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An equivalent definition of the vector-valued
McShane integral by means of partitions of unity

by

L. Di Piazza and V. Marraffa (Palermo)

Abstract. An integral for vector-valued functions on a σ-finite outer regular quasi-
Radon measure space is defined by means of partitions of unity and it is shown that it
is equivalent to the McShane integral. The multipliers for both the McShane and Pettis
integrals are characterized.

1. Introduction. In [6] and [7] J. Jarńık and J. Kurzweil introduced an
integration process (called PU-integral) for real-valued functions on an in-
terval of Rn with the use of suitably regular C1-partitions of unity instead of
the usual partitions. The PU-integral is nonabsolutely convergent and in di-
mension one it falls properly between the Lebesgue and Henstock–Kurzweil
integrals.

In [8] a version of the PU-integral on a compact finite metric measure
space is given without assuming any regularity condition for the partitions of
unity applied, and it is proved that the corresponding integral is equivalent
to the Lebesgue integral.

The proof in [8] is based on the Vitali–Carathéodory theorem and it
cannot be directly generalized to Banach valued functions.

In this paper we study a method of integration (the PoU-integral) for
functions defined on a σ-finite outer regular quasi-Radon measure space
and taking values in a Banach space. This method is based on infinite par-
titions of unity (called pseudopartitions) and it generalizes the one intro-
duced by Fremlin [4]. The main result is the equivalence between the Mc-
Shane integral, defined in [4], and the PoU-integral (Theorem 1 and Corol-
lary 1). Our proof makes use of some technical lemmata (Lemma 2B of
[4] and Lemma 1) and of the countable additivity of the indefinite Pettis
integral.
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In §3 we prove that the family of all real-valued essentially bounded
functions is precisely the set of multipliers for both the McShane and Pettis
integrals (Theorems 2 and 3 and Corollary 2).

2. Preliminaries. Let (Ω, T ,F , µ) be a nonempty σ-finite outer regu-
lar quasi-Radon measure space. Unless specified otherwise, the terms “mea-
sure”, “measurable” and “almost everywhere” (briefly “a.e.”) refer to the
measure µ. For a set E ∈ F , we denote by χE the characteristic function
of E. Given a function θ ∈ L1(Ω,R), we set Sθ = {ω ∈ Ω : θ(ω) 6= 0}.
A generalized McShane partition (or simply a Mc-partition) in Ω is a count-
able (possibly finite) set of pairs P = {(Ei, ωi) : i = 1, 2, . . .} where (Ei)i is
a disjoint family of measurable sets of finite measure and ωi ∈ Ω for each
i = 1, 2, . . . If µ(Ω \ ⋃iEi) = 0, we say that P is a Mc-partition of Ω. A
generalized pseudopartition (or simply a pseudopartition) in Ω is a count-
able (possibly finite) set of pairs Q = {(θi, ωi) : i = 1, 2, . . .} where, for each
i = 1, 2, . . . , ωi ∈ Ω and θi are nonnegative functions in L1(Ω,R) such that
the sets Sθi are of positive measure and

∑
i θi ≤ 1 a.e. in Ω. If

∑
i θi = 1

a.e. in Ω, we say that Q is a pseudopartition of Ω.
Let P = {(Ei, ωi) : i = 1, 2, . . .} be a Mc-partition in Ω. Then P∗ =

{(χEi , ωi) : i = 1, 2, . . .} is a pseudopartition in Ω, called the pseudopartition
induced by P. A gauge on Ω is a function ∆ : Ω → T such that ω ∈ ∆(ω) for
each ω ∈ Ω. We say that a Mc-partition {(Ei, ωi) : i = 1, 2, . . .} (respectively
a pseudopartition {(θi, ωi) : i = 1, 2, . . .}) is subordinate to a gauge ∆ if
Ei ⊂ ∆(ωi) (resp. Sθi ⊂ ∆(ωi)) for i = 1, 2, . . .

Remark 1. If P = {(Ei, ωi) : i = 1, 2, . . .} is a Mc-partition subordinate
to a gauge ∆, then the pseudopartition P ∗ induced by P is also subordinate
to ∆.

Remark 2. It has been proved by Fremlin [4, Remark 1B(d)] that for
each gauge ∆ there is a Mc-partition of Ω subordinate to ∆. Therefore by
Remark 1 the set of pseudopartitions subordinate to any gauge ∆ is not
empty.

