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L2
h-domains of holomorphy and the Bergman kernel

by

Peter Pflug (Oldenburg) and Włodzimierz Zwonek (Kraków)

Abstract. We give a characterization of L2
h-domains of holomorphy with the help of

the boundary behavior of the Bergman kernel and geometric properties of the boundary,
respectively.

For λ0 ∈ C, r > 0 we define 4(λ0, r) := {λ ∈ C : |λ − λ0| < r}.
We also put E := 4(0, 1). Moreover, the set of all plurisubharmonic (re-
spectively, subharmonic) functions on an open set D ⊂ Cn is denoted by
PSH(D) (respectively, SH(D)). We allow the (pluri)subharmonic functions
to be identically −∞ on connected components of D.

Following [Kli] for a domain D ⊂ Cn define

gD(p, z) := sup{u(z)}, p, z ∈ D,
where the supremum is taken over all negative u ∈ PSH(D) such that u(·)−
log ‖ · − p‖ is bounded from above near p. We call the function gD(p, ·) the
pluricomplex Green function (with the logarithmic pole at p). We also define

AD(p;X) := lim sup
λ→0

exp(gD(p, p+ λX))
|λ| , p ∈ D, X ∈ Cn.

Following [Jar-Pfl] the function AD is called the Azukawa pseudometric.
For a boundary point w of a bounded domain D ⊂ C we introduce the

notion of regularity. Namely, we say that D is regular at w if there exist a
neighborhood U of w and a subharmonic function u on U ∩D with u < 0
on U ∩D and limU∩D3λ→w u(λ) = 0.

A set P ⊂ Cn is called pluripolar if for any point z ∈ P there exist a
connected neighborhood U = U(z) and a function u ∈ PSH(U), u 6≡ −∞,
such that P ∩ U ⊂ {z ∈ U : u(z) = −∞}. In case n = 1 we call such a
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set P polar . It is well known (cf. [Kli], Josefson theorem) that a set P ⊂ Cn
is pluripolar if and only if there is a function u ∈ PSH(Cn), u 6≡ −∞, such
that P ⊂ {z ∈ Cn : u(z) = −∞}.

A bounded domain D ⊂ Cn is said to be hyperconvex if there exists a
negative and continuous plurisubharmonic exhaustion function of D.

Denote the class of square integrable holomorphic functions on an open
set D by L2

h(D). It is a Hilbert space with the standard scalar product
induced from L2(D). Let us recall the definition of the Bergman kernel :

KD(z) := sup
{ |f(z)|2
‖f‖2

L2
h(D)

: f 6≡ 0, f ∈ L2
h(D)

}
.

If D is a bounded domain then logKD is smooth and strictly plurisubhar-
monic. Therefore, for a bounded domain D one may define the Bergman
metric βD:

βD(z;X) :=

√√√√
n∑

j,k=1

∂2 logKD(z)

∂zj∂zk
XjXk, z ∈ D, X ∈ Cn,

and set
bD(w, z) := inf{LβD(α)}, w, z ∈ D,

where LβD(α) =
� 1
0 βD(α(t);α′(t)) dt and the infimum is taken over all piece-

wise C1-curves α : [0, 1]→ D such that α(0) = w, α(1) = z. We call bD the
Bergman distance. If (D, bD) is a complete metric space we say that D is
Bergman complete.

A domain D ⊂ Cn is called a domain (resp. an L2
h-domain) of holomor-

phy if there are no domains D0,D1 ⊂ Cn with ∅ 6= D0 ⊂ D1 ∩D, D1 6⊂ D

such that for any f ∈ O(D) (resp. f ∈ L2
h(D)) there exists an f̃ ∈ O(D1)

with f̃ = f on D0.
Let us recall several results concerning the above-mentioned notions,

which show a close relationship between the theory of square integrable
holomorphic functions and pluripotential theory.

For a bounded pseudoconvex domainD consider the following properties:

(1) D is hyperconvex,
(2) for any w ∈ ∂D, limD3z→wKD(z) =∞,
(3) D is Bergman complete,
(4) D is an L2

h-domain of holomorphy.

