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Abstract. In the earlier paper [Proc. Amer. Math. Soc. 135 (2007)], we studied
solutions g : N→ C to convolution equations of the form

ad ∗ g∗d + ad−1 ∗ g∗(d−1) + · · ·+ a1 ∗ g + a0 = 0,

where a0, . . . , ad : N → C are given arithmetic functions associated with Dirichlet series
which converge on some right half plane, and also g is required to be such a function. In
this article, we extend our previous results to multidimensional general Dirichlet series of
the form

P
x∈X f(x)e−sx (s ∈ Ck), where X ⊆ [0,∞)k is an additive subsemigroup. If

X is discrete and a certain solvability criterion is satisfied, we determine solutions by an
elementary recursive approach, adapting an idea of Fečkan [Proc. Amer. Math. Soc. 136
(2008)]. The solution of the general case leads us to a more comprehensive question: Let
X be an additive subsemigroup of a pointed, closed convex cone C ⊆ Rk. Can we find
a complex Radon measure on X whose Laplace transform satisfies a given polynomial
equation whose coefficients are Laplace transforms of such measures?

1. Results on general Dirichlet series and Laplace transforms.
Let k ∈ N and X ⊆ [0,∞)k be an infinite additive semigroup of k-tuples
x = (x1, . . . , xk) with 0 = (0, . . . , 0) ∈ X. Assume until further notice that
X is discrete (i.e., without a cluster point in Rk) and hence countable.
In this situation, the set A = A(X) := CX of all arithmetic functions
g : X → C is a commutative complex algebra, called the Dirichlet algebra
of X, under the usual linear operations and the convolution ∗ : A2 → A as
the algebra multiplication which for arbitrary functions g, h ∈ A is defined
by

(g ∗ h)(x) =
∑

x′,x′′∈X
x′+x′′=x

g(x′)h(x′′) (x ∈ X).
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110 H. Glöckner et al.

The unit element u ∈ A under ∗ is given by u(0) = 1 and u(x) = 0 for
non-zero x ∈ X, and the multiplicative group A∗ of A with respect to the
convolution consists of all functions g ∈ A satisfying g(0) 6= 0. For brevity,
we write g∗j for the convolution g ∗ · · · ∗ g with j factors g ∈ A, g∗0 := u,
and g−1 for the inverse of g, i.e., g ∗ g−1 = u.

Given g ∈ A, consider the k-dimensional Dirichlet series

(1.1) g̃(s) =
∑
x∈X

g(x)e−x·s (s ∈ Ck)

with the inner (1) product x · s = x1s1 + · · ·+xksk for x = (x1, . . . , xk) ∈ X
and s = (s1, . . . , sk) ∈ Ck. For fixedX, these multidimensional series form an
algebra which is isomorphic to A under ˜: g 7→ g̃ for g̃(s) · h̃(s) := (g∗h)˜(s).

The aim of this paper is to investigate existence and analytic behavior
of the solutions g ∈ A to the equation Tg = 0 for convolution polynomials
T : A→ A of degree d ∈ N defined by

(1.2) Tg = ad ∗ g∗d + ad−1 ∗ g∗(d−1) + · · ·+ a1 ∗ g + a0

with given arithmetic functions ad, ad−1, . . . , a1, a0 ∈ A, ad 6= 0.
Our first theorem concerns the existence of solutions g ∈ A to Tg = 0.

Theorem 1. For T as in (1.2), let the polynomial f(z) ∈ C[z] be defined
by

(1.3) f(z) = ad(0)zd + ad−1(0)zd−1 + · · ·+ a1(0)z + a0(0).

If z0 is a simple zero of f(z), then there exists a uniquely determined solution
g ∈ A to Tg = 0 satisfying g(0) = z0. If f(z) has no simple zeros, then
Tg = 0 need not possess any solution. In any case Tg = 0 has at most d
solutions g ∈ A.

Section 2 contains an elementary proof extending that of [9] from A =
A(log N) to A(X) with X ⊆ [0,∞)k a general discrete additive semigroup.

Given x = (x1, . . . , xk) ∈ Rk, define its size as |x| := |x1|+ · · ·+ |xk|. For
the study of absolute convergence of Dirichlet series g̃(s) it is convenient to
consider the Banach algebras Ar of arithmetic functions g ∈ A with bounded
r-norm

‖g‖r :=
∑
x∈X
|g(x)|e−r|x|

for r ∈ R, and also the algebra

A∞ :=
⋃
{Ar : r ∈ R}.

(1) Because x is real, we omit complex conjugation.
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Let Hr := {s ∈ C : Re s > r} and Hr be its closure. Given g ∈ Ar, the series
g̃(s) converges absolutely for s ∈ Hk

r . We shall use the same symbol, g̃(s),
also for the value of the sum.

The next theorem guarantees that under suitable conditions solutions
g ∈ A to Tg = 0 belong to A∞, if ad, . . . , a0 ∈ A∞.

Theorem 2. Suppose that ad, ad−1, . . . , a1, a0∈A∞ in (1.2), with ad 6=0.
If z0 is a simple zero of f(z) in (1.3), then there exists a solution g ∈ A∞
to Tg = 0 satisfying g(0) = z0.

In Section 3 we give an elementary proof of Theorem 2 extending that
of Fečkan [5] in the case A = A(log N) to the multidimensional case A(X).

As in [9], Theorem 2 is the special case

m = 1, F : Cd+1 × C→ C, F (w0, . . . , wd, z) =
d∑
j=0

wjz
j

of a multidimensional version:

Theorem 3. For open subsets V ⊆ Cn and Z ⊆ Cm, let

F : V × Z → Cm, (v, z) 7→ F (v, z),

be a holomorphic function and (v0, z0) ∈ V × Z be such that F (v0, z0) = 0.
Let a1, . . . , an ∈ A = A(X) satisfy the condition (a1(0), . . . , an(0)) = v0.
If the differential ∂z F (v0, z) at z = z0 is in GLm(C), then there exists a
unique m-tuple (g1, . . . , gm) ∈ Am such that

(g1(0), . . . , gm(0)) = z0,(1.4)

F [a1, . . . , an, g1, . . . , gm] = 0.(1.5)

If , in addition, a1, . . . , an ∈ A∞, then also g1, . . . , gm ∈ A∞ and both

(1.6) (ã1(s), . . . , ãn(s), g̃1(s), . . . , g̃m(s)) ∈ V × Z
and

(1.7) F (ã1(s), . . . , ãn(s), g̃1(s), . . . , g̃m(s)) = 0

hold for all s ∈ Hk
r , with r sufficiently large. In this case, also (1.4), (1.6)

and (1.7) uniquely determine (g1, . . . , gm) ∈ Am
∞.

Here the left hand side of (1.5) is obtained via multivariable holomorphic
functional calculus (see [2] for a recent exposition in the required generality).