From now on, X is a real Banach space with dual X∗ and B(X∗) is the
closed unit ball of X∗.

Definition 1. We recall the following classical definitions.

(a) A function f : Ω→X is said to be Pettis integrable if x∗f is Lebesgue
integrable on Ω for each x∗ ∈ X∗, and for every measurable set E ⊂ Ω there
is a vector ν(E) ∈ X such that x∗(ν(E)) =

�
E x
∗f(ω) dµ for all x∗ ∈ X∗.

The set function ν : F → X is called the indefinite Pettis integral of f .

It is known (cf. [1]) that ν is a countably additive vector measure, con-
tinuous with respect to µ (in the sense that if µ(E) = 0 then ν(E) = 0).
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(b) A function f : Ω → X is said to be McShane integrable (see [4,
Definition 1A]) (briefly Mc-integrable) with McShane integral z ∈ X if for
each ε > 0 there exists a gauge ∆ : Ω → T such that

lim sup
n

∥∥∥z −
∑

i≤n
µ(Ei)f(ωi)

∥∥∥ < ε

for each Mc-partition {(Ei, ωi) : i = 1, 2 . . .} of Ω subordinate to ∆.

If f is a Mc-integrable function on Ω we set z = (Mc)
�
Ω f .

Definition 2. A function f : Ω → X is said to be PoU-integrable with
PoU-integral z ∈ X if for each ε > 0 there exists a gauge ∆ : Ω → T such
that

lim sup
n

∥∥∥z −
∑

i≤n

�

Ω

θif(ωi)
∥∥∥ < ε

for each pseudopartition {(θi, ωi) : i = 1, 2, . . .} of Ω subordinate to ∆.

If f is a PoU-integrable function on Ω we set z = (PoU)
�
Ω f .

Remark 3. Since every Mc-partition subordinate to ∆ induces a pseu-
dopartition subordinate to ∆, it follows that if a function f is PoU-integrable
then it is Mc-integrable and the integrals coincide.

The main result of this section is the equivalence between the Mc-integral
and the PoU-integral. To prove this we need the following lemma.

Lemma 1. Let f : Ω → R be a measurable function, θi, i = 1, . . . , p,
be nonnegative measurable functions with

∑p
i=1 θi ≤ 1 a.e. in Ω, ci, i =

1, . . . , p, be real constants, and Si, i = 1, . . . , p, be measurable subsets of Ω.
Then

p∑

i=1

�

Si

|f − ci|θi dµ ≤
∣∣∣

p∑

i=1

�

L′i

(f − ci) dµ
∣∣∣+
∣∣∣

p∑

i=1

�

L′′i

(f − ci) dµ
∣∣∣,(1)

where L′i, i = 1, . . . , p, are pairwise disjoint measurable sets with L′i ⊂
{t ∈ Si : f(t) − ci ≥ 0} and L′′i , i = 1, . . . , p, are pairwise disjoint mea-
surable sets with L′′i ⊂ {t ∈ Si : f(t)− ci < 0} and

⋃p
i=1 Si =

⋃p
i=1(L′i ∪L′′i ).

Proof. We can assume that c1 ≤ . . . ≤ cp. For i = 1, . . . , p, let S+
i =

{t ∈ Si : f(t)− ci ≥ 0} and S−i = Si \ S+
i . We have

p∑

i=1

�

Si

|f − ci|θi dµ =
p∑

i=1

�

S+
i

(f − ci)θi dµ+
p∑

i=1

�

S−i

(ci − f)θi dµ.(2)

Set L′1 = S+
1 , L′2 = S+

2 \S+
1 , . . . , L

′
p = S+

p \
⋃p−1
i=1 S

+
i and L′′1 = S−1 \

⋃p
i=2 S

−
i ,

L′′2 = S−2 \
⋃p
i=3 S

−
i , . . . , L

′′
p = S−p . Considering separately the two sums on

the right side of (2) we get
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(3)
p∑

i=1

�

S+
i

(f − ci)θi dµ

=
�

L′1

(f − c1)θ1 dµ+
�

L′2

(f − c2)θ2 dµ+
�

S+
2 ∩L′1

(f − c2)θ2 dµ+ . . .

