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Weighted weak type (1,1) estimates for singular
integrals and Littlewood—Paley functions

by

DasHAN FAN (Milwaukee) and SHUICHI SATO (Kanazawa)

Abstract. We prove some weighted weak type (1,1) inequalities for certain singular
integrals and Littlewood—Paley functions.

1. Introduction. Let K be a locally integrable function on R™ \ {0}
which satisfies

(1.1) S K(z)dx =0 for all a,b such that 0 < a <b.
a<|z|<b

We assume that n > 2. We consider a singular integral operator which can
be defined by

T(f)(z) =pv. | K@@ -y)f@)dy=1m | K(x-y)f(y)dy,
R"™ lz—y|>e

where f € C§°(R™) (the space of infinitely differentiable functions with
compact support). Define

2R
V(0) = sup Vg(6), where Vg(0)= S | K (r@)|r™ " dr.
R>0 2
Also put for t € (0,1], ¢ > 0,
2R ”
wt) = swp (R [ [ IR'K((r = )0) = K@o))|r" " drdo(0)) ",
|S|<tR/2 Sn—1 R

where do denotes the Lebesgue surface measure on the unit sphere S™~! of
R™ and the supremum is taken over all s and R such that |s| < tR/2. When
q = 00, we can define wy (t) by the usual modification.
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Let Llog L(S™™!) denote the space of all those measurable functions {2
on S"~! which satisfy

§ 19200)|log™ |£2(8)| do(6) < oo,
Sn—1
where log™ 2 = max(logz,0) (z > 0), log™ 0 = 0. The following is known:

THEOREM A. Suppose V € Llog L(S™™1) and 8[1) wi(t) dt/t < oco. Sup-
pose T is bounded on L?>(R™). Then T is of weak type (1,1).

This is due to Seeger [10] (see also Tao [13], Seeger—Tao [11] for further
developments). When n < 5 and K(x) = Q2(z')/|z|* (¢ = z/|x|), 2 €
Llog L(S™1), the result was previously proved by Christ—Rubio de Francia
[2] (see also Christ [1]). Hofmann [6] proved the result when n = 2 and
K(x) = Q2(2')/]x|™ with 2 € LI(S"1) for some q > 1.

or a non-negative function (2 on —*, we define a maximal function
F tive function 2 on ™!, we defi 1 funct

Mo(f)(@) = supr™" | 1@ -yl dy.
e ly|<r

Put M*(f) = [M(|f]*)]"/*, for s > 0, where M denotes the Hardy Little-
wood maximal operator, and M (f) = [Mq(|f]*)]'/*. Note that M5(f) <
(192l /n) o= MG (f) if s < t.

Let w be a measurable, almost everywhere positive function on R™. We
call such w a weight function. We denote by LP(w) (p > 0) the space of all
measurable functions f on R™ such that || f||zs(w) = ({z. |f(@)Pw(z) dx)'/?
< 00, and by LY (w) the weak L!(w) space of all those functions f which
satisfy

[l 1o () = Sup Aw({z € R": [f(2)] > A}) < oo,
>

where w(E) = §, w(x)dz. In [14], Vargas proved the following when n = 2
(see also [7]):
THEOREM B. Let q, 8 > 1. Suppose £2 € L1(S"), {4, £2(0) do(0) = 0 and
K(z) = 2(2")/|z|?. Put
W () = 120l MP ) &) + 121/ MO M MP () ),
where 2(0) = 2(—0) and 1/8+1/8 = 1. Then T is bounded from L*(W)
to LY*°(w); more precisely, there exists a constant C = C(83,q) such that

sup Aw({z € R*: T(f) ()| > A\}) < O | [ f(2)|W (=) da.
> R2

When K(z) = 2(z)/|z|", 2 € L>®(S"!) and w € Ay, it is noted in
Fan—Sato [5] that T is bounded from L!(w) to L*°(w), which follows from
Theorem B when n = 2. Here A, denotes the weight class of Muckenhoupt.
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In this note we generalize Theorem B to the case of general convolution
kernels (not necessarily homogeneous) on R” for all n > 2.

