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n-supercyclic operators

by

Nathan S. Feldman (Lexington, VA)

Abstract. We show that there are linear operators on Hilbert space that have n-
dimensional subspaces with dense orbit, but no (n− 1)-dimensional subspaces with dense
orbit. This leads to a new class of operators, called the n-supercyclic operators. We show
that many cohyponormal operators are n-supercyclic. Furthermore, we prove that for an
n-supercyclic operator, there are n circles centered at the origin such that every component
of the spectrum must intersect one of these circles.

1. Introduction. If T : H → H is a bounded linear operator on
a separable Hilbert space and C ⊆ H, then the orbit of C under T is⋃{C, T (C), T 2(C), . . .}. An operator T is said to be hypercyclic if there is
a vector with dense orbit. The first example of a hypercyclic operator on a
Hilbert space was given by Rolewicz [11] in 1969. He showed that if B is the
backward shift, then λB is hypercyclic for any scalar λ ∈ C with |λ| > 1.
In 1974 Hilden and Wallen [8] introduced the class of supercyclic operators
as those operators that have a vector whose scaled orbit is dense. That is,
T is supercyclic if there is a vector x such that {αT nx : n ≥ 0, α ∈ C} is
dense. Hilden and Wallen showed, among other things, that any unilateral
backward weighted shift is supercyclic. Hypercyclic and supercyclic opera-
tors have received considerable attention recently, especially since they arise
in familiar classes of operators, such as weighted shifts [12], [13], composi-
tion operators [3], adjoints of multiplication operators on spaces of analytic
functions [6] and adjoints of subnormal and hyponormal operators [5]. For
a general survey of hypercyclicity, see [7].

Notice that an operator is supercyclic if and only if it has a one-dimen-
sional subspace with dense orbit. We shall say that an operator T is n-
supercyclic (1 ≤ n < ∞) if there is an n-dimensional subspace whose orbit
under T is dense.

In this paper we shall prove that for every n ≥ 2, there are very natural
operators (adjoints of multiplication operators) that are n-supercyclic but
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not (n − 1)-supercyclic. Thus (for n = 2) there are operators that have a
“plane” with dense orbit, but no “line” with dense orbit.

We shall say that T is infinitely supercyclic, denoted by ∞-supercyclic,
if there exists a proper closed subspace M such that (1) the orbit of M
under T is dense, (2) for each n ≥ 1,

⋃{M, T (M), . . . , T n(M)} is not
dense, and (3) M does not contain any nonzero invariant subspaces for T .
While condition (1) is of interest in its own right, the reason for conditions
(2) and (3) is to rule out certain trivialities. We will prove that there are
∞-supercyclic operators that are not n-supercyclic for any n <∞.

The outline of the paper is as follows: In Section 2 we state some pre-
liminary results about hypercyclicity and supercyclicity that are needed
throughout the paper. In Section 3 we present sufficient conditions for op-
erators to be n-supercyclic; Theorem 3.7 is one of the main results of this
section.

Theorem 3.7 (Direct sums are n-supercyclic). If T1, . . . , Tn, 1 ≤ n <
∞, are supercyclic operators and each satisfies the supercyclicity criterion
with respect to the same sequence {nk}, then

⊕n
k=1 Tk is n-supercyclic.

In Section 4 some necessary conditions for an operator to be n-super-
cyclic are given, the main result—which was unexpected—is Theorem 4.1.
This result shows that there really is some structure to these operators.

Theorem 4.1 (The Circle Theorem). If T is n-supercyclic, then there
are n circles Γi = {z : |z| = ri}, ri ≥ 0, i = 1, . . . , n, such that for every
invariant subspaceM of T ∗, we have σ(T ∗|M)∩⋃n

i=1 Γi 6= ∅. In particular ,
every component of the spectrum of T intersects

⋃n
i=1 Γi.

It is also proven in Section 4 that normal operators on infinite-dimen-
sional spaces cannot be n-supercyclic. It is left open as to whether a sub-
normal or a hyponormal operator can be n-supercyclic, although the author
expects not. One may easily check that bilateral weighted shifts are ∞-
supercyclic, thus a subnormal operator, and even a unitary operator, may
be ∞-supercyclic.

Example 4.8 is a sharp example giving necessary and sufficient spectral
conditions for a class of cosubnormal operators to be n-supercyclic.

Example 4.8 (Important example). If {∆j : 1 ≤ j < ∞} is a bounded
collection of open disks, Sj = Mz on L2

a(∆j), and S =
⊕∞

j=1 Sj , then S∗ is
n-supercyclic if and only if there are k circles Γi = {z : |z| = ri}, ri ≥ 0,
i = 1, . . . , k, k ≤ n, and a side associated with each circle (inside, outside
or either) such that for every disk ∆j , there exists a circle Γi so that cl∆j

intersects Γi and the assigned side of Γi. Furthermore, the total number of
sides is n.
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In Section 5 we use local spectral theory techniques to take a first step
towards characterizing the cohyponormal operators that are n-supercyclic.
Corollaries 5.7 and 5.8 are the main results here.

Corollary 5.7 (Cohyponormal operators with eigenvectors). If S is a
pure hyponormal operator and there exists a % > 0 such that for each ε > 0,

span{ker(S∗ − λ) : %− ε < |λ| < %+ ε}
is dense, then S∗ is 2-supercyclic.

Corollary 5.8 (Cohyponormal operators). Suppose that S is a pure
hyponormal operator and there exists a circle Γ = {z : |z| = r}, r > 0, such
that for every hyperinvariant subspace M of S, σ(S|M) ∩ Γ 6= ∅. Then S∗

is 2-supercyclic.

Finally in Section 6, several open questions are stated about this new
class of operators. The most important being: If T is n-supercyclic and T ∗

has no eigenvalues, then is T necessarily cyclic?

2. Preliminaries. In what follows, H will denote a separable complex
Hilbert space; although most of what follows can be done on Banach spaces
or even more general spaces, we will mainly work on Hilbert spaces, as there
are many unanswered questions there.

There are a number of different “criteria” for an operator to be super-
cyclic. The first criterion was given by Salas [13] in 1999. In [5] Feldman,
Miller and Miller gave an inner and an outer version of Salas’ criteria. For-
tunately, it has recently been shown by Bermúdez, Bonilla and Peris [1]
that all these criteria are equivalent. However, each criterion has its own
advantages and may be easier to apply in a given setting.

