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Abstract. We present necessary and sufficient conditions for a rearrangement invari-
ant function space to have a complete orthonormal uniformly bounded RUC system.

1. Introduction and preliminaries. The familiar Haar system is a
complete orthonormal system in L2[0, 1] which is an unconditional basis in
each space Lp[0, 1], 1 < p < ∞. On the other hand ([KS, Chapter 1]),
it is well known that if p 6= 2 and 1 < p < ∞, then the space Lp[0, 1]
has no orthonormal unconditional basis that is uniformly bounded. In this
paper, we study uniformly bounded orthonormal systems in rearrangement
invariant Banach function spaces on [0, 1] for which the expansion of every
element converges for almost all choices of signs. Such systems are said
to be randomly unconditionally convergent or RUC systems. While each
unconditional basic sequence in any Banach space is necessarily an RUC
system, an RUC system need not be unconditional. For example, while the
trigonometric system is not an unconditional basis for any space Lp[0, 1],
1 < p < ∞, p 6= 2, it does form an RUC system in Lp[0, 1], 2 < p. See, for
example, [BKPS, Corollary 1.4 and Remark V following Corollary 2.2].

The principal result of our paper (Theorem 2.8) characterizes those sep-
arable rearrangement invariant Banach function spaces E on [0, 1] which
have the property that each orthonormal uniformly bounded system is nec-
essarily an RUC system. This property is shown to be equivalent to the
existence of a complete orthonormal uniformly bounded system which is a
complete RUC system in E. In turn, this is shown to be equivalent to the
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validity of the continuous embeddings G ⊆ E ⊆ L2[0, 1]. Here G is the
“separable” part of the Orlicz space LM [0, 1] defined via the Orlicz function
M(t) = (et

2 − 1)/(e − 1). It is not without interest to observe that, by a
theorem of Rodin and Semenov ([RS], [LT2]), the embedding G ⊆ E is itself
equivalent to the assertion that the Khinchin inequalities are valid in E, or
alternatively, that the usual Rademacher system {rn}∞n=1 in E is equivalent
to the unit vector basis of l2. Of course, the Rademacher system is itself
a uniformly bounded, orthonormal system which is an unconditional basic
sequence in every rearrangement invariant space, and is therefore an RUC
system. However, the Rademacher system is not complete in L2[0, 1].

We now gather some basic terminology. A Banach space (E, ‖·‖E) of real-
valued measurable functions on the interval [0, 1] is called a rearrangement
invariant space if for every y ∈ E and any measurable function x on [0, 1]
with x∗ ≤ y∗, we have x ∈ E and ‖x‖E ≤ ‖y‖E . Here, x∗ denotes the
non-increasing, right-continuous rearrangement of x given by

x∗(t) = inf{s ≥ 0 : m({|x| > s}) ≤ t}, t > 0.

For basic properties of rearrangement invariant spaces we refer to the mono-
graphs [BS], [KPS], [LT2]. Let us note explicitly that the continuous embed-
dings

L∞[0, 1] ⊆ E ⊆ L1[0, 1]

are valid for any rearrangement invariant Banach function space E on [0, 1].
We denote by [xn]∞n=1 the closed linear span of the sequence {xn}∞n=1 in

the Banach space X. The sequence {xn}∞n=1 is said to be complete (or fun-
damental) in X if [xn]∞n=1 = X. Following [BKPS], a biorthogonal system
(xj , x∗j ) in X×X∗, where X∗ denotes the Banach dual of X, is said to be an
RUC system in X if for every x ∈ [xn]∞n=1 the series

∑∞
n=1 rn(t)x∗n(x)xn con-

verges for almost all t ∈ [0, 1]. Here {rn}∞n=1 denotes the usual Rademacher
sequence given by

rn(t) = sign sin 2nπt for 0 ≤ t ≤ 1 (n = 1, 2, . . .).