THEOREM 1. Suppose the following:
(1) Ve L™ (8™ 1) for some 1 <1 < oo,
(2) ¢y, == S[lj wq(t) dt/t < 0o for some 1 < g < oo,
(3) w e As.
Let s,t,u > 1, € (0,7 —1). Then there exists a constant C' depending only

onn,r,q,s,t, u, € and the Ay constant for w such that

Sup Aw({x € R" - [T(f)(2)| > A}) < CllfllLrw),

where
W = [V[[}/* M* M (w) e, M M (w)+[[V ]| M (w)+ | V]| M M. (w).
Recall that w € 4, (1 < p < 00) satisfies

sup (1Q1" ey ) (11 f () /Pt < o,
Q Q Q

where the supremum is taken over all cubes @ C R™, and this supremum
is called the A, constant for w. When ¢ < oo in Theorem 1, we can re-
place M*M9 (w) by M? (w). Since M (f) < CHQHCI/SMS‘?/(]") for ¢ > 1, by
Theorem 1 we have the following;:

COROLLARY 1. Suppose V € Li(S"™1), Sé wy(t) dt/t < oo and w9 € A,

for some 1 < q < 0o. Then T is bounded from L*(w) to LY*°(w).

Put
V*(0) = supr™|K(r6)|.

>0
THEOREM 2. Suppose the following:
(1) Ve LT(S”*:[) for some 1 < r < oo,
(2) N := V*logt (V*/|V|,)]}+e € LY (S™7Y) for some e > 0,
(3) wi(t) < cot™ for some o € (0,1],
(4) w e A2

Let s, t,u > 1. Then there exists a constant C depending only on n, r, s, t,
u, € and the Ay constant for w such that

sup Aw({z € R" - [T(f)(z)] > A}) < CllfllLrw),

where )
W = [V} MM (w) + o~ (|[V]|r + co) M ™ (w)

+ MMy(w) + o™ " M M, (w).
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We observe that a homogeneous kernel K (z) = 2(z')/|z|™ with 2 € L!
satisfies condition (3) of Theorem 2 with ¢y = ¢||f2]]; and a = 1.

REMARK 1. For any ¢,3 > 1,let p = [(#—1)¢+1]/B. Then p > 1. Since
t(log™ t)'*+e < ctP, by Holder’s inequality we have, if V € L™ and V* € L9,

M\7*[log+(\7*/HVHT.)]1+E (w) < CHVHq(ﬂl_q)/B HV*HZ/ﬁ Mé* (w).

Therefore, if w(z) = |z, —n+ (n —1)/¢ < v < 0, in Theorem 2 and if
we further assume V* € LY, then by taking s,¢,u and 3 sufficiently close
to 1 we see that W(x) < c|z|” (see Muckenhoupt-Wheeden [8]). Thus T :
Li(|z[7) — Lb*(J2]7).

REMARK 2. If the kernel has the form K(z) = 2(2')/|z|", with 2 €
L4(S™1), ¢ > 1, then by Theorem 2 and Remark 1 we have

1T 10wy < C § IFII12057 MM (w) + 112]|g M (w)) da
Rn

for 1 < s,u < oo and w € Ay. For any weight function v, put w = MP(v)
for 1 < g < oo. If MP(v) is finite a.e., then w € A; and so w € As. (We
shall also use this fact in what follows.) Moreover, we have v < w a.e. Thus

IT()llzroe ) < C § IR0/ MM MP (0) + |21 MM (v)] da.
]R’IL

Since M“MP(v) < cMP(v) if u < 3, Theorem B follows from this when
n=2.

S
12|

To prove Theorems 1 and 2, we use the following L2-estimates:
THEOREM 3. Suppose the following:

(1) Ve L™ (8™ 1) for some 1 <1 < oo,

(2) ¢, == S[lj wq(t)dt/t < oo for some 1 < q < o0,

(3) w e A,.