+
�

L′p

(f − cp)θp dµ+
p−1∑

i=1

�

S+
p ∩L′i

(f − cp)θp dµ

≤
�

L′1

(f − c1)θ1 dµ+
�

L′2

(f − c2)θ2 dµ

+
�

L′1

(f − c1)θ2 dµ+ . . .+
�

L′p

(f − cp)θp dµ+
p−1∑

i=1

�

L′i

(f − ci)θp dµ

=
�

L′1

|f − c1|(θ1 + θ2 + . . .+ θp) dµ

+
�

L′2

|f − c2|(θ2 + . . .+ θp) dµ+ . . .+
�

L′p

|f − cp|θp dµ

≤
p∑

i=1

�

L′i

|f − ci|
p∑

j=1

θj dµ ≤
∣∣∣

p∑

i=1

�

L′i

(f − ci) dµ
∣∣∣

and

(4)
p∑

i=1

�

S−i

(ci − f)θi dµ

=
�

L′′1

(c1 − f)θ1 dµ+
p∑

i=2

�

S−1 ∩L′′i

(c1 − f)θ1 dµ+
�

L′′2

(c2 − f)θ2 dµ

+
p∑

i=3

�

S−2 ∩L′′i

(c2 − f)θ2 dµ+ . . .+
�

L′′p

(cp − f)θp dµ

≤
�

L′′1

(c1 − f)θ1 dµ+
p∑

i=2

�

L′′i

(ci − f)θ1 dµ+
�

L′′2

(c2 − f)θ2 dµ

+
p∑

i=3

�

L′′i

(ci − f)θ2 dµ+ . . .+
�

L′′p

(cp − f)θp dµ
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=
�

L′′1

|f − c1|θ1 dµ+
�

L′′2

|f − c2|(θ1 + θ2) dµ+ . . .

+
�

L′′i

|f − ci|
i∑

j=1

θj dµ+ . . .+
�

L′′p

|f − cp|
p∑

j=1

θj dµ

≤
p∑

i=1

�

L′′i

|f − ci|
p∑

j=1

θj dµ ≤
∣∣∣

p∑

i=1

�

L′′i

(f − ci) dµ
∣∣∣.

From (2)–(4) we infer (1) and the assertion follows.

Theorem 1. Let f : Ω → X be a Mc-integrable function. Then f is
PoU-integrable and the two integrals coincide.

Proof. Fix ε > 0. Since f is Mc-integrable, by [4, Lemma 2B] there exists
a gauge ∆ such that

∥∥∥
s∑

i=1

[
µ(Ai)f(πi)− (Mc)

�

Ai

f
]∥∥∥ < ε/4(5)

whenever {(Ai, πi)}si=1 is a finite Mc-partition in Ω subordinate to ∆. Let
Q = {(θi, ωi) : i = 1, 2, . . .} be a pseudopartition of Ω subordinate to ∆. It
is enough to prove that for n sufficiently large,

∥∥∥(Mc)
�

Ω

f −
n∑

i=1

�

Ω

θif(ωi)
∥∥∥ < ε.(6)

Since f is Mc-integrable it is Pettis integrable (see [4, Theorem 1Q]). There-
fore for each measurable, nonnegative bounded function θ, also the function
θf is Pettis integrable (see [3, Theorem 1.1.2]). For each n we have

(7)
∥∥∥(Mc)

�

Ω

f −
n∑

i=1

�

Ω

θif(ωi)
∥∥∥

=
∥∥∥

�

Ω

∞∑

i=n+1

θif +
�

Ω

n∑

i=1

θif −
n∑

i=1

�

Ω

θif(ωi)
∥∥∥

≤
∥∥∥

n∑

i=1

[ �

Ω

θif −
�

Ω

θif(ωi)
]∥∥∥+

∥∥∥
�

Ω

∞∑

i=n+1

θif
∥∥∥.

