-
sult stronger than Proposition 3.4. Namely, for each couple of fundamental
spaces X ∈ QDn, Y ∈ QDm and each surjective operator Ψ : X → Y , there
exist a quotient Z of Y which is a fundamental QDm space, an automor-
phism U of Z and a permutation Vσ of the factors of X so that

UQZΨVσ = (D +K|B),

where D is a diagonal surjective m ×m matrix, K is a strictly cosingular
m×m matrix and B is an m× (n−m) matrix.

However, we do not need this result in its full generality.

Remark 3.6. Let Y =
∏m
i=1 Yi ∈ QDm and X =

∏n
j=1Xj ∈ QDn be

fundamental spaces. Suppose that there exists a surjective operator from X
onto Y determined by a matrix (D|0), where D = diag(q1, . . . , qm) is an
m ×m diagonal matrix. Let A ∈ MX,Y . Then aij = 0 whenever Xi 6= Xj.
We will denote by DA the operator from X into Y with entries aijqi.

Moreover, if χ(X) = (n1, . . . , nk) and χ(Y ) = (m1, . . . ,ml), then

dimMX,Y = m1n1 + . . .+mlnl.

The following result was essentially proved in [5]:

Proposition 3.7. Let Z be a complex quotient indecomposable space.
Then for every surjective operator q: Z → X we can write

L(Z,X) = Cq ⊕ SC(Z,X).

Proof. Observe that there exists an isomorphism Ψ from a quotient Y of
Z onto X so that q = ΨQY . By [5, Theorem 4], L(Z, Y ) = CQY ⊕SC(Z, Y ).
Let T ∈ L(Z,X). Then Ψ−1T = λQY + K for some λ ∈ C and some
K ∈ SC(Z, Y ). Thus T = λq + ΨK with ΨK ∈ SC(Z, Y ).

Proposition 3.8. Let X ∈ QDn and Y ∈ QDm be complex fundamen-
tal spaces. Suppose that there exists a surjective operator from X onto Y with
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matrix (D|0), where D is an m ×m diagonal matrix. Then for every T ∈
L(X,Y ) there exist a matrix A ∈MX,Y (C) and an operator K ∈ SC(X,Y )
such that

T = DA+K.

Proof. Let (Tij) be the matrix associated to T . Set D = diag(q1, . . . , qm).
Then by Proposition 3.7, Tij = aijqi + Kij , where aij ∈ C and Kij ∈
SC(Xj , Yi). Moreover, by Remark 3.6, aij = 0 for Xi 6= Xj. In matrix
terms, this is equivalent to the equality

(Tij) = diag(q1, . . . , qm)(aij) + (Kij),

where A = (aij) ∈MX,Y (C) and K = (Kij) ∈ SC(X,Y ).

4. Operators on QDn spaces. Here we show that some properties of
the operators on a QDn space X can be derived from those obtained for a
fundamental QDn space. The key will be Theorem 4.8, in which we use a
filter defined in the class of all fundamental quotients of X (see Definition 4.1
below) to identify matrices and operators, modulo the strictly cosingular
operators.

Definition 4.1. Let X ∈ QDn. A fundamental quotient of X is a pair
(X̃, U), where X̃ is a quotient of X and U is an isomorphism from X̃ onto
a fundamental QDn space

∏n
i=1Xi. We usually write X̃ '∏n

i=1Xi or sim-
ply X̃.

Let X̃1 '
∏n
i=1Xi and X̃2 '

∏n
i=1 Yi be two fundamental quotients

of X. We say that X̃1 is a diagonal quotient of X̃2 if there exists a diagonal
surjective matrix from

∏n
i=1 Yi onto

∏n
i=1Xi.

We write X̃1 ≤ X̃2 when
∏n
i=1Xi is a diagonal quotient of

∏n
i=1 Yi up

to a permutation of the factors.

Remark 4.2. Every fundamental quotient (X̃, U) ofX is quasi-maximal.

Proposition 4.3. Every X ∈ QDn has a fundamental quotient.

Proof. By definition, X has a quotient
∏n
i=1Xi with Xi quotient inde-

composable for every i. If Xi and Xj are not quotient incomparable, then
passing to further quotients, we can suppose that they are isomorphic. If Xi

and Xj are quotient incomparable, then so are their quotients. By an iter-
ative process of passing to further quotients we get a product with factors
either isomorphic or quotient incomparable. Applying suitable isomorphisms
in the factors we get a fundamental QDn space.

