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An extension of Mazur’s theorem

on Gateaux differentiability

to the class of strongly α(·)-paraconvex functions

by

S. Rolewicz (Warszawa)

Abstract. Let (X, ‖ · ‖) be a separable real Banach space. Let f be a real-valued
strongly α(·)-paraconvex function defined on an open convex subset Ω ⊂ X, i.e. such that

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + min[t, (1− t)]α(‖x− y‖).

Then there is a dense Gδ-set AG ⊂ Ω such that f is Gateaux differentiable at every point
of AG.

Let (X, ‖ · ‖) be a real Banach space. Let f be a real-valued convex
continuous function defined on an open convex subset Ω ⊂ X, i.e.

(1) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

We recall that a set B ⊂ Ω of second Baire category is called residual if
its complement Ω \ B is of the first Baire category. Mazur (1933) proved
that if X is separable, then there is a residual subset AG such that f is
Gateaux differentiable on AG. In this note we extend this result to larger
(than convex) classes of functions called strongly α(·)-paraconvex functions.
Let α : [0,∞) → [0,∞) be a nondecreasing continuous function such

that

(2) lim
t↓0

α(t)

t
= 0.

Let, as before, (X, ‖ · ‖) be a real Banach space. Let f be a real-valued
continuous function defined on an open convex subset Ω ⊂ X. We say that
f is α(·)-paraconvex if for all x, y ∈ Ω and 0 ≤ t ≤ 1,

(3) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + α(‖x− y‖).

For α(t) = t2 this definition was introduced in Rolewicz (1979a) and the
t2-paraconvex functions were called simply paraconvex. In Rolewicz (1979b)
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the notion was extended to the case of α(t) = tγ , 1 ≤ γ ≤ 2, and the
tγ-paraconvex functions were called γ-paraconvex.

We say that f is strongly α(·)-paraconvex if for all x, y ∈ Ω and 0 ≤ t ≤ 1,

(4) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + min[t, (1− t)]α(‖x− y‖).

Of course every strongly α(·)-paraconvex function is also α(·)/2-paracon-
vex. The converse is not true and the conditions warranting the existence
Cα such that each α(·)-paraconvex is strongly Cαα(·)-paraconvex can be
found in Rolewicz (2000). In particular the function tγ , 1 < γ ≤ 2, satisfies
these conditions.

The notion of α(·)-paraconvex functions can be treated as a uniformiza-
tion of the notion of approximate convex functions introduced in the papers
of Luc, Ngai and Théra (1999), (2000). We recall that a real-valued function
f defined on a convex set Ω ⊂ X is called approximate convex if for any
x0 ∈ Ω and ε > 0 there is δ = δ(ε, x0) such that for x, y with ‖x− x0‖ < δ
and ‖y − x0‖ < δ and 0 ≤ t ≤ 1 we have

(5) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + εmin[t, (1− t)]‖x− y‖.

We say that a real-valued function f defined on a convex set Ω ⊂ X is called
uniformly approximate convex if for any ε > 0 there is δ = δ(ε) such that
(5) holds for x, y with ‖x− y‖ < δ.

It is easy to show that a real-valued continuous function f is uniformly
approximate convex if and only if there is α(·) satisfying (2) such that f is
strongly α(·)-paraconvex (Rolewicz (2001b)).

We now recall the notion of directional derivative.

By the directional derivative of a continuous function f at a point x0 in
direction h we mean the number

(6) d+f |x0(h) = lim
t↓0

f(x0 + th)− f(x0)

t
.

It is easy to see that a strongly α(·)-paraconvex function has a directional
derivative at any point in any direction (Rolewicz (2005)).

We shall show

Proposition 1. Let Ω be an open convex set in a Banach space X. Let
f : Ω → R be an α(·)-paraconvex function. Then for any point x0 ∈ Ω the
directional derivative d+f |x0(h) is a sublinear (i.e. positively homogeneous
and subadditive) function of the direction h.

Proof. Positive homogeneity is trivial. Now we shall show subadditivity.
Indeed, since f is α(·)-paraconvex, for h1, h2 ∈ X and sufficiently small t we
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have

f(x0 + t
h1+h2
2 )− f(x0)

t
≤
1

2

f(x0 + th1)− f(x0)

t
+
1

2

f(x0 + th2)− f(x0)

t

+
α(t‖h1 − h2‖)

t
.