All the relations between the properties (1)–(4) are known. Namely, (1)⇒(2)
(see [Ohs 1]), (1)⇒(3) (see [Bło-Pfl], [Her]), and (3)⇒(4). The implication
(2)⇒(1) does not hold in general (take the Hartogs triangle in C2 or con-
sider some one-dimensional Zalcmann-type domains—see [Ohs 1]). The one-
dimensional counterexample to the implication (3)⇒(1) is given in [Chen 1].
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Recall that any bounded pseudoconvex fat domain is an L2
h-domain of holo-

morphy (see [Pfl]). Thus the Hartogs triangle is an L2
h-domain of holomorphy

in C2 which is not Bergman complete. Moreover, there also exists a fat do-
main in the complex plane that is not Bergman complete (see [Jar-Pfl-Zwo]).
Thus, the implication (4)⇒(3) does not hold even for fat pseudoconvex do-
mains. In dimension one the implication (2)⇒(3) does hold (see [Chen 2])
but in higher dimensions this is no longer the case (take the Hartogs triangle
once more). As far as (3)⇒(2) is concerned one may find a counterexample
already in dimension one (see [Zwo 2]).

Let us have a closer look at the last example. The counterexamples be-
long to the following class of domains:

D := E \
( ∞⋃

j=1

4(zj, rj) ∪ {0}
)
,

where zj → 0, rj > 0, 4(zj , rj) ⊂ E \ {0}, 4(zj , rj) ∩4(zk, rk) = ∅, j 6= k.
It is easy to see that for any w ∈ ∂D, w 6= 0, we have limD3z→wKD(z) =∞.
The point is that the sequences can be chosen so that lim infD3z→0 KD(z)
< ∞ and the domain is still Bergman complete. On the other hand one
may easily see that lim supz→0 KD(z) = ∞. So the natural problem arises
whether one may construct an example of a Bergman complete domain
such that for some w ∈ ∂D we have lim supz→wKD(z) < ∞. Below we
show that this is impossible. Let us write down explicitly the condition we
are interested in (as some kind of complement to properties (1)–(4)):

(5) for any w ∈ ∂D we have lim supD3z→wKD(z) =∞.

The main aim of this paper is to present the following characterizations
of L2

h-domains of holomorphy.

Theorem 1. Let D be a bounded pseudoconvex domain in Cn. Then (4)
is equivalent to (5), i.e. D is an L2

h-domain of holomorphy if and only if for
any w ∈ ∂D we have lim supD3z→wKD(z) =∞.

Making use of Theorem 1 and a result of A. Sadullaev we also get the
following characterization of bounded L2

h-domains of holomorphy.

Theorem 2. Let D be a bounded pseudoconvex domain. Then D is an
L2

h-domain of holomorphy if and only if for any w ∈ ∂D and for any neigh-
borhood U of w the set U \D is not pluripolar.

Before proving Theorem 1 let us recall some properties of the notions
just defined that we need in what follows.

We shall start by considering L2
h-domains of holomorphy in C (n = 1).

First we list a number of properties of polar sets in C that we shall use (see
[Ran], [Con]).
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Let D be an open set in C and let K ⊂ D be a polar set relatively closed
in D. Then:

• if D is additionally connected then so is D \K,
• for any λ ∈ D and for any 0 < s with 4(λ, s) ⊂⊂ D there is an s < r

with 4(λ, r) ⊂⊂ D and ∂4(λ, r) ∩K = ∅,
• for any f ∈ L2

h(D \K) there is an f̃ ∈ O(D) such that f̃ |D\K = f .

There is also a precise description of L2
h-domains of holomorphy in C.

Theorem 3 (see [Con], Theorem 9.9, p. 351). Let D be a bounded do-
main in C and let z ∈ ∂D. Then there is an open neighborhood U of z such
that any f ∈ L2

h(D) extends holomorphically to D ∪ U if and only if there
is a neighborhood V of z such that the set V \D is polar.

One may easily get from Theorem 3 the following description of
L2

h-domains of holomorphy in C.

