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The Bishop–Phelps–Bollobás property for
numerical radius in `1(C)

by

Antonio J. Guirao (Valencia) and Olena Kozhushkina (Kent, OH)

Abstract. We show that the set of bounded linear operators from X to X admits a
Bishop–Phelps–Bollobás type theorem for numerical radius whenever X is `1(C) or c0(C).
As an essential tool we provide two constructive versions of the classical Bishop–Phelps–
Bollobás theorem for `1(C).

1. Introduction. The Bishop–Phelps theorem states that the norm
attaining functionals on a Banach space X are dense in its dual space X∗.
In 1970, B. Bollobás extended this result in a quantitative way in order to
work on problems related to the numerical range of an operator [Bol70]. One
of the versions of his extension is presented below:

Theorem 1.1. Let X be a Banach space. Given ε > 0, if x ∈ X and
x∗ ∈ X∗ satisfy ‖x‖ = ‖x∗‖ = 1 and x∗(x) ≥ 1 − ε2/2, then there exist
elements x0 ∈ X and x∗0 ∈ X∗ such that ‖x0‖ = ‖x∗0‖ = x∗0(x0) = 1,

‖x− x0‖ ≤ ε and ‖x∗ − x∗0‖ ≤ ε.
However, the known proofs of this fact have an existence nature—they

are based on the Hahn–Banach extension theorem, the Ekeland variational
principle or Brøndsted–Rockafellar principle. In this paper we construct, as
a necessary tool for our main results, explicit expressions for the approxi-
mating pair (x0, x

∗
0) when X = `1(C) (see Theorems 2.4 and 2.6).

Paralleling the research of norm attaining operators initiated by Lin-
denstrauss in [Lin63], B. Sims raised the question of the norm denseness of
the set of numerical radius attaining operators (see [Sim72]). Partial pos-
itive results have been proved. Due to their importance we emphasize the
results of M. Acosta in her Ph.D. thesis [Aco90], where a systematic study
of the problem was initiated, the renorming result in [Aco93], and joint find-
ings of this author with R. Payá [AP89, AP93]. Prior to them, I. Berg and
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B. Sims [BS84] gave a positive answer for uniformly convex spaces, and C. S.
Cardassi obtained positive answers for `1, c0, C(K), L1(µ), and uniformly
smooth spaces [Car85a, Car85b, Car85c].

Using a renorming of c0, R. Payá provided an example of a Banach
space X such that the set of numerical radius attaining operators on X is
not norm dense, answering in the negative Sims’ question (see [Pay92]). In
the same year, M. Acosta, F. Aguirre, and R. Payá [AAP92] gave another
counterexample: X = `2 ⊕∞ G, where G is the Gowers space.

Recently, M. Acosta et al. [AAGM08] studied a new property, called the
Bishop–Phelps–Bollobás property for operators, BPBp for short. A pair of
Banach spaces (X,Y ) has the BPBp if a “Bishop–Phelps–Bollobás” type
theorem can be proved for the set of operators from X to Y . This property
implies, in particular, that the norm attaining operators from X to Y are
dense in the whole space of continuous linear operators L(X,Y ). However,
as shown in [AAGM08], the converse is not true. Consequently, the BPB
property is more than a quantitative tool for studying the density of norm
attaining operators.

We investigate here an analogue of the Bishop–Phelps–Bollobás property
for operators but in relation to numerical radius attaining operators. We call
it the Bishop–Phelps–Bollobás property for numerical radius, BPBp-ν for
short. The relation between norm attaining and numerical radius attaining
operators is far from being clear, although the existence of an interconnec-
tion is evident. Accordingly, our goals in this paper are to define this new
property (see Definition 1.2 below) and to show that `1(C) and c0(C) sat-
isfy it (see Theorems 3.1 and 4.1). This brings an extension as well as a
quantitative version of C. S. Cardassi’s results in [Car85b].

Observe that the counterexamples provided in [AAP92] and [Pay92] im-
ply, in particular, that there exist Banach spaces failing the Bishop–Phelps–
Bollobás property for numerical radius.