Equivalently, the biorthogonal system (xj , x∗j ) in the Banach space X is an
RUC system if and only if there exists a constant K > 0 such that

(1.1)
∥∥∥

n∑

j=1

rj(·)cjxj
∥∥∥
L1([0,1],X)

≤ K
∥∥∥

n∑

j=1

cjxj

∥∥∥
X

for all scalars c1, . . . , cn, n = 1, 2, . . . It is shown further in [BKPS, Corol-
lary 1.1] that (1.1) is equivalent to saying that there exists a constant K > 0
such that

(1.2)
1�

0

sup
n

∥∥∥
n∑

j=1

x∗j (x)xjrk(s)
∥∥∥
E
ds ≤ K‖x‖E

for all x ∈ [xn]∞n=1.



RUC systems 163

2. Main results. We begin this section with the result whose proof is
a variant of the arguments in [BKPS, Example 1.3].

Let (Ω,µ) be a probability space and let M be the Orlicz function given
by setting

M(t) :=
et

2 − 1
e− 1

, t ∈ R.

The Orlicz space LM (Ω) is the space of all measurable functions f on Ω
such that �

Ω

M(|f(ω)|/%) dω <∞

for some % > 0, equipped with the norm

‖f‖M = inf
{
% > 0 :

�

Ω

M(|f(ω)|/%) dω ≤ 1
}
.

Throughout this paper, we shall denote by G the closure of L∞[0, 1] in the
Orlicz space LM [0, 1].

Proposition 2.1. Let E be a separable rearrangement invariant Banach
function space on [0, 1]. If G ⊆ E ⊆ L2 with continuous embeddings, then
each orthonormal uniformly bounded system in E is an RUC system.

Proof. Let {fn}∞n=1 be a uniformly bounded orthonormal system and set

sup
n∈N
‖fn‖∞ = C <∞.

Via (1.1) and using the continuity of the embeddingsE ⊆L2 and L1([0, 1], G)
⊆ L1([0, 1], E) it will suffice to show the existence of a constant K ′ > 0 such
that ∥∥∥

n∑

j=1

rj(·)cjfj
∥∥∥
L1([0,1],G)

≤ K ′
∥∥∥

n∑

j=1

cjfj

∥∥∥
2

for arbitrary scalars c1, . . . , cn and for n = 1, 2, . . . Using further the fact
that there exists a constant K ′′ such that
∥∥∥

n∑

j=1

rj(·)cjfj
∥∥∥
L1([0,1],LM [0,1])

≤ K ′′
∥∥∥

n∑

j=1

cjrj(·)⊗ fj(·)
∥∥∥
LM ([0,1]×[0,1])

for arbitrary scalars c1, . . . , cn and for n = 1, 2, . . . (see [S, Proposition 2.4
and Definition 2.1]), it suffices to show that there exists K > 0 such that

(2.1)
∥∥∥

n∑

j=1

cjrj(·)⊗ fj(·)
∥∥∥
LM ([0,1]×[0,1])

≤ K
∥∥∥

n∑

j=1

cjfj

∥∥∥
2

for arbitrary scalars c1, . . . , cn and for n = 1, 2, . . . To this end, fix % >
Ce(e− 1)−1/2, n ∈ N, and scalars c1, . . . , cn such that

∑n
j=1 |cj |2 ≤ 1, and

set for brevity
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Ω := [0, 1]× [0, 1], w(t, s) :=
n∑

j=1

cjfj(t)rj(s), (t, s) ∈ Ω.

Using the Khinchin inequality in the form
1�

0

∣∣∣
m∑

n=1

anrn(t)
∣∣∣
2k
dt ≤ kk

( m∑

n=1

|an|2
)k

for arbitrary scalars {aj} and k = 1, 2, . . . (see, for example, [Z, Theo-
rem V.8.4] or [LT1, proof of Theorem 2.b.3]) we obtain

�

Ω

M(|w(t, s)|%−1) dt ds

=
1�

0

( 1�

0

M
(∣∣∣

n∑

j=1

cjfj(t)rj(s)
∣∣∣%−1

)
dt
)
ds

= (e− 1)−1
1�

0

( 1�

0

∞∑

k=1

(k!)−1
∣∣∣
n∑

j=1

cjfj(t)rj(s)
∣∣∣
2k
%−2k dt

)
ds

= (e− 1)−1
1�

0

∞∑

k=1

(k!)−1%−2k
( 1�

0

∣∣∣
n∑

j=1

cjfj(t)rj(s)
∣∣∣
2k
ds
)
dt

≤ (e− 1)−1
1�

0

∞∑

k=1

(k!)−1%−2kkk
( n∑

j=1

|cjfj(t)|2
)k
dt

≤ (e− 1)−1
1�

0

∞∑

k=1

(k!)−1%−2kkkC2k
( n∑

j=1

|cj |2
)k
dt

≤ (e− 1)−1
∞∑

k=1

(k!)−1%−2kkkC2k.