In Section 4 a proof of Theorem 3 is given based on a version of the
implicit function theorem proved by Biller [2] and techniques taken from
the theory of commutative topological algebras.

The results concerning generalized Dirichlet series are special cases of
results concerning Laplace transforms (proved in Section 6), which we out-
line now. The necessary background material concerning convex cones and
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Laplace transforms (of positive measures) needed here can be found, e.g., in
[10] or [8].

In the following, let C ⊆ Rk be a non-empty closed convex cone (2).
Assume that C is pointed (3) and generating (4). Since C is pointed, the

dual cone C? := {y ∈ Rk : xy ≥ 0 for all x ∈ C} has non-empty interior
(see [10, Proposition V.1.5(ii)]). We pick a y0 ∈ (C?)◦. Then xy0 > 0 for
each x ∈ C \ {0} (cf. [10, Proposition V.1.4(v)]).

Let X ⊆ C be an arbitrary (not necessarily discrete or countable) addi-
tive subsemigroup with 0 ∈ X, equipped with a Hausdorff topology which
makes the inclusion map X → Rk continuous and turns X into an additive
topological semigroup (i.e., addition X ×X → X is continuous).

Consider the complex vector space M(X) of all complex (not necessarily
bounded) Radon measures µ on X, defined on the δ-ring δ(X) generated by
the set of compact subsets of X (see Section 5 for our measure-theoretic set-
ting). For µ ∈M(X), let |µ| ∈M+(X) denote the associated total variation
measure. Given r ∈ R, let Mr(X) be the set of all µ ∈M(X) such that

‖µ‖r :=
�

X

e−rxy0 d|µ|(x) <∞.

To emphasize the dependence on y0, we occasionally write M (y0)
r (X) instead

of Mr(X) and ‖µ‖(y0)
r instead of ‖µ‖r. Then Mr(X) is a vector subspace of

M(X) and the convolution of measures turns Mr(X) into a complex algebra.
In fact, (Mr(X), ‖ · ‖r) is a commutative Banach algebra with unit element
δ0 (point mass at 0 ∈ X). It is isomorphic to the Banach algebra M0(X)
of bounded complex Radon measures on X via µ 7→ e−rxy0dµ(x), where we
write f(x) dµ(x) or f � µ for the measure of density f with respect to µ.

From Mr(X)⊆Mt(X) for r≤ t we conclude that M∞(X) :=
⋃
r∈RMr(X)

is an algebra under convolution and is independent of the choice of y0. Given
µ ∈Mr(X), the set

Dµ :=
{
s ∈ Ck :

�

X

e−xRe s d|µ|(x) <∞
}

is convex (cf. [10, Proposition V.4.3]), where Re s stands for the real part
of s. We define the Fourier–Laplace transform µ̃ : Dµ → C of µ by

µ̃(s) :=
�

X

e−x·s dµ(x).

(2) That is, C is convex and [0,∞) · C ⊆ C.
(3) That is, C∩(−C) = {0} or, equivalently, C contains no lines [10, Corollary V.1.11].

(4) That is, C − C = Rk or, equivalently, C has non-empty interior C◦ (cf. [10,
Proposition 5.1.4(ii)]).
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Then ry0 + C? + iRk ⊆ Dµ, entailing that the convex set Dµ ⊆ Ck has
non-empty interior. Given µ ∈Mr(X), we write

µ̃(∞) := µ({0}).
For r ∈ R and a closed unital subalgebra A ⊆ M0(X), we set Ar :=
{erxy0dµ(x) : µ ∈ A} and define A∞ :=

⋃
r∈RAr. Typically, A = M0(X).

Theorem 4. Let V ⊆ Cn and Z ⊆ Cm be open subsets, the function

F : V × Z → Cm, (v, z) 7→ F (v, z),

be holomorphic, and (v0, z0) ∈ V × Z with F (v0, z0) = 0. Let λ1, . . . , λn ∈
A∞ be measures such that (λ̃1(∞), . . . , λ̃n(∞)) = v0. If the differential
∂z F (v0, z) at z = z0 is in GLm(C), then there exists a unique m-tuple
µ = (µ1, . . . , µm) ∈ Am∞ such that

(1.8) (µ̃1(∞), . . . , µ̃m(∞)) = z0

and , for some r ∈ R,

(1.9) (λ̃1(s), . . . , λ̃n(s), µ̃1(s), . . . , µ̃m(s)) ∈ V × Z
holds for all s ∈ ry0 + C? + iRk as well as

(1.10) F (λ̃1(s), . . . , λ̃n(s), µ̃1(s), . . . , µ̃m(s)) = 0.

Here µ is also determined by (1.8) and the condition that

(1.11) F [λ1, . . . , λn, µ1, . . . , µm] = 0

holds in the commutative Banach algebra Ar for some r ∈ R such that
λ1, . . . , λn, µ1, . . . , µm ∈ Ar.

The preceding theorem subsumes the following special cases.

Example 1. As before, let C ⊆ Rk be a pointed and generating closed
convex cone. Let X ⊆ C be an arbitrary subsemigroup such that 0 ∈ X,
and endow X with the discrete topology. For fixed y0 ∈ (C?)◦ and r ∈ R,
define the weight w : X → R+ by w(x) = e−rxy0 and the r-norm ‖f‖r of
f : X → C by

‖f‖r :=
∑
x∈X

w(x)|f(x)|,

where the right hand side denotes the supremum in [0,∞] of the finite partial
sums. Then `1w(X) := {f ∈ CX : ‖f‖r <∞} is the complex vector space of
functions of finite norm, and Theorem 4 applies to X. Note that the map

M(X)→ CX , µ 7→ fµ,

with fµ(x) := µ({x}) is an isomorphism of vector spaces which induces an
isomorphism Mr(X) ∼= `1w(X). Given µ and f = fµ as before, we have

‖µ‖r =
∑
x∈X
|f(x)|e−rxy0 = ‖f‖r.



114 H. Glöckner et al.

If µ ∈ Mr(X), then ‖µ‖r < ∞ and hence f(x) = 0 for all but countably
many x (cf. [11, 4.15]). Then

(1.12) µ̃(s) = f̃(s) :=
∑
x∈X

f(x)e−sx

for all s ∈ Dµ, where the right hand side is interpreted as the limit of an
absolutely summable family of vectors (cf. [4, Chapter V, §3]).

Example 2. If C = [0,∞)k in Example 1, then C? = [0,∞)k with
y0 := (1, 1, . . . , 1) in its interior and ry0+C?+iRk = Hk

r for each r ∈ R. If we
equip an arbitrary subsemigroup X ⊆ [0,∞)k containing 0 with the discrete
topology, and take A := M0(X), Theorem 4 provides a generalization of the
second half of Theorem 3, which does not require discreteness of X (nor
countability).

