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The space Sα,β and σ-core

by

Bruno de Malafosse (Le Havre)

Abstract. We give some new properties of the space Sα,β and we apply them to the
σ-core theory. These results generalize those by Choudhary and Yardimci.

1. Notations and preliminary results. For a given infinite matrix
A = (anm)n,m≥1 we define the operators An for any integer n ≥ 1 by

(1) An(X) =
∞∑

m=1

anmxm

where X = (xn)n≥1 and the series is assumed to be convergent. So we are
led to the study of the infinite linear system

(2) An(X) = yn, n = 1, 2, . . . ,

where Y = (yn)n≥1 is a one-column matrix and X the unknown (see [4,
6–10, 12]). The equations (2) can be written in the form

AX = Y, where AX = (An(X))n≥1.

In this paper we shall also consider A as an operator from a sequence space
into another sequence space.

We will write s and l∞ for the sets of all sequences and of all bounded
sequences, respectively. We shall use the set

U+∗ = {(un)n≥1 ∈ s : un > 0 for all n}.

Using Wilansky’s notation [16], for any sequence α = (αn)n≥1 ∈ U+∗ we
define the set

sα = (1/α)−1 ∗ l∞ = {(xn)n≥1 ∈ s : (xn/αn)n ∈ l∞}.

The set sα is a Banach space normed by

(3) ‖X‖sα = sup
n≥1

|xn|/αn.
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Now let α = (αn)n≥1 and β = (βn)n≥1 ∈ U+∗. Then Sα,β is the set of
infinite matrices A = (anm)n,m≥1 such that supn β−1

n

∑∞
m=1 |anm|αm < ∞.

The set Sα,β is a linear space normed by

‖A‖Sα,β
= sup

n≥1

1

βn

∞∑

m=1

|anm|αm.

Let E and F be any subsets of s. When A maps E into F we shall write
A ∈ (E, F ) (see [5]). It was shown in [3] that A ∈ (sα, sβ) if and only if
A ∈ Sα,β. So we can write that (sα, sβ) = Sα,β .

When sα = sβ we obtain the Banach algebra with identity Sα,β = Sα

(see [4, 9, 10, 12]) normed by ‖A‖Sα = ‖A‖Sα,α .
We also have A ∈ (sα, sα) if and only if A ∈ Sα. If ‖I −A‖Sα < 1 (where

I = (δnm)n,m≥1, with δnm = 1 if n = m, δnm = 0 otherwise), we shall say
that A ∈ Γα. The set Sα being a Banach algebra with identity, we have the
useful result: if A ∈ Γα, then A is bijective from sα into itself.

If α = (rn)n≥1, then Γα, Sα and sα are denoted by Γr, Sr and sr re-
spectively (see [4, 6–9, 11]). When r = 1, we obtain s1 = l∞ and putting
e = (1, 1, . . . ) we have S1 = Se. It is well known that if c0 and c are the
sets of all sequences that are convergent to zero and convergent respectively,
then

(4) (s1, s1) = (c0, s1) = (c, s1) = S1

(see [5]). We will write en = (0, . . . , 1, . . . ), where 1 is in the nth position.
For any subset E of s, we put

(5) AE = {Y ∈ s : there is X ∈ E with Y = AX}.

If F is a subset of s, we write

(6) F (A) = FA = {X ∈ s : AX ∈ F}.

2. Other properties of the space Sα,β. For the study of σ-core, we
need some properties of the set Sα,β . First, we define the following sets of
sequences. Let M ∈ (sγ , sα) and N ∈ (sβ, sγ) for α, β, γ ∈ U+∗ and consider
the linear spaces

Sα,β .M = {AM : A ∈ Sα,β}, N.Sα,β = {NA : A ∈ Sα,β}.

For any sequence ξ = (ξn)n such that ξn 6= 0 for all n, we put

Dξ = (ξnδnm)n,m≥1.