We consider the two norms above separately. First,
∥∥∥

n∑

i=1

[ �

Ω

θif −
�

Ω

θif(ωi)
]∥∥∥ ≤ sup

x∗∈B(X∗)

n∑

i=1

�

Sθi

|x∗f(ω)− x∗f(ωi)|θi dµ.(8)
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Fix x∗ ∈ B(X∗). Since x∗f is a real-valued Mc-integrable function, it is
measurable. For i = 1, . . . , n, define the sets L′i and L′′i , relative to x∗f , as
in Lemma 1. Applying this lemma, we obtain
n∑

i=1

�

Sθi

|x∗f(ω)− x∗f(ωi)|θi dµ

≤
∣∣∣
n∑

i=1

[ �

L′i

x∗f dµ− µ(L′i)x
∗f(ωi)

]∣∣∣+
∣∣∣
n∑

i=1

[ �

L′′i

x∗f dµ− µ(L′′i )x
∗f(ωi)

]∣∣∣

≤
∥∥∥

n∑

i=1

[ �

L′i

f − µ(L′i)f(ωi)
]∥∥∥+

∥∥∥
n∑

i=1

[ �

L′′i

f − µ(L′′i )f(ωi)
]∥∥∥

< ε/4 + ε/4 = ε/2,

where the last inequality follows from (5) since if Q is a pseudopartition
in Ω subordinate to ∆, then both {(L′i, ωi)}ni=1 and {(L′′i , ωi)}ni=1 are finite
Mc-partitions in Ω subordinate to ∆. Since the previous inequality holds
for all x∗ ∈ B(X∗), by (8) we get

∥∥∥
n∑

i=1

[ �

Ω

θif −
�

Ω

θif(ωi)
]∥∥∥ ≤ ε/2.(9)

Now we evaluate the latter norm in (7). According to the σ-finiteness
of µ, Ω =

⋃
j Ωj , where Ωj are disjoint measurable sets of finite measure.

Since f is Pettis integrable its indefinite Pettis integral ν is continuous with
respect to µ. Then there exists η > 0 such that

‖ν(F )‖ < ε/10(10)

if F ∈ F and µ(F ) < η. Moreover since ν is a countably additive measure on
F , the set of variations {|x∗ν| : x∗ ∈ B(X∗)} is uniformly countably additive
(see [2, Corollary 12, p. 105]). So there exists a natural number K such that

|x∗ν|
( ∞⋃

k=K+1

Ωk

)
=

�
⋃∞
k=K+1 Ωk

|x∗f | dµ < ε/10(11)

for all x∗ ∈ B(X∗). Now set fn =
∑n

i=1 θif . Since
∑∞

i=1 θi = 1 a.e., we have

lim
n
fn(ω) = lim

n

n∑

i=1

θif(ω) =
∞∑

i=1

θif(ω) = f(ω)

a.e. in Ω. Let T =
⋃K
k=1Ωk and for each m define

Tm =
{
ω ∈ T : ‖fp(ω)− f(ω)‖ ≤ ε

10(1 + µ(T ))
for all p ≥ m

}
.
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Then µ(T \ ⋃m Tm) = 0, and there exists a natural number M such that
µ∗(TM ) ≥ µ(T ) − η. Let C ∈ F be such that TM ⊆ C ⊆ T and µ(C) =
µ∗(TM ). Since µ(T \ C) < η, from (10) and (11) we deduce

(12)
∥∥∥

�

Ω

∞∑

i=n+1

θif
∥∥∥ =

∥∥∥
�

Ω

f −
�

Ω

fn

∥∥∥

≤
∥∥∥

�

C

f −
�

C

fn

∥∥∥+
∥∥∥

�

T\C
f
∥∥∥+

∥∥∥
�

T\C
fn

∥∥∥+
∥∥∥

�
⋃∞
k=K+1 Ωk

( ∞∑

i=n+1

θi

)
f
∥∥∥

<
∥∥∥

�

C

f −
�

C

fn

∥∥∥+
ε

10
+
∥∥∥

�

T\C
fn

∥∥∥+ sup
x∗∈B(X∗)

�
⋃∞
k=K+1 Ωk

|x∗f |

<
∥∥∥

�

C

f −
�

C

fn

∥∥∥+
∥∥∥

�

T\C
fn

∥∥∥+ ε/5.

By the definition of Tn, for all n > M it follows that
∥∥∥

�

C

f −
�

C

fn

∥∥∥ =
∥∥∥

�

TM

f −
�

TM

fn

∥∥∥ ≤
�

TM

‖f − fn‖(13)

≤ ε

10(1 + µ(T ))
µ∗(TM ) <

ε

10
.