Example 3. Theorem 4 also applies to an arbitrary additive semigroup
X ⊆ C endowed with the topology induced by Rk. For example, we can let
X := C be a pointed and generating closed convex cone in Rk, with the
induced topology.

Example 4. If the semigroup X ⊆ C is a Borel measurable subset of
Rk (e.g., if X = C), we can equip X with the topology induced by Rk

and choose A := Cδ0 + L1(X,λ) � λ, where λ denotes the restriction of
Lebesgue–Borel measure on Rk to δ(X).

2. Proof of Theorem 1. For the proof of Theorem 1, we arrange the
elements x of X according to their size |x| and, in case of equal size, in
lexicographic order of the components. In this way, we obtain a total order
� on X. Since X is discrete, the number of elements of X having the same
size is finite. Furthermore, it easily follows that (X,�) is order isomorphic
to (N,≤), enabling us to argue by induction on x ∈ X.

Rewrite Tg = 0 as an infinite system of equations

(2.1)
∑

y,x′∈X
y+x′=x

(
ad(y)g∗d(x′) + ad−1(y)g∗(d−1)(x′) + · · ·+ a0(y)u(x′)

)
= 0

for x ∈ X. It follows from (2.1) at x = 0 that necessarily f(g(0)) = 0. Each
simple zero z0 of f(z) serves for starting the following recurrence relation
with g(0) = z0.

Now let 0 6= x ∈ X. By separating all terms containing g(x) in (2.1),
we see that the coefficient of g(x) equals the value of the derivative f ′(z) at
z = z0. Therefore (2.1) takes the form
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(2.2) f ′(g(0)) · g(x) = −
∑

0≤j≤d

∑
y,x1,...,xj∈X
y+x1+···+xj=x
x1,...,xj 6=x

aj(y)g(x1) · · · g(xj)

for 0 6= x ∈ X. Due to the choice of g(0) = z0 we have f ′(g(0)) 6= 0. Note
that |x1|, . . . , |xj | < |x| in all summands on the right hand side in (2.2)
so that (2.2) represents a recursion formula, which uniquely determines an
arithmetic function g ∈ A.

To prove the second part of Theorem 1, let q 6= 0 be an element of X
of minimal size |q| > 0. Then there are only two additive decompositions
of q = x + x′ into two summands, namely q + 0 and 0 + q. Let a ∈ A

satisfy a(0) = 0 6= a(q) and suppose that Tg = g ∗ g − a has a zero g ∈ A.
Then f(z) = z2 vanishes at the double zero z = 0 only. It follows from
Tg(0) = 0 that g(0) = 0 and hence Tg(q) = 2g(0)g(q) − a(q) = −a(q) 6= 0,
a contradiction. Therefore Tg = 0 is unsolvable.

Since A is an integral domain, the polynomial Tg of degree d has at most
d zeros g ∈ A.

As an immediate consequence we note

Corollary 1. If f(z) satisfies deg f = d and all zeros of f(z) are
simple, then, with the d distinct solutions g1, . . . , gd ∈ A to Tg = 0, we have

Tg = ad ∗ (g − g1) ∗ · · · ∗ (g − gd).

3. Elementary proof of Theorem 2. The Banach algebras A% and
A := A0 are isomorphic under the map a(x) 7→ e−%|x|a(x) for x ∈ X,
a ∈ A%. For the proof of Theorem 2 we may therefore assume that ‖aj‖ :=
‖aj‖0 < ∞. It suffices to show that the solution g ∈ A to Tg = 0 with
f(z0) = 0 and f ′(z0) 6= 0 at z0 = g(0) belongs to Ar for some r ≥ 0. With
gr(x) := e−r|x|g(x) we rewrite (2.2) as

f ′(z0) · gr(x) = −
∑

0≤j≤d

∑
y,x1,...,xj∈X
y+x1+···+xj=x
x1,...,xj 6=x

aj(y)
er|y|

gr(x1) · · · gr(xj)

= −
∑

0≤j≤d
aj(0)

∑
x1,...,xj∈X
x1+···+xj=x
x1,...,xj 6=x

gr(x1) · · · gr(xj)

−
∑

0≤j≤d

∑
y,x1,...,xj∈X
y+x1+···+xj=x
y 6=0,x1,...,xj 6=x

e−r|y|aj(y)gr(x1) · · · gr(xj)

for 0 6= x ∈ X.
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We have to prove that there is an r ≥ 0 such that the partial sums

Sr(m) :=
∑

0<|x|≤m

|gr(x)|

are uniformly bounded for numbers m belonging to the discrete image set
M = {m0,m1, . . .} of X under | | with m0 = 0 < m1 < · · · , say. Clearly
Sr(m0) = 0, and for n ∈ N the above representation of f ′(z0) · gr(x) yields

|f ′(z0)| · Sr(mn) ≤
∑

0≤j≤d
|aj(0)|

∑
0<|x|≤mn

∑
x1,...,xj∈X
x1+···+xj=x
x1,...,xj 6=x

|gr(x1)| · · · |gr(xj)|

+
∑

0≤j≤d

∑
0<|x|≤mn

∑
y,x1,...,xj∈X
y+x1+···+xj=x
y 6=0,x1,...,xj 6=x

e−r|y||aj(y)| |gr(x1)| · · · |gr(xj)|.

Let Σ1 and Σ2 denote the multiple sums on the right hand side of this
inequality. By extracting all powers of |gr(0)| = |g(0)| = |z0| from the inner
j-fold sum of Σ1, we first obtain

Σ1 ≤
d∑
j=2

|aj(0)|
j∑
i=2

(
j

i

)
|z0|j−i

∑
0<|x|≤mn

∑
x′1,...,x

′
i∈X

x′1+···+x′i=x
x′1,...,x

′
i 6=0,x

|gr(x′1)| · · · |gr(x′i)|

≤
d∑
j=2

|aj(0)|
j∑
i=2

(
j

i

)
|z0|j−iSir(mn−1).

Next note that e−r|y| ≤ e−rm1 for all y ∈ X, y 6= 0. Then similarly

Σ2 ≤ e−rm1
∑

0≤j≤d

∑
0<|x|≤mn

∑
y,x1,...,xj∈X
y+x1+···+xj=x
y 6=0,x1,...,xj 6=x

|aj(y)| |gr(x1)| · · · |gr(xj)|

≤ e−rm1

(
‖a0‖+

∑
1≤j≤d

‖aj‖
∑

x1,...,xj∈X
|x1+···+xj |<mn

|gr(x1)| · · · |gr(xj)|
)

≤ e−rm1

d∑
j=0

‖aj‖(|z0|+ Sr(mn−1))j .