For the convenience of the reader we recall some basic facts about prod-
uct spaces.



Calkin algebras 287

Lemma 4.4. Let M and Mi, i = 1, . . . , n, be subspaces of X. Let qi:
X → X/Mi be the quotient maps and q = q1 × . . .× qn. Then

(a) The map q is surjective if and only if M⊥1 + . . .+M⊥n is a direct sum.
(b) Suppose that q is surjective and that M+Mi is infinite-codimensional

for every i. Then there exist infinite-codimensional subspaces Li ⊇ Mi and
a surjective map from X/M onto

∏n
i=1(X/Li).

Proof. (a) Observe that, via the natural identifications (X/Mi)∗ = M⊥i ,
the dual map q∗: M⊥1 × . . . ×M⊥n → X∗ is given by q∗(f1, . . . , fn) = f1 +
. . .+ fn. Now, q is surjective if and only if q∗ is injective with closed range,
and this amounts to M⊥1 + . . .+M⊥n being a direct sum.

(b) Since q: X → ∏n
i=1X/Mi is surjective, M⊥1 + . . . + M⊥n is a direct

sum. Thus there exists 0 < c < 1 such that for every fi ∈M⊥i , i = 1, . . . , n,
we have ‖∑n

i=1 fi‖ ≥ c
∑n

i=1 ‖fi‖.
The sums M +Mi are infinite-codimensional. Thus by Lemma 2.4 there

exist subspaces Ni ⊇ M and Li ⊇ Mi, and compact operators Ki: X → X
with ‖Ki‖ < c/2 so that (I +Ki)∗L⊥i = N⊥i .

Let fi ∈ L⊥i , i = 1, . . . , n. Then
∥∥∥

n∑

i=1

(I +K∗i )(fi)
∥∥∥ ≥

∥∥∥
n∑

i=1

fi

∥∥∥−
∥∥∥

n∑

i=1

K∗i (fi)
∥∥∥ ≥ (c/2)

n∑

i=1

‖fi‖.

Thus the subspaces N⊥i form a direct sum. Hence p: X → ∏n
i=1(X/Ni) is

onto, by (a). As N⊥i ⊆ M⊥, p admits a factorization p = p0QX/M through
X/M . Since I +Ki induces an isomorphism Ui from X/Ni onto X/Li and p
is surjective, composing p0 and U1 × . . .× Un we get a surjective map from
X/M onto

∏n
i=1(X/Li).

Proposition 4.5. Let X ∈ QDn and Y ∈ QDm. Suppose that Y is
isomorphic to a quotient of X (so that m ≤ n). Let X̃ and Ỹ be fundamental
quotients of X and Y , respectively. Then Y has a fundamental quotient Z̃
such that Z̃ ≤ Ỹ and there exists a surjective operator from X̃ onto Z̃
determined by a diagonal surjective matrix.

Proof. Set X̃ ' ∏n
j=1Xj and Ỹ ' ∏m

i=1 Yi. All spaces in the state-

ment are isomorphic to quotients of X, so we can write X̃ = X/M and
Yi ' X/Ni ' Y/Li for suitable subspaces. Since X̃ = X/M is quasi-
maximal, M +Ni is infinite-codimensional for every i. So we can apply
Lemma 4.4 to the onto operator X → ∏m

i=1X/Ni, and find a surjection
X/M → ∏m

i=1(X/Vi) for some Vi ⊇ Ni. Now X/Vi ' Y/Wi = Zi for some
Wi ⊇ Li, and we have a surjective operator X/M → ∏m

i=1 Zi. The surjec-
tive operator Λ: Y →∏m

i=1 Yi →
∏m
i=1 Zi factorizes through an isomorphism

U : Z̃ = Y/KerΛ ' ∏m
i=1 Zi so that (Z̃, U) is a fundamental quotient of Y
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and Z̃ ≤ Ỹ . The map q: X̃ = X/M → ∏m
i=1 Zi ' Z̃ is surjective and it is

enough to apply Proposition 3.4.

Corollary 4.6. Let X ∈ QDn. Then the relation ≤ defines a filter
on the set of all fundamental quotients of X; i.e., given two fundamental
quotients X̃1, X̃2, there exists a fundamental quotient X̃3 such that X̃3 ≤ X̃1
and X̃3 ≤ X̃2.