Theorem 4. Let D be a bounded domain in C. Then D is an L2
h-domain

of holomorphy iff for any w ∈ ∂D and for any neighborhood U of w the set
U \D is not polar.

Note that Theorem 2 is the exact higher-dimensional counterpart of The-
orem 4.

Let us now recall some basic properties of regular points and the Green
function. For a domain D ⊂ Cn we have gD(p, ·) ∈ PSH(D), gD(p, ·) < 0.
A bounded domain D is hyperconvex iff gD(p, ·) is a continuous exhaustive
function of D.

In the case of bounded planar domains it is well known that the Green
function is symmetric (as a function of two variables) and gD(p, ·) is har-
monic on D \ {p}. Moreover, a point w ∈ ∂D is regular iff for some (any)
p ∈ D, gD(p, λ) → 0 as D 3 λ → w. Consequently, a bounded domain
D ⊂ C is hyperconvex iff any point of its boundary is regular. The set of
irregular points of any bounded domain in C is polar.

Below we shall need some estimate for the Bergman kernel in the one-
dimensional case that will enable us to prove Theorem 1 in dimension one.

Theorem 5 (see [Ohs 2]). Let D be a domain in C. Then there is a
positive constant C such that

√
KD(z) ≥ CAD(z; 1), z ∈ D.

Our first aim is to obtain the following exhaustion property of the Berg-
man kernel at regular points.

Proposition 6. Let D be a bounded domain in C. Assume that w ∈ ∂D
is a regular point. Then KD(z)→∞ as D 3 z → w.
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Proof. In view of Theorem 5 it is sufficient to show that

(6) r(p)→ 0 as p→ w,

where r := r(p) := diamD(p), D(p) := {z ∈ D : gD(p, z) < −1}. In fact,
assuming the last property we get (see [Zwo 1])

AD(p; 1) = eAD(p)(p; 1) ≥ eA4(p,r)(p; 1) =
e

r
→∞ as p→ w.

Suppose that (6) does not hold. Then one easily finds an ε > 0, sequences
D 3 pν → w and D 3 zν→ z ∈D such that |pν−zν | ≥ ε and gD(pν , zν)<−1.
Taking D̃ := D ∪ V , where V is some small disc around z such that w 6∈ V ,
we get gD(pν , zν) ≥ gD̃(pν , zν) and z ∈ D̃. In other words, it is sufficient
to show that gD̃(pν , zν) → 0. But because of the pointwise convergence of
gD̃(pν , ·) = gD̃(·, pν) to 0 (as ν → ∞), the harmonicity of gD̃(pν , ·) near z
and the Vitali theorem, we conclude that gD̃(pν , ·) tends uniformly to 0 on
some neighborhood of z.

Remark 7. In view of property (6) it follows from the estimates in [Die-
Her] that for any bounded domain in C the convergence βD(z; 1) → ∞ as
z → w ∈ ∂D holds for any regular point w ∈ ∂D.

Lemma 8. Let D be a bounded domain in C, w ∈ ∂D. Then the following
conditions are equivalent :

(7) lim supD3z→wKD(z) <∞,
(8) there is an open neighborhood U of w such that the set U \D is polar.

Proof. Let us first make a general remark: U \D being polar is equivalent
to U ∩ ∂D being polar.

(8)⇒(7). If U satisfies (8) then without loss of generality one may as-
sume that K := U ∩ ∂D ⊂⊂ U . So there is a domain D̃ with D = D̃ \K,
w ∈ D̃, where K is a compact polar set. Then

L2
h(D) = L2

h(D̃)|D
and, consequently, KD = KD̃|D, which implies (7).

(7)⇒(8). Suppose that for any neighborhood U of w the set U ∩ ∂D
is not polar. Then there is a sequence wν → w, wν ∈ ∂D, such that D is
regular at wν . In view of Proposition 6 we have KD(z)→∞ as D 3 z → wν ,
which easily finishes the proof.

We are now able to study the situation in Cn (n > 1).

