An extension of Mazur's theorem on Gateaux differentiability to the class of strongly $\alpha(\cdot)$ -paraconvex functions

by

S. ROLEWICZ (Warszawa)

Abstract. Let $(X, \|\cdot\|)$ be a separable real Banach space. Let f be a real-valued strongly $\alpha(\cdot)$ -paraconvex function defined on an open convex subset $\Omega \subset X$, i.e. such that

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) + \min[t, (1-t)]\alpha(||x-y||).$$

Then there is a dense G_{δ} -set $A_{\mathcal{G}} \subset \Omega$ such that f is Gateaux differentiable at every point of $A_{\mathcal{G}}$.

Let $(X, \|\cdot\|)$ be a real Banach space. Let f be a real-valued convex continuous function defined on an open convex subset $\Omega \subset X$, i.e.

(1)
$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y).$$

We recall that a set $B \subset \Omega$ of second Baire category is called *residual* if its complement $\Omega \setminus B$ is of the first Baire category. Mazur (1933) proved that if X is separable, then there is a residual subset $A_{\rm G}$ such that f is Gateaux differentiable on $A_{\rm G}$. In this note we extend this result to larger (than convex) classes of functions called strongly $\alpha(\cdot)$ -paraconvex functions.

Let $\alpha : [0,\infty) \to [0,\infty)$ be a nondecreasing continuous function such that

(2)
$$\lim_{t\downarrow 0} \frac{\alpha(t)}{t} = 0.$$

Let, as before, $(X, \|\cdot\|)$ be a real Banach space. Let f be a real-valued continuous function defined on an open convex subset $\Omega \subset X$. We say that f is $\alpha(\cdot)$ -paraconvex if for all $x, y \in \Omega$ and $0 \le t \le 1$,

(3)
$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) + \alpha(||x-y||).$$

For $\alpha(t) = t^2$ this definition was introduced in Rolewicz (1979a) and the t^2 -paraconvex functions were called simply *paraconvex*. In Rolewicz (1979b)

²⁰⁰⁰ Mathematics Subject Classification: Primary 46G05.

Key words and phrases: Gateaux differentiability, strongly $\alpha(\cdot)$ -paraconvex functions.

the notion was extended to the case of $\alpha(t) = t^{\gamma}$, $1 \leq \gamma \leq 2$, and the t^{γ} -paraconvex functions were called γ -paraconvex.

We say that f is strongly $\alpha(\cdot)$ -paraconvex if for all $x, y \in \Omega$ and $0 \le t \le 1$,

(4)
$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) + \min[t, (1-t)]\alpha(||x-y||).$$

Of course every strongly $\alpha(\cdot)$ -paraconvex function is also $\alpha(\cdot)/2$ -paraconvex. The converse is not true and the conditions warranting the existence C_{α} such that each $\alpha(\cdot)$ -paraconvex is strongly $C_{\alpha}\alpha(\cdot)$ -paraconvex can be found in Rolewicz (2000). In particular the function t^{γ} , $1 < \gamma \leq 2$, satisfies these conditions.

The notion of $\alpha(\cdot)$ -paraconvex functions can be treated as a uniformization of the notion of approximate convex functions introduced in the papers of Luc, Ngai and Théra (1999), (2000). We recall that a real-valued function f defined on a convex set $\Omega \subset X$ is called *approximate convex* if for any $x_0 \in \Omega$ and $\varepsilon > 0$ there is $\delta = \delta(\varepsilon, x_0)$ such that for x, y with $||x - x_0|| < \delta$ and $||y - x_0|| < \delta$ and $0 \le t \le 1$ we have

(5)
$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) + \varepsilon \min[t, (1-t)]||x-y||.$$

We say that a real-valued function f defined on a convex set $\Omega \subset X$ is called uniformly approximate convex if for any $\varepsilon > 0$ there is $\delta = \delta(\varepsilon)$ such that (5) holds for x, y with $||x - y|| < \delta$.

It is easy to show that a real-valued continuous function f is uniformly approximate convex if and only if there is $\alpha(\cdot)$ satisfying (2) such that f is strongly $\alpha(\cdot)$ -paraconvex (Rolewicz (2001b)).

We now recall the notion of directional derivative.