Introduce polynomials P (t), Q(t) ∈ R[t] by

P (t) :=
1

|f ′(z0)|

d∑
j=2

|aj(0)|
j∑
i=2

(
j

i

)
|z0|j−iti, Q(t) :=

1
|f ′(z0)|

d∑
j=0

‖aj‖tj
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and summarize:

Sr(mn) ≤ P (Sr(mn−1)) + e−rm1Q(|z0|+ Sr(mn−1)) (n ∈ N).(3.1)

This is a recursive estimate starting with Sr(m0) = 0. It remains to show
that there exist constants r ≥ 0 and C > 0 such that Sr(mn) ≤ C for all
n ∈ N.

Since P (t) ≥ 0 and Q(t) > 0 are increasing functions of t ∈ [0,∞) with
degP (t) ≤ degQ(t) = d or P (t) = 0 (null function), it suffices by (3.1) to
find solutions r ≥ 0 and t > 0 of the inequality

P (t) + e−rm1Q(|z0|+ t) ≤ t
or, equivalently, of

(3.2) e−rm1 ≤ t− P (t)
Q(|z0|+ t)

=: R(t).

Note that P (0) = P ′(0) = 0 and R is bounded above on [0,∞). Hence there
exists some t > 0 with R(t) > 0. Choosing r0 > 0 such that e−r0m1 ≤ R(t)
we obtain (3.2). Hence Sr0(mn) ≤ t for all n ∈ N, which completes the
proof.

Remark 1. The proof of Theorem 2 also leads to the quantitative esti-
mates ‖g‖r≤C and r=%+m−1

1 max{0,− logC} with C=sup {R(t) : t ≥ 0}.

For X = Nk
0, Theorem 2 applies to multidimensional power series

g̃(w) =
∑
n∈Nk0

g(n)wn

with coefficient sequences g ∈ A(X) and wn = e−n·s for n ∈ X, s ∈ Ck. We
recover a special case of the implicit function theorem for complex analytic
maps:

Corollary 2. Let the power series ã0(w), . . . , ãd−1(w) and ãd(w) 6= 0
be holomorphic functions of w ∈ Ck in a neighborhood of the origin. Suppose
that z0 ∈ C is a simple zero of the polynomial

ad(0)zd + ad−1(0)zd−1 + · · ·+ a0(0) ∈ C[z].

Then there exists a local solution g̃(w) with g̃(0) = z0 to

ãd(w)g̃d(w) + ãd−1(w)g̃d−1(w) + · · ·+ ã0(w) = 0

that is again holomorphic in a neighborhood of the origin.

For X = (log N)k, Theorem 2 also applies to multidimensional ordinary
Dirichlet series

g̃(s) =
∑
n∈Nk

g(n)n−s
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with coefficient sequences g ∈ A(Nk) and n−s = e−(s1 logn1+···+sk lognk) for
n ∈ Nk and s ∈ Ck (cf. [9, Theorem 3]). With 1 := (1, . . . , 1) ∈ Nk we obtain

Corollary 3. Let the k-dimensional Dirichlet series ã0(s), . . . , ãd−1(s)
and ãd(s) 6= 0 converge absolutely for all s in some Hk

r . Suppose that z0 ∈ C
is a simple zero of the polynomial

ad(1)zd + ad−1(1)zd−1 + · · ·+ a0(1) ∈ C[z].

Then there exists a Dirichlet series g̃(s) with g(1) = z0 that solves

ãd(s)g̃d(s) + ãd−1(s)g̃d−1(s) + · · ·+ ã0(s) = 0

and also converges absolutely for all s in some Hk
% .

4. Proof of Theorem 3. Our proof of Theorem 3 involves general facts
concerning analytic equations in topological algebras. Recall that a complex
topological algebra is an algebra A over C, equipped with a locally convex
vector topology making the bilinear algebra multiplication A × A → A a
continuous map. It is called complete if the underlying locally convex space
is complete. A continuous inverse algebra is a unital, associative complex
topological algebra A whose group of units A∗ is open in A and whose
inversion map A∗ → A, a 7→ a−1, is continuous (see [2], [7] and [12]). The
spectrum of a commutative continuous inverse algebra A is the set Â of
all unital algebra homomorphisms ξ : A → C. It is known that ξ 7→ ker ξ
is a bijection from Â onto the set of all maximal (proper) ideals of A (cf.
[2, Lemma 2.5]). The spectrum of an element a ∈ A is defined as σ(a) :=
{s ∈ C : s − a 6∈ A∗}, and by [2, Theorem 2.7(a)], it coincides with the set
{ξ(a) : ξ ∈ Â}. The joint spectrum of elements a1, . . . , an ∈ A is defined as

σ(a1, . . . , an) := {(ξ(a1), . . . , ξ(an)) : ξ ∈ Â} ⊆ Cn.

Then σ(a1, . . . , an) ⊆ σ(a1)× · · · × σ(an). If A is a commutative, complete
continuous inverse algebra, a1, . . . , an ∈ A and f : U → C a holomorphic
function on an open subset U ⊆ Cn such that σ(a1, . . . , an) ⊆ U , then the
holomorphic functional calculus gives rise to an element f [a1, . . . , an] ∈ A
(see [2, §4] for details).

Remark 2. The following simple facts are essential for our purposes:

(a) (Naturality of the holomorphic functional calculus) If A, f and
a1, . . . , an ∈ A are as before and φ : A → B is a continuous homo-
morphism of unital algebras to a complete, commutative continuous
inverse algebra B, then σ(φ(a1), . . . , φ(an)) ⊆ σ(a1, . . . , an) and

φ(f [a1, . . . , an]) = f [φ(a1), . . . , φ(an)]

(see [2, Theorem 4.9]).
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(b) If A = C, then f [a1, . . . , an] = f(a1, . . . , an) is the value of f at
(a1, . . . , an) ∈ U ⊆ Cn.

Our proof of Theorem 3 uses the following special case of Biller [2, The-
orem 8.2], applied to algebras whose spectrum is a singleton.

Lemma 1. Let A be a complete, commutative continuous inverse algebra
whose spectrum is a singleton, Â = {ξ}. Let V ⊆ Cn and Z ⊆ Cm be open
sets and let F : V ×Z → Cm be a holomorphic function. Suppose that v0 ∈ V
and z0 ∈ Z are such that F (v0, z0) = 0 and ∂z F (v0, z)|z=z0 ∈ GLm(C).
Then, for each (a1, . . . , an) ∈ An satisfying (ξ(a1), . . . , ξ(an)) = v0, there
exists a unique (g1, . . . , gm) ∈ Am such that (ξ(g1), . . . , ξ(gm)) = z0 and

(4.1) F [a1, . . . , an, g1, . . . , gm] = 0.

Given an infinite discrete additive semigroup X ⊆ [0,∞)k, the Dirichlet
algebra A = CX satisfies the hypotheses of Lemma 1 when equipped with
the product topology.