Moreover, |x∗(fn)| ≤ |x∗(f)| for all x∗ ∈ X∗ and n ∈ N. So using (10) we
have ∥∥∥

�

T\C
fn

∥∥∥ ≤ sup
x∗∈B(X∗)

�

T\C
|x∗fn| ≤ sup

x∗∈B(X∗)

�

T\C
|x∗f | < ε/5(14)

for each n ∈ N. Thus for any n > M , by (12)–(14) we get

∥∥∥
�

Ω

∞∑

i=n+1

θif
∥∥∥ < ε/2.(15)

Therefore by (7), (9) and (15) we infer inequality (6) for n > M and this
ends the proof.

Corollary 1. A function f : Ω → X is Mc-integrable if and only if it
is PoU-integrable and the two integrals coincide.

In case of a compact space, in the definition of the PoU-integral there is
no need to take infinite pseudopartitions.

Proposition 1. Let (Ω, T ,F , µ) be a compact σ-finite outer regular
quasi-Radon measure space. A function f : Ω → X is PoU-integrable with
PoU-integral z ∈ X if and only if for each ε > 0 there exists a gauge
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∆ : Ω → T such that
∥∥∥z −

p∑

i=1

�

Ω

θif(ωi)
∥∥∥ < ε

for each finite pseudopartition {(θi, ωi) : i = 1, . . . , p} of Ω subordinate
to ∆.

Proof. Clearly every PoU-integrable function satisfies the condition of
the proposition. For the converse implication, fix ε > 0 and find ∆ such
that

∥∥∥z −
p∑

i=1

�

Ω

θif(ωi)
∥∥∥ < ε

for each finite pseudopartition {(θi, ωi) : i = 1, . . . , p} of Ω subordinate
to ∆. In particular for each finite Mc-partition {(Ei, ωi) : i = 1, . . . , p} of Ω
subordinate to ∆ we have

∥∥∥z −
p∑

i=1

µ(Ei)f(ωi)
∥∥∥ < ε.

So by [4, Proposition 1E], f is Mc-integrable and the assertion follows by
Theorem 1.

3. Multipliers. Now we investigate the multipliers for the Mc-integral.
In [4] Fremlin proved that the product of a characteristic function and a
Mc-integrable function is still Mc-integrable. We will use this result to char-
acterize the multipliers of the Mc-integral.

Theorem 2. Let f : Ω → X be a Mc-integrable function and let g ∈
L∞(Ω,R). Then gf is Mc-integrable.

Proof. Let f : Ω → X be a Mc-integrable function. Since f is also Pettis
integrable, supA∈F ‖

�
A f‖ is finite. Then according to [4, Lemma 2B], there

are a gauge ∆0 and a constant M such that
∥∥∥
∑

i≤n
µ(Ei)f(ωi)

∥∥∥ ≤M(16)

for each Mc-partition {(Ei, ωi) : i = 1, . . . , n} in Ω subordinate to ∆0. Let
g ∈ L∞(Ω,R). Without loss of generality we can assume that g is bounded.
Fix ε > 0. Then by [5, Theorem 11.35] there is a linear combination h of
characteristic functions such that

‖g − h‖∞ <
ε

8M
.(17)
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By [4, Theorem 1N] and the linearity of the Mc-integral the function hf is
Mc-integrable, so let ∆1 be a gauge such that

lim sup
n

∥∥∥(Mc)
�

Ω

hf −
∑

i≤n
µ(Ei)h(ωi)f(ωi)

∥∥∥ < ε/4(18)

for each Mc-partition {(Ei, ωi) : i = 1, 2, . . .} ofΩ subordinate to∆1. Choose
now ∆ = ∆0∩∆1 and let {(Ei, ωi) : i = 1, 2, . . .} and {(Fi, πi) : i = 1, 2, . . .}
be two Mc-partitions of Ω subordinate to ∆. From (18), for n sufficiently
large,

(19)
∥∥∥
∑

i≤n
µ(Ei)g(ωi)f(ωi)−

∑

i≤n
µ(Fi)g(πi)f(πi)

∥∥∥

≤
∥∥∥
∑

i≤n
µ(Ei)f(ωi)[g(ωi)−h(ωi)]

∥∥∥+
∥∥∥(Mc)

�

Ω

hf−
∑

i≤n
µ(Fi)h(πi)f(πi)

∥∥∥

+
∥∥∥(Mc)

�

Ω

hf−
∑

i≤n
µ(Ei)h(ωi)f(ωi)

∥∥∥+
∥∥∥
∑

i≤n
µ(Fi)f(πi)[h(πi)− g(πi)]

∥∥∥

< ε/2 +
∥∥∥
∑

i≤n
µ(Ei)f(ωi)[g(ωi)−h(ωi)]

∥∥∥+
∥∥∥
∑

i≤n
µ(Fi)f(πi)[h(πi)−g(πi)]

∥∥∥.