Let s,t > 1. Then there exists a constant C' depending only on n, r, q, s, t
and the Ay constant for w such that

1T 22wy < Cllfll 2wy,
where
W = ||[V|[Z7V* M ME (w) + 2 MM (w).
THEOREM 4. Suppose the following:
(1) Ve L™(S™ 1) for some 1 < r < oo,
(2) V* e LY(S™ 1),
(3) du 1= Jolwn (8)] /2 dt/t < o0,
(4) w e A2
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Let s,t > 1. Then there exists a constant C' depending only on n, r, s, t and
the Ay constant for w such that

1T () 2wy < Cllfll 2wy
where
W = V27" M*ME (w) + d2 M M. (w).

We can also prove similar results for certain Littlewood—Paley functions.
Let ¢ € L'(R™) satisfy {5, ¢(2)dz = 0. We define the Littlewood—Paley
function by

00 1/2
o) = v = ( § o s F)

where v, (z) = t~"(x/t). Suppose 9 is supported in {1 < |z| < 2}. For
t € (0,1], ¢ > 0, put

" i~ q/2 1/q
Sy = s (§ [§ (=)0 — o) dr/r] " do0)) .
jsl<t/2 N gaia L
When ¢ = oo, we can define W (t) by the usual modification. Let

(1.2) Vi) = (| weo)arr)”

0
Then we have the following:

0e st

THEOREM 5. Suppose the following:

(1) Ve LY(S™ ) and N := Vlog™ (V/||[V|1)]}+¢ € LY(S™™1) for some
e >0,

(2) Y € L"(R™) for some 1 <1 < 00,

(3) o = §,@0q(t) dt/t < oo for some 1 < q < .
Let s,u > 1. Then there exists a constant C' depending only on n, r, q, s, u
and £ such that

sup Aw({z € R™ : gy (f)(x) > A}) < ClfllLrw),
>

where

W= [VII; Y )12 MM (w) + e MM (w) + | V]| M (w) + M Mg(w).
As Theorem 1 implies Corollary 1, we easily see that Theorem 5 implies

the following:

COROLLARY 2. Suppose V € Li(S"™1), Sé Dq(t) dt/t < oo and w9 € A,

for some 1 < q < 0o. Then gy is bounded from L'(w) to LY (w).
THEOREM 6. Suppose the following:

(1) Ve LY(S™ ) and N := V]log™ (V/||V|1)]*+¢ € LY(S"™!) for some
e >0,
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(2) ¥ € L"(R™) for some 1 < r < o0,

(3) wi(t) < cot™ for some o € (0,1].

Let s,u > 1. Then there exists a constant C' depending only on n, r, s, u
and & such that

sup Aw({z € R™ : gy (f)(2) > A}) < Ol fllerow),

where
W= (VLY |2/ M ME (w) + o (|V |1+ co) M™ (w) + M Mg (w).

In Theorems 5 and 6, the assumption w € As is not needed, unlike in
Theorems 1 and 2.

REMARK 3. In Theorem 6, if we further assume that V € LP for some
p > 1, then as in Remark 1 we see that g, : L'(|z]?) — LY*°(|z|7) for
—n+(n—-1)/p<~v<0.

REMARK 4. From the proofs of Theorems 5 and 6 below, we can see
that if V' € Llog L and S(l] w(t) dt/t < oo, then gy is of weak type (1,1) (the
case when w = 1).

To prove Theorems 5 and 6, we use the following L2-estimates:

THEOREM 7. Suppose the following:

(1) Ve LY (S,

(2) ¥ € L"(R™) for some 1 < r < oo.
Let s > 1. Then there exists a constant C depending only onn, s and r such
that L2

g (N2 < CIVIL =0l 120 na () -

Suppose ¥ satisfies either the hypotheses of Theorem 5 or those of The-

orem 6 for 1. Let
) = 3 el (a),
keZ

where Z denotes the set of integers and {ci} is a sequence of non-negative
numbers such that ), ¢, < co. Then we see that

90() <D engu (1) = (D ek )gw ().