Theorem 2.1 (The Supercyclicity Criterion (Salas)). Let T ∈ B(H).
Suppose that there is a sequence nk → ∞ and dense sets X and Y and
functions Bnk : Y →H such that :

(1) If y ∈ Y , then TnkBnky → y as k →∞.
(2) If x ∈ X and y ∈ Y , then ‖T nkx‖ · ‖Bnky‖ → 0 as k →∞.

Then T is supercyclic.

Theorem 2.2 (An Outer Supercyclicity Criterion). Let T ∈B(H). Sup-
pose that there is a sequence nk → ∞, a dense linear subspace Y , and for
every y ∈ Y a dense linear subspace Xy such that :

(1) There exist functions Bnk : Y → H such that TnkBnky → y for all
y ∈ Y .

(2) If y ∈ Y and x ∈ Xy, then ‖Tnkx‖ · ‖Bnky‖ → 0 as k →∞.

Then T is supercyclic.



144 N. S. Feldman

Theorem 2.3 (An Inner Supercyclicity Criterion). Let T ∈ B(H). Sup-
pose that there is a sequence nk → ∞, a dense linear subspace Y , and for
every y ∈ Y a dense linear subspace Xy such that :

(1) There exist functions By,nk : Xy → H such that TnkBy,nkx→ x for
all x ∈ Xy.

(2) If y ∈ Y and x ∈ Xy, then ‖Tnky‖ · ‖By,nkx‖ → 0 as k →∞.

Then T is supercyclic.

Note that the functions Bn and By,n, which are approximate right in-
verses of Tn, are nothing more than well defined functions; they may be,
and usually are, discontinuous.

The following corollary follows easily from the above (inner & outer)
criteria (see Feldman, Miller, and Miller [5]).

Corollary 2.4. Let T ∈ B(H).

(1) (inner) If there exists a number % > 0 such that for every ε > 0,

span{ker(T − λ) : %− ε < |λ| < %}
is dense in X, then T is supercyclic.

(2) (outer) If there exists a number % ≥ 0, such that for every ε > 0,

span{ker(T − λ) : % < |λ| < %+ ε}

is dense in X, then T is supercyclic.

The following results from Feldman, Miller and Miller [5] characterize
the cohyponormal operators that are hypercyclic or supercyclic.

Theorem 2.5. If T is a hyponormal operator on a separable Hilbert
space H, then T ∗ is hypercyclic if and only if for every hyperinvariant sub-
space M of T ,

σ(T |M) ∩ {z : |z| < 1} 6= ∅ and σ(T |M) ∩ {z : |z| > 1} 6= ∅.
Theorem 2.6. If T is a pure hyponormal operator , then T ∗ is super-

cyclic if and only if there exists a circle Γ% = {z : |z| = %}, % ≥ 0, such that
either :

(a) (inner) for every hyperinvariant subspace M of T ,

σ(T |M) ∩ Γ% 6= ∅ and σ(T |M) ∩ {z : |z| < %} 6= ∅, or

(b) (outer) for every hyperinvariant subspace M of T ,

σ(T |M) ∩ Γ% 6= ∅ and σ(T |M) ∩ {z : |z| > %} 6= ∅.
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3. Sufficient conditions for n-supercyclicity. In this section we give
two different conditions for an operator to be n-supercyclic and present some
examples of n-supercyclic operators.

Proposition 3.1. If n ∈ Z+ ∪ {∞} and {Tk : 1 ≤ k ≤ n} is a bounded
collection of operators such that there exist constants {ck : 1 ≤ k ≤ n} such
that

⊕n
k=1 ckTk is supercyclic, then

⊕n
k=1 Tk is n-supercyclic.

Proof. Set T :=
⊕n

k=1 ckTk and S :=
⊕n

k=1 Tk. Let x = (x1, . . . , xn) be
a supercyclic vector for T . Then {αT ix : α ∈ C, i ≥ 0} is dense. Now for
1 ≤ j ≤ n, let ej = (0, . . . , 0, xj , 0, . . . , 0) where xj is in the jth coordinate.

Then αT ix = (αci1T
i
1x1, . . . , αc

i
nT

i
nxn) = Si(β(i)

1 e1 + . . . + β
(i)
n en) where

β
(i)
j = αcij . Thus {Si(β(i)

1 e1+. . .+β(i)
n en) : i ≥ 0, β(i)

j ∈ C} ⊇ {αT ix : α ∈ C,
i ≥ 0} and hence the orbit ofM := span{e1, . . . , en} under S is dense. So, S
is n-supercyclic. If n =∞, then one can show that the remaining conditions
are satisfied; see the proof of Proposition 3.6.

A similar proof to that above establishes the following result.

Proposition 3.2. If n ∈ Z+ ∪ {∞} and {Tk : 1 ≤ k ≤ n} is a bounded
collection of operators such that there exist constants {ck : 1 ≤ k ≤ n} such
that

⊕n
k=1 ckTk is m-supercyclic, m <∞, then

⊕n
k=1 Tk is nm-supercyclic.

For a bounded open set G ⊆ C, let L2
a(G) denote the Bergman space of

all analytic functions on G that belong to L2(G, dA) where dA denotes the
area measure on G.

Example 3.3. Let Si = Mz on L2
a(∆i), i = 1, 2, where ∆i is a disk, and

set S = S1 ⊕ S2. If ∆1 ⊆ {z : |z| ≤ 1} and ∆2 ⊆ {z : |z| ≥ 1}, then S∗ is
2-supercyclic but not supercyclic.

Proof. The fact that S∗ is 2-supercyclic follows from Proposition 3.1; see
also the proof of the next example. That S∗ is not supercyclic follows from
Theorem 2.6; see also Theorem 4.1.

Example 3.4. Let n ∈ Z+ ∪ {∞}. If {∆k : 1 ≤ k ≤ n} is any bounded
collection of open disks, Sk = Mz on L2

a(∆k), and S =
⊕n

k=1 Sk, then S∗ is
n-supercyclic.

Proof. There exist positive scalars {ck} such that the interior of the
spectrum of ckSk intersects the unit circle. Then it follows easily, say from
Theorem 2.5, that

⊕n
k=1 ckS

∗
k is hypercyclic. Thus by Proposition 3.1, S∗ is

n-supercyclic.