Proof. Taking Y = X, X̃ = X̃1 and Ỹ = X̃2 in Proposition 4.5, we get
a fundamental quotient X̃3 ≤ X̃2 and a diagonal surjective matrix from X̃1
onto X̃3. Thus X̃3 ≤ X̃1.

For a fundamental quotient X̃ '∏n
j=1Xj we set χ(X̃) = χ(

∏n
j=1Xj).

Corollary 4.7. Let X be a QDn space and let X̃1 and X̃2 be funda-
mental quotients of X. Then χ(X̃1) = χ(X̃2).

Proof. By Corollary 4.6, it is enough to consider the case X̃1 ≤ X̃2.
After a permutation of the factors, we can suppose that there is a diagonal
surjective matrix from X̃2 '

∏n
j=1Xj into X̃1 '

∏n
j=1 Yj . Then, by (2),

Xi = Xj if and only if Yi = Yj , which yields the assertion.

Theorem 4.8. Let X ∈ QDn and Y ∈ QDm be complex spaces. Suppose
that Y is isomorphic to a quotient of X. Let X̃ '∏n

j=1Xj and Ỹ '∏m
i=1 Yi

be fundamental quotients of X and Y , respectively , so that there exists a
surjective operator from X̃ onto Ỹ with matrix (D|0), where D is a diagonal
matrix. Then the map

ψ: MX̃,Ỹ (C)→ L(X, Ỹ )/SC(X, Ỹ )

defined by ψ(A) = [DAQX̃ ] is bijective. In particular ,

dimL(X,Y )/SC(X,Y ) ≤ dimMX̃,Ỹ .

Proof. Let T ∈ L(X,Y ). Since X̃ is quasi-maximal, we can apply Propo-
sition 2.8(b) with Y = Yi. Then we obtain quotients QZi : Yi → Zi and
operators Si: X̃ → Zi such that SiQX̃ − QZiT ∈ SC(X,Zi). Passing to
further quotients of Zi, we can suppose that

∏m
i=1 Zi is a fundamental

QDm space. Let Z̃ ' ∏m
i=1 Zi be the corresponding fundamental quo-

tient. Taking S =
∏m
j=1 Sj and QZ̃ ∈ L(Ỹ , Z̃), where QZ̃(y1, . . . , ym) =

(QZ1(y1), . . . , QZm(ym)), we obtain

SQX̃ −QZ̃T ∈ SC(X, Z̃).(3)

Applying Proposition 3.8 to X̃, Z̃ and D1 = QZ̃D, we have S = D1A +
K1 with A ∈ MX̃,Ỹ (C) and K1 ∈ SC(X̃, Z̃). Putting this in (3), we get

D1AQX̃ − QZ̃T = QZ̃(DAQX̃ − T ) ∈ SC(X, Z̃). As Z̃ is quasi-maximal,
DAQX̃ − T ∈ SC(X, Ỹ ) by Proposition 2.8 and ψ is onto.
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Now, if DAQX̃ ∈ SC(X, Ỹ ), then DA ∈ SC(X̃, Ỹ ), i.e., φiaij is strictly
cosingular for every i, j. As every φi is onto, it follows that aij = 0 for every
i, j and A = 0, so ψ is injective. Hence

dimL(X,Y )/SC(X,Y ) ≤ dimL(X, Ỹ )/SC(X, Ỹ ) = dimMX̃,Ỹ (C),

by Proposition 3.8.

Remark 4.9. Given complex spaces X ∈ QDn and Y ∈ QDm, with Y
isomorphic to a quotient of X, Proposition 4.5 ensures the existence of
fundamental quotients X̃, Ỹ under the hypothesis of Theorem 4.8.

Remark 4.10. The map ψ: MX̃,Ỹ (C) → L(X, Ỹ )/SC(X, Ỹ ) that ap-

pears in Theorem 4.8 depends on the choice of the fundamental quotients X̃
and Ỹ . However, for different choices of fundamental quotients X̃1, X̃2 and
Ỹ1, Ỹ2, the subspaces of m× n matrices MX̃1,Ỹ1

(C) and MX̃2,Ỹ2
(C) coincide

up to permutation.

Denote by ψX̃ the isomorphism ψ of Theorem 4.8 when X = Y , X̃ = Ỹ
and D = I.

Theorem 4.11. Let X ∈ QDn be a complex space. Let X̃ '∏n
j=1Xj be

a fundamental quotient of X. Then the map

Θ: L(X)/SC(X)→MX̃,X̃

defined by Θ[T ] = ψ−1
X̃

[QX̃T ] is an algebra isomorphism from L(X)/SC(X)
onto a subalgebra of MX̃,X̃ .