This implies that g, satisfies the estimates similar to those for gy .
Let
P(z) = [z 7" ) x o (|l2]) (2> 0),
where 2 € L*(S"™!) satisfies {£2(0) do(8) = 0 and x g denotes the charac-

teristic function of a set E. Put p,(f) = gy (f). Then p,(f) is known as the
Marcinkiewicz integral (see Stein [12]). Take ¥(x) = |z|~"202(x")x(1,29)(|z]),
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cr, = 2% for k < 0 and ¢, = 0 for k > 0. Then ¢ = ZkeZ cxWor . Therefore,
if 2 € L"(S" 1), 1 <r < o0, it is easy to see that we can apply Theorem
6 to get results for p,(f). We refer to Ding—Fan—Pan [3] and Fan—Sato [5]
for recent results on Marcinkiewicz integrals. In particular, in [5] the weak
(1,1) boundedness of y, is proved under the assumption 2 € Llog L.

We shall give the proofs of Theorems 3 and 4 in Section 2 by applying the
method of Duoandikoetxea—Rubio de Francia [4]. The proofs of Theorems 1
and 2 will be given in Sections 3 and 4, respectively. The principal part of
the proofs of Theorems 1 and 2 is based on the estimates obtained by Seeger
[10], which are crucial for the proof of Theorem A. Also we use a variant of
the interpolation method given by Vargas [14]. An interpolation with change
of measures between the LP:!(v; dv)-LP(w; du) estimates (i = 1,2) was used
in [14]. To prove Theorems 1 and 2 by using Seeger’s results, we apply an
interpolation with change of measures between the LPi'!(v; dv)-LP#*° (w; dp)
estimates, where 1 < p; < oo. This method has already been used in Fan—
Sato [5]; see [5] for more details. Theorem 7 will be proved in Section 5.
Finally, we shall prove Theorems 5 and 6 in Section 6 by using the results
given in Fan—Sato [5].

2. Proofs of Theorems 3 and 4. We consider a kernel of the form
K(x) = t7"h(t)2(t,0) with = = t0, t > 0, 0 € S" L. Put Ky(z) =
K (z)x[2r 2041y (|2]). For a >0 let

27 +1

rm =sup (| |h<t>|a@)1/a.

jez \ t
We fix 0 and write 2(t,0) = (2(t). We assume that 2y is of bounded
variation on each interval [2¥,2F+1] and put
Vi(£2)(0) = V (12, [2°,2F1]),

where V(H, I) denotes the total variation of a function H over an interval I.
Let
250) = sup |02(t,0)].
te[2k 2k +1]
For ¢, s > 1, put

E($:q,5) = sup ||y lg + sup 12157 IV (21

We denote by fthe Fourier transform of f.

LEMMA 1. Suppose that E(£2;q,s) < oo and Is(h) < oo for some q,s €
(1,2]. Then

(2.1) K ()] < cB(R2q, 5)1,(h)[2kg| (=D =D/ Cas),

where ¢ depends only on the dimension n.
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To prove this, we apply the method of [4]. We give the proof for the sake
of completeness.

Proof of Lemma 1. We may assume that E(£2;q,s) = 1 and I,(h) =1
by homogeneity. Define a measure 7; concentrated on {|z| =t} by

(r. /)= | f(t0)2(0)do(8) for f e Cg°(R™),

gnfl
where we write §2;(0) = £2(t,0). Then we see that
ok+1
~ . dt
22 IR©=| § 10 § 20 ew-2mien as(0)
2k Sn—l
ok+1
- dt
=| § ht)7©
2k-
gk+1 1/s ok+1 1/s’
L dt g dt
<(§ mors) (1 mer )
2k 2k
2k+1 1/s’
* 5/, s/ o~ dt
<l (§ meord)
2k

where the first inequality follows from Holder’s inequality.
Let A=1/(2¢) and &' = £/|¢|. Put

O (0, w) = 12¢£(0) 2 (w) + 2:(0) Vi (£2)(w) + 2 (w) Vi (£2)(6).
Then, since
V (2902, (2, 2571)) < 25(0)Vi(2)(w) + 2 (w) Vi (£2)(8),

applying integration by parts and Holder’s inequality, we have

@3 | RErT
= SS ( S 9(t)02,,(t) exp(—2mité (0 — w)) %) do(0) do(w)