We now present a general method used to show that the direct sum of
operators is n-supercyclic.
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Proposition 3.5. Let Ti ∈ B(Hi) for 1 ≤ i ≤ n < ∞. If for any
two nonempty open subsets U, V ⊆ ⊕n

i=1Hi there exist (x1, . . . , xn) ∈ U ,
k ≥ 0, and {α1, . . . , αn} ⊆ C such that (α1T

k
1 x1, . . . , αnT

k
nxn) ∈ V , then

T1 ⊕ . . .⊕ Tn is n-supercyclic.

Proof. Let H = H1 ⊕ . . . ⊕ Hn and for h ∈ H, let hi denote the ith
component of h. Suppose also that {Vj}∞j=1 is a basis of open sets for H. Let

Gj = {h ∈ H : ∃α1, . . . , αn ∈ C and k ≥ 0

such that (α1T
k
1 h1, . . . , αnT

k
nhn) ∈ Vj}.

Then Gj is an open set, which, by hypothesis, is dense in H. Thus the Baire
Category Theorem implies that

⋂∞
j=1Gj is a dense Gδ.

Let x ∈ ⋂∞j=1Gj . Then one easily checks that the n-dimensional subspace
of H spanned by (x1, 0, . . . , 0), (0, x2, 0, . . . , 0), . . . , (0, . . . , 0, xn) has dense
orbit under T1 ⊕ . . .⊕ Tn, where x = (x1, . . . , xn).

Proposition 3.6. Let Ti ∈ B(Hi) for 1 ≤ i < ∞ be a uniformly
bounded sequence of operators. If for any two open subsets U, V ⊆⊕∞i=1Hi
there exists an n ≥ 1 and (x1, . . . , xn, 0, 0, . . .) ∈ U , an integer k ≥ 1,
and {α1, . . . , αn} ⊆ C such that (α1T

k
1 x1, . . . , αnT

k
nxn, 0, 0, . . .) ∈ V , then⊕∞

i=1 Ti is ∞-supercyclic.

Proof. Proceeding as above, let H =
⊕∞

i=1Hi and for h ∈ H, let hi
denote the ith component of h. Suppose also that {Vj}∞j=1 is a basis of open
sets for H. Let

Gj = {h ∈ H : ∃n ≥ 1, α1, . . . , αn ∈ C and k ≥ 0 such that

(α1T
k
1 h1, . . . , αnT

k
nhn, 0, 0, . . .) ∈ Vj}.

Then Gj is an open set, which, by hypothesis, is dense in H. Thus the Baire
Category Theorem implies that

⋂∞
j=1Gj is a dense Gδ.

Let (x1, . . . , xn, . . .) ∈
⋂∞
j=1Gj where xi ∈ Hi, and let en = (0, . . .

. . . , 0, xn, 0, 0, . . .) be the vector with xn in the nth coordinate and zeros
elsewhere. Then let M be the closed linear span of {en : n ≥ 1}. It follows
from the fact that (x1, . . . , xn, . . .) ∈

⋂∞
j=1Gj that the orbit of M under

T :=
⊕∞

i=1 Ti is dense in H.
Furthermore, for any n ≥ 1, if one considers En :=

⋃n
k=0 T

k(M), then
the projection of En onto any of the coordinate spaces Hi is simply a finite
union of one-dimensional subspaces, hence cannot be dense. Thus En is not
dense for any n.

To see that M contains no invariant subspace for T , we show that for
every nonzero x ∈ M, Tx 6∈ M. If x ∈ M \ {0}, then x =

∑
n αnen/‖en‖

where {αn} ∈ `2. However, if Tx ∈ M, then xn is necessarily an eigenvector
for Tn whenever αn 6= 0. But since each xn is a supercyclic vector for Tn,
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none of the xn’s are eigenvectors. Thus, αn = 0 for every n, hence x = 0. It
follows that T is ∞-supercyclic.

We now present our main result for constructing examples of n-super-
cyclic operators. If {nk} is a sequence of integers satisfying nk → ∞, then
we say that an operator T satisfies the supercyclicity criterion with respect
to {nk} if T satisfies the hypothesis of Theorem 2.1 with respect to the
sequence {nk}. Recall that Theorems 2.1, 2.2, and 2.3 are all equivalent
(see [1]).

Theorem 3.7. If T1, . . . , Tn, 1 ≤ n <∞, are supercyclic operators and
each satisfy the supercyclicity criterion with respect to the same sequence
{nk}, then

⊕n
k=1 Tk is n-supercyclic.

Proof. Suppose that Ti ∈ B(Hi) for i ∈ {1, . . . , n}. For 1 ≤ i ≤ n, since
Ti satisfies the supercyclicity criterion (Theorem 2.1) there are dense sets
X(i) and Y (i), and functions B(i)

nk satisfying the conditions in Theorem 2.1
(we have used the superscript (i) to denote the dependence of the sets on
the operator Ti).

We want to apply Proposition 3.5. So, suppose that U, V are two non-
empty open sets in H1 ⊕ . . . ⊕ Hn. Let a = (a1, . . . , an) ∈ U and b =
(b1, . . . , bn) ∈ V . Choose an ε > 0 such that the closed balls clB(a, ε) ⊆ U
and clB(b, ε) ⊆ V .

Now for each 1 ≤ i ≤ n, since X(i) and Y (i) are dense we may choose
xi ∈ X(i) such that ‖xi − ai‖ < ε/(2n) and yi ∈ Y (i) such that ‖yi − bi‖ <
ε/(4n).

So, for each i ∈ {1, . . . , n} we have chosen vectors xi, yi. By the super-
cyclicity criterion, we have, for i ∈ {1, . . . , n},

‖Tnki xi‖ · ‖B(i)
nk
yi‖ → 0 and Tnki B(i)

nk
yi → yi as k →∞.

So choose k large enough such that

‖Tnki xi‖ · ‖B(i)
nk
yi‖ <

ε2

4n2 and ‖Tnki B(i)
nk
yi − yi‖ <

ε

4n

for all i ∈ {1, . . . , n}. Now that k has been chosen, for each i ∈ {1, . . . , n}
let

αi =
2n
ε
‖B(i)

nk
yi‖ and zi = xi +

1
αi
B(i)
nk
yi.

Hence, z = (z1, . . . , zn) ∈ H1 ⊕ . . .⊕Hn.
We claim that z ∈ U and (α1T

nk
1 z1, . . . , αnT

nk
n zn) ∈ V . Notice

that
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‖z − a‖ =
( n∑

i=1

‖zi − ai‖2
)1/2

≤
n∑

i=1

‖zi − ai‖

=
n∑

i=1

∥∥∥∥xi +
1
αi
B(i)
nk
yi − ai

∥∥∥∥

≤
n∑

i=1

(
‖xi − ai‖+

∥∥∥∥
1
αi
B(i)
nk
yi

∥∥∥∥
)
≤

n∑

i=1

(
ε

2n
+

ε

2n

)
=

n∑

i=1

ε

n
= ε.