Lemma 9. Let D be a domain in Cn, n ≥ 2. Fix 0 < r < t. For any
z′ ∈ Cn−1 define A(z′) := {zn ∈ tE : (z′, zn) ∈ D} = tE \K(z′). Assume
that K(0′) is polar and there is a neighborhood 0′ ∈ V such that for almost
any z′ ∈ V (with respect to the (2n− 2)-dimensional Lebesgue measure) the
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set K(z′) is polar. Then there is a neighborhood 0′ ∈ V ′ ⊂ V such that for
any f ∈ L2

h(D) there exists a function F ∈ O(V ′ × rE) with F = f on
(V ′ × rE) ∩D.

Proof. Because K(0′) is polar there is an s with 0 < r < s < t such that
K(0′)∩ ∂(sE) = ∅. Then there is a neighborhood 0′ ∈ V ′ ⊂ V such that for
any ζ ′ ∈ V ′ we have K(ζ ′) ∩ ∂(sE) = ∅.

Define

F (ζ ′, zn) :=
1

2πi

�

∂(sE)

f(ζ ′, λ)
λ− zn

dλ, (ζ ′, zn) ∈ V ′ × sE.

Then F is a holomorphic function on V ′ × sE.
On the other hand by the square integrability of f , the Fubini theorem

and the assumptions of the lemma, for almost all ζ ′ ∈ V ′ (with respect
to the (2n − 2)-dimensional Lebesgue measure) the function f(ζ ′, ·) is in
L2

h(tE \ K(ζ ′)) and K(ζ ′) is polar. Since closed polar sets are removable
for L2

h-functions, for almost all ζ ′ ∈ V ′ the function f(ζ ′, ·) extends to a
holomorphic function on tE. So the Cauchy formula applies and we obtain
the equality f(ζ ′, zn) = F (ζ ′, zn), (ζ ′, zn) ∈ (V ′ × sE) ∩ D, for almost all
ζ ′ ∈ V ′. Since the equality holds on a dense subset of (V ′×sE)∩D, it holds
on the whole set.

Before we start the proof of Theorem 1 let us formulate, in the form that
we need, the most powerful tool we shall use, namely the Ohsawa–Takegoshi
extension theorem.

Theorem 10 (see [Ohs-Tak]). Let D be a bounded pseudoconvex domain
in Cn and let L be a complex line. Then there is a constant C > 0 such
that for any f ∈ L2

h(D ∩ L) there is an F ∈ L2
h(D) with ‖F‖L2

h(D) ≤
C‖f‖L2

h(D∩L) and F |D∩L = f .

Note that Theorem 10 directly leads to the following inequality for the
Bergman kernel:

KD∩L(z) ≤ C2KD(z), z ∈ D ∩ L.
This inequality will often be used below. Note only that the set D ∩ L on
the left-hand side is open (as a subset of C) but not necessarily connected.

We now prove our main result.

Proof of Theorem 1. First note that the result for n = 1 follows from
Theorem 4 and Lemma 8, so assume that n ≥ 2.

(5)⇒(4). Suppose that D is not an L2
h-domain of holomorphy. Then

there are a polydisc P ⊂ D with ∂P ∩ ∂D 6= ∅ and a polydisc P̃ ⊃⊃ P ,
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P̃ 6⊂ D, such that for every function f ∈ L2
h(D) there is a function f̂ ∈

H∞(P̃ ) with f = f̂ on P .
We claim that for any z ∈ P and for any complex line L passing through z

we have

L ∩D ∩ P̃ = (L ∩ P̃ ) \K(z), where K(z) is a polar set.

Suppose that L ∩ D ∩ P̃ = (L ∩ P̃ ) \ K(z), where K(z) is not a polar
set. Choose a compact non-polar set K ′ ⊂ K(z) ⊂ (L ∩ P̃ ) \ D such that
V0 = L \ K̂ ′ (where K̂ ′ denotes the polynomial hull of K ′) contains L ∩ P .
Then there is a function f ∈ L2

h(V0) which does not extend holomorphically
through K̂ ′ (cf. Theorem 3). Let {Vj}Nj=1, where 0 ≤ N ≤ ∞, be the family
of bounded components of L \K ′. Additionally, we let f be identically 0 on⋃N
j=1 Vj .