< c|{0k(0, w) min(1, [2%¢(0 — w)| ") do(0) do(w)

< e[ 040, w)I28¢[ A1/ (0 — )~ do () dor(w)

< 2811212 + 121V 1) (151660 — )l 72 do(6) o)) "

Combining (2.2) and (2.3), we get (2.1).
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Now we give the proof of Theorem 3. Let ¢ € C*°(R) be such that
¢(z) > 0, supp(¢) C {|z] < 27'°} and {¢(z)dx = 1. Let v € C°(R) be
such that supp(y) C {1/2 <t <2} and

o0

Z v(29t) =1 for all t #0.

j=—00

For k € Z and § > 0, put
KE(10) = 2(2770) [ K (0)27 7+ (273 1 — 0)) do,

Then
[KE(0)] < 221279V () x(i-1 0501 (1),

Also we see that
n -k n—1 -k n k
[(0/0t) (" K5 (t0))] < [nt" K7 (t0) + [t (9/0t) K (t0)]
< 025|k|27jv(9)X[21'—1,2j+1](t)
+ 6226“6'2_‘7‘/(9))([2]'71,2j+1] (t),

and hence V/(H, [27,2771]) < c229MV(6), where H(t) = t"K¥(tf). Thus by
Lemma 1 we have

Kk 26]k| ¢~ (r=1)/(4r)

K5 ()] < 2™ [V[|,|27 €]~
Moreover, [[KF|[; < 20|V ||1, and so, by (1.1),

|KF(©)] < 2™V [y min(1, [27¢]) < 22| V|5 |27¢) 01D/,
Combining these results, we obtain
Tk 26 |k| : j j ¢|—1\(r—1)/(4r)
(2.4) K5 ()] < 2| V[| min([27¢], [27¢] 7).
Define Ay by the Fourier transform

Ax(1)(&) = v(2FEN F ().

Now decompose
55 %) ITEINES 3) SE TP
E ko

where S;“ = Kj—KJ’?, Kj(xz) =~(277|z|)K(z). If w € As, by the Littlewood-
Paley inequality we have

(2.5) H S K Aka‘

2
L2 (w)

<cw Y IKF % Ajiif 1720
J

By (2.4) we have
(26) K5 = Apeiflla < | V220M27 W flly (e = (r = 1)/(4r)).
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On the other hand, for a weight function w we have
1/2
(2.7) 1S Agirdllzzey < ellVIE2 MLz aratg -
Interpolating between (2.6) and (2.7), we obtain
(2.8) |IKJ % Ajyrfllpz(wo) < CHVHi_Q/2225|kI2_(1_6)€|k‘||f||L2(MM‘7(w)9)
for all # € (0,1). Thus

(2.9) Z”Kf * Ajin Il 22 (w0
J
< cf| V702020 0elk ||Avj+kf||%2(MM\7(w)9)
J
< cf| V|3 020k 20 0elk ||f||%2(MM‘7(w)9)7

where jj is another decomposition operator such that

A,1(€) =726 f(e)

with 7 € C*°(R") satisfying () = 1 for 1/2 < [¢| < 2, supp(7) C {1/4 <
|¢] < 4}. For any 6 € (0, 1), choose ¢ small enough to satlsfy 20—(1-6)e < 0.
Then, for a weight function w such that w? € Ay, by (2.5) and (2.9) we have

(2.10) HZZK *Ag+kf‘L2(w9)<ZHZK *Aﬁ’“f‘

< | V=02 Y 22 am OO £| 2 0 s (o
k

< VI 21l 2 arasy upo)-

For w € Ay, substituting w'/? for w in (2.10), we see that, for all § € (0, 1),
(2.11) H S5 K x4,
kK J

Similarly, if w € As, then

|55t au]
J

L2 (w?)