Thus ‖z − a‖ ≤ ε, so z ∈ clB(a, ε) ⊆ U .
Similarly, let w = (α1T

nk
1 z1, . . . , αnT

nk
n zn). We want w ∈ V , so we will

show that ‖w − b‖ ≤ ε. To see this, notice that

‖w − b‖ =
( n∑

i=1

‖αiTnki zi − bi‖2
)1/2

≤
n∑

i=1

‖αiTnki zi − bi‖

=
n∑

i=1

‖αiTnki xi + Tnki B(i)
nk
yi − bi‖ ≤

n∑

i=1

(‖αiTnki xi‖+ ‖Tnki B(i)
nk
yi − bi‖)

≤
n∑

i=1

(‖αiTnki xi‖+ ‖Tnki B(i)
nk
yi−yi‖+ ‖yi− bi‖) ≤

n∑

i=1

(
‖αiTnki xi‖+

ε

2n

)

=
ε

2
+

n∑

i=1

2n
ε
‖B(i)

nk
yi‖ · ‖Tnki xi‖ ≤

ε

2
+

n∑

i=1

(
2n
ε
· ε

2

4n2

)
=
ε

2
+

n∑

i=1

ε

2n
= ε.

Thus, ‖w − b‖ ≤ ε, hence w ∈ clB(b, ε) ⊆ V . It now follows from Proposi-
tion 3.5 that T1 ⊕ . . .⊕ Tn is n-supercyclic.

Theorem 3.8. If {Tk : 1 ≤ k < ∞} is a uniformly bounded sequence
of supercyclic operators and they all satisfy the supercyclicity criterion with
respect to the same sequence {nj}, then

⊕∞
k=1 Tk is ∞-supercyclic.

Proof. Suppose that Tk ∈ B(Hk) and set H =
⊕∞

k=1Hk. We wish to
apply Proposition 3.6. So, suppose that U, V are two nonempty open sets
in H. Let a = (a1, . . . , an, 0, 0, . . .) ∈ U and b = (b1, . . . , bn, 0, 0, . . .) ∈ V .
Choose an ε > 0 such that the closed balls clB(a, ε) ⊆ U and clB(b, ε) ⊆ V .
Since T1, . . . , Tn each satisfy the supercyclicity criteria, it follows from the
proof of Theorem 3.7 that there exists (x1, . . . , xn) ∈ H1 ⊕ . . . ⊕ Hn, a
k ≥ 0, and scalars {α1, . . . , αn} such that ‖(x1, . . . , xn)− (a1, . . . , an)‖≤ ε
and ‖(α1T

k
1 x1, . . . , αnT

k
nxn) − (b1, . . . , bn)‖ ≤ ε. It follows that (x1, . . . , xn,

0, 0, . . .) ∈ U and (α1T
k
1 x1, . . . , αnT

k
nxn, 0, 0, . . .) ∈ V . Thus, by Proposi-

tion 3.6,
⊕∞

k=1 Tk is ∞-supercyclic.

Corollary 3.9. Suppose T ∈ B(H) and {M1, . . . ,Mn} are closed in-
variant subspaces for T such that M1 + . . .+Mn is dense in H. If there is a
sequence of integers nj →∞ such that for each k ∈ {1, . . . , n}, T |Mk satis-
fies the supercyclicity criterion with respect to {nj}, then T is n-supercyclic.
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Proof. For k ∈ {1, . . . , n}, let Tk = T |Mk. Since each Tk satisfies the
supercyclicity criterion with respect to {nj}, Theorem 3.7 implies that⊕n

k=1 Tk is n-supercyclic. Now define A :
⊕n

k=1Mk → H by A(x1, . . . , xn)
= x1 + . . .+xn. By assumption A has dense range. Since A(

⊕n
k=1 Tk) = TA

it follows that T is n-supercyclic.

Theorem 3.10. Let n ∈ N ∪ {∞}. If {Si : 1 ≤ i ≤ n} is a uniformly
bounded collection of pure hyponormal operators such that for each i, S∗i is
supercyclic, then

⊕n
i=1 S

∗
i is n-supercyclic.

Proof. In [5] it was shown that if S is a pure hyponormal operator and
S∗ is supercyclic, then S∗ satisfies the supercyclicity criteria (either Theo-
rem 2.2 or 2.3) with respect to the sequence nk = k.

Example 3.11. (1) If {S1, . . . , Sn} are irreducible cyclic subnormal op-
erators, then (

⊕n
k=1 Sk)

∗ is n-supercyclic.
(2) If {T1, . . . , Tn} are coanalytic Toeplitz operators, with nonconstant

symbols, on H2(D), then
⊕n

k=1 Tk is n-supercyclic.

If Γ is a circle, then let intΓ and extΓ denote the interior and exterior
of Γ .

Example 3.12. Suppose that Sn = Mz on L2
a(∆n) where {∆n : n ≥ 1}

is a bounded sequence of open disks. Let S =
⊕∞

n=1 Sn.
If there are n circles Γi = {z : |z| = ri}, ri ≥ 0, 1 ≤ i ≤ n, such that for

every k ≥ 1, cl∆k intersects
⋃n
i=1 Γi, then S∗ is 2n-supercyclic.

Proof. Let Ik (I for inner) be the collection of all the disks ∆i such that
cl∆i∩Γk 6= ∅ and ∆i∩ intΓk 6= ∅. Also, let Ok (O for outer) be the collection
of all the disks ∆i such that cl∆i ∩ Γk 6= ∅ and ∆i ∩ extΓk 6= ∅. Let Ak :=⊕

i∈Ik Si and Bk :=
⊕

i∈Ok Si. Then A∗k is supercyclic (Theorem 2.6) and
B∗k is supercyclic (Theorem 2.6), thus by Theorem 3.10, T := (

⊕n
k=1A

∗
k)⊕

(
⊕n

k=1B
∗
k) is 2n-supercyclic. Now, either S∗ ∼= T or S∗ may be obtained by

restricting T to a reducing subspace; either way S∗ is 2n-supercyclic.