Proof. First of all, Θ is injective by Proposition 2.8(a) and Theorem 4.8.
In view of Theorem 4.8, it just remains to prove the multiplicativity.
Let [T1], [T2] ∈ L(X)/SC(X) with Θ[T1] = A1 and Θ[T2] = A2. Then

QX̃T1−A1QX̃ = S1 and QX̃T2−A2QX̃ = S2 with S1, S2 ∈ SC(X, X̃). Thus

QX̃T1T2 −A1A2QX̃ = A1S2 + S1T2 ∈ SC(X, X̃)

and Θ([T1][T2]) = Θ([T1T2]) = A1A2 = Θ[T1]Θ[T2].

5. Spectral theory on QDn spaces. Recall that an operator T ∈
L(X,Y ) is said to be semi-Fredholm if R(T ) is closed and either Ker(T ) or
dimY/R(T ) is finite. For a semi-Fredholm operator T we define the index
by

ind(T ) := dim Ker(T )− dimY/R(T ) ∈ Z ∪ {±∞}.
It is well known that the index is a continuous map [10, Theorem IV.5.17].

The operator T ∈ L(X,Y ) is said to be Fredholm if it is semi-Fredholm
with finite index. The essential spectrum of T ∈ L(X) is defined as follows:

σe(T ) = {λ : λI − T is not Fredholm}.
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The following result follows from the fact that the strictly cosingular
operators SC form a perturbation ideal in the sense of Heuser [9, Section
51].

Proposition 5.1. An operator T ∈ L(X) is Fredholm if and only if
[T ] is invertible in L(X)/SC(X). In particular , σe(T ) = σ([T ]) for every
T ∈ L(X).

Proposition 5.2. Let X be a QDn space. Then ind(T ) = 0 for every
semi-Fredholm operator T on X.

Proof. We suppose first that X is complex. In this case it is enough to
observe that ind(T−λI) is a continuous discrete function in λ, that C\σe(T )
is connected by Proposition 5.1 and Theorem 4.11, and that ind(T−λI) = 0
for |λ| > ‖T‖.

Suppose now that X is a real space and that XC denotes its complexi-
fication. Then XC is isomorphic to X ⊕X as a real space, thus it is a real
QD2n space [6, Theorem 2]. As every complex quotient of XC is also a real
quotient, XC is a complex QDm space for some m ≤ 2n. If TC is the com-
plexification of a semi-Fredholm operator T , then TC is also semi-Fredholm
and ind(TC) = ind(T ). By the first part ind(TC) = 0, so ind(T ) = 0.

Corollary 5.3. Suppose that X is a QDn space for some n. Then X
is isomorphic neither to any of its proper subspaces nor to any of its proper
quotients.

Proof. Let Q: X → Y be a quotient and let U : Y → X be an isomor-
phism. Then UQ is a semi-Fredholm operator on X. By Proposition 5.2,
UQ is Fredholm of index 0. As UQ is surjective, KerQ = 0 and Q = I. The
proof for the case of subspaces is analogous.

The following results are a consequence of Theorem 4.11.

Proposition 5.4. Let X be a complex QDn space and let T ∈ L(X).
Then

(a) |σe(T )| ≤ n.
(b) T is not Fredholm if and only if there exists a non-strictly cosingular

operator U ∈ L(X) such that TU ∈ SC(X).

Proof. (a) It is enough to observe that σe(T ) coincides with σ([T ]) by
Proposition 5.1, which is the set of eigenvalues of the scalar matrix Θ[T ] by
Theorem 4.11.

(b) If T is Fredholm, then [T ] ∈ L(X)/SC(X) is invertible, and TU ∈
SC(X) implies U ∈ SC(X).

Conversely, suppose that T is not Fredholm and [T ] 6= 0. Let p be the
minimal polynomial of [T ]. Since [T ] is not invertible, it follows that p(0) = 0
and there exists a polynomial q with deg q = deg p − 1 such that Tq(T ) =



Calkin algebras 291

p(T ). By the definition of a minimal polynomial, U = q(T ) cannot be strictly
cosingular. Since TU = p(T ) ∈ SC(X), the result is proved.

For a complex QDn space X, Theorem 4.11 allows us to identify the
Calkin algebra L(X)/SC(X) with a subalgebra of MX̃,X̃ . The next result
provides additional information on such subalgebras.