Given a Banach space (X, ‖ · ‖), we denote as usual by SX and BX ,
respectively, the unit sphere and the unit ball of X. By X∗ we represent
its dual, endowed with its standard norm ‖x∗‖ = supx∈BX

{|x∗(x)|}, and we
set

Π(X) = {(x, x∗) ∈ SX × SX∗ : x∗(x) = 1}.
Given x ∈ SX and x∗ ∈ SX∗ , we set

π1(x
∗) = {x ∈ SX : x∗(x) = 1}.

By L(X) we denote the Banach space of all linear and continuous operators
from X into X endowed with its natural norm ‖T‖ = supx∈BX

{‖Tx‖}. For
a given T ∈ L(X), its numerical radius ν(T ) is defined by

ν(T ) = sup{|x∗(Tx)| : (x, x∗) ∈ Π(X)}.
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It is well known that the numerical radius of a Banach space X is a
continuous seminorm on X which is, in fact, an equivalent norm when X
is complex. In general, there exists a constant n(X), called the numerical
index of X, such that

n(X)‖T‖ ≤ ν(T ) ≤ ‖T‖ for all T ∈ L(X).

Our interest in this paper is in spaces of numerical index 1, n(X) = 1,
where the norm and the numerical radius coincide. For background in nu-
merical radius we refer the reader to the monographs [BD71, BD73], and
for numerical index to the survey [KMP06].

We say that T ∈ L(X) attains its numerical radius if there exists
(x, x∗) ∈ Π(X) such that |x∗(Tx)| = ν(T ). The set of numerical radius
attaining operators will be denoted by NRA(X) ⊂ L(X).

Definition 1.2 (BPBp-ν). A Banach spaceX is said to have the Bishop–
Phelps–Bollobás property for numerical radius if for every 0 < ε < 1, there
exists δ > 0 such that for any given T ∈ L(X) with ν(T ) = 1 and a pair
(x, x∗) ∈ Π(X) satisfying |x∗(Tx)| ≥ 1 − δ, there exist S ∈ L(X) with
ν(S) = 1 and a pair (y, y∗) ∈ Π(X) such that

(1.1) ν(T − S) ≤ ε, ‖x− y‖ ≤ ε, ‖x∗ − y∗‖ ≤ ε and |y∗(Sy)| = 1.

Observe that if X is a Banach space with n(X) = 1, then the seminorm
ν(·) can be replaced by ‖ · ‖ in the definition above. Note that all the spaces
studied in this paper have numerical index 1.

Notation and terminology. Throughout this paper arg(·) stands for
the function which sends a non-zero complex number z to the unique arg(z)∈
[0, 2π) such that z = |z|earg(z)i. For convenience we extend this function to
C by writing arg(0) = 0. Following the standard notation, let Re(z) and
Im(z) be, respectively, the real and imaginary part of the complex number
z ∈ C.

All along Sections 2 to 4, the spaces `1, `∞, and c0 stand respectively for
`1(C), `∞(C), and c0(C). The standard basis of `1 is denoted by {en}n∈N, and
its biorthogonal functionals by {e∗n}n∈N. Given a sequence ξ = (ξj)j∈N∈ CN

and a complex function f : C→ C we write f(ξ) for the sequence (f(ξj))j∈N.
The following sets will be of help in the formulation of the results and

proofs. Given x = (xj)j∈N ∈ `1, ϕ = (ϕj)j∈N ∈ `∞ we define

N(x,ϕ) = {j ∈ N : ϕj xj = |xj |},(1.2)

supp(x) = {j ∈ N : |xj | 6= 0}.
For r > 0 we consider

Aϕ(r) = {j ∈ N : |ϕj | ≥ 1− r},(1.3)

P(x,ϕ)(r) = {j ∈ supp(x) : Re(ϕj xj) ≥ (1− r)|xj |}.(1.4)
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Observe that P(x,ϕ)(r) ⊂ Aϕ(r) and that if xj ≥ 0 for all j ∈ N (we then
say that x is positive) then

P(x,ϕ)(r) = {j ∈ supp(x) : Re(ϕj) ≥ (1− r)}.
For a given set Γ , a subset A ⊂ Γ and K ∈ {R,C}, we denote by 1A the

characteristic function of A, that is, the element in KΓ such that (1A)γ = 1
if γ ∈ A and (1A)γ = 0 otherwise.

2. The Bishop–Phelps–Bollobás theorem in `1(C). In this section
we present two constructive versions of Theorem 1.1, which are the main
tools in the proofs of Theorems 3.1 and 5.1.