4. Necessary conditions. The main result in this section is an ana-
logue of the “Circle Theorem” for supercyclic operators (see [5]). That is,
we prove that if T is n-supercyclic, n ∈ N, then there are n circles centered
at the origin and every “part of the spectrum” of T ∗ must intersect one of
these circles. It follows that every component of the spectrum of T must
intersect one of these circles.

Theorem 4.1. If T is n-supercyclic, then there are n circles Γi = {z :
|z| = ri}, ri ≥ 0, i = 1, . . . , n, such that for every invariant subspace M of
T ∗, we have σ(T ∗|M) ∩⋃n

i=1 Γi 6= ∅. In particular , every component of the
spectrum of T intersects

⋃n
i=1 Γi.
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This necessary condition allows us to construct operators that are n-
supercyclic, but not (n−1)-supercyclic. A few preliminary results are needed
in order to prove Theorem 4.1.

Lemma 4.2. Let T be a bounded linear operator on Hilbert space H.

(a) If σ(T ) ⊆ {z : |z| < β}, then there exists a constant C > 0 such that
‖Tnx‖ ≤ Cβn‖x‖ for every x ∈ H.

(b) If σ(T ) ⊆ {z : |z| > α}, then there exists a constant C > 0 such that
‖Tnx‖ ≥ Cαn‖x‖ for every x ∈ H.

The above estimates are well known and follow either from estimates
from the Riesz Functional Calculus or from the spectral radius formula.

Proposition 4.3. Suppose that Ti ∈ B(Hi), i = 1, 2, and σ(T1) ⊆ {z :
|z| < %} and σ(T2) ⊆ {z : |z| > %} for some % > 0. Suppose also that
T = T1 ⊕ T2 is n-supercyclic on H = H1 ⊕ H2 and that M ⊆ H is an
n-dimensional subspace with dense orbit under T . If {vi : 1 ≤ i ≤ n} ⊆ M
is a linearly independent set and if vi = (xi, yi) with xi ∈ H1 and yi ∈ H2,
then y1, . . . , yn are linearly dependent.

Proof. If y1, . . . , yn are linearly independent, then span{y1, . . . , yn} is an
n-dimensional subspace of H2. Hence the linear map Cn → span{y1, . . . , yn}
that sends (a1, . . . , an) to a1y1+. . .+anyn is invertible. Thus by the continu-
ity of the inverse of this map, there is an ε > 0 such that ‖a1y1+. . .+anyn‖ ≥
ε(|a1|2 + . . .+ |an|2)1/2 for any (a1, . . . , an) ∈ Cn.

Now let (e, f) ∈ H = H1⊕H2 be any vector. Since the orbit ofM under
T is dense, there exist nk → ∞ and ai,k ∈ C such that T nk(a1,kv1 + . . . +
an,kvn)→ (e, f) as k →∞. Thus

[
Tnk1 (a1,kx1 + . . .+ an,kxn)
Tnk2 (a1,ky1 + . . .+ an,kyn)

]
→
[
e
f

]
as k →∞.

Now, let C = max{‖x1‖, . . . , ‖xn‖} and let K,K ′ > 0 be such that
‖T j1x‖ ≤ K%j‖x‖ and ‖T j2 y‖ ≥ (1/K ′)%j‖y‖ for all x ∈ H1, y ∈ H2, and
j ≥ 0 (see Lemma 4.2). Given this, we have the following:

‖e‖= lim
k→∞

‖Tnk1 (a1,kx1+. . .+an,kxn)‖ ≤ lim inf
k→∞

K%nk‖(a1,kx1+. . .+an,kxn)‖

≤ lim inf
k→∞

KC%nk(|a1,k|+ . . .+ |an,k|)

≤ lim inf
k→∞

nKC%nk(|a1,k|2 + . . .+ |an,k|2)1/2

≤ lim inf
k→∞

n%nkKC(1/ε)‖a1,ky1 + . . .+ an,kyn‖

≤ lim inf
k→∞

nCKK ′(1/ε)‖Tnk2 (a1,ky1 + . . .+ an,kyn)‖ = nCKK ′(1/ε)‖f‖.
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Thus, ‖e‖ ≤ nCKK ′(1/ε)‖f‖. Now since nCKK ′(1/ε) depends only on
xi and yi and not on e and f , it follows that not every vector (e, f) is in
the closure of the orbit of M (any vector where ‖e‖ is significantly larger
than ‖f‖ will not be). However this contradicts our assumption thatM has
dense orbit under T . It follows then that y1, . . . , yn are linearly dependent.

If we assume that Ti is cohyponormal, then we may relax the assumptions
that the spectra are contained in open sets and allow them to intersect the
circle {z : |z| = %}. That is, we have the following result as well.

Proposition 4.4. Suppose that Ti ∈ B(Hi), i = 1, 2, are cohyponormal
operators and σ(T1) ⊆ {z : |z| ≤ %} and σ(T2) ⊆ {z : |z| ≥ %} for some
% > 0. Suppose also that T = T1 ⊕ T2 is n-supercyclic on H = H1 ⊕ H2
and that M ⊆ H is an n-dimensional subspace with dense orbit under T .
If {vi : 1 ≤ i ≤ n} ⊆ M is a linearly independent set and if vi = (xi, yi)
with xi ∈ H1 and yi ∈ H2, then y1, . . . , yn are linearly dependent.

Proof. The proof is similar to Proposition 4.3 except that estimates given
by Lemma 4.2 now follow immediately from the hyponormality of T ∗ (in fact
K = K ′ = 1).

Proposition 4.5. Suppose that Ti ∈ B(Hi) for 0 ≤ i ≤ n < ∞ and let
T =

⊕n
k=0 Tk. If there exist numbers 0 < %1 < . . . < %n such that

σ(T0) ⊆ {z : |z| < %1},
σ(Ti) ⊆ {z : %i < |z| < %i+1} for 1 ≤ i ≤ n− 1,

σ(Tn) ⊆ {z : |z| > %n},
then T is not n-supercyclic.

Proof. We shall proceed by induction. The result is known for n = 1
(see [5]). So our induction hypothesis is that whenever T is the direct sum
of n operators whose spectra can be separated by n − 1 circles centered at
the origin, then T is not (n− 1)-supercyclic.

Suppose that T =
⊕n

k=0 Tk and the spectra of Tk are separated by n
circles as stated in the proposition. Suppose also that T is n-supercyclic and
thatM is an n-dimensional subspace of H = H0⊕H1⊕ . . .⊕Hn with dense
orbit under T . Let v1, . . . , vn be a basis for M.