By the *directional derivative* of a continuous function f at a point x_0 in direction h we mean the number

(6)
$$d^+ f|_{x_0}(h) = \lim_{t \downarrow 0} \frac{f(x_0 + th) - f(x_0)}{t}$$

It is easy to see that a strongly $\alpha(\cdot)$ -paraconvex function has a directional derivative at any point in any direction (Rolewicz (2005)).

We shall show

PROPOSITION 1. Let Ω be an open convex set in a Banach space X. Let $f: \Omega \to \mathbb{R}$ be an $\alpha(\cdot)$ -paraconvex function. Then for any point $x_0 \in \Omega$ the directional derivative $d^+f|_{x_0}(h)$ is a sublinear (i.e. positively homogeneous and subadditive) function of the direction h.

Proof. Positive homogeneity is trivial. Now we shall show subadditivity. Indeed, since f is $\alpha(\cdot)$ -paraconvex, for $h_1, h_2 \in X$ and sufficiently small t we have

$$\frac{f(x_0 + t\frac{h_1 + h_2}{2}) - f(x_0)}{t} \le \frac{1}{2} \frac{f(x_0 + th_1) - f(x_0)}{t} + \frac{1}{2} \frac{f(x_0 + th_2) - f(x_0)}{t} + \frac{\alpha(t\|h_1 - h_2\|)}{t}.$$

Thus multiplying by 2 and letting $t \to 0$, by (2) and positive homogeneity of $d^+ f|_{x_0}(h)$ we get the triangle inequality

$$d^+f|_{x_0}(h_1+h_2) \le d^+f|_{x_0}(h_1) + d^+f|_{x_0}(h_2).$$

It is easy to observe that a sublinear function is linear if and only if it is homogeneous, i.e. p(-h) = -p(h).

Recall that a strongly $\alpha(\cdot)$ -paraconvex function is always locally Lipschitz (Rolewicz (2000)). Basing on this fact it is not difficult to prove that $d^+ f|_{x_0}(h)$ is also a locally Lipschitz function.

Any continuous linear functional $x^* \in X^*$ such that $x^*(h) \leq d^+ f|_{x_0}$ is called an *approximate subgradient* of f at x_0 (see Ioffe (1984), (1986), (1989), (1990), (2000), Mordukhovich (1976), (1980), (1988)). The set of all approximate subgradients of f at x_0 will be called the *approximate subdifferential* of f at x_0 and denoted, as in the classical case, by $\partial f|_{x_0}$.

It is easy to see that if $\partial f|_{x_0}$ consists of one functional, $\partial f|_{x_0} = \{x^*\}$, then x^* is a continuous linear functional. Since in this case $\partial f|_{x_0}(-h) = -\partial f|_{x_0}(h)$, the function f has Gateaux differential at x_0 , i.e. the limit $\lim_{t\to 0} (f(x_0 + th) - f(x_0))/t$ exists and is equal to $x^*(h)$.

A linear functional $x^* \in X^*$ such that

(7)
$$f(x+h) - f(x) \ge x^*(h) - \alpha(||h||)$$

is called a uniform approximate subgradient of f at x with modulus $\alpha(\cdot)$ (or briefly an $\alpha(\cdot)$ -subgradient of f at x). The set of all $\alpha(\cdot)$ -subgradients of fat x will be called the $\alpha(\cdot)$ -subdifferential of f at x and denoted by $\partial_{\alpha} f|_{x}$.

The relation between $\alpha(\cdot)$ -subdifferentials and directional subdifferentials for strongly $\alpha(\cdot)$ -paraconvex function is given by

PROPOSITION 2 (Rolewicz (2001)). Let Ω be an open convex set in a Banach space X. Let $f : \Omega \to \mathbb{R}$ be a strongly $\alpha(\cdot)$ -paraconvex function. Then its $\alpha(\cdot)$ -subdifferential is equal to the directional subdifferential, $\partial_{\alpha}f|_{x} = \partial f|_{x}$.

As a consequence we obtain:

COROLLARY 3. Let Ω be an open convex set in a Banach space X. Let $f : \Omega \to \mathbb{R}$ be a strongly $\alpha(\cdot)$ -paraconvex function. Then f is Gateaux differentiable at x_0 if and only if its $\alpha(\cdot)$ -subdifferential at x_0 consists of one functional, $\partial_{\alpha} f|_{x_0} = \{x_0^*\}$.