1-6/2
2w < c|[V]i= [PAIFIGYS YRV

2w <cw Y 1S5 * Qg2 )
J

Using Holder’s inequality, for 1 <t < oo we see that
Z ”S]k * Aj+kf||2L2(w) = Cwq(Qié‘kFl 2 Z ||Aj+kf||%2(Mq’(w))
J

< Cwq<276‘k|71) Hpr MM (w))*
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Thus
(2.12) H DI Aka‘
kg

Combining (2.11) and (2.12), we get the conclusion of Theorem 3.
We turn to the proof of Theorem 4. We note that
|K]k(t9)‘ < 27Ny (0)X[2j71,2j+1](t).

oy < L@@ D WAl arenre
k

Therefore,
1S5 % Aj 1k fll7200) < cor @Ak F T2 (0 ()
and hence, for 1 < t < oo,
DISF * Ajrrf 1 Ze gy < cwor @ FIT2are a0
J
Thus, using the assumption w € As, we have

[ 3238t Ay [ @ 19172) | £ aqarensy. -

We can handle 7, >, KJ’€ * Ajyrf as in the proof of Theorem 3. This
completes the proof of Theorem 4.

<c
L2 (w)

3. Proof of Theorem 1. By Calderén—Zygmund decomposition at
height © = A\/A with A = ||[V||, + cu, we have a collection {@} of non-
overlapping closed dyadic cubes and functions g, b such that

f=g+b w<|Q \IfI <en, v(UQ) < el fll L2 arqwy)/ ms
Q

gllee < et Mgl < elfllr@ry),

b= by, suppbg) CQ, \bg=0, |bglh <cul@l,
Q

where v is any weight function. Put B; = Ze(Q):zj bg for j € Z, where £(Q)
denotes the sidelength of Q.

Let the functions v and ¢ be as in Section 2. Put K;(x) = v(277|z|) K (z)
as before. For a positive integer s and §,7 > 0, define

H3(t0) = xpz (0)1(2771) | K (00)277 77 6(2777%%(¢ — o)) do,
where
DI={0eS" V() <2%|V|,}.

Put E7 = S"~1\ D" and

R3(80) = x g2 (0)7(2771) | K (00)27749°6(279% (¢ — 0)) do.
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Decompose Kj;(t0) = H;(t0) + R;(t0) + S;(t0), where

S5 (19) = v(277) | [K (10) — K ((t — 0)0)]27 7 ¢(277+%0) do.
By Seeger [10], for some ¢ > 0 we have

(3.1) Hm cR" : ‘ZH] *Bj,s(x)( > )\H

< V20 FD 270Ny " bg -
On the other hand, |H3(t0)| < ¢||V/[|,2752°5279x 5,1 9;411(t), so we have

(32) S * Byl < elVI,272 Y inf M(w)lball.
J Q

where infg M (w) = infeq M (w)(x).
For ¢t > 0, put

Fy = {ac cR" : ‘ZHJ x Bj_s(x)( > t}.
J
Taking 1 and § small enough and interpolating between (3.1) and (3.2) by
a variant of the method of Vargas [14], for any 6 € (0,1) we obtain
W(FS 5 ray) < lVIEAT 27N Fll 22 (arwrroyey,

where 7,{ > 0 depend on 6 and ¢, satisfies ¢; >, 277° = 1. (See Fan-Sato
[5] for more details about the proof of this estimate.) Thus

(3.3) w({z cR" : ‘i _f: H + Bj,s(m)‘ > )\})

< ol VI AT I Lr (0 uotroyey-
Next we note that
[R5 (t0)] < 275277V, (0) X[25-1 25011 (),
where V() = V(0)xgn (0). Therefore
| RS * Bj—sllL1(w) < CQMHBJ'*SHLl(MVS ()

and hence, if ne > 6,

(34) D D IR # Byl < 02268||f||L1(MM‘75(w))

s>1 j s

<c), 2552_”85\\VHfoHLl(MMVSHE(w))

< VI e (v (w))-
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Also by Holder’s inequality we have

J

< cwy (279 1 o () -
ooy N I arare

Thus

(3.5) H >3 8By

Combining (3.3), (3.4) and (3.5), we have
(3.6) w{zeR"\E:|T()(z)] > A})
< AT IV (@) [V MMy (w) + co MM (w)] dz,