From the elementary inequality kk/k! ≤ ek, k ∈ N, it now follows that

�

Ω

M(|x(t, s)|%−1) dt ds ≤ (e− 1)−1
∞∑

k=1

(
C2e

%2

)k

= (e− 1)−1C
2e

%2

(
1− C2e

%2

)−1

< 1.

By definition of the norm in the Orlicz space LM ([0, 1] × [0, 1]) it follows
that

‖w(t, s)‖LM ([0,1]×[0,1]) ≤ %,
and this suffices to complete the proof of (2.1) and of Proposition 1.1.
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In what follows, our principal aim is to show that the converse of Propo-
sition 2.1 is valid, that is, if each uniformly bounded orthonormal system
in E is an RUC system, then necessarily G ⊆ E ⊆ L2 with continuous
embeddings. We shall base our proof of this assertion on the following key
technical lemma. We recall that a sequence {xn}∞n=1 in a Banach space X
is said to be semi-normalized if

0 < lim inf
n→∞

‖xn‖X ≤ lim sup
n→∞

‖xn‖X <∞.

Lemma 2.2. Let E be a rearrangement invariant Banach function space
on [0, 1] and let {gn}∞n=1 ⊆ E be an orthonormal sequence which is complete
in L2[0, 1], which is a complete RUC system in E and which is bounded in
Lp[0, 1] for some p > 2. If {gn}∞n=1 is semi-normalized and weakly null
in E, then there exists a subsequence {fn}∞n=1 ⊆ {gn}∞n=1 and a sequence of
signs εn = ±1, n = 1, 2, . . . , such that

lim inf
n→∞

1√
n

∥∥∥
n∑

k=1

εn(k)fn(k)

∥∥∥
E
<∞

for every subsequence {εn(k)fn(k)}∞k=1 ⊆ {εnfn}∞n=1.

The proof of the lemma will be based on the following well known results,
which we state for convenience of reference. The first is a generalization to
general orthonormal systems of the de Leeuw–Katznelson–Kahane Theo-
rem [LKK], as given in [KS, Theorem 5 of Chapter 9].

Proposition 2.3. If {gn}∞n=1 is an orthonormal sequence in L2[0, 1]
which is bounded in Lp[0, 1] for some p > 2, then for every sequence {an}∞n=1
∈ l2 with an ≥ 0, n ≥ 1, there exists a continuous function φ(t), t ∈ [0, 1],
such that

|cn(φ)| ≥ an, n ∈ N,
where

cn(φ) :=
1�

0

φ(t)gn(t) dt, n ∈ N,

and a constant C > 0, depending on M and p only , such that

‖φ‖∞ ≤ C
( ∞∑

n=1

a2
n

)1/2
.

The second ingredient that we shall need is due to Brunel and Suche-
ston [BrS1], [BrS2].

Proposition 2.4. Let {xj}∞j=1 be a semi-normalized weakly null se-
quence in a Banach space X, and let ε > 0. Then there exists a subse-
quence {yj}∞j=1 of {xj}∞j=1 and a Banach space X with a 2-unconditional
semi-normalized basis {ej}∞j=1 such that
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(i) {ej}∞j=1 is isometrically equivalent to all of its subsequences, and

(ii) for all k large enough, and any k ≤ j1 < . . . < j2k , {yji}2
k

i=1 is
2-equivalent to (e1, . . . , e2k).