Lemma 2.1. Let (x, ϕ) ∈ S`1 × S`∞. Then x ∈ π1(ϕ) if and only if
N(x,ϕ) = N.

Proof. Given a pair (x, ϕ) ∈ S`1 × S`∞ satisfying N(x,ϕ) = N, one can

compute ϕ(x) =
∑

j∈N ϕj xj
(1.2)
=
∑

j∈N |xj | = ‖x‖ = 1, which implies that
(x, ϕ) ∈ Π(`1).

Conversely, assume that (x, ϕ) ∈ Π(`1). Then

1 = Re(ϕ(x)) =
∑
j∈N

Re(ϕjxj) ≤
∑
j∈N
|ϕjxj | ≤

∑
j∈N
|xj | = 1,

which implies that Re(ϕjxj) = |ϕjxj | = |xj | for j ∈ N. Thus, ϕjxj = |xj |
for every j ∈ N, which finishes the proof.

Lemma 2.1 is essential to the proofs of Theorems 2.4 and 2.6. A glance
at it gives the following easy result regarding the norm attaining functionals
on `1, NA(`1).

Corollary 2.2. NA(`1) = {ϕ ∈ `∞ : ∃n ∈ N with |ϕn| = ‖ϕ‖}.
The following lemma is an adaptation of [AAGM08, Lemma 3.3] to our

notation.

Lemma 2.3. Let (x, ϕ) ∈ B`1 × B`∞ and 0 < δ < 1 be such that
Re(ϕ(x)) ≥ 1− δ. Then for every δ < r < 1 we have

‖Re(earg(ϕ)ix) · 1P(x,ϕ)(r)‖ ≥ 1− δ/r.
Proof. By assumption, we have

1− δ ≤ Re(ϕ(x)) =
∑
j∈N

Re(ϕjxj) =
∑
j∈N
|ϕj |Re(earg(ϕj)ixj)

≤
∑

P(x,ϕ)(r)

Re(earg(ϕj)ixj) + (1− r)
∑

N\P(x,ϕ)(r)

|xj |

≤ r
∑

P(x,ϕ)(r)

|Re(earg(ϕj)ixj)|+ (1− r),
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which implies that

‖Re(earg(ϕ)ix)1P(x,ϕ)(r)‖ =
∑

j∈P(x,ϕ)(r)

|Re(earg(ϕj)ixj)|

≥ 1− δ/r.

Observe that the previous lemma implies, in particular, that

‖x · 1P(x,ϕ)(r)‖ ≥ 1− δ/r.

We next present the two constructive versions of the Bishop–Phelps–
Bollobás theorem.

2.1. First constructive version

Theorem 2.4. Given (x, ϕ) ∈ B`1 × B`∞ and 0 < ε < 1 such that
Re(ϕ(x)) ≥ 1 − ε3/4, there exists (x0, ϕ0) ∈ Π(`1) such that ‖x − x0‖ ≤ ε
and ‖ϕ− ϕ0‖ ≤ ε. Moreover, we can take

(2.1) x0 = ‖x · 1P(x,ϕ)(ε
2/2)‖−1 · x · 1P(x,ϕ)(ε

2/2).

Proof. Set P = P(x,ϕ)(ε2/2) (see definition (1.4)). Applying Lemma 2.3

with δ = ε2/2 and r = ε gives

(2.2) M := ‖x · 1P ‖ ≥ 1− ε/2.

Define

ϕ0 = ϕ · 1N\P + e− arg(x)i · 1P ∈ S`∞ ,(2.3)

x0 = M−1x · 1P ∈ S`1 .(2.4)

On one hand, we can compute

‖x− x0‖
(2.4)
= ‖x−M−1x · 1P ‖ = (M−1 − 1)‖x · 1P ‖+ ‖x · 1N\P ‖

(2.2)
= (1−M) + ‖x · 1N\P ‖

‖x‖≤1
≤ 2− 2M

(2.2)

≤ ε,

and, since the support of x0 is included in P (as a consequence of (2.4)), we
deduce that

ϕ0(x0) =
∑
j∈P

(ϕ0)j(x0)j
(2.3)
=
∑
j∈P

e− arg(xj)i(x0)j
(2.4)
=
∑
j∈P
|(x0)j |

= ‖x0‖ = 1,

that is, (x0, ϕ0) ∈ Π(`1).