Thus multiplying by 2 and letting t → 0, by (2) and positive homogeneity
of d+f |x0(h) we get the triangle inequality

d+f |x0(h1 + h2) ≤ d
+f |x0(h1) + d

+f |x0(h2).

It is easy to observe that a sublinear function is linear if and only if it is
homogeneous, i.e. p(−h) = −p(h).

Recall that a strongly α(·)-paraconvex function is always locally Lip-
schitz (Rolewicz (2000)). Basing on this fact it is not difficult to prove that
d+f |x0(h) is also a locally Lipschitz function.

Any continuous linear functional x∗ ∈ X∗ such that x∗(h) ≤ d+f |x0 is
called an approximate subgradient of f at x0 (see Ioffe (1984), (1986), (1989),
(1990), (2000), Mordukhovich (1976), (1980), (1988)). The set of all approx-
imate subgradients of f at x0 will be called the approximate subdifferential
of f at x0 and denoted, as in the classical case, by ∂f |x0 .

It is easy to see that if ∂f |x0 consists of one functional, ∂f |x0 = {x
∗},

then x∗ is a continuous linear functional. Since in this case ∂f |x0(−h)
= −∂f |x0(h), the function f has Gateaux differential at x0, i.e. the limit
limt→0(f(x0 + th)− f(x0))/t exists and is equal to x

∗(h).

A linear functional x∗ ∈ X∗ such that

(7) f(x+ h)− f(x) ≥ x∗(h)− α(‖h‖)

is called a uniform approximate subgradient of f at x with modulus α(·) (or
briefly an α(·)-subgradient of f at x). The set of all α(·)-subgradients of f
at x will be called the α(·)-subdifferential of f at x and denoted by ∂αf |x.

The relation between α(·)-subdifferentials and directional subdifferen-
tials for strongly α(·)-paraconvex function is given by

Proposition 2 (Rolewicz (2001)). Let Ω be an open convex set in
a Banach space X. Let f : Ω → R be a strongly α(·)-paraconvex func-
tion. Then its α(·)-subdifferential is equal to the directional subdifferential ,
∂αf |x = ∂f |x.

As a consequence we obtain:

Corollary 3. Let Ω be an open convex set in a Banach space X. Let
f : Ω → R be a strongly α(·)-paraconvex function. Then f is Gateaux
differentiable at x0 if and only if its α(·)-subdifferential at x0 consists of
one functional , ∂αf |x0 = {x

∗
0}.
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Basing on this fact we are able to prove the following extension of the
classical Mazur theorem (Mazur (1933)):

Theorem 4. Let Ω be an open convex set in a separable Banach space X.
Let f : Ω → R be a strongly α(·)-paraconvex function. Then there is a dense
Gδ-set AG ⊂ Ω such that f is Gateaux differentiable at every point of AG.

The proof is based on the following

Lemma 5. Let Ω be an open convex set in a Banach space X. Let
f : Ω → R be a strongly α(·)-paraconvex function. Then the multifunction
∂αf |x : X → 2

X∗ is upper semicontinuous from X with the norm topology
into X∗ with the weak∗ topology. In other words, if xn → x and x

∗
n ∈ ∂αf |xn

is weak∗-convergent to x∗0 then x
∗
0 ∈ ∂αf |x0 .

Proof. Since f is locally Lipschitz, the α(·)-subdifferentials ∂αf |xn are
uniformly bounded, i.e. there is M > 0 such that ‖z∗‖ ≤ M for any z∗ ∈⋃
n ∂αf |xn . Thus

|x∗n(xn)− x
∗
0(x0)| ≤ |x

∗
n(xn)− x

∗
n(x0)|+ |x

∗
n(x0)− x

∗
0(x0)|(8)

≤M‖xn − x0‖+ |x
∗
n(x0)− x

∗
0(x0)| → 0.

Take now an arbitrary z ∈ X. Then

〈x∗0, z − x0〉 = lim
t→∞
〈x∗n, z − xn〉 ≤ lim

t→∞
[f(z)− f(xn)− α(‖xn − z‖)](9)

= f(z)− f(x0)− α(‖x0 − z‖),

i.e. x∗0 ∈ ∂αf |x0 .

Proof of Theorem 4. Let {rn} be a dense set in the unit ball of X.
Let Am,n, n,m = 1, 2, . . . , denote the set of x ∈ Ω such that there are
x∗, y∗ ∈ ∂αf |x such that

(10) 〈x∗ − y∗, rn〉 ≥ 1/m.