Proof of Lemma 2.2. Since {gn}∞n=1 is semi-normalized and weakly null
in E, there exists a subsequence {gn(k)}∞k=1 ⊆ {gn}∞n=1 which satisfies the
assertion of Proposition 2.4 with ε = 1. For m = 1, 2, . . . , define the sequence
{amk }∞k=1 ∈ l2 by setting

(2.2) amk :=
{

1/
√
m if k = n(j), 1 ≤ j ≤ m,

0 otherwise.
It follows from Proposition 2.3 and the continuity of the embedding L∞ ⊆ E
that there exists a constant C1 > 0 and a sequence {φm}∞m=1 such that

(2.3) ‖φm‖E ≤ C1, |ck(φm)| ≥ amk
for all k,m ∈ N, where {ck(φm)}∞k=1 denotes the sequence of Fourier coeffi-
cients of the function φm with respect to the orthonormal sequence {gk}∞k=1
for all m ∈ N. Since {gk}∞k=1 is a complete RUC system in E, it follows
from (1.2) that there exists a constant C2 such that

1�

0

sup
n

∥∥∥
n∑

k=1

ck(φm)rk(s)gk
∥∥∥
E
ds ≤ C2‖φm‖E

for all m ∈ N. Consequently, we obtain

(2.4)
1�

0

∥∥∥
n(m)∑

k=1

ck(φm)rk(s)gk
∥∥∥
E
ds ≤ C2C1

for all m,n ∈ N. Since the sequence {rn(·)gn}∞n=1 is a 1-unconditional basic
sequence in L1([0, 1], E), it follows from (2.3) and [LT1, Proposition 1.c.7]
that

1�

0

∥∥∥
n(m)∑

k=1

amk rk(s)gk
∥∥∥
E
ds ≤ 2

1�

0

∥∥∥
n(m)∑

k=1

ck(φm)rk(s)gk
∥∥∥
E
ds

for all m ∈ N. From the preceding inequality, together with (2.4) and (2.2)
it now follows that

(2.5)
1√
m

1�

0

∥∥∥
m∑

k=1

rn(k)(s)gn(k)

∥∥∥
E
ds ≤ 2C2C1

for all m ∈ N. If we now set fk = gn(k), k ∈ N, then it follows from (2.5)
that there exists a sequence εm,k = ±1, 1 ≤ k ≤ m, m ∈ N such that

(2.6)
1√
m

∥∥∥
m∑

k=1

εm,kfk

∥∥∥
E
ds ≤ 2C2C1
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for all m ∈ N. We now construct the desired sequence {εn}∞n=1 of signs by
induction. We set εj := ε2,j , j = 1, 2. Suppose that ε1, . . . , ε22i−1 , i ≥ 1,
have already been chosen. Using the same notation as in (2.6), we set

εj := ε22i ,j , j = 22i−1
+ 1, 22i−1

+ 2, . . . , 22i ,

and this completes the construction. To establish the assertion of the lemma,
let us first observe that by (2.6),

(2.7)
1

22n−1

∥∥∥
22n∑

k=1

εkfk

∥∥∥
E

≤ 1
22n−1

(∥∥∥
22n∑

k=1

ε22n ,kfk

∥∥∥
E

+
∥∥∥

22n−1

∑

k=1

εkfk

∥∥∥
E

+
∥∥∥

22n−1

∑

k=1

ε22n ,kfk

∥∥∥
E

)

≤ 2C1C2 +
2

22n−1

22n−1

∑

k=1

‖fk‖E

≤ 2(C1C2 +M)

for every n ∈ N. Consider now an arbitrary subsequence {εjkfjk}∞k=1 of
{εkfk}∞k=1. We have

1
22n−1

∥∥∥
22n∑

k=1

εjkfjk

∥∥∥
E
≤ 1

22n−1

(∥∥∥
22n∑

k=22n−1

εjkfjk

∥∥∥
E

+
∥∥∥

22n−1

∑

k=1

εjkfjk

∥∥∥
E

)
(2.8)

≤ 1
22n−1

∥∥∥
22n∑

k=22n−1

εjkfjk

∥∥∥
E

+M

for every n ∈ N. We note further that for k = 22n−1
we have jk ≥ k and

22n−k ≤ 2k. Thus, by our earlier choice of the sequence {fn}∞n=1, for all suf-
ficiently large n, the basic sequence {fji}2

2n

i=k (respectively, the basic sequence

{fi}2
2n

i=k) is 2-equivalent to the 2-unconditional semi-normalized (finite) basic

sequence {ei}2
2n−k
i=1 of a Banach space X . Therefore, the basic sequence

{fji}2
2n

i=k is 4-equivalent to the basic sequence {fi}2
2n

i=k, in particular

1
22n−1

∥∥∥
22n∑

k=22n−1

fjk

∥∥∥
E
≤ 4

22n−1

∥∥∥
22n∑

k=22n−1

fk

∥∥∥
E
.