On the other hand, using

(2.5) |z − 1| ≤
√

2(1− Re(z)) for every z ∈ C such that |z| ≤ 1,
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we deduce

‖ϕ− ϕ0‖
(2.3)
= sup

j∈P
{|ϕj − (ϕ0)j |}

(2.3)
= sup

j∈P
{|ϕj − e− arg(xj)i|}

= sup
j∈P
{|earg(xj)iϕj − 1|}

(2.5)

≤ sup
j∈P

{√
2− 2 Re(earg(xj)iϕj)

}
≤
√

2− 2(1− ε2/2) = ε.

An immediate consequence of Theorem 2.4 is the following version of the
Bishop–Phelps–Bollobás theorem for `1(C).

Corollary 2.5. Let 0 < ε < 1 and (x, ϕ) ∈ B`1 × B`∞ be such that
|ϕ(x)| ≥ 1−ε3/4. Then there is (x0, ϕ0) ∈ S`1×S`∞ such that ‖x−x0‖ ≤ ε,
‖ϕ− ϕ0‖ ≤ ε and |ϕ0(x0)| = 1.

Proof. Apply Theorem 2.4 to the pair (e− arg(ϕ(x))ix, ϕ) obtaining (z0, ϕ0)
belonging to Π(`1) such that ‖e− arg(ϕ(x))ix− z0‖ ≤ ε and ‖ϕ− ϕ0‖ ≤ ε. If
we set x0 := earg(ϕ(x))i z0, the pair (x0, ϕ0) satisfies the conclusion.

2.2. Second constructive version. Given a pair (x, ϕ) and 0 < ε < 1,
Theorem 2.4 ensures the existence of a pair (x0, ϕ0) (defined by (2.4) and
(2.3)) satisfying the conclusions of the Bishop–Phelps–Bollobás theorem.
However, ϕ0 depends on x, in fact, on arg(x). In order to prove Theorem 3.1
we will need a functional ϕ0 depending only on the given ε and ϕ. So, we
present the following result.

Theorem 2.6. Let (x, ϕ) ∈ B`1 × B`∞ and 0 < ε < 1 be such that
Re(ϕ(x)) ≥ 1 − ε3/60. Then there exists (x0, ϕ0) ∈ Π(`1) such that
‖x − x0‖ ≤ ε and ‖ϕ − ϕ0‖ ≤ ε. Moreover, the functional ϕ0 can be de-
fined as

(2.6) ϕ0 = ϕ · 1N\Aϕ(ε2/20) + earg(ϕ)i · 1Aϕ(ε2/20).

Proof. Consider the isometry S : `1 → `1 defined by

(2.7) 〈e∗j , Sy〉 = earg(ϕj)i yj for y ∈ `1 and j ∈ N.

Set x̃ = Sx and ϕ̃ = ϕ ◦ S−1. Then it is clear that the pair (x̃, ϕ̃) is in
B`1 × B`∞ , that Re(ϕ̃(x̃)) ≥ 1 − ε3/60 and that ϕ̃ = (|ϕj |)j∈N is positive.
Denote A = Aϕ̃(r) and P = P(x̃,ϕ̃)(r) (see definitions (1.3) and (1.4)) where

r := ε2/20. Define

ϕ̂ = ϕ̃ · 1N\A + 1A ∈ S`∞ ,(2.8)

x̂ = M−1 Re(x̃) · 1P ∈ S`1 ,(2.9)

where M := ‖Re(x̃) · 1P ‖. Applying Lemma 2.3 with δ = ε3/60 and r gives
M ≥ 1− ε/3. In particular, this means that P , and thus A, is non-empty.
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We can compute that

‖ϕ̃− ϕ̂‖ (2.8)
= sup

j∈A
{|ϕ̃j − ϕ̂j |}

(2.8)
= sup

j∈A
{|ϕ̃j − 1|}(2.10)

= sup
j∈A
{(1− ϕ̃j)}

(1.3)

≤ r ≤ ε,

and, since by (1.4) and (2.9) the support of x̂ is P ⊂ A (which, in particular,
implies that x̂j > 0 for j ∈ P ), we deduce that

(2.11) ϕ̂(x̂) =
∑
j∈P

ϕ̂j x̂j
(2.8)
=
∑
j∈P

x̂j =
∑
j∈P
|x̂j | = 1,

that is, (x̂, ϕ̂) ∈ Π(`1).