It can be easily shown that

Dξsα =

(
1

ξ

)−1

∗

((
1

α

)−1

∗ s1

)
= s|ξ|α

(see [12]). Now we can assert the following:
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Theorem 1.
(i) Let α, β, α′, β′ ∈ U+∗. Then

(a) αn = O(βn) (n → ∞) if and only if sα ⊂ sβ ;
(b) αn = O(βn) and βn = O(αn) (n → ∞) if and only if sα = sβ;
(c) sα = sβ if and only if there exist K1, K2 > 0 such that

(7) K1αn ≤ βn ≤ K2αn for all n;

(d) the identity Sα,β = Sα′,β′ is equivalent to sα = sα′ and sβ = sβ′.

(ii) Let α, β, γ, µ ∈ U+∗. Then

(a) Sα,β is a Banach space with respect to the norm ‖ ‖Sα,β
;

(b) A(BC) = (AB)C for every A ∈ Sγ,µ, B ∈ Sβ,γ and C ∈ Sα,β ;
(c) ‖AB‖Sγ,β

≤ ‖B‖Sγ,α‖A‖Sα,β
for A ∈ Sα,β and B ∈ Sγ,α;

(d) the set

Sα,β .Sγ,α =
⋃

M∈Sγ,α

Sα,β .M

is a Banach space with the norm ‖ ‖Sγ,β
and

Sα,β .Sγ,α = Sγ,β ;

(e) if M ∈ (sγ , sα) is bijective, then

Sα,β .M = Sγ,β ,

and if N ∈ (sβ, sγ) is bijective, then

N.Sα,β = Sα,γ .

Proof. (i)(a) Assume that αn = O(βn) (n → ∞). If X = (xn)n ∈ sα,
then

xn

βn
=

xn

αn

αn

βn
= O(1) (n → ∞)

and so X ∈ sβ. So sα ⊂ sβ . Conversely, α ∈ sα ⊂ sβ implies αn/βn = O(1)
(n → ∞) and so αn = O(βn) (n → ∞).

(i)(b) is obvious.
(i)(c) Condition (7) is equivalent to αn =O(βn) and βn =O(αn) (n→∞).
(i)(d) The sufficiency being obvious, we prove the necessity. Suppose that

Sα,β = Sα′,β′ . First, we shall prove that Sα,β = Sα′,β. For this, denote by
c̃1 = (cnm)n,m≥1 the infinite matrix defined by cn1 = βn/α1 for all n ≥ 1
and cnm = 0 otherwise. We see immediately that c̃1 ∈ Sα,β and since Sα,β =
Sα′,β′ , we get c̃1 ∈ Sα′,β′ . So c̃1α

′ = (βnα′
1/α1)n≥1 ∈ sβ′ , i.e.

βn = β′
nO(1) (n → ∞)

and from (i)(a) we conclude sβ ⊂ sβ′ . By a similar argument, taking c̃′1 =
(c′nm)n,m≥1, with c′n1 = β′

n/α′
1 for all n ≥ 1 and c′nm = 0 otherwise, we get

c̃′1α = (β′
nα1/α′

1)n≥1 ∈ sβ and sβ′ ⊂ sβ . Thus we have shown sβ = sβ′ ,



232 B. de Malafosse

so Sα,β = Sα′,β′ implies Sα,β = Sα′,β. It remains to show that the latter
equality implies sα = sα′ . For this, consider the matrix Dβ/α ∈ Sα,β . Since
Sα,β = Sα′,β , we deduce that

(8) Dβ/αsα′ = sβα′/α ⊂ sβ

and α′
n/αn = O(1) (n → ∞). So, from (i)(a), sα ⊂ sα′ . Similarly, since

Dβ/α′ ∈ Sα′,β = Sα,β , we get

(9) Dβ/α′sα = sβα/α′ ⊂ sβ.