Further, since the sequence {ei}2
2n−k
i=1 is 2-unconditional, we see that both

sequences {fji}2
2n

i=k and {fi}2
2n

i=k are 4-unconditional. In particular it follows
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from the preceding inequality that

1
22n−1

∥∥∥
22n∑

k=22n−1

εjkfjk

∥∥∥
E
≤ 4 · 4 · 4

22n−1

∥∥∥
22n∑

k=22n−1

εkfk

∥∥∥
E
,

for arbitrary “signs” εi = ±1, i = 1, . . . , j22n . Applying (2.7) we further get

1
22n−1

∥∥∥
22n∑

k=22n−1

εjkfjk

∥∥∥
E
≤ 26

22n−1

(∥∥∥
22n∑

k=1

εkfk

∥∥∥
E

+
∥∥∥

22n−1

∑

k=1

εkfk

∥∥∥
E

)
(2.9)

≤ 27(C1C2 +M) + 26M.

Combining (2.9) and (2.8) we finally get

1
22n−1

∥∥∥
22n∑

k=1

εjkfjk

∥∥∥
E
≤ 27C1C2 + 193M

for all sufficiently large n, and this completes the proof of Lemma 2.2.

The following central limit type theorem for orthonormal systems is due
to V. Gaposhkin, and follows from [G, Theorems 1.5.4, 1.5.3, 1.5.1].

Proposition 2.5 (see [G]). If {gn}∞n=1 ⊆ L2[0, 1] is an orthonormal
system which is bounded in Lp[0, 1] for some p > 2, then there exists a
subsequence {fn}∞n=1 ⊆ {gn}∞n=1 for which the following conditions are sat-
isfied :

(i) {f2
n}∞n=1 converges weakly in L1[0, 1] to a non-negative function g ∈

L1[0, 1] such that � 1
0 g(t) dt = 1;

(ii) we have

lim
n→∞

mes
{
t :

1√
n

∣∣∣
n∑

k=1

fn(t)
∣∣∣ ≥ τ

}
≥ 1√

2π

1�

0

∞�

τ/
√
g(t)

e−u
2/2 du dt ∀τ > 0.

Finally, we need the following lemma whose proof is easily extracted
from the argument of [LT2, Theorem 2.b.4(i)] and is therefore omitted.

Lemma 2.6. Let E be a separable rearrangement invariant Banach func-
tion space on [0, 1] and suppose that the sequence {fn}∞n=1 satisfies

lim
n→∞

mes
{
t :

1√
n

∣∣∣
n∑

k=1

fk(t)
∣∣∣ ≥ τ

}
≥ Ce−τ2/b, τ > 0,

for some constants b, C > 0. If

lim inf
n→∞

∥∥∥∥
1√
n

n∑

k=1

fk

∥∥∥∥
E

<∞

then G embeds continuously into E.
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We may now state one of the principal results of the paper.

Theorem 2.7. Let E be a separable rearrangement invariant Banach
function space on [0, 1]. Let {gn}∞n=1 be an orthonormal system which is a
complete RUC system in E and which is bounded in Lp for some p > 2.

(i) If {gn}∞n=1 is weakly null in E, then G is continuously embedded
in E.

(ii) If {gn}∞n=1 is complete in L2, then E is continuously embedded in L2.

Proof. (i) Since {gn}∞n=1 is weakly null in E, it follows that {gn}∞n=1 is
bounded in E. Let us observe that lim infn→∞ ‖gn‖E > 0. In fact, if this
is not the case, then it may be assumed, by passing to a subsequence and
relabelling if necessary, that ‖gn‖1 → 0, using the fact that E embeds contin-
uously into L1. Passing to a further subsequence and relabelling if necessary,
and applying Egorov’s theorem, it may be assumed that there exists a se-
quence {en}∞n=1 of measurable subsets of [0, 1] such that mes(en) → 0 and
‖gnχ[0,1]\en‖2 → 0 as n→∞. If we now observe that