Lemma 2. A is a commutative continuous inverse algebra whose spec-
trum is a singleton, namely Â = {ξ} with ξ : A → C, f 7→ f(0). Further-
more, A is a Fréchet space (and hence complete).

Proof. First note that A∗ = {f ∈ A : f(0) 6= 0}, which is an open subset
of A. To see this, let f ∈ A. The function ξ described in the lemma is a unital
algebra homomorphism to C. Hence, if f ∈ A and f(0) = ξ(f) = 0, then f
is not invertible. If, on the other hand, f(0) 6= 0, then the equation f ∗g = u
has a unique solution g in A, by Theorem 1 (and then g = f−1). Given
x ∈ X \ {0}, the proof of Theorem 1 shows that f−1(x) only depends on
f(y) for y in the finite set {y ∈ X : |y| ≤ |x|}. Moreover, f−1(x) is a rational
(and hence continuous) function in the f(y). Therefore the inversion map
A∗ → A, f 7→ f−1, is continuous and thus A is a continuous inverse algebra.
Since A \ ker ξ = A∗, it follows that every proper ideal of A is contained in
ker ξ. Hence, if η ∈ Â, then ker η = ker ξ (since ker η is a maximal ideal) and
thus η = ξ. Hence Â = {ξ}. Being a countably infinite power of the Fréchet
space C, also A = CX is a Fréchet space.

In connection with Remark 2(a), the following lemma will be useful.

Lemma 3. If X is discrete, then the inclusion map λ : Ar → A is a
continuous algebra homomorphism, for each r ∈ R.

Proof. Since Ar is a subalgebra of A, the inclusion map is an algebra
homomorphism. Because λ is linear and |λ(f)(x)| = |f(x)| ≤ ery0x‖f‖r, we
see that Ar → C, f 7→ λ(f)(x), is continuous for each x ∈ X. Since A = CX

is equipped with the product topology, this implies that λ is continuous.
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Proof of Theorem 3.

Step 1. By Lemma 2, A is a complete, commutative continuous inverse
algebra with spectrum {ξ}. Since (ξ(a1), . . . , ξ(an)) = (a1(0), . . . , an(0)) =
v0, Lemma 1 shows the existence and uniqueness of (g1, . . . , gm) ∈ Am such
that conditions (1.4) and (1.5) of Theorem 3 are satisfied.

To complete the proof, we shall use Theorem 4 established below (the
proof of which is independent of Theorem 3).

Step 2. If a1, . . . , an ∈ A∞, then Theorem 4 (combined with Example 1)
shows that there is a uniquely determined m-tuple (g1, . . . , gm) ∈ Am

∞ such
that (1.4) and (1.5) hold in some Ar. The elements (g1, . . . , gm) ∈ Am

∞ coin-
cide with the corresponding elements of A obtained in Step 1. To see this,
pick r ∈ R with a1, . . . , an, g1, . . . , gm ∈ Ar and F [a1, . . . , an, g1, . . . , gm] = 0
in Ar. Since the inclusion map λ : Ar → A is a continuous algebra homo-
morphism (by Lemma 3), we obtain

0 = λ(F [a1, . . . , an, g1, . . . , gm]) = F [λ(a1), . . . , λ(an), λ(g1), . . . , λ(gm)]

due to the naturality of holomorphic functional calculus (see Remark 2(a)).
Now the uniqueness assertion from Step 1 applies.

Step 3. In view of (1.12), the validity of (1.6) and (1.7) for large r
follows from (1.9) and (1.10) in Theorem 4.

Step 4. In Theorem 4, (1.8), (1.9) and (1.10) imply (1.11). Hence,
as a special case, (1.4), (1.6) and (1.7) imply (1.5) and thus determine
(g1, . . . , gm).

5. Technical preliminaries. The measures required for our purposes
are (possibly unbounded!) complex Radon measures. Since a suitable ref-
erence describing the relevant aspects of their theory does not seem to be
available, we add this section for the convenience of readers with a standard
knowledge of measure theory. Various results on Laplace transforms are also
provided. Our main sources are [1], [3], and [6].

The measure-theoretic setting. Given a Hausdorff topological space X,
let δ(X) be the δ-ring generated by the set K(X) of compact subsets
of X (thus δ(X) is the smallest set containing K(X) and closed under fi-
nite unions, relative complements and countable intersections). A function
µ : δ(X)→ C is called a complex measure if µ(B) =

∑∞
n=1 µ(Bn) for all se-

quences (Bn)n∈N of disjoint sets Bn ∈ δ(X) such that B :=
⋃
n∈NBn ∈ δ(X).

If, furthermore, µ(B) ∈ [0,∞) for each B ∈ δ(X), then µ is called a positive
measure. To any complex measure µ, [6, Proposition II.1.3] associates a posi-
tive measure |µ| (the total variation measure). A complex measure µ is called
a Radon measure if |µ| is inner regular, i.e., |µ|(B) = supK∈K(B) |µ|(K). If
µ is a positive Radon measure on X, then µ|K(X) is a Radon content in the
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sense of [1, Definition 2.1.2] and hence extends uniquely to an inner regu-
lar measure µ : B(X) → [0,∞] on the Borel σ-algebra B(X) of X (see [1,
Theorem 2.1.4]). By abuse of notation, we shall frequently write µ in place
of µ.

Remark 3. Note that every measure µ gives rise to a family (µK)K∈K(X)

of measures µK := µ|B(K) which are compatible in the sense that µL|B(K) =
µK for all K,L ∈ K(X) with K ⊆ L. Here µ is positive if and only if each
µK is positive. Since

(5.1) δ(X) =
⋃

K∈K(X)

B(K),

it is easy to see that, conversely, every compatible family (µK)K∈K(X) defines
a complex Radon measure µ via µ|B(K) := µK for K ∈ K(X).

If µ is a complex Radon measure on X, then µK is a bounded Radon
measure for each K ∈ K(X) and thus µK = iµ1

K − µ2
K − iµ3

K + µ4
K with

positive Radon measures µjK , j ∈ {1, . . . , 4}, where µ4
K and µ2

K are the
positive and negative variations of the real part of µK , respectively, and µ1

K ,
µ3
K are those of its imaginary part (see [11, §6.6]). Since µjK ≤ |µ|K , the

measure µjK has a density with respect to the Radon measure |µ|K (by the
Radon–Nikodym theorem), entailing that µjK is inner regular. By Remark 3,
the families (µjK)K∈K(X) determine positive Radon measures µj on X for
j ∈ {1, . . . , 4} such that µj ≤ |µ| and

(5.2) µ = iµ1 − µ2 − iµ3 + µ4.

We say that a Borel measurable function f : X → C is µ-integrable if f ∈
L1(X, |µ|). In this case, we write f =

∑4
j=1 i

jfj with 0 ≤ fj ∈ L1(X, |µ|)
and µ =

∑4
k=1 i

kµk with positive Radon measures µk such that µk ≤ |µ|
and define (5)

�

X

f dµ :=
4∑

j,k=1

ij+k
�

X

fj dµk.