Let S := T1 ⊕ . . .⊕ Tn, so T = T0 ⊕ S on H = H0 ⊕K where K := H1⊕
. . .⊕Hn. Write the basis {v1, . . . , vn} as vectors in H0⊕K, say vi = (xi, yi)
where xi ∈ H0 and yi ∈ K.

It then follows from Proposition 4.3 that y1, . . . , yn are linearly depen-
dent. Hence span{y1, . . . , yn} is at most (n− 1)-dimensional. Thus, it easily
follows that S is (n − 1)-supercyclic. However, since S is the direct sum
of n operators with spectra separated by n − 1 circles, the induction hy-
pothesis says that S cannot be (n− 1)-supercyclic. Hence we have a contra-
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diction. Thus T is not n-supercyclic, and now the result follows by induc-
tion.

The next lemma says that for a collection C of compact connected sets
in the complex plane, either there exist n circles such that every set in C
intersects at least one of the circles or there are n + 1 sets in C that can
be separated by n circles. The n = 1 case was used in [5, Theorem 6.2] for
establishing the existence of the supercyclicity circle for supercyclic opera-
tors.

Lemma 4.6. If C is a collection of compact connected sets in C, then
either there exist n circles Γi = {z : |z| = ri}, ri ≥ 0, such that for every
K ∈ C, K ∩ ⋃n

i=1 Γi 6= ∅, or there exist n + 1 sets {K0, . . . ,Kn} ⊆ C
and n radii %i > 0, i = 1, . . . , n, such that K0 ⊆ {z : |z| < %1}, Ki ⊆
{z : %i < |z| < %i+1} for 1 ≤ i ≤ n− 1, and Kn ⊆ {z : |z| > %n}.

The author would like to thank Paul Bourdon for the following proof;
although it is not constructive, it is shorter and cleaner than the author’s
original inductive proof. We leave the n = 1 case to the reader.

Proof. Let f(z) = |z|. Consider the collection C ′ of compact intervals
(possibly degenerating to a point) given by C ′ = {f(K) : K ∈ C}. Now, for
a given n ≥ 1, the problem may be stated as follows: either (a) there exist
n numbers {r1, . . . , rn} such that every interval in C ′ intersects {r1, . . . , rn}
or (b) there are n + 1 pairwise disjoint intervals in C ′. Now consider those
subsets A ⊆ C ′ with the property that any two intervals in A have nonempty
intersection. If X is the set of all such subsets A, partially ordered by inclu-
sion, then Zorn’s Lemma implies that X must have maximal elements. If X
has at most n maximal elements, then condition (a) above holds, otherwise
condition (b) holds.

Remark. In Lemma 4.6, it may be necessary to have ri = 0 for some
value of i. For example if C includes the closed disks {B(0, 1/n) : n ≥ 1},
then we must have ri = 0 for some i.

Proof of Theorem 4.1. Let S = T ∗. We need to show that there are n
circles Γ1, . . . , Γn such that for every invariant subspaceM of S, σ(S|M)∩⋃n
i=1 Γi 6= ∅. We know that S∗ is n-supercyclic, and hence (S|M)∗ is also

n-supercyclic for every invariant subspace M of S.
Suppose the result is not true. Then by Lemma 4.6 (with C being the

collection of all connected components of sets of the form σ(S|M) where
M is an invariant subspace for S, [5, Theorem 6.2]) there exist n+ 1 invari-
ant subspaces M0, . . . ,Mn for S and n positive radii %1, . . . , %n such that
σ(S|M0) ⊆ {z : |z| < %1}, σ(S|Mi) ⊆ {z : %i < |z| < %i+1} for 1 ≤ i ≤ n−1,
and σ(S|Mn) ⊆ {z : |z| > %n}.
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It follows from Lemma 4.2 thatMi∩(
∑

j 6=iMj) = (0). Thus the operator
A :M0⊕. . .⊕Mn → H defined as A(x1, . . . , xn) = x1+. . .+xn is one-to-one.
Furthermore, if we set Si = S|Mi, then A intertwines S0⊕ . . .⊕ Sn with S.
Thus A∗ intertwines S∗ with S∗0⊕ . . .⊕S∗n. Since A∗ has dense range and S∗

is n-supercyclic, it follows that S∗0 ⊕ . . .⊕S∗n is also n-supercyclic. However,
this contradicts Proposition 4.5. Hence the n circles exist.

Example 4.7. Let n ∈ Z+. If {∆k : 1 ≤ k ≤ n} is the collection of open
disks where ∆k is centered at k and has radius 1/4, then letting Sk = Mz

on L2
a(∆k), and S =

⊕n
k=1 Sk, we see that S∗ is n-supercyclic, but not

(n− 1)-supercyclic.
Or, if for each n ≥ 1, we have a disk ∆n centered at 1/n and choose

the radii small enough so that the disks are pairwise disjoint, then S =⊕∞
n=1 Sn is subnormal and S∗ is ∞-supercyclic, but not n-supercyclic for

any n <∞.

Using Proposition 4.4 instead of Proposition 4.3 we may prove a sharper
version of Proposition 4.5 for cohyponormal operators (where strict inequal-
ities are replaced by inequalities, in the separations) and thus also a sharper
version of Theorem 4.1 for cohyponormal operators; this will be illustrated
in Example 4.8.

We want to discuss compact sets intersecting a circle Γ = {z : |z| = r}
and one “side” of Γ . The possible sides are the inside, outside or either.
Thus suppose Γ is a circle with a side assigned to it. For a compact set
K ⊆ C, when we say that “K intersects Γ and the assigned side of Γ”
we mean that K ∩ Γ 6= ∅ and one of the following holds: If the assigned
side is inside, then K ∩ {z : |z| < r} 6= ∅; if the assigned side is out-
side, then K ∩ {z : |z| > r} 6= ∅. Finally, if the assigned side to Γ is
“either”, then K must intersect either the inside or the outside of Γ (or
both).

Finally, if we have a collection of circles each with an assigned side and
we are counting the number of sides, then a circle whose assigned side
is “inside” or “outside” contributes one side to the total number of sides
counted. But a circle whose assigned side is “either” contributes two sides
to the total number of sides. With this terminology we give the following
example.