So αn = O(α′
n) (n → ∞) and sα′ ⊂ sα. We conclude that sα = sα′ and

(i)(d) is proved.
(ii)(b) Letting A = DµA1D1/γ, B = DγB1D1/β and C = DβC1D1/α it

can be easily seen that A1, B1, C1 ∈ S1. So

A(BC) = (DµA1D1/γ)(DγB1D1/βDβC1D1/α)

= (DµA1D1/γ)(DγB1C1D1/α)

and since D1/γ and Dγ are diagonal matrices and S1 is a Banach algebra,
we deduce that

A(BC) = Dµ(A1B1)C1D1/α = (DµA1D1/γDγB1D1/β)(DβC1D1/α)

= (AB)C.

(ii)(c) Since S1 is a Banach algebra, we see that

‖AB‖Sγ,β
= ‖D1/βADαD1/αBDγ‖S1

≤ ‖D1/βADα‖S1
‖D1/αBDγ‖S1

,

that is, ‖AB‖Sγ,β
≤ ‖B‖Sγ,α‖A‖Sα,β

.
(ii)(a) The set Sα,β being a vector space, it is enough to show that Sα,β is

complete. Let (Ai)i be a Cauchy sequence in Sα,β . For any given real ε > 0,
there is an integer n0 such that

‖Ai − Aj‖Sα,β
= ‖Dα/βAi − Dα/βAj‖Sα ≤ ε for i, j ≥ n0.

The set Sα being a Banach space, there is an infinite matrix M ∈ Sα such
that Dα/βAi → M (i → ∞). Then from (ii)(c) we get

‖Ai − Dβ/αM‖Sα,β
≤ ‖Dβ/α‖Sα,β

‖Dα/βAi − M‖Sα ,

where ‖Dβ/α‖Sα,β
= 1 and ‖Dα/βAi−M‖Sα = o(1) (i → ∞), so we conclude

that Ai → Dβ/αM (i → ∞) in Sα,β and Sα,β is a Banach space.
(ii)(d) It is enough to show Sα,β.Sγ,α = Sγ,β . Take any A = BC ∈

Sα,β .Sγ,α. Since C maps sγ into sα and B maps sα into sβ, we conclude easily
that A maps sγ into sβ , i.e. A ∈ Sγ,β. So Sα,β .Sγ,α ⊂ Sγ,β. Furthermore for
every A ∈ Sγ,β,

A = (ADγ/α)Dα/γ with Dα/γ ∈ Sγ,α and ADγ/α ∈ Sα,β.

We conclude that Sγ,β ⊂ Sα,β.Sγ,α and Sα,β .Sγ,α = Sγ,β.
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(ii)(e) The inclusion Sα,β .M ⊂ Sγ,β comes from (ii)(d). Let A ∈ Sγ,β be
any infinite matrix. Since M is invertible and M−1 ∈ (sα, sγ), from (ii)(b)
we get

A = (AM−1)M

where AM−1 ∈ (sα, sβ). So A ∈ Sα,β.M and Sγ,β ⊂ Sα,β .M . We conclude
that Sα,β.M = Sγ,β . Let us prove N.Sα,β = Sα,γ . From (ii)(d), we have
N.Sα,β ⊂ Sα,γ . Take now A ∈ Sα,γ . Reasoning as above we see that there
exists B ∈ Sα,β such that A = NB, where B = N−1A ∈ Sα,β . This gives
the conclusion.

Remark 1. Note that the identity (E, sβ) = Se,β = (s1, sβ), where E is
any given set of sequences, does not imply E = s1. Indeed, from (4) it can
be deduced that (c0, sβ) = Se,β and c0 6= s1.

We deduce from (ii)(e) of Theorem 1 the following.

Corollary 2. Let α, β, τ ∈ U+∗. Then

(i)(a) M ∈ Γα implies Sα,β .M = Sα,β ;
(b) N ∈ Γβ implies N.Sα,β = Sα,β.

(ii)(a) Sα,β.Dτ = Sα/τ,β ;
(b) Dτ .Sα,β = Sα,βτ .