In order to show that ‖x̃− x̂‖ ≤ ε, observe first that

(2.12) ‖x̃ · 1P ‖ =
∑
j∈P
|x̃j | ≥

∑
j∈P
|Re(x̃j)| = M ≥ 1− ε/3,

from which

‖x̃− x̂‖ (2.9)
= ‖x̃−M−1 Re(x̃) · 1P ‖(2.13)

= ‖x̃ · 1N\P ‖+ ‖(x̃−M−1 Re(x̃)) · 1P ‖
(2.12)

≤ ε/3 + ‖(x̃−M−1 Re(x̃)) · 1P ‖.

We need a bit more care to estimate the last term in (2.13). From the very
definition of P , we know that for every j ∈ P ,

(2.14) |x̃j | ≤ (1− r)−1ϕ̃j Re(x̃j).

Therefore,

‖(x̃− Re(x̃)) · 1P ‖ =
∑
j∈P
|x̃j − Re(x̃j)| =

∑
j∈P
|Im(x̃j)|(2.15)

=
∑
j∈P

√
|x̃j |2 − Re(x̃j)2

(2.14)

≤
∑
j∈P
|Re(x̃j)|

√
(1− r)−2 − 1

≤ ‖x̃‖
√

(1− r)−2 − 1
r=ε2/20

≤ ε/3,
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which implies that

‖(x̃−M−1 Re(x̃)) · 1P ‖ ≤ ‖(x̃− Re(x̃)) · 1P ‖+ ‖(1−M−1) Re(x̃) · 1P ‖

(2.16)

(2.15)

≤ ε/3 + (M−1 − 1)‖Re(x̃) · 1P ‖
= ε/3 + (1−M) ≤ 2ε/3.

Putting together (2.13) and (2.16), one obtains

(2.17) ‖x̃− x̂‖ ≤ ε/3 + ‖(x̃−M−1 Re(x̃)) · 1P ‖ ≤ ε,
which finishes the core of the proof.

Now, we define

(2.18) x0 = S−1x̂ and ϕ0 = S∗(ϕ̂) = ϕ̂ ◦ S,
which by (2.11) gives ϕ0(x0) = ϕ̂(x̂) = 1. Since S and S∗ are isometries, we
deduce from (2.10), (2.17), (2.18) and the definition of x̃ and ϕ̃ that

‖x− x0‖ ≤ ε, ‖ϕ− ϕ0‖ ≤ ε.
Therefore, (x0, ϕ0) is the pair in Π(`1) we were looking for.

Bearing in mind (2.18), one computes

(ϕ0)j = ϕ0(ej)
(2.18)

= ϕ̂(Sej)
(2.7)
= ϕ̂(earg(ϕj)i ej) = earg(ϕj)i ϕ̂j ,

which together with (2.8) implies that ϕ0 = ϕ · 1N\A + earg(ϕ)i · 1A. Finally,
in view of A = Aϕ̃(r) = Aϕ(r), the validity of (2.6) has been shown.

Remark 2.7. Observe that the function ϕ0 provided by Theorem 2.6
and defined by (2.6) only depends on ε and ϕ itself, as well as satisfies
π1(ϕ) ⊂ π1(ϕ0).

3. BPB property for numerical radius in `1(C). As a consequence
of Theorems 2.4 and 2.6 we show that `1 has the Bishop–Phelps–Bollobás
property for numerical radius.

Theorem 3.1. Let T ∈ SL(`1), 0 < ε < 1 and (x, ϕ) ∈ Π(`1) be such

that ϕ(Tx) ≥ 1−(ε/9)9/2. Then there exist T0 ∈ SL(`1) and (x0, ϕ0) ∈ Π(`1)
such that

(3.1) ‖T − T0‖ ≤ ε, ‖x− x0‖ ≤ ε, ‖ϕ− ϕ0‖ ≤ ε, ϕ0(T0x0) = 1.