Example 4.8. If {∆j : 1 ≤ j < ∞} is a bounded collection of open
disks, Sj = Mz on L2

a(∆j), and S =
⊕∞

j=1 Sj , then S∗ is n-supercyclic if
and only if there are k circles Γi = {z : |z| = ri}, ri ≥ 0, i = 1, . . . , k,
k ≤ n, and a side associated with each circle (inside, outside or either)
such that for every disk ∆j , there exists a circle Γi so that cl∆j inter-
sects Γi and the assigned side of Γi. Furthermore, the total number of sides
is n.
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Fig. 1. In this figure we illustrate an arrangement of disks such that S∗ is 4-supercyclic.
Notice that the assigned side of the innermost circle is “either”, furthermore this circle’s
radius is unique. For the middle circle, there is one disk intersecting both sides of the
circle as well as an infinite number of disks internally tangent whose radii are going to
zero. The assigned side of the middle circle is “inside” and the circle and its assigned side
are uniquely determined (the one disk that is externally tangent to the middle circle is not
important since it also hits the outside circle). As for the largest circle, we have a choice,
the circle itself is not unique and neither is its assigned side. Its assigned side could be
“inside” or it could be “outside”. We do not want the assigned side of the outer circle to
be “either” since we want to minimize the total number of sides.

Remark. In the previous example there is nothing special about the
Bergman space or the fact that ∆j is an open disk. In fact we could let
Sj = Mz on any Hilbert space H of analytic functions on a bounded open
connected set ∆j , provided that the norm equals the spectral radius, ‖Mz‖
= r(Mz).

In [2] Bourdon proves that a hyponormal operator cannot be supercyclic.
Here we give the first step towards such a result for n-supercyclicity by
proving that normal operators cannot be n-supercyclic.

Theorem 4.9. If n ∈ N, then a normal operator on an infinite-dimen-
sional space cannot be n-supercyclic.

Proof. First consider the special case of a unitary operator U . Suppose
that M is an n-dimensional subspace with dense orbit under U . We may
suppose that U has the form Mφ on L2(µ) for some measure µ, where φ ∈
L∞(µ) and |φ(z)| = 1, µ-a.e. So, for every g ∈ L2(µ) there is a sequence nk →
∞ and fk ∈ M such that Unkfk → g. That is, φnkfk → g in L2(µ). Hence
‖fk‖ = ‖φnkfk‖ → ‖g‖. Thus, {‖fk‖} is bounded, hence there is a convergent
subsequence (because M is finite-dimensional). Therefore we may assume
that fk → h for some h ∈ M. Thus, by passing to a subsequence, for
µ-almost every z we have |g(z)| = lim |φ(z)nkfk(z)| = lim |fk(z)| = |h(z)|.
Hence
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(∗) for every g ∈ L2(µ) there is an h ∈ M such that |g| = |h| µ-almost
everywhere.

Now, since dimL2(µ) ≥ n+1 we can find n+1 disjoint sets with positive
µ-measure, say {F1, . . . , Fn+1}. Let gi = χFi be the characteristic function
of Fi. By (∗), for each i, there is an hi ∈ M such that |gi| = |hi|. Thus, each
hi is nonzero and the functions {hi : 1 ≤ i ≤ n+ 1} are pairwise orthogonal,
since they are carried by disjoint sets. ThusM is at least (n+1)-dimensional,
a contradiction. Hence U is not n-supercyclic.

General case: Suppose N is normal and n-supercyclic. We may assume
that N = Mφ on L2(µ). Since N is n-supercyclic, by Theorem 4.1 the
essential range of φ is a subset of n circles centered at the origin. Since N
must have dense range, each circle has a positive radius. If µk is µ restricted
to the inverse image (under φ) of the kth circle, then we may write N =⊕
Nk where Nk = Mφ on L2(µk). Clearly, each Nk is also n-supercyclic, as

is ckNk for any nonzero scalar ck. Choose ck = ‖Nk‖−1 and let U =
⊕
ckNk.

Then U is a unitary operator that is, by Proposition 3.2, n2-supercyclic; a
contradiction.

The result above naturally leads to the question of whether or not a
subnormal operator S can be n-supercyclic. With this question in mind,
Theorem 4.1 naturally raises the following question about subnormal oper-
ators.

Question 4.10. If S is a pure subnormal operator, a ∈ σ(S∗) and ε > 0,
then does there exist an invariant subspaceM for S∗ such that σ(S∗|M) ⊆
B(a, ε)?

If the above question has an affirmative answer for a subnormal opera-
tor S, then S cannot be n-supercyclic for any n < ∞. In particular, if the
eigenvalues for S∗ have nonempty interior, then S cannot be n-supercyclic.
This applies, for example, to show that any multiplication operator on a
Hilbert space of analytic functions cannot be n-supercyclic (since its adjoint
has lots of eigenvalues).

5. Cohyponormal operators & local spectral theory. In this sec-
tion we will give a local spectral theory condition for an operator to be
2-supercyclic. In particular this applies nicely to adjoints of subnormal and
hyponormal operators. Everything here could be done in a Banach space,
but we are mainly interested in Hilbert space operators. Thus for simplicity
H will continue to denote a separable complex Hilbert space.

If T ∈ B(H) and K ⊆ C is a compact set, then define (as in [9, p. 32], the
glocal analytic subspaces) HT (K) to be all those vectors x ∈ H such that
there exists an analytic function f : C \K → H such that (T − z)f(z) = x
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for all z 6∈ K. Now for an open set U ⊆ C, define HT (U) =
⋃{HT (K) : K

is compact and K ⊆ U}.
An operator T ∈ B(H) has the decomposition property (δ) provided that

for any open cover {U1, . . . , Un} of σ(T ), the space H can be written as the
sum of the analytic subspaces: H = HT (clU1) + . . .+HT (clUn).

It is known that T ∈ B(H) has the decomposition property (δ) if and
only T ∗ is subdecomposable [9, Theorem 2.4.4, Theorem 2.5.18]. In particu-
lar, the adjoint of every subnormal and every hyponormal operator has the
decomposition property (δ) (see [10]).

Here is the main theorem of this section.

Theorem 5.1. Suppose that T ∈ B(H) has the decomposition prop-
erty (δ). If there exists a number % > 0 such that for every ε > 0,

HT ({z ∈ C : %− ε < |z| < %+ ε and |z| 6= %})
is dense in H, then T is 2-supercyclic.

The above theorem should be contrasted and compared with the follow-
ing result that appears in Feldman, Miller and Miller [5].

Theorem 5.2. Let T ∈ B(H).

(1) If HT ({z : |z| < 1}) and HT ({z : |z| > 1}) are dense, then T is
hypercyclic.