Let M(X) be the space of complex Radon measures on X, let M0(X) :=
{µ ∈ M(X) : ‖µ‖ := |µ|(X) < ∞} be the space of bounded complex
Radon measures, and M+(X) be the set of positive Radon measures. Then
(M0(X), ‖ · ‖) is a Banach space, because the space of all bounded complex
measures on X is a Banach space (see [6, II.1.5]) and also M(K) is a Banach
space for each K ∈ K(X) (entailing, in view of Remark 3, that limits of
complex Radon measures are again Radon).

(5) Typically, f4 and f2 (resp., f1 and f3) are the positive and negative parts of the
real part (resp., imaginary part) of f , and µ1, . . . , µ4 are as in (5.2).
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If µ ∈M0(X) in (5.2), then µj ∈M0,+(X) := M0(X) ∩M+(X) for each
j ∈ {1, . . . , 4}, and µ := iµ1 − µ2 − iµ3 + µ4 is the unique extension of µ to
an (ordinary) complex measure on (X,B(X)) whose total variation is inner
regular. Again, we usually write µ instead of µ.

Given Hausdorff spaces Xj for j ∈ {1, 2} and µj ∈ M+(X), there exists
a unique positive Radon measure µ1 ⊗ µ2 on X1 ×X2 such that

(5.3) (µ1⊗µ2)(B1×B2) = µ1(B1)µ2(B2) for B1 ∈ B(X1), B2 ∈ B(X2)

(see [1, Corollary 2.1.11]). Since (µ1 + tν1)⊗ µ2 = µ1 ⊗ µ2 + t(ν1 ⊗ µ2) and
µ1 ⊗ (µ2 + tν2) = µ1 ⊗ µ2 + t(µ1 ⊗ ν2) for all µj , νj ∈ M0,+(Xj) and t ≥ 0,
where M0(Xj) is spanned by M0,+(Xj) as a complex vector space, standard
arguments provide a unique complex bilinear map

β : M0(X1)×M0(X2)→M0(X1 ×X2)

such that β(µ1, µ2) = µ1 ⊗ µ2 for all µj ∈ M0,+(Xj). We write µ1 ⊗ µ2 :=
β(µ1, µ2) also for general µj ∈M0(Xj). Then

(5.4) |µ1 ⊗ µ2| ≤ |µ1| ⊗ |µ2| for all µ1 ∈M0(X1), µ2 ∈M0(X2).

To see this, note first that

(5.5) (ρ1 � µ1)⊗ (ρ2 � µ2) = (ρ1 ⊗ ρ2)� (µ1 ⊗ µ2)

for all µj ∈ M+(Xj) and Borel measurable functions ρj : Xj → [0,∞] such
that

	
K ρj dµj <∞ for each K ∈ K(Xj) for j ∈ {1, 2}, where

ρ1 ⊗ ρ2 : X1 ×X2 → C, (x1, x2) 7→ ρ1(x1)ρ2(x2).

In fact, the right hand side of (5.5) is a positive Radon measure which
satisfies the characterization of the product measure on the left (cf. (5.3)).

As a consequence of the Radon–Nikodym theorem, µj as in (5.4) admits
a polar decomposition µj = ρj � |µj | for a suitable measurable function
ρj : Xj → C such that |ρj(x)| = 1 for each x ∈ Xj (see [11, Theorem 6.12]).
We write ρj =

∑4
k=1 i

kρkj with ρ1
j := Im(ρj)+, ρ2

j := Re(ρj)−, ρ3
j := Im(ρj)−

and ρ4
j := Re(ρj)+. Then, by (5.5) and the bilinearity of ⊗ and �,

µ1 ⊗ µ2 =
4∑

k,l=1

ik+l(ρk1 � |µ1|)⊗ (ρl2 � |µ2|)

=
4∑

k,l=1

ik+l(ρk1 ⊗ ρl2)� (|µ1| ⊗ |µ2|)

= (ρ1 ⊗ ρ2)� (|µ1| ⊗ |µ2|),
entailing that |µ1 ⊗ µ2| = |µ1| ⊗ |µ2|. Thus (5.4) holds.

We now return to the situation described in Section 1, where C ⊆ Rk

is a pointed and generating closed convex cone and X ⊆ C a (continuously
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embedded) topological semigroup with continuous addition

(5.6) α : X ×X → X, (x1, x2) 7→ x1 + x2.

It is useful to observe that each µ ∈ Mr,+(X) := Mr(X) ∩M+(X) (with
Mr(X), y0 and ‖ · ‖r as in the introduction) is a σ-finite measure, since�

X

e−rxy0 dµ(x) = ‖µ‖r <∞,

where e−rxy0 > 0 for each x ∈ X. Given µ1, µ2 ∈ M+(X), we define their
convolution as the image measure

µ1 ∗ µ2 := α(µ1 ⊗ µ2)

on B(X); thus (µ1 ∗µ2)(B) := (µ1⊗µ2)(α−1(B)). If µ1 ∗µ2 is finite on com-
pact sets, then µ1∗µ2 is a positive Radon measure [1, Proposition 2.1.15]. In
particular, µ1 ∗µ2 is a positive Radon measure if µ1, µ2 ∈Mr,+(X) for some
r∈R. In fact, for each compact set K⊆X, we have a := inf{e−rxy0 : x∈K}
> 0 and

aµ(K) ≤
�

X

e−rxy0 d(µ1 ∗ µ2)(x) =
�

X

e−rxy0 dα(µ1 ⊗ µ2)(x)(5.7)

=
�

X×X
e−rα(x1,x2)y0 d(µ1 ⊗ µ2)(x1, x2)

=
�

X×X
e−rx1y0e−rx2y0 d(µ1 ⊗ µ2)(x1, x2)

=
�

X

e−rx1y0 dµ1(x1)
�

X

e−rx2y0 dµ2(x2) <∞

(by transformation of integrals and Fubini’s theorem) (6), whence µ(K)<∞.
The previous calculation also shows that

(5.8) µ1 ∗ µ2 ∈Mr(X) for all µ1, µ2 ∈Mr,+(X).

Since (µ1+tν1)∗µ2 = µ1∗µ2+t(ν1∗µ2) and µ1∗(µ2+tν2) = µ1∗µ2+t(µ1∗ν2)
for all µj , νj ∈ Mr,+(X) and t ≥ 0, where Mr(X) is spanned by Mr,+(X)
as a complex vector space, standard arguments provide a unique complex
bilinear map

(5.9) Mr(X)×Mr(X)→Mr(X), (µ1, µ2) 7→ µ1 ∗ µ2,

extending the convolution of measures in Mr,+(X) already defined.
If µ1, µ2 ∈M0(X), then

(5.10) µ1 ∗ µ2 = α(µ1 ⊗ µ2).