Proof. First of all, fix µ :=
√
ε3/240. Using a suitable isometry, we can

assume that x is positive. In particular, by Lemma 2.1 and the definition
of Nx,ϕ in (1.2), we can assume that ϕj = 1 for j ∈ supp(x). Since µ3/4 ≥
(ε/9)9/2, Theorem 2.4 can be applied to the pair (x, T ∗ϕ) ∈ B`1 ×B`∞ and
µ instead of ε giving x0 ∈ π1(ϕ) such that ‖x − x0‖ ≤ µ ≤ ε. Moreover,
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by (2.1) we know that

(3.2) x0 = ‖x · 1P ‖−1 · x · 1P ,
where the non-empty set P is defined by

(3.3) P := P(x,T ∗ϕ)(µ2/2) = {j ∈ supp(x) : Re(T ∗ϕ(ej)) ≥ 1− µ2/2}.
In particular, x0 is positive.

Since µ2/2 = (ε/2)3/60, for each j ∈ P we can apply Theorem 2.6 to the
pair (e− arg(ϕ(Tej))i Tej , ϕ) and ε/2 to find (zj , ϕ0) ∈ Π(`1) such that

‖Tej − ajzj‖ ≤ ε/2, ‖ϕ− ϕ0‖ ≤ ε/2
and Π1(ϕ) ⊂ Π1(ϕ0) (see Remark 2.7), where aj = earg(ϕ(Tej))i. Observe
that ϕ0 can be chosen independently of j ∈ P and by (2.6) explicitly written
as

(3.4) ϕ0 = ϕ · 1N\Aϕ(ε2/80) + earg(ϕ)i · 1Aϕ(ε2/80).

Define T0 as the unique operator in L(`1) such that T0ei = Tei for i /∈ P
and T0ej = zj for j ∈ P . Equivalently,

(3.5) T0x = 1N\P · Tx+
∑
j∈P

e∗j (x)zj for x ∈ `1.

It is clear from (3.5) that

‖T0‖ = sup
n∈N
{‖T0en‖} = max

{
sup
j /∈P
{‖Tej‖}, sup

j∈P
{‖zj‖}

}
= 1.

Given j ∈ P , the identity (3.3) ensures that Re(ϕ(Tej)) ≥ 1− µ2/2. Using
again the general fact (2.5), we deduce that |aj − 1| ≤ µ ≤ ε/2.

Therefore,

‖T − T0‖ = sup
n∈N
{‖Ten − T0en‖} = sup

j∈P
{‖Tej − zj‖}

≤ sup
j∈P
{‖Tej − ajzj‖}+ sup

j∈P
{‖ajzj − zj‖}

≤ ε/2 + sup
j∈P
{|aj − 1|} ≤ ε.

Since x0 ∈ π1(ϕ) and π1(ϕ) ⊂ π1(ϕ0), we deduce that (x0, ϕ0) belongs to
Π(`1). It remains to show that ϕ0(T0x0) = 1 to prove the validity of (3.1).
But, since x0 is positive, we obtain

ϕ0(T0x0)
(3.5)
=
∑
j∈P

(x0)jϕ0(zj) +
∑
j /∈P

(x0)jϕ0(Tej)

(3.2)
=
∑
j∈P

(x0)j =
∑
j∈P
|(x0)j | = ‖x0‖ = 1,

and the proof is complete.
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Remark 3.2. We cannot replace the condition (x, ϕ) ∈ Π(`1) in The-
orem 3.1 by the more general (x, ϕ) ∈ B`1 × B`∞ . Indeed, consider the
operator T : `1 → `1 defined by Tej = ej for j ≥ 2 and Te1 = e2. Take
(e1, e

∗
2) ∈ B`1 × B`∞ , T0 ∈ L(`1), and (x, ϕ) ∈ B`1 × B`∞ such that

‖T − T0‖ ≤ ε, ‖e1 − x‖ ≤ ε, and ‖e∗2 − ϕ‖ ≤ ε. Then

|ϕ(x)| ≤ |ϕ(x)− e∗2(x)|+ |e∗2(x)− e∗2(e1)|+ |e∗2(e1)| ≤ 2ε,

which implies that (x, ϕ) cannot be in Π(`1).

Corollary 3.3. The Banach space `1 has the Bishop–Phelps–Bollobás
property for numerical radius.