Moreover by (17) we obtain
∥∥∥
∑

i≤n
µ(Ei)f(ωi)[g(ωi)−h(ωi)]

∥∥∥≤ sup
x∗∈B(X∗)

∑

i≤n
µ(Ei)|x∗f(ωi)| · ‖g−h‖∞(20)

<
ε

8M
sup

x∗∈B(X∗)

∑

i≤n
µ(Ei)|x∗f(ωi)|.

Let x∗ ∈ B(X∗). By (16) we have
∑

i≤n
µ(Ei)|x∗f(ωi)| =

∣∣∣
∑

i∈I1
µ(Ei)x∗f(ωi)

∣∣∣+
∣∣∣
∑

i∈I2
µ(Ei)x∗f(ωi)

∣∣∣(21)

≤
∥∥∥
∑

i∈I1
µ(Ei)f(ωi)

∥∥∥+
∥∥∥
∑

i∈I2
µ(Ei)f(ωi)

∥∥∥ ≤ 2M.

where I1 is the set of those indices i ≤ n for which x∗(f(ωi)) ≥ 0 and I2 is
the set of the remaining indices. By (20) and (21) we get

∥∥∥
∑

i≤n
µ(Ei)f(ωi)[g(ωi)− h(ωi)]

∥∥∥ < ε/4,(22)

and analogously
∥∥∥
∑

i≤n
µ(Fi)f(πi)[g(πi)− h(πi)]

∥∥∥ < ε/4.(23)
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For n sufficiently large, by (19), (22) and (23) we obtain
∥∥∥
∑

i≤n
µ(Ei)g(ωi)f(ωi)−

∑

i≤n
µ(Fi)g(πi)f(πi)

∥∥∥ < ε.

Now [4, Lemma 1M] implies that the function gf is Mc-integrable.

In [3] Dunford and Pettis have shown that each function in L∞(Ω,R)
is a multiplier for the Pettis integral. The following theorem allows us to
characterize the multipliers for both the Pettis and McShane integrals.

Theorem 3. Let g : Ω → R be a measurable function such that if f :
Ω → X is Pettis (respectively McShane) integrable, then also gf is Pettis
(respectively McShane) integrable. Then g ∈ L∞(Ω,R).

Proof. Let x be a nonnull vector in X and let h ∈ L1(Ω,R). The function
hx is Bochner integrable. Indeed, hx is strongly measurable and

�

Ω

‖hx‖ =
�

Ω

‖x‖ · |h| = ‖x‖
�

Ω

|h| <∞

(see [1, p. 45]). Then hx is Pettis (respectively McShane) integrable (see [3]
and [4]) and also ghx is Pettis (respectively Mc and then Pettis integrable).
Thus for all x∗ ∈ X∗ the function x∗(ghx) ∈ L1(Ω,R). Since

�

Ω

x∗(ghx)(ω) dµ = x∗(x)
�

Ω

gh(ω) dµ,

the function gh is in L1(Ω,R). By the characterization of the multipliers for
real-valued Lebesgue integrable functions, it follows that g ∈ L∞(Ω,R).

Corollary 2. A measurable function g : Ω → R is a multiplier for the
Pettis (respectively McShane or PoU ) integral if and only if g ∈ L∞(Ω,R).

Proof. This follows from Corollary 1 and Theorems 2 and 3.

Acknowledgments. The authors are grateful to the referee for his com-
ments on the previous version of the paper.
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[6] J. Jarńık and J. Kurzweil, A nonabsolutely convergent integral which admits trans-
formation and can be used for integration on manifolds, Czechoslovak Math. J. 35
(110) (1985), 116–139.

[7] —, —, A new and more powerful concept of the PU-integral , ibid. 38 (113) (1988),
8–48.

[8] G. Riccobono, A PU-integral on an abstract metric space, Math. Bohemica 122
(1997), 83–95.

Department of Mathematics
University of Palermo
Via Archirafi, 34
90123 Palermo, Italy
E-mail: dipiazza@math.unipa.it

marraffa@math.unipa.it

Received July 6, 2001
Revised version November 12, 2001 (4772)