(6) Since µ1, µ2 are σ-finite measures and the map X × X → C, (x1, x2) 7→
e−rx1y0e−rx2y0 , is B(X) ⊗ B(X)-measurable, the standard Fubini theorem (as in [11,
Theorem 8.12]) suffices; we do not need specialized versions for Radon measures like [1,
Theorem 2.1.12].
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In fact, if we redefine convolution via (5.10), then |µ1 ∗ µ2| ≤ |µ1| ∗ |µ2| (as
a consequence of (5.4)) and thus µ1 ∗ µ2 ∈M0(X) with

(5.11) ‖µ1 ∗ µ2‖ ≤ (|µ1| ∗ |µ2|)(X) = ‖µ1‖ · ‖µ2‖.

Since µ1 ∗ µ2 from (5.10) coincides with the old definition in the case of
positive measures and is bilinear in (µ1, µ2), it coincides with the convolution
defined in (5.9). It is clear from (5.10) that convolution is associative and
commutative (because so is α). Since also (5.11) holds and ‖δ0‖ = 1, we
see that (M0(X), ∗, ‖ · ‖) is a unital commutative Banach algebra. For each
r ∈ R, the map

φ : Mr(X)→M0(X), µ 7→ e−rxy0 dµ(x),

is a surjective linear isometry and an isomorphism of algebras. Hence also
(Mr(X), ∗, ‖ · ‖r) is a unital commutative Banach algebra.

To complete our discussion of measures, let us show that M∞(X) is
indeed independent of the choice of y0 (as claimed in the introduction).

Lemma 4. If y0, y1 ∈ (C?)◦, then
⋃
r∈RM

(y0)
r (X) =

⋃
r∈RM

(y1)
r (X).

Proof. Since y1 ∈ (C?)◦, there exists ε > 0 such that c := y1−εy0 ∈ C?
and thus y1 = εy0 + c. Then rxy1 = rεxy0 + rxc ≥ rεxy0 for each r ≥ 0
and x ∈ X, whence ‖µ‖(y1)

r ≤ ‖µ‖(y0)
rε for each µ ∈ M

(y0)
rε (X) and thus

M
(y0)
rε (X) ⊆M (y1)

r (X). Hence
⋃
r∈RM

(y0)
r (X) ⊆

⋃
r∈RM

(y1)
r (X). The oppo-

site inclusion can be shown analogously.

Some basic facts concerning Laplace transforms. Fourier–Laplace trans-
forms have the following properties (part of which will be essential later).

Lemma 5. Let C ⊆ Rk be a pointed and generating closed convex cone,
X ⊆ C be a continuously embedded topological semigroup with 0 ∈ X, and
y0 ∈ (C?)◦. Let r ∈ R and µ ∈Mr(X). Then the following holds:

(a) The function µ̃ is holomorphic on the interior of Dµ.
(b) On ry0 + C? + iRk, the function µ̃ is continuous.
(c) For each ε > 0, there is ρ ∈ [r,∞) such that

|µ̃(s)− µ̃(∞)| ≤ ε for each s ∈ ρy0 + C? + iRk.

(d) If also ν ∈ Mr(X) and µ̃|U = ν̃|U for some non-empty open set
U ⊆ Ck (or U ⊆ Rk) such that U ⊆ Dµ ∩Dν , then µ = ν.

Proof. (a) Write µ = iµ1 − µ2 − iµ3 + µ4 as a linear combination of
positive measures, as in (5.2). Then µ̃ = iµ̃1 − µ̃2 − iµ̃3 + µ̃4 on D0

µ, where
D0
µ ⊆ D0

µj and µ̃j is holomorphic on D0
µj for each j ∈ {1, 2, 3, 4}, by [10,

Proposition V.4.6].
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(b) Let (sn)n∈N be a convergent sequence in ry0 +C?+ iRk, with limit s.
Then µ̃(sn) → µ̃(s) as n → ∞ by Lebesgue’s dominated convergence theo-
rem, using the integrable majorant X → [0,∞), x 7→ e−rxy0 .

(c) If sn = ρn+tn with tn ∈ C?+iRk and ρn ∈ [r,∞) such that ρn →∞,
then e−snx → 1{0}(x) (with 1{0} : X → {0, 1} the characteristic function
of {0}) because |e−snx| ≤ e−ρnxy0 , where xy0 > 0 for x ∈ X \ {0}. Hence
µ̃(sn) →

	
X 1{0}(x) dµ(x) = µ({0}) = µ̃(∞), by dominated convergence

with majorant e−rxy0 .
(d) Suppose first that µ and ν are positive measures. Let λ : X → Rk be

the inclusion map and µ1 := λ(µ), ν1 := λ(ν) be the image measures on Rk

(equipped with the Borel σ-algebra). Then µ1 = ν1 (for example, by [8, The-
orem 14.11(e)]) and µ|K(X) = µ1|K(X) = ν1|K(X) = ν|K(X). Consequently,
µ = ν.

The general case amounts to injectivity of the linear map Mr(X)→ CU ,
µ 7→ µ̃|U , which we prove using an idea from [1, proof of Proposition 6.5.2].
Suppose that µ ∈Mr(X) and µ̃|U = 0. We write

µ = iµ1 − µ2 − iµ3 + µ4

with positive measures µ1, . . . , µ4 ∈ Mr(X), as in (5.2). Then µ̃|D◦µ = 0 by
the identity theorem for analytic functions, and thus

(5.12) iµ̃1(s)− µ̃2(s)− iµ̃3(s) + µ̃4(s) = 0 for all s ∈ D◦µ.

Since D◦µ is invariant under the complex conjugation , we see that also
0 = µ̃(s) = µ̃(s) for all s ∈ D◦µ and hence

(5.13) −iµ̃1(s)− µ̃2(s) + iµ̃3(s) + µ̃4(s) = 0 for all s ∈ D◦µ.

Adding (5.12) and (5.13), we deduce that µ̃2(s) = µ̃4(s) and hence also
µ̃1(s) = µ̃3(s), for all s ∈ D◦µ. Then µ1 = µ3 and µ2 = µ4 by the case of
positive measures already discussed, and hence µ = 0.

The next lemma enables us to use the naturality of holomorphic func-
tional calculus (see Remark 2(a)) in connection with Laplace transforms.

Lemma 6. For each s ∈ ry0 + C? + iRk, the map

hs : Mr(X)→ C, hs(µ) :=
�

X

e−sx dµ(x),

is a continuous algebra homomorphism. Furthermore,

(5.14) hs(µ) = µ̃(s).