Basing on this fact we are able to prove the following extension of the classical Mazur theorem (Mazur (1933)):

THEOREM 4. Let Ω be an open convex set in a separable Banach space X. Let $f: \Omega \to \mathbb{R}$ be a strongly $\alpha(\cdot)$ -paraconvex function. Then there is a dense G_{δ} -set $A_{\mathcal{G}} \subset \Omega$ such that f is Gateaux differentiable at every point of $A_{\mathcal{G}}$.

The proof is based on the following

LEMMA 5. Let Ω be an open convex set in a Banach space X. Let $f: \Omega \to \mathbb{R}$ be a strongly $\alpha(\cdot)$ -paraconvex function. Then the multifunction $\partial_{\alpha} f|_{x}: X \to 2^{X^*}$ is upper semicontinuous from X with the norm topology into X^* with the weak* topology. In other words, if $x_n \to x$ and $x_n^* \in \partial_{\alpha} f|_{x_n}$ is weak*-convergent to x_0^* then $x_0^* \in \partial_{\alpha} f|_{x_0}$.

Proof. Since f is locally Lipschitz, the $\alpha(\cdot)$ -subdifferentials $\partial_{\alpha} f|_{x_n}$ are uniformly bounded, i.e. there is M > 0 such that $||z^*|| \leq M$ for any $z^* \in \bigcup_n \partial_{\alpha} f|_{x_n}$. Thus

(8)
$$|x_n^*(x_n) - x_0^*(x_0)| \le |x_n^*(x_n) - x_n^*(x_0)| + |x_n^*(x_0) - x_0^*(x_0)| \\ \le M ||x_n - x_0|| + |x_n^*(x_0) - x_0^*(x_0)| \to 0.$$

Take now an arbitrary $z \in X$. Then

(9)
$$\langle x_0^*, z - x_0 \rangle = \lim_{t \to \infty} \langle x_n^*, z - x_n \rangle \le \lim_{t \to \infty} [f(z) - f(x_n) - \alpha(||x_n - z||)]$$

= $f(z) - f(x_0) - \alpha(||x_0 - z||),$

i.e. $x_0^* \in \partial_{\alpha} f|_{x_0}$.

Proof of Theorem 4. Let $\{r_n\}$ be a dense set in the unit ball of X. Let $A_{m,n}$, $n, m = 1, 2, \ldots$, denote the set of $x \in \Omega$ such that there are $x^*, y^* \in \partial_{\alpha} f|_x$ such that

(10)
$$\langle x^* - y^*, r_n \rangle \ge 1/m$$

By Corollary 3 and the density of $\{r_n\}$ in the unit ball we see that f is Gateaux differentiable at x_0 if and only $x_0 \notin \bigcup_{n,m=1}^{\infty} A_{n,m}$.

We shall show that for any n, m the sets $A_{n,m}$ are closed. Indeed, let $\{x_n\}$ be a sequence of elements of $A_{n,m}$ tending to $x_0 \in \Omega$. By the definition of $A_{m,n}$ there are $x_n^*, y_n^* \in \partial_{\alpha} f|_{x_n}$ such that

(11)
$$\langle x_n^* - y_n^*, r_n \rangle \ge 1/m.$$

The space X is separable. Thus closed balls are weak*-compact. Therefore we can find subsequences $\{x_{n_k}^*\}, \{y_{n_k}^*\}$ weak*-convergent to x_0^*, y_0^* respectively. By Lemma 5, $x_0^*, y_0^* \in \partial_\alpha f|_{x_0}$. Passing to the limit in (11) we get

$$\langle x_0^* - y_0^*, r_n \rangle \ge 1/m$$

and by the definition $x_0 \in A_{n,m}$.

Next observe that the sets $A_{n,m}$ are nowhere dense. Indeed, suppose to the contrary that there is an open set $U \subset \Omega$ such that $U \subset \overline{A}_{n,m}$ $= A_{n,m}$. Take any $\hat{x} \in U$ and take a line $L_n(\hat{x}) = \{\hat{x} + tr_n \mid -\infty < t < \infty\}$. The function f restricted to $L_n(\hat{x}) \cap \Omega$ is strongly $\alpha(\cdot)$ -paraconvex. Thus it is Fréchet differentiable on a residual set (Rolewicz (2002)). Therefore we obtain a contradiction with the fact that $U \subset A_{n,m}$.