Proof. Consider T ∈ L(`1) with ν(T ) = 1 and 0 < ε < 1. Take a pair
(x, ϕ) ∈ Π(`1) such that |ϕ(Tx)| ≥ 1 − (ε/9)9/2. In fact, we can assume

that ϕ(Tx) ≥ 1− (ε/9)9/2; otherwise, we proceed with T̃ = e− arg(ϕ(Tx))i T .
Then Theorem 3.1 gives the existence of an operator T0∈ SL(`1) and a pair
(x0, ϕ0)∈ Π(`1) that satisfy the conditions in (3.1), which are precisely the
requirements (1.1) in Definition 1.2.

Corollary 3.4 ([Car85b]). The set NRA(`1) is dense in L(`1).

4. BPB property for numerical radius in c0(C). Theorem 3.1 al-
lows us to show that c0 has the Bishop–Phelps–Bollobás property for nu-
merical radius as well. Indeed, we rely on the fact that our constructions in
`1 can be dualized.

Theorem 4.1. Let T ∈ SL(c0), 0 < ε < 1 and (x, ϕ) ∈ Π(c0) be such

that |ϕ(Tx)| ≥ 1−(ε/9)9/2. Then there exist S ∈ SL(c0) and (x0, ϕ0) ∈ Π(c0)
such that

‖T − S‖ ≤ ε, ‖x− x0‖ ≤ ε, ‖ϕ− ϕ0‖ ≤ ε, |ϕ0(Sx0)| = 1.

Proof. Throughout this proof we identify the elements in c0 with their
images in `∞ under the natural embedding c0 → `∞. The adjoint operator

of T , T ∗ : `1 → `1, satisfies

|x(T ∗ϕ)| = |T ∗(ϕ)(x)| = |ϕ(Tx)| ≥ 1− (ε/9)9/2.

Without loss of generality, we can assume that x(T ∗ϕ) ≥ 1 − (ε/9)9/2.
Otherwise, employing the techniques from the proof of Corollary 3.3, define
the operator T̃ = e− arg(x(T ∗ϕ))i T ∗ and proceed with the proof for x(T̃ϕ) =
|x(T ∗ϕ)|.

By Theorem 3.1, there exist T0 ∈ L(`1) with ‖T0‖ = 1 and (ϕ0, x0) ∈
Π(`1) such that

‖T ∗ − T0‖ ≤ ε, ‖ϕ− ϕ0‖ ≤ ε, ‖x− x0‖ ≤ ε
and x0(T0ϕ0) = 1.
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We assert that (x0, ϕ0) is the pair we are looking for. To show this, we
will reexamine the proof of Theorem 3.1 to check how x0, ϕ0 and T0 are
defined. Indeed, from (3.3), (3.2), (3.4) and (3.5) we have respectively

(4.1)

P = P(ϕ,T ∗∗x)(ε3/480),

ϕ0 = ‖ϕ · 1P ‖−1 · ϕ · 1P ,
x0 = x · 1N\Ax(ε2/80) + earg(x)i · 1Ax(ε2/80),

T0x = 1N\P · Tx+
∑
j∈P

e∗j (x)zj for x ∈ `1,

where {zj}j∈P ⊂ π1(ϕ0).
Note that Ax(ε2/80) = {j ∈ N : |xj | ≥ 1 − ε2/80} and x ∈ c0. Thus,

Ax(ε2/80) is finite, which, by (4.1), implies that x0 ∈ c0.
We shall show that T0 is an adjoint operator and thus there exists S ∈

L(c0) such that S∗ = T0. It will be enough to show that T ∗0 |c0 ⊂ c0. Set
tij = 〈ei, T (ej)〉 for i, j ∈ N. Fix i ∈ N; then for j ∈ N,

〈ej , T ∗0 (ei)〉 =

{
tji if j /∈ P ,

(zj)i if j ∈ P .

Since x ∈ c0, T
∗∗x belongs to c0, which implies that P is finite. Ac-

cordingly, only finitely many terms of the form 〈ej , T ∗0 (ei)〉 differ from the
corresponding tji. On the other hand, since T belongs to L(c0), we have
limj |tji| = 0. Therefore, |〈ej , T ∗0 (ei)〉| → 0 as j → ∞. This implies that
T ∗0 ei ∈ c0 and, since i ∈ N is arbitrarily chosen, we deduce that T ∗0 |c0 ⊂ c0.