‖gnχen‖2 ≤ (sup
n
‖gn‖p)‖χen‖1/2−1/p

1

it follows simply that ‖gn‖2 → 0 (since p > 2) and this contradicts the
fact that ‖gn‖2 = 1, n = 1, 2 . . . Consequently, the sequence {gn}∞n=1 is
weakly null and semi-normalized in E and it now follows from Lemma 2.2
that there exists a subsequence {fn}∞n=1 ⊆ {gn}∞n=1 and a sequence of signs
εn = ±1, n ∈ N, such that

(2.10) lim inf
n→∞

1√
n

∥∥∥
n∑

k=1

εn(k)fn(k)

∥∥∥
E
<∞

for all subsequences {εn(k)fn(k)}∞k=1 ⊆ {εnfn}∞n=1. Applying Proposition 2.5
to the sequence {εnfn}∞n=1 and relabelling if necessary we may assume that
the sequence

{(εnfn)2}∞n=1 = {f2
n}∞n=1

converges weakly in L1[0, 1] to a non-negative function g ∈ L1[0, 1] and that

lim
m→∞

mes
{
t :

1√
n

∣∣∣
n∑

k=1

εkfk(t)
∣∣∣ ≥ τ

}
=

1√
2π

1�

0

∞�

τ/
√
g(t)

e−u
2/2 du dt ∀τ > 0.

Since g ≥ 0 and ‖g‖1 = 1 there exists a measurable set A ⊆ [0, 1] and
constants b, c > 0 such that

g(t) > b ∀t ∈ A, and mes(A) = c > 0.
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Further,

1�

0

∞�

τ/
√
g(t)

e−u
2/2 du dt ≥

�

A

∞�

τ/
√
b

e−u
2/2 du dt

≥ c
∞�

τ/
√
b

e−u
2/2 du ≥ ce−(τ/

√
b+1)2/2 ≥ ce−τ2/b−1.

Consequently,

lim
m→∞

mes
{
t :

1√
n

∣∣∣
n∑

k=1

εkfk(t)
∣∣∣ ≥ τ

}
≥ c

e
√

2π
e−τ

2/b ∀τ > 0.

The assertion of (i) now follows from the estimate given by (2.10) and
Lemma 2.6.

(ii) It is sufficient to show that E ⊆ L2. If it is not the case, then since
{gk}∞k=1 ⊆ L2[0, 1] is complete in L2[0, 1], there exists x ∈ E such that

(2.11)
∞∑

k=1

c2k(x) =∞.

Via (1.2), there exists a constant C2 > 0 such that

1�

0

sup
n

∥∥∥
n∑

k=1

ck(x)rk(s)gk
∥∥∥
E
ds ≤ C2‖x‖E.

Consequently (see e.g. [VTC, Ch. V, Proposition 5.1]),

1�

0

∥∥∥
∞∑

k=1

ck(x)rk(s)gk
∥∥∥
E
ds ≤ 2C2‖x‖E .

Using the Khinchin inequality and the fact that E embeds continuously into
L1[0, 1], we obtain

1�

0

( ∞∑

k=1

(ck(x)gk(t))2
)1/2

dt ≤
√

2
1�

0

1�

0

∣∣∣
∞∑

k=1

ck(x)rk(x)gk(t)
∣∣∣ ds dt

≤
√

2
1�

0

∥∥∥
∞∑

k=1

ck(x)rk(s)gk
∥∥∥
E
ds

≤ 2
√

2C2‖x‖E .
Consequently, for every ε > 0, there exists a measurable subset eε ⊆ [0, 1]
such that mes(eε) ≥ 1 − ε and the function

∑∞
k=1 c

2
k(x)g2

k(t) is bounded
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on eε. This implies, in particular, that

(2.12)
∞∑

k=1

c2k(x)‖gkχeε‖2L2
=

1�

0

χeε(t)
∞∑

k=1

c2k(x)g2
k(t) dt <∞,

where χeε(·) is the indicator function of eε. By the Hölder inequality and
the given assumptions on the sequence {gk}∞k=1 it follows that for all k ∈ N,

‖gkχ[0,1]\eε‖L2 ≤ ‖gk‖Lp · ‖χ[0,1]\eε‖
1/2−1/p
L1

≤M mes([0, 1] \ eε)1/2−1/p ≤Mε1/2−1/p.