Since the sets $A_{n,m}$ are nowhere dense and closed the function f is Gateaux differentiable on a dense G_{δ} -set.

There are non-separable Banach spaces C(T) in which the norms are not Gateaux differentiable at any point (Coban and Kenderov (1985)). Phelps (1989) showed that the function $p(x) = \limsup_n |x_n|$ defined on the space ℓ^{∞} has this property. There is, however, a class of non-separable Banach spaces in which every convex function is Gateaux differentiable on a dense G_{δ} -set. It is the class of weakly compactly generated spaces (Phelps (1989)). We recall that a Banach space X is *weakly compactly generated* if there is a weakly compact set $K \subset X$ whose linear span is dense in X. Thus there is a natural question:

PROBLEM 5. Let X be a weakly compactly generated Banach space, and let $\Omega \subset X$ be a convex open set. Let $f : \Omega \to \mathbb{R}$ be a strongly $\alpha(\cdot)$ -paraconvex function. Is f Gateaux differentiable on a dense G_{δ} -set?

References

- M. Coban and P. S. Kenderov (1985), Dense Gateaux differentiability of the sup-norm in C(T) and the topological properties of T, C. R. Bulg. Acad. Sci. 38, 1603–1604.
- A. D. Ioffe (1984), Approximate subdifferentials and applications I, Trans. Amer. Math. Soc. 281, 389–416.
- A. D. Ioffe (1986), Approximate subdifferentials and applications II, Mathematika 33, 111–128.
- A. D. Ioffe (1989), Approximate subdifferentials and applications III, ibid. 36, 1–38.
- A. D. Ioffe (1990), Proximal analysis and approximate subdifferentials, J. London Math. Soc. 41, 175–192.
- A. D. Ioffe (2000), Metric regularity and subdifferential calculus, Uspekhi Mat. Nauk 55, no. 3, 104–162 (in Russian).
- D. T. Luc, H. V. Ngai and M. Théra (1999), On ε-convexity and ε-monotonicity, in: Calculus of Variations and Differential Equations, A. Ioffe, S. Reich and I. Shapiro (eds.), Chapman & Hall, 82–100.
- D. T. Luc, H. V. Ngai and M. Théra (2000), Approximate convex functions, J. Nonlinear Convex Anal. 1, 155–176.
- S. Mazur (1933), Uber konvexe Mengen in linearen normierten Räumen, Studia Math. 4, 70–84.
- B. S. Mordukhovich (1976), Maximum principle in the optimal control problems with nonsmooth constraints, Prikl. Mat. Mekh. 40, 1014–1023 (in Russian).

- B. S. Mordukhovich (1980), Metric approximations and necessary optimality conditions for general classes of nonsmooth extremal problems, Dokl. Akad. Nauk SSSR 254, 1072–1076 (in Russian): English transl.: Soviet Math. Dokl. 22, 526–530.
- B. S. Mordukhovich (1988), Approximation Methods in Problems of Optimization and Control, Nauka, Moscow (in Russian).
- R. R. Phelps (1989), Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Math. 1364, Springer.
- S. Rolewicz (1979a), On paraconvex multifunctions, Oper. Research Verf. (Methods Oper. Res.) 31, 540–546.
- S. Rolewicz (1979b), On γ-paraconvex multifunctions, Math. Japonica 24, 293–300.
- S. Rolewicz (2000), On $\alpha(\cdot)$ -paraconvex and strongly $\alpha(\cdot)$ -paraconvex functions, Control Cybernet. 29, 367–377.
- S. Rolewicz (2001a), On the coincidence of some subdifferentials in the class of $\alpha(\cdot)$ -paraconvex functions, Optimization 50, 353–360.
- S. Rolewicz (2001b), On uniformly approximate convex and strongly $\alpha(\cdot)$ -paraconvex functions, Control Cybernet. 30, 323–330.
- S. Rolewicz (2002), $\alpha(\cdot)$ -monotone multifunctions and differentiability of strongly $\alpha(\cdot)$ -paraconvex functions, ibid. 31, 601–619.
- S. Rolewicz (2005), Paraconvex analysis, ibid. 34, 951–965.

Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 P.O. Box 21 00-956 Warszawa, Poland E-mail: rolewicz@impan.gov.pl

Received February 2, 2005

(5574)