In view of the Ohsawa–Takegoshi extension theorem there exists an
F ∈ L2

h(D) such that F |L∩D = f |L∩D. But then there is an F̂ ∈ H∞(P̃ )

such that F̂ |P = F |P . Consequently, F̂ |L∩P̃ is a holomorphic extension of
f |
L\K̂′ through K̂ ′, a contradiction.

It follows from the above claim that P̃ ∩D is connected. Consequently,
for any function f ∈ L2

h(D) its (unique) extension f̂ ∈ H∞(P̃ ) satisfies the

equality f = f̂ on D ∩ P̃ .
Consider the space

A := {(f, f̂ ) : f ∈ L2
h(D)} ⊂ L2

h(D)×H∞(P̃ )

with the norm ‖(f, f̂ )‖ := ‖f‖L2
h(D) + ‖f̂ ‖H∞(P̃ ). It is easily seen that A is

a Banach space. Consider the mapping π : A 3 (f, f̂ ) 7→ f ∈ L2
h(D). Then

π is a one-to-one surjective continuous linear mapping. Hence, in view of
the Banach open mapping theorem, π−1 is a continuous linear mapping. In
other words, there is a constant C > 1 such that

‖(f, f̂ )‖ ≤ C‖f‖L2
h(D), f ∈ L2

h(D);

in particular, ‖f̂ ‖H∞(P̃ ) ≤ C‖f‖L2
h(D). Consequently,

sup
z∈P̃∩D

KD(z) = sup
{ |f(z)|2
‖f‖2

L2
h(D)

: z ∈ P̃ ∩D, f 6≡ 0, f ∈ L2
h(D)

}
≤ C2,

which contradicts (5) for any w ∈ ∂P ∩ ∂D 6= ∅.
(4)⇒(5). Fix w ∈ ∂D. First consider the case w 6∈ int(D ). Then there

is a sequence zν → w with zν 6∈ D. Let Bν be the largest open ball cen-
tered at zν disjoint from D. Choose wν ∈ ∂Bν ∩ ∂D. Obviously, wν → w.
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Note that for any ν, D satisfies at wν the “outer cone condition” (see [Pfl]).
Therefore, for any ν we have limD3z→wν KD(z) =∞ (see [Pfl]), which easily
implies (5).

Assume now that w ∈ int(D ). Suppose that (5) does not hold at w.
Then there is a polydisc P with center at w such that sup{KD(z) : z ∈
D∩P} <∞. Without loss of generality we may assume that P ⊂⊂ int(D ).
Consider any complex line L intersecting P . We claim that L ∩ P ∩ D is
equal to (L ∩ P ) \K, where K is a polar set or K = L ∩ P . In fact if this
were not the case then supz∈L∩P∩DKL∩D(z) = ∞ (the Bergman kernel
is here understood as that of a one-dimensional set) (use Lemma 8) and,
consequently, in view of the Ohsawa–Takegoshi extension theorem we would
get supz∈L∩P∩DKD(z) =∞, a contradiction.

Note that there is a complex line L passing through w such that L∩P∩D
is not empty. Assume that w = 0. Making a linear change of coordinates
and shrinking P if necessary we may assume that P = En and that {λ ∈ E :
(0, . . . , 0, λ) ∈ D} is not empty.

Therefore, the assumptions of Lemma 9 are satisfied (with some neigh-
borhood V ⊂ En−1 of 0′ ∈ Cn−1) and there is a neighborhood 0′ ∈ V ′ ⊂
En−1 such that for any f ∈ L2

h(D) there is a function F ∈ O
(
V ′× 1

2E
)

with
F = f on

(
V ′ × 1

2E
)
∩D, a contradiction.