Proof. M ∈ Γα implies that M is bijective from sα into itself, so applying
Theorem 1(ii)(e) we obtain Sα,β.M = Sα,β . Similarly, since N ∈ Γβ, N is
bijective from sβ into itself and we get (i)(b) by applying (ii)(e).

Next, Dτ is bijective from sα/τ into sα, so Sα,β .Dτ = Sα/τ,β from (ii)(e),
and we obtain (ii)(b) by a similar argument.

3. σ-core. In this section, we apply the results of Sections 1 and 2 to
the σ-core. Among other things, we will give some properties of the product
of two infinite matrices AB−1.

3.1. Some known results on the σ-core. First, denote by σ a one-to-one
mapping of N and define for a given sequence X = (xn)n≥1 the sequence

tnp(X) =
xn + xσ(n) + · · · + xσp(n)

p + 1
for p ≥ 0 and n ≥ 1.

We shall assume throughout this paper that σj(n) 6= n for all j ≥ 1 and
n ≥ 1. As in [15] we define

Vσ = {X ∈ s1 : lim
p→∞

sup
n≥1

|tnp(X) − l| = 0 for some l ∈ C}

and write l = σ-limX. The matrix A = (anm)n,m≥1 is said to be σ-regular

if

AX ∈ Vσ and limX = σ- limAX for all X ∈ c
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(see [14]). Furthermore, A = (anm)n,m≥1 is said to be strongly σ-regular if

AX ∈ Vσ and σ- limX = σ- limAX for all X ∈ Vσ.

A = (anm)n,m≥1 is said to be σ-uniformly positive if

lim
p→∞

sup
n≥1

∣∣∣
∞∑

m=1

a−(n, p, m)
∣∣∣ = 0,

where

a−(n, p, m) =
1

p + 1

p∑

j=0

a−
σj(n),m

,

with the notation λ− = max(−λ, 0).
Let V be the map from s1 into R defined by

V (X) = sup
n≥1

( lim
p→∞

tnp(X)).

For any given X, set

σ-core{X} = [−V (−X), V (X)].

As a direct consequence of a theorem due to Mishra, Rath and Satapathy
[13], in which we use the equivalence D1/βADα ∈ (s1, s1) if and only if
A ∈ (sα, sβ), we obtain

Lemma 3. Let A ∈ (sα, sβ) and X = (xn)n≥1 ∈ s1. Then

σ-core{(D1/βADα)X} ⊂ σ-core{X}

if and only if D1/βADα is strongly σ-regular and σ-uniformly positive.

It is well known that for a given matrix M , σ-core{MX} ⊂ σ-core{X}
if and only if V (MX) ≤ V (X) for all X ∈ s1.

Now from a theorem due to Choudhary [1] with B replaced by D1/αB,
we get the following result. So the condition BX ∈ sα is equivalent to
D1/αBX ∈ s1. Throughout this section we shall suppose that B is invertible

and we shall write B−1 = (b′nm)n,m≥1.

Lemma 4. Let n0 be a given integer. Then the following conditions are

equivalent :

(i) The condition X ∈ sα(B) implies

An0
(X) =

∞∑

m=1

an0mxm is convergent for all X ∈ s.

(ii)(a)
∞∑

m=1

∣∣∣
∞∑

k=m

ankb
′
km

∣∣∣αm < ∞ for all n ≥ 1;
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(b) lim
j→∞

j∑

m=1

∣∣∣
∞∑

k=j+1

an0kb
′
km

∣∣∣αm = 0 (j → ∞).

Recall now a result which can be obtained from a theorem due to Yar-
dimci [17] by repolacing A and B by D1/βA and D1/αB and which is a

consequence of the previous lemma. We will write L(X) = limn→∞xn.

Lemma 5. Let B be a triangle and A any matrix. Consider the condition

(a)(α) sα(B) ⊂ sβ(A);
(β) V ((D1/βA)X) ≤ L((D1/αB)X) for all X ∈ s.