Theorem 5.5. Let n ∈ N. A complex space X is n-decomposable if and
only if there exists an operator T ∈ L(X) such that |σe(T )| = n.

Proof. Suppose that X = X1 ⊕ . . .⊕Xn. Then

T (x1, x2, . . . , xn) := (x1, 2x2, . . . , nxn)

defines an operator on T ∈ L(X) such that σe(T ) = {1, 2, . . . , n}.
Conversely, let T ∈ L(X) be such that σe(T ) = {λ1, . . . , λn} with λi 6= λj

for i 6= j. By [4, Theorem V.1.8], λI − T is invertible on C \ {λ1, . . . , λn}
with the possible exceptions of isolated points.

We select closed simple curves C1, . . . , Cn on C \ σ(T ) which do not
intersect so that each λi is in the interior of Ci and every point in σ(T ) is
contained in the interior of Cj for some j.

The analytic operational calculus [12, Section V.8] allows us to define

Pi :=
�

Ci

(λI − T )−1 dλ, i = 1, . . . , n.

Then each Pi is a projection and X = R(P1) ⊕ . . . ⊕ R(Pn) [12, Theorem
V.9.1]. Thus, X is n-decomposable.

Remark 5.6. Clearly, the proof of Theorem 5.5 shows that a complex
Banach space is n-decomposable if and only if there exists an operator T ∈
L(X) such that σe(T ) has n components, i.e., σe(T ) admits a partition into
n non-empty compact subsets.

The following example shows that in Proposition 5.4 it is not enough to
suppose X indecomposable in order to get |σe(T )| = 1 for every T ∈ L(X).

Example [8, (4.2)]. There exists a complex indecomposable space X
and an operator S ∈ L(X) such that σe(S) = {λ ∈ C : |λ| = 1}. Moreover
ind(S) = −1.

An interesting question is to describe the subalgebras of Mn(C) which
can be identified with the Calkin algebra L(X)/SC(X) for some QDn space
X, as in Theorem 4.11.

In the case of an indecomposable QDn space X, Theorem 5.5 implies
that |σe(T )| = 1 for every T ∈ L(X). Therefore, L(X)/SC(X) can be
identified by Theorem 4.11 with a subalgebra A of Mn(C) such that each
matrix in A has only one eigenvalue. A trivial example of such a subalgebra
is A = {λI : λ ∈ C}. A second example is the algebra of all upper triangular
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matrices in Mn(C) with constant diagonal. We denote this algebra by Un.
Note that the first example is a subalgebra of Un. Let us see that the Kolchin
Theorem on unipotent algebraic groups allows us to show that up to a change
of basis all the subalgebras A are of this kind.

We recall that a matrix A ∈ Mn(C) is said to be unipotent if its sole
eigenvalue is 1, i.e. if its characteristic polynomial is qA(x) = (x− 1)n.

Theorem 5.7. Let X be an indecomposable QDn space. Then the Calkin
algebra L(X)/SC(X) can be identified with a subalgebra of Un.

Proof. Let A be the subalgebra of Mn(C) identified with L(X)/SC(X)
by Theorem 4.11 and let G be the invertible elements in A. We claim that
the set Gu of all unipotent elements of G is a subgroup.

Each matrix A ∈ A has a unique eigenvalue, which we denote by α(A).
Thus, qA(x) = (x − α(A))n is the characteristic polynomial of A and it is
easy to see that

α(A) =
1
n

trace(A), α(A)n = det(A).

Therefore the assignment A 7→ α(A) defines a continuous map α from G
into C satisfying (α(A)α(B)α(AB)−1)n = det(A) det(B) det(AB)−1 = 1.
This implies that the function f : G×G→ C, defined by

f(A,B) = α(A)α(B)α(AB)−1,

takes its values in the finite set of nth roots of unity. The function f is con-
tinuous and G×G is connected, so f(G×G) must be a point. As f(I, I) = 1,
it follows that α(A)α(B) = α(AB) for every A,B in G, and the claim is
proved.

Since Gu is a subgroup of G, we can apply the Kolchin Theorem [13,
Theorem 8.2] to Gu, and we deduce that there exists an invertible matrix
B ∈ Mn(C) such that B−1GuB is a subgroup of the group Un of all upper
triangular unipotent matrices in Mn(C). The algebras generated by Gu and
Un in Mn(C) are A and Un, respectively. Thus, B−1AB ⊆ Un, as we wanted
to prove.
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