By Corollary 3 and the density of {rn} in the unit ball we see that f is
Gateaux differentiable at x0 if and only x0 6∈

⋃∞
n,m=1An,m.

We shall show that for any n,m the sets An,m are closed. Indeed, let {xn}
be a sequence of elements of An,m tending to x0 ∈ Ω. By the definition of
Am,n there are x

∗
n, y
∗
n ∈ ∂αf |xn such that

(11) 〈x∗n − y
∗
n, rn〉 ≥ 1/m.

The spaceX is separable. Thus closed balls are weak∗-compact. Therefore we
can find subsequences {x∗nk}, {y

∗
nk
} weak∗-convergent to x∗0, y

∗
0 respectively.

By Lemma 5, x∗0, y
∗
0 ∈ ∂αf |x0 . Passing to the limit in (11) we get

〈x∗0 − y
∗
0 , rn〉 ≥ 1/m

and by the definition x0 ∈ An,m.
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Next observe that the sets An,m are nowhere dense. Indeed, suppose
to the contrary that there is an open set U ⊂ Ω such that U ⊂ An,m
= An,m. Take any x̂ ∈ U and take a line Ln(x̂) = {x̂+ trn | −∞ < t <∞}.
The function f restricted to Ln(x̂)∩Ω is strongly α(·)-paraconvex. Thus it
is Fréchet differentiable on a residual set (Rolewicz (2002)). Therefore we
obtain a contradiction with the fact that U ⊂ An,m.
Since the sets An,m are nowhere dense and closed the function f is

Gateaux differentiable on a dense Gδ-set.

There are non-separable Banach spaces C(T ) in which the norms are not
Gateaux differentiable at any point (Coban and Kenderov (1985)). Phelps
(1989) showed that the function p(x) = lim supn |xn| defined on the space ℓ

∞

has this property. There is, however, a class of non-separable Banach spaces
in which every convex function is Gateaux differentiable on a dense Gδ-set.
It is the class of weakly compactly generated spaces (Phelps (1989)). We
recall that a Banach space X is weakly compactly generated if there is a
weakly compact set K ⊂ X whose linear span is dense in X. Thus there is
a natural question:

Problem 5. Let X be a weakly compactly generated Banach space, and
let Ω ⊂ X be a convex open set. Let f : Ω → R be a strongly α(·)-paraconvex
function. Is f Gateaux differentiable on a dense Gδ-set?
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70–84.

B. S. Mordukhovich (1976), Maximum principle in the optimal control problems with non-
smooth constraints, Prikl. Mat. Mekh. 40, 1014–1023 (in Russian).



248 S. Rolewicz

B. S. Mordukhovich (1980), Metric approximations and necessary optimality conditions
for general classes of nonsmooth extremal problems, Dokl. Akad. Nauk SSSR 254,
1072–1076 (in Russian): English transl.: Soviet Math. Dokl. 22, 526–530.

B. S. Mordukhovich (1988), Approximation Methods in Problems of Optimization and
Control , Nauka, Moscow (in Russian).

R. R. Phelps (1989), Convex Functions, Monotone Operators and Differentiability, Lecture
Notes in Math. 1364, Springer.

S. Rolewicz (1979a), On paraconvex multifunctions, Oper. Research Verf. (Methods Oper.
Res.) 31, 540–546.

S. Rolewicz (1979b), On γ-paraconvex multifunctions, Math. Japonica 24, 293–300.
S. Rolewicz (2000), On α(·)-paraconvex and strongly α(·)-paraconvex functions, Control
Cybernet. 29, 367–377.

S. Rolewicz (2001a), On the coincidence of some subdifferentials in the class of α(·)-
paraconvex functions, Optimization 50, 353–360.

S. Rolewicz (2001b), On uniformly approximate convex and strongly α(·)-paraconvex func-
tions, Control Cybernet. 30, 323–330.

S. Rolewicz (2002), α(·)-monotone multifunctions and differentiability of strongly α(·)-
paraconvex functions, ibid. 31, 601–619.

S. Rolewicz (2005), Paraconvex analysis, ibid. 34, 951–965.

Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8
P.O. Box 21
00-956 Warszawa, Poland
E-mail: rolewicz@impan.gov.pl

Received February 2, 2005 (5574)