Condition (a) is equivalent to

(i) the product C = (D1/βA)(B−1Dα) exists;
(ii) C is σ-regular ;
(iii) C is σ-uniformly positive;

(iv) lim
j→∞

j∑

m=1

∣∣∣
∞∑

k=j+1

ankb
′
km

∣∣∣αm = 0 for all n.

3.2. The main results. In this subsection we shall see that under some
conditions on A and B, conditions (a)(α) and (iv) of Lemma 5 are satisfied.
Then we obtain necessary and sufficient conditions for D1/βAB−1Dα to be
σ-regular and σ-uniformly positive.

In the following we shall suppose that B = (bnm)n,m≥1 is a triangle, that
is, bnm = 0 for m > n and bnn 6= 0 for all n (see [2]).

To simplify, we shall write b = (bnn)n≥1, D1/b = (δnm/bnn)n,m≥1 and
suppose 1/b ∈ s1 throughout. Consider the following additional conditions
on A and B:

(10) A ∈ Sα,β ;

(11) sup
n≥2

n−1∑

m=1

∣∣∣∣
bnm

bnn

∣∣∣∣
αm

αn
< 1.

Now we can state the following

Theorem 6. Let A and B satisfy conditions (10) and (11). Then

(i) sα(B) ⊂ sβ(A);

(ii) lim
j→∞

j∑

m=1

∣∣∣
∞∑

k=j+1

ankb
′
km

∣∣∣αm = 0 for all n;

(iii) (D1/βA)(B−1Dα) ∈ S|b|,e.
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Proof. Condition (11) means that D1/bB ∈ Γα. So (D1/bB)−1 =
(b′nmbmm)n,m≥1 ∈ Sα, that is,

(12) sup
n≥2

n∑

m=1

|b′nm| |bmm|αm/αn < ∞.

From (12) we see that B−1 ∈ Sα|b|,α, so using Corollary 2(ii)(a), we obtain

B−1Dα ∈ Sα|b|,α.Dα = S|b|,α.

Since A ∈ Sα,β and D1/β ∈ Sβ,e we deduce from Corollary 2(ii)(b) that
D1/βA ∈ Sα,e; thus using Theorem 1(ii)(d) we get

(D1/βA)(B−1Dα) ∈ Sα,e.S|b|,α = S|b|,e.

Then (iii) and condition (i) of Lemma 5 hold.
Let us show (i) holds. Take any X such that Y = D1/αBX ∈ s1. Since

B−1Dα ∈ S|b|,α and the condition 1/b ∈ s1 implies S|b|,α ⊂ Se,α, we get

(B−1Dα)Y ∈ sα.

Furthermore, since D1/βA ∈ Sα,e = (sα, s1) we obtain

(D1/βA)X = (D1/βA)[(B−1Dα)Y ] ∈ s1

and (i) holds.
It remains to show (ii) holds. First, (12) and the condition 1/b ∈ s1 imply

that there are two reals K1, K2 > 0 such that

(13) K1

n∑

m=1

|b′nm|αm ≤
n∑

m=1

|b′nm| |bmm|αm ≤ K2αn for all n ≥ 1.

Then from (10) and (13) we deduce that there exists K3 > 0 such that for
every Y = (yn)n≥1 ∈ s1,

1

βn

( ∞∑

k=1

|ank|
( k∑

m=1

|b′km|αm|ym|
))

≤
K3

βn

( ∞∑

k=1

|ank|αk

)
(14)

= O(1) (n → ∞).

Letting

(15) τk =
k∑

m=1

|b′km|αm,

we deduce from (14), in which Y = e, that for any fixed n,

(16)
∞∑

k=j+1

|ank|τk = o(1) (j → ∞),
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and

(17)
∞∑

k=j+1

|ank|
( j∑

m=1

|b′km|αm

)
≤

∞∑

k=j+1

|ank|τk for all j ≥ 1.

From (16), (17) and the inequality

j∑

m=1

∣∣∣
∞∑

k=j+1

ankb
′
km

∣∣∣αm ≤

∞∑

k=j+1

|ank|
( j∑

m=1

|b′km|αm

)
for all n, j ≥ 1

we conclude that (ii) holds.