Proof of Theorem 2. Because of Theorem 4 we may assume that n ≥ 2.
(⇒) Suppose that for some w ∈ ∂D there is a polydisc P such that P \D

is pluripolar. Let u ∈ PSH(P ) be such that u 6≡ −∞ and P \D ⊂ {u = −∞}.
Take a non-empty open set U ⊂ D ∩ P and consider all complex lines con-
necting w to some point from U . It is easy to see that there is a complex line
L such that u 6≡ −∞ on L∩P . Assume that w = 0. Making a linear change
of coordinates and shrinking P if necessary, we may assume that P = En

and {zn ∈ E : (0′, zn) 6∈ D} is polar. Because of the local integrability
of u, for almost any z′ ∈ En−1 (with respect to the (2n − 2)-dimensional
Lebesgue measure) the function u(z′, ·) is not identically −∞ on E. Con-
sequently, for almost every z′ ∈ En−1 the set {zn ∈ E : (z′, zn) 6∈ D}
is polar. Applying Lemma 9 we obtain the existence of an open set 0 ∈ Q
such that for any f ∈ L2

h(D) there exists an F ∈ O(Q) with f = F on
D ∩Q, a contradiction.

(⇐) Suppose that the implication does not hold, so in view of Theo-
rem 1 there is a w ∈ ∂D such that lim supD3z→wKD(z) <∞. In other words
there is a polydisc P with center at w such that supz∈D∩P KD(z) <∞.

First note that for any complex line L with L∩P 6= ∅ we have L∩P ∩D
= ∅ or L∩P ∩D = (L∩P )\K, where K is a polar set. Actually, if there were
L such that L∩P ∩D = (L∩P )\K, with K 6= L∩P and K not polar, then
for some U ⊂⊂ L ∩ P , supz∈U∩DKD∩L(z) =∞ (use Lemma 8). Therefore,
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in view of the Ohsawa–Takegoshi theorem, supz∈U∩DKD(z) =∞, a contra-
diction.

Consequently, one may apply a result of A. Sadullaev (see [Sad 2] and
also [Sad 1]) to deduce that the set P \D is pluripolar, a contradiction.

It follows from the reasoning in the proofs of Theorems 1 and 2 that the
following higher-dimensional counterpart of Lemma 8 holds.

Lemma 11. Let D be a bounded pseudoconvex domain and let w ∈ ∂D.
Then lim supD3z→wKD(z) <∞ if and only if for any neighborhood U of w
the set U \D is pluripolar.

The known examples of L2
h-domains of holomorphy include bounded

pseudoconvex fat domains and bounded pseudoconvex balanced domains.
The characterization of L2

h-domains of holomorphy given by us yields many
examples of such domains. Below we give an example of a new class of
domains having this property.

For a bounded pseudoconvex domain D ⊂ Cn we define the following
Hartogs domain with m-dimensional balanced fibers:

GD := {(w, z) ∈ Cn+m : H(z, w) < 1},
where logH is plurisubharmonic on D × Cm, H(z, λw) = |λ|H(z, w),
(z, w) ∈ D×Cm, λ ∈ C, and GD is bounded (i.e. H(z, w) ≥ C‖w‖ for some
C > 0, (z, w) ∈ D × Cm). Then GD is a bounded pseudoconvex domain.

Proposition 12. Let D be a bounded L2
h-domain of holomorphy. Then

GD is an L2
h-domain of holomorphy.

Proof. Take (z0, w0) ∈ ∂GD. If z0 ∈ D then

lim
GD3(z,w)→(z0,w0)

KGD (z, w) =∞

(use Theorem 3.1(i) from [Jar-Pfl-Zwo]).
Assume now that z0 ∈ ∂D. Let V be any neighborhood of (z0, w0). In

view of Lemma 11 and Theorem 1 it is sufficient to show that V \ GD is
not pluripolar. We may assume that V = V1×V2 ⊂ Cn+m. Because D is an
L2

h-domain of holomorphy Theorem 2 applies and V1 \D is not pluripolar.
Since V \GD ⊃ (V1 \D)× V2 and the latter set is not pluripolar, the proof
is finished.

Acknowledgments. The authors would like to thank A. Edigarian for
drawing their attention to the result of A. Sadullaev.

After the paper had been finished the authors learnt about the existence
of a paper of J. Siciak (see [Sic]) in which a similar result to that of Lemma 9
was proven (but with other methods).
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