Proof. It is clear that hs is linear. Since |hs(µ)| ≤
	
X e
−ry0x d|µ|(x) =

‖µ‖r, the linear map hs is continuous. Since hs is linear and Mr(X) is
spanned by positive measures, hs(µ1 ∗ µ2) = hs(µ1)hs(µ2) will hold for
arbitrary µ1, µ2 ∈Mr(X) if we can prove it for positive measures µ1, µ2. In
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the latter case, repeating the calculation leading to (5.7), we obtain

hs(µ1 ∗ µ2) =
�

X

e−sx d(µ1 ∗ µ2)(x)

=
�

X

e−sx1 dµ1(x1)
�

X

e−sx2 dµ2(x2) = hs(µ1)hs(µ2).

Since also hs(δ0) = 1, the map hs is a homomorphism of unital algebras.

The following consequence will be applied repeatedly.

Lemma 7. Let µ1, . . . , µn ∈ Mr(X) and f : Cn ⊇ U → C be a holomor-
phic function such that ν := f [µ1, . . . , µn] is defined in Mr(X). Then

ν̃(s) = f(µ̃1(s), . . . , µ̃n(s)) for all s ∈ ry0 + C? + iRk.

Proof. Using Lemma 6 and the facts compiled in Remark 2, we obtain

ν̃(s) = hs(ν) = hs(f [µ1, . . . , µn]) = f [hs(µ1), . . . , hs(µn)]

= f(µ̃1(s), . . . , µ̃n(s)).

6. Proof of Theorem 4. The proof of Theorem 4 relies on the following
lemma (where Ar is as in the theorem). Given µ ∈ Ar and t ≥ r, we write
σt(µ) for the spectrum of µ in the commutative Banach algebra At and,
likewise, σt(µ1, . . . , µn) for joint spectra in At. Given ε > 0 and z ∈ C, let
Bε(z) := {w ∈ C : |w − z| < ε}.

Lemma 8. If µ ∈ Ar, then

‖µ− µ̃(∞)δ0‖t → 0 as t→∞.

For every ε > 0, there exists t0 ≥ r such that σt(µ) ⊆ Bε(µ̃(∞)) for all
t ≥ t0.

Proof. If ‖µ − µ̃(∞)δ0‖t < ε, then σt(µ − µ̃(∞)δ0) ⊆ Bε(0) (see [11,
Corollary 3 to Theorem 18.4]) and thus σt(µ) ⊆ Bε(µ̃(∞)). Hence the second
assertion follows if we can prove the first. To this end, let (tn)n∈N be a
sequence of real numbers tn ≥ r such that tn → ∞ as n → ∞. Since
|µ− µ̃(∞)δ0| = |µ|− |µ|({0})δ0, Lebesgue’s dominated convergence theorem
shows that

‖µ− µ̃(∞)δ0‖tn =
�

X

e−tnxy0 d|µ|(x)−
�

X

e−tnxy0 |µ|({0}) dδ0(x)

=
�

X\{0}

e−tnxy0 d|µ|(x)→ 0 as n→∞;

we have used the facts that e−tnxy0 → 0 as n→∞ for each x ∈ X \ {0} and
e−tnxy0 ≤ e−rxy0 , where

	
X\{0} e

−rxy0 d|µ|(x) ≤ ‖µ‖r <∞.
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Proof of Theorem 4. Existence of µ. By the implicit function theorem,
there exist open neighborhoods V0 ⊆ V of v0 and Z0 ⊆ Z of z0 such that

(6.1) {(v, z) ∈ V0 × Z0 : F (v, z) = 0} = graph(φ)

is the graph of a holomorphic function

φ = (φ1, . . . , φm) : V0 → Z0

with φ(v0) = z0. After shrinking V0, we may assume that

φ1(V0)× · · · × φm(V0) ⊆ Z0.

Let r ∈ R be such that λ1, . . . , λn ∈ Ar. Since V0 is an open neighborhood of
(λ̃1(∞), . . . , λ̃n(∞)), Lemma 8 implies that, after increasing r if necessary,
we have

σt(λ1)× · · · × σt(λn) ⊆ V0 for all t ≥ r.
Hence

µj := φj [λ1, . . . , λn] ∈ Ar
can be defined using functional calculus in Ar, for j ∈ {1, . . . ,m}. Set µ :=
(µ1, . . . , µm). By the spectral mapping theorem [2, Corollary 4.10],

σr(µj) = φj(σr(λ1, . . . , λn)) ⊆ φj(V0).

Then

σr(λ1, . . . , λn, µ1, . . . , µm) ⊆ σr(λ1)× · · · × σr(λn)× σr(µ1)× · · · × σr(µm)
⊆ V0 × Z0.

Moreover,

(6.2) F [λ1, . . . , λn, µ1, . . . , µm] = (F ◦ (idV0 , φ))[λ1, . . . , λn] = 0

by the spectral mapping theorem, since F ◦ (idV0 , φ) = 0 by (6.1).
Using Lemma 7, we deduce from (6.2) that

0 = F [λ1, . . . , λn, µ1, . . . , µm]˜(s)
= F (λ̃1(s), . . . , λ̃n(s), µ̃1(s), . . . , µ̃m(s)),

for each s ∈ ry0 +C? + iRk. Thus (1.9) and (1.10) from Theorem 4 hold. In
view of (6.1), the preceding equality also implies (1.8).

Uniqueness of µ. Let ν = (ν1, . . . , νm) ∈ (At)m for some t ∈ R such that
(1.8), (1.9) and (1.10) hold, with µ replaced by ν and r replaced by t. After
increasing r or t, we may assume that r = t. After increasing r further if
necessary, we can achieve (using Lemma 8) that

(6.3) σr(ν1)× · · · × σr(νm) ⊆ Z0.

Hence
ζ := F [λ1, . . . , λn, ν1, . . . , νm]
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can be defined in Ar. For each s ∈ ry0 + C? + iRk, we have

(6.4) ζ̃(s) = F (λ̃1(s), . . . , λ̃n(s), ν̃1(s), . . . , ν̃m(s)) = 0,

by hypothesis and Lemma 7. In view of (6.1), (6.3) and (6.4), we have

(ν̃1(s), . . . , ν̃m(s)) = φ(s) = (µ̃1(s), . . . , µ̃m(s))

for each s ∈ ry0 + C? + iRk. Hence ν = µ, by Lemma 5(d).

Proof of the final assertion. Assume that (ν̃1(∞), . . . , ν̃m(∞)) = z0 and

(6.5) F [λ1, . . . , λn, ν1, . . . , νm] = 0

in someAt. After increasing r or t, we may again assume that t = r. Applying
hs to (6.5) for s ∈ ry0 +C? + iRk, we see that (1.9) and (1.10) hold. Hence
ν = µ, by what has just been shown.
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182 07 Praha 8, Czech Republic
E-mail: Stefan.Porubsky@cs.cas.cz

Siemensstr. 1
38640 Goslar, Germany

E-mail: lg.lucht@cintech.de

Received May 3, 2008 (6349)