Remark 2. Since A ∈ Sα,β, we have seen that D1/β ∈ Sβ,e and by

assumption B−1Dα ∈ S|b|,α. By Theorem 1(ii)(a) we then have

(D1/βA)(B−1Dα) = D1/β(AB−1)Dα ∈ S|b|,e ⊂ S1.

So

(18) (D1/βA)[(B−1Dα)Y ] = [D1/β(AB−1)Dα]Y ∈ s1 for all Y ∈ s1.

Proposition 7. Assume that A and B satisfy (10) and (11). The con-

dition

(a) BX ∈ sα implies

V ((D1/βA)X) ≤ L((D1/αB)X) for all X

is equivalent to

(i) C = D1/βAB−1Dα is σ-regular ;
(ii) C is σ-uniformly positive.

Proof. From Theorem 6 we see that BX ∈ sα implies AX ∈ sβ . So by
Lemma 5, conditions (i) and (ii) then hold. Conversely, from Theorem 6,
conditions (10) and (11) imply (i) and (iv) of Lemma 5. Finally, again from
Lemma 5, (i) and (ii) imply condition (a).

Proposition 8. Assume that A and B satisfy (10) and (11). The con-

dition

(a) D1/αBX ∈ s1 implies

(19) V ((D1/βA)X) ≤ V ((D1/αB)X) for all X

is equivalent to

(i) C = D1/βAB−1Dα is strongly σ-regular ;
(ii) C is σ-uniformly positive.

Proof. Necessity. Take Y ∈ s1. Since D1/αB is a triangle,

X = (D1/αB)−1Y = B−1DαY
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satisfies the equation Y = (D1/αB)X; and from Remark 2, (10) and (11)
together imply (18), that is,

(20) (D1/βA)X = CY.

Then from (19), V (CY ) ≤ V (Y ). Using Lemma 3, we conclude that (i) and
(ii) hold.

Sufficiency. First, note that as above (20) holds. So we obtain (19) from
Lemma 3.

As a direct consequence of Propositions 7 and 8, we obtain

Corollary 9. Assume that A ∈ Sα,β and B ∈ Sβ,α are triangles satis-

fying

(21) sup
n≥2

n−1∑

m=1

∣∣∣∣
bnm

bnn

∣∣∣∣
αm

αn
< 1 and sup

n≥2

n−1∑

m=1

∣∣∣∣
anm

ann

∣∣∣∣
βm

βn
< 1.

Then the condition V ((D1/βA)X) = L((D1/αB)X) for all X ∈ sβ(A) ∩
sα(B) is equivalent to

(a) D1/βAB−1Dα and D1/αBA−1Dβ are σ-regular ;

(b) D1/βAB−1Dα and D1/αBA−1Dβ are σ-uniformly positive.

Corollary 10. Assume that the matrices A ∈ Sα,β and B ∈ Sβ,α

satisfy the conditions given in (21). Then

V ((D1/βA)X) = V ((D1/αB)X) for all X ∈ sβ(A) ∩ sα(B)

if and only if condition (b) of Corollary 9 holds and D1/βAB−1Dα and

D1/αBA−1Dβ are strongly σ-regular.

Remark 3. Assume that there exist K1, K2, K
′
1, K

′
2 > 0 such that

K1 ≤ |bnn| ≤ K2 and K ′
1 ≤ |ann| ≤ K ′

2 for all n.

If ξn = inf(αn, βn), then sβ(A)∩sα(B) = sξ in Corollaries 9 and 10. Indeed,
from (21) we deduce that D1/bB is bijective from sα into itself. So

D1/bB.sα = sα

and as we have seen in Section 2,

B.sα = Db.sα = sα|b|.

Since

K1αn ≤ |bnn|αn ≤ K2αn for all n,

by Theorem 1(i)(c) we deduce that sα|b| = sα and

sα(B) = B−1sα|b| = B−1sα = sα.
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By a similar argument A is bijective from sβ into s|a|β (with a = (ann)n≥1),
so s|a|β = sβ and sβ(A) = sβ . We conclude that

sβ(A) ∩ sα(B) = sβ ∩ sα = sinf(α,β).