Hence the operator S = T ∗0 |c0 ∈ L(c0) and the pair (x0, ϕ0) ∈ Π(c0)
satisfy

ϕ0(Sx0) = S∗ϕ0(x0) = x0(S
∗ϕ0) = x0(T0ϕ0) = 1,

and
‖S − T‖ = ‖(S − T )∗‖ = ‖S∗ − T ∗‖ = ‖T0 − T ∗‖ ≤ ε,

which finishes the proof.

Theorem 4.1 implies the following two corollaries.

Corollary 4.2. The Banach space c0 has the Bishop–Phelps–Bollobás
property for numerical radius.

Corollary 4.3 ([Car85b]). The set NRA(c0) is dense in L(c0).

5. Generalizations and remarks. All the results of Sections 2–4 were
stated and proved for the Banach spaces `1(C) or c0(C). However, a glance at
their proofs shows that they remain valid for `1(R) and c0(R), with shorter
proofs and better estimates. More generally, given a non-empty set Γ and
K ∈ {R,C}, these results are, after suitable adjustments, still valid for
`1(Γ,K) and c0(Γ,K). The spaces `1(Γ,K) and c0(Γ,K) are, respectively,
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the `1-sum and the c0-sum of Γ copies of the field K. Note that in particular
`1(N,K) = `1(K).

The Banach space c0(Γ,K) is a predual of `1(Γ,K). Observe that both
c0(Γ,K) and `1(Γ,K) have numerical index 1. Previous considerations im-
ply that both also have the BPB property for numerical radius. The ω∗

topology of `1(Γ,K) below is the topology induced on `1(Γ,K) by pointwise
convergence on elements of c0(Γ,K).

On the other hand, the proof of Theorem 4.1 shows that in Theorem 3.1
we proved more than was stated. Indeed, putting together Theorem 3.1, the
ideas on duality in the proof of Theorem 4.1 and the considerations above,
one easily proves the following theorem.

Theorem 5.1. Let T ∈ SL(`1(Γ,K)), 0 < ε < 1 and (x, ϕ) ∈ Π(`1(Γ,K))

be such that |ϕ(Tx)| ≥ 1 − (ε/9)9/2. Then there exist T0 ∈ SL(`1(Γ,K)) and
(x0, ϕ0) ∈ Π(`1(Γ,K)) such that

‖T − T0‖ ≤ ε, ‖x− x0‖ ≤ ε, ‖ϕ− ϕ0‖ ≤ ε, |ϕ0(T0x0)| = 1.

Moreover, if T is ω∗-ω∗-continuous and ϕ is ω∗-continuous, then T0 and ϕ0

are ω∗-ω∗-continuous and ω∗-continuous, respectively.

Below are two consequences of Theorem 5.1.

Theorem 5.2. The Banach space `1(Γ,K) has the BPB property for
numerical radius.

Theorem 5.3. The Banach space c0(Γ,K) has the BPB property for
numerical radius.

Proof. Fix 0 < ε < 1, δ ≤ (ε/9)9/2, T ∈ SL(c0(Γ,K)) and (x, x∗) ∈
Π(c0(Γ,K)) such that |x∗(Tx)| ≥ 1 − δ. Applying Theorem 5.1 to the
ω∗-ω∗-continuous operator T ∗ ∈ SL(`1(Γ,K)), the pair (x∗, x) and ε gives a
new T0 ∈ SL(c0(Γ,K)) and a new pair (x∗0, x

∗∗
0 ) ∈ Π(`1(Γ,K)) satisfying

(5.1) ‖T ∗ − T ∗0 ‖ ≤ ε, ‖x− x∗∗0 ‖ ≤ ε, ‖x∗ − x∗0‖ ≤ ε, |x∗∗0 (T ∗0 x
∗
0)| = 1.

Moreover, x∗∗0 is ω∗-continuous, so we can identify it with some x0 ∈ Sc0(Γ,K).
Therefore, conditions in (5.1) become∥∥T − T0∥∥ ≤ ε, ‖x− x0‖ ≤ ε, ‖x∗ − x∗0‖ ≤ ε, |x∗0(T0x0)| = 1.

which are the requirements (1.1) in Definition 1.2. Consequently, c0(Γ,K)
has the Bishop–Phelps–Bollobás property for numerical radius.
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