In particular, if
ε := (2M)2p/(2−p),

then
‖gkχ[0,1]\eε‖L2 ≤M((2M)2p/(2−p))1/2−1/p = 1/2,

whence
‖gkχeε‖L2 ≥ 1/2, k ∈ N.

Combining these estimates with (2.12) we arrive at a contradiction to (2.11).
This completes the proof of Theorem 2.7.

We may now state the principal result of the paper, which characterizes
those separable rearrangement invariant spaces in which every uniformly
bounded orthonormal system is an RUC system.

Theorem 2.8. If E is a separable rearrangement invariant Banach
function space on [0, 1], then the following statements are equivalent :

(i) each orthonormal uniformly bounded system is an RUC system in E;
(ii) there exists a complete orthonormal uniformly bounded system which

is a complete RUC system in E;
(iii) there exists a complete orthonormal system which is a weakly null

and complete RUC system in E and which is bounded in Lp for some p > 2;
(iv) the continuous embeddings G ⊆ E ⊆ L2 hold.

Proof. The implication (i)⇒(ii) follows from the fact that the trigono-
metric system is a complete system in any separable rearrangement invariant
space (see [K, Theorem I.2.11]). The implication (ii)⇒(iii) is clear since any
orthonormal uniformly bounded system in E is automatically weakly null
in E. The implication (iii)⇒(iv) is a consequence of Theorem 2.7, and the
implication (iv)⇒(i) is simply the assertion of Proposition 2.1.

3. Concluding remarks. (i) The assumption p > 2 in Theorem 2.8(iii)
is essential and may not be replaced with the assumption p ≥ 2. Con-
sider, for example, the familiar (complete) orthonormal Haar system (see e.g.
[KPS, Chapter II.9.3]) and set E = Lp[0, 1], 1 < p < 2. It is well known
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that if the Boyd indices of a rearrangement invariant space (see [LT2, Defi-
nition 2.b.1]) are non-trivial, then the Haar system is an unconditional basis
in this space (see [LT2, Theorem 2.c.6]). Consequently, the Haar system is
a complete RUC system in every Lp[0, 1], 1 < p < 2, and is clearly bounded
in L2[0, 1]. However, Lp[0, 1] is not continuously embedded in L2[0, 1] if
1 ≤ p < 2. This example shows further that the embedding E ⊆ L2 is not
necessary for the existence in E of a complete RUC system. In addition, we
note that the embedding G ⊆ E is also not a necessary condition for the
existence in E of a complete RUC system. In fact, it is not difficult to con-
struct a separable rearrangement invariant space E which contains a copy
of c0 but which fails to contain G. However, by a result of Wojtaszczyk [W],
such a space E necessarily contains a complete RUC system.

(ii) Suppose that a separable rearrangement invariant space E on [−π, π]
satisfies assumption (iv) of Theorem 2.8. Fix an arbitrary element x ∈ E and
suppose that there exists an ordering {en}∞n=1 of the trigonometric system
such that the Fourier series

(3.1)
∞∑

n=1

cn(x)en

(conditionally) converges to x in E. Let Σ{cn(x)en} be the set of all y ∈
E such that the series

∑∞
n=1 cπ(n)(x)eπ(n) converges to y in E for some

permutation π : N → N. Let A be the set of all z ∈ E such that for each
f ∈ E∗ there exists a permutation π : N→ N (which may depend on f) such
that f(z) =

∑∞
n=1 f(cπ(n)(x)eπ(n)). It is obvious that Σ{cn(x)en} ⊆ A. We

say that a conditionally converging series (3.1) satisfies the Steinitz theorem
if Σ{cn(x)en} = A. It follows from Theorem 2.8 combined with the main
result of [Ch] that the series (3.1) satisfies the Steinitz theorem. Since E is
separable, the space E∗ coincides with the Köthe dual E′, thus for every
f ∈ E∗ and z ∈ E we have f(z) = � π−π f(s)z(s) ds. Therefore, if z ∈ E and
if, for every f ∈ E′, the equality f(z) =

∑∞
n=1 cπ(n)(x)cπ(n)(f) holds for

some some permutation π : N→ N, then z ∈ Σ{cn(x)en}.
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