3.3. An application. In order to give an application of the previous re-
sults, recall [4, 7, 11] that we can associate to any power series f(z) =∑∞

k=0 akz
k defined in the open disk |z| < R the upper triangular infinite

matrix A = ϕ(f) ∈
⋃

0<r<R Sr defined by

ϕ(f) =




a0 a1 a2 .

a0 a1 .

0 a0 .

.




.

We shall write ϕ[f(z)] instead of ϕ(f). We have

Lemma 11.

(i) The map ϕ : f → A is an isomorphism from the algebra of all

power series defined in |z| < R into the algebra of the corresponding

matrices Ā.

(ii) Let f(z) =
∑∞

k=0 akz
k, with a0 6= 0, and assume that 1/f(z) =∑∞

k=0 a′kz
k has radius of convergence R′ > 0. Then

ϕ

(
1

f

)
= [ϕ(f)]−1 ∈

⋃

0<r<R′

Sr.

We can give an application using the well known operator of first differ-
ence ∆ = (ϕ(1 − z))t. For any real r we will write Dr = (rnδnm)n,m≥1 for
short.

Example 1. Let χ be a complex number satisfying 0 < |χ| ≤ 1, let
R ≥ 1 and consider Λ = (Λnm)n,m≥1 and Λ′ = (Λ′

nm)n,m≥1 defined by

Λnm =





|χ|n−m − |χ|n−m−1

Rm−n
for m < n,

1 for m = n,

0 otherwise;

Λ′
nm =





1 − |χ|

Rm−n
for m < n,

1 for m = n,

0 otherwise.

Then the condition

V ((D1/R∆)X) = L((D|χ|/R∆D1/|χ|)X) for all X ∈ sR

is equivalent to

(i) Λ and Λ′ are σ-regular;
(ii) Λ is σ-uniformly positive.
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Proof. It is enough to apply Corollary 9 to the matrices A = ∆ and
B = D|χ|∆D1/|χ|, with α = β = (Rn)n . First, (21) holds since ‖I −A‖SR

=
1/R < 1 and

‖I − B‖SR
= ‖D|χ|(I − ∆)D1/|χ|‖SR

= ‖I − ∆‖SR/|χ|
=

|χ|

R
< 1.

So A and B are bijective from sR to itself and sβ(A)∩sα(B) = sR. Further-
more, we have

(∆−1)t = ϕ(1/(1 − z)) = ϕ
( ∞∑

n=0

zn
)

for |z| < 1.

So

(B−1)t = (D|χ|∆
−1D1/|χ|)

t = ϕ
( ∞∑

n=0

(|χ|z)n
)

with |z| < 1/|χ| and

(AB−1)t = ϕ
( ∞∑

n=0

(|χ|z)n
)
ϕ(1 − z) = ϕ

[
(1 − z)

( ∞∑

n=0

(|χ|z)n
)]

.

Since

(1 − z)
( ∞∑

n=0

(|χ|z)n
)

= 1 +
∞∑

n=1

(|χ|n − |χ|n−1)zn,

we get Λ = AB−1. Similarly, we obtain Λ′ = BA−1, using the identity

(BA−1)t = ϕ
[
(1 − |χ|z)

( ∞∑

n=0

zn
)]

= ϕ
[
1 + (1 − |χ|)

( ∞∑

n=1

zn
)]

.

Note that Λ′ is σ-uniformly positive since all its entries are positive. This
concludes the proof.

Remark 4. Let χ and R be reals with 0 < |χ| ≤ 1 and R > 1. It can be
easily seen that one of the conditions (i) or (ii) in the previous proposition
is false if and only if there is X0 ∈ sR such that

V ((D1/R∆)X0) 6= L(D|χ|/R∆D1/|χ|)X0.
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