(2) If there exists a number % ≥ 0 satisfying either :

(a) for every ε > 0, HT ({z ∈ C : % < |z| < %+ ε}) is dense, or
(b) for every ε > 0, HT ({z ∈ C : %− ε < |z| < %}) is dense,

then T is supercyclic.

If (a) holds, we say T is %-outer or outer with respect to Γ% := {z : |z|= %},
and if (b) holds, then we say T is %-inner or inner with respect to Γ%. The
proof of Theorem 5.2 follows by verifying that the hypercyclicity criterion
and the inner/outer supercyclicity criteria hold for the sequence nk = k.

The next two results are needed for the proof of Theorem 5.1.

Proposition 5.3. If T ∈ B(H), x ∈ H and V ⊆ C is open and there
exists an analytic function f : V → H such that x = (T − z)f(z) for all
z ∈ V , then for each z0 ∈ V , there exists an analytic function g : V → H
such that f(z0) = (T − z)g(z) for all z ∈ V .

Thus, if x ∈ HT (U), then there exists a compact set K ⊆ U and an
analytic function f : C \K → HT (U) such that x = (T − z)f(z) for z 6∈ K.

The important point of the above proposition, for us, is the last sentence,
and in particular the fact that f takes values in HT (U). For the proof see
[9, Lemma 1.2.14].



n-supercyclic operators 157

The next theorem is one reason property (δ) is important. For an opera-
tor S ∈ B(H) and x ∈ H we will use σS(x) for the local spectrum of S at x
[9, p. 16].

Theorem 5.4 [9, Proposition 2.5.14]. If T ∈ B(H) has the decompo-
sition property (δ), then for every open set U ⊆ C we have HT (U)⊥ =
HT ∗(C \ U) = {x ∈ H : σT ∗(x) ⊆ C \ U}.

Proof of Theorem 5.1. Suppose that M := clHT ({z ∈ C : |z| < %})
and N := clHT ({z ∈ C : |z| > %}). Then M and N are closed invariant
subspaces for T , M + N is dense in H, thus by Corollary 3.9, it suffices
to show that T |M and T |N each satisfy the supercyclicity criterion with
respect to the same sequence {nk}. For this, it suffices to verify the condi-
tions in (a) or (b) of Theorem 5.2 for T |M and T |N . We will do this for
T |M, the other case being similar. We must show that for every ε > 0,
MT ({z : %− ε < |z| < %}) is dense in M.

For convenience, let Uε = {z ∈ C : %− ε < |z| < %}. First notice that for
each ε > 0, HT (Uε) is a dense subspace of M. That HT (Uε) is a subspace
ofM is clear. To see that HT (Uε) is dense inM, suppose that x ⊥ HT (Uε);
then we must show that x ⊥M. Since x ⊥ HT (Uε), by Theorem 5.4 either
σT ∗(x) ⊆ {z : |z| ≤ % − ε} or σT ∗(x) ⊆ {z : |z| ≥ %}. In the first case,
by Theorem 5.4, we must have x ⊥ HT ({z ∈ C : % − ε < |z| < % + ε
and |z| 6= %}), which we are assuming is dense, thus x = 0. In the second

case, Theorem 5.4 implies that x ⊥ M. Thus, for every ε > 0, HT (Uε) is
dense in M.

Now, by Proposition 5.3, it follows thatMT (Uε) = HT (Uε). However we
have just shown that this latter set is dense in M. Thus, T |M satisfies the
conditions in Theorem 5.2 for supercyclicity.

Corollary 5.5. Suppose that T ∈ B(H) has the decomposition prop-
erty (δ). If there exists a number % > 0 such that for every ε > 0,

span{ker(T − λ) : %− ε < |λ| < %+ ε and |λ| 6= %}
is dense in H, then T is 2-supercyclic.

Proof. This follows immediately from Theorem 5.1 since ker(T − λ) ⊆
HT (U) whenever λ ∈ U .

Corollary 5.6. Suppose that T ∈ B(H) has the decomposition property
(δ) and that none of the local spectra for T ∗ are contained in a circle centered
at the origin. If there exists a circle Γ = {z : |z| = %}, % > 0, such that for
every nonzero x ∈ H, σT ∗(x) ∩ Γ 6= ∅, then T is 2-supercyclic.

Proof. This also follows easily from Theorems 5.1 and 5.4.
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Corollary 5.7. If S is a pure hyponormal operator and there exists a
% > 0 such that for each ε > 0, span{ker(S∗ − λ) : % − ε < |λ| < % + ε} is
dense, then S∗ is 2-supercyclic.

Proof. The assumption guarantees that HS∗({z : %− ε < |z| < %+ ε}) is
dense inH. In view of Theorem 5.4, this guarantees that each local spectrum
for S intersects the circle Γ := {z : |z| = %}. Since S is a pure hyponormal
operator, each of its local spectra must have positive area, thus Corollary 5.6
applies.

Corollary 5.8. Suppose that S is a pure hyponormal operator and
there exists a circle Γ = {z : |z| = r}, r > 0, such that for every hyper-
invariant subspace M of S, σ(S|M) ∩ Γ 6= ∅. Then S∗ is 2-supercyclic.

These last two corollaries should be compared with Corollary 2.4 and
Theorem 2.6.

6. Final remarks and questions. The author believes that the hy-
ponormal operators whose adjoints are n-supercyclic should be character-
ized by the same condition that appears in Example 4.8. In particular the
following should have an affirmative answer:

Question 6.1. If T is a pure hyponormal operator and if there are n
circles centered at the origin with the property that σ(T |M) intersects at
least one of these circles for every hyperinvariant subspaceM of T , then is
T ∗ 2n-supercyclic?

One reason for considering n-supercyclicity is because it is related to the
general (open) question of whether or not every pure cohyponormal operator
is cyclic (see [4]). Since we can prove that certain cohyponormal operators
are n-supercyclic, we need to answer the following question.

Question 6.2. If T is an n-supercyclic operator, n ∈ N, and T ∗ has no
eigenvalues, then is T cyclic?

Question 6.3. If S is a pure subnormal operator, then is S∗ ∞-super-
cyclic?

Question 6.4. Can a pure subnormal (hyponormal) operator be n-su-
percyclic?

Question 6.5. Does Corollary 5.5 hold for all operators? That is, can
we remove the hypothesis that T has property (δ)?

Question 6.6. For n ≥ 2, is there a bilateral weighted shift that is
n-supercyclic and not (n − 1)-supercyclic? If so, can we characterize the
n-supercyclic weighted shifts?
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