< C[qu@_és)} HfHLl(MM‘Z’(w))'

L (w)

where E' = |JQ* with @Q* denoting a suitable concentric enlargement of @
(see [1], [5], [10], e.g., for more details about this argument). We can handle
T'(g) by Theorem 3 as follows:

(3.7 w({z € R™:|T(g)(x)| > A}) < A2 Tyl 22 ()
L i 1 VO e P
< C)\71HV||371/5A71HfHLl(MsMg(w)) + CAilciAil||f||L1(MtM‘1'(w))
< C>\71||V||71~71/s”fHLl(MSM%(w)) + AT el Fll b areare’ ()
Also we note that w(E) < cAXN"Y| f| 1 (r(w)). Combining this estimate with
(3.6) and (3.7), we get the conclusion of Theorem 1.

4. Proof of Theorem 2. We use notation similar to that of Sec-
tion 3. We apply the Calderén—Zygmund decomposition with p© = A/A,
A=coat + ||V],. Let

H(t0) = xpr (0)7(2771) | K (00)279 74 (279°* (¢ - 0)) do,
where D7 = {0 € S"~1: V*(9) < 2"8||V||,.}. Put E7 = S*~1\ D7 and
R (t0) = x g2 (0)K;(t0).
Decompose Kj;(t0) = H;(t0) + R;(t0) + S5 (t0), where
S5(t0) = xpy (0)1(277) | [K(10) — K((t - 0)0)]277+**6(277 % 0) do.
Since | S5 (t0)] < ¢||[V|[»27°277™ X251 2i+1)(t), We have

(4.1) D 185 # Bi—sllpiqw) < V27 Zing(w)HbQHL
i Q
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On the other hand,
(42) DI85 Bl < D IS5 1B—sllt < eco27% Y " [lbalh-
J J Q

Interpolating between (4.1) and (4.2) as in Section 3, by taking »n small
enough, for any 6 € (0,1) we obtain

(43) 1S * Bialluiw < VI 2 Lo argursoye
J
with some 7 > 0 depending on 6 and a.
Now we note that

[R5 (t0)] < 279"V (0) X1 25411 (1),
where V,(0) = V*(6)xgn(0). Therefore
HR; * Bjslliw) < CHBJ’*SHLl(M‘;S* (w))-
Thus for any € > 0,

44 > > IR * Bisslliiw) <CZ|‘fHL1(MMV*(w))

s>1 3

< e TN FIM My g e v, oo (w) d
S

< MM ey e (w) o

We can handle 5", H? * B;_, just as in the proof of Theorem 1. So
we have

(4.5) w({xER” ‘ZZHS*B] s ‘>>\})

< collVIAT A1l s ar gt oye)-

By (4.3)—(4.5) we can treat T'(b) as in the proof of Theorem 1 by choosing
a suitable exceptional set E. For the estimation of T'(g) we use Theorem 4
in the same way as we used Theorem 3 in the proof of Theorem 1. This
completes the proof.

5. Proof of Theorem 7. Suppose v is supported in {1 < |z| < 2} and
let V be as in (1.2). We write

[ee]

Z t= (" ub) )x(1,2)(277t) = Z Lj(ub,t)

j=—00 Jj=—00
for u >0, § € S"~!. Note that
(5.1) L (ub, t) | < 277"V (0)x 1,41 (277 ),
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where |L;(uf,t)|n = (Sgo |L;(ub, t)|?dt/t)'/2. Now, we decompose

[ *he(x Z Z A (f * ) (x )X(2k,2k+l}(t):ZFj($vt)a
J

j=—00 k=—o0

say, where A; is as in Section 2. Set

T;(f)(x) = <o§> |Fj(x,1)]? %)1/2 _ (Z [[Lx]t * Aj+k<f)($)’$_‘>1/27

k
where we write [Lg]:(x) = Li(x,t).
Let
Ujr(f) (@) = [[La]e ¥ Ajr(F)(@)] -

Then by Hélder’s inequality and (5.1), we have

(5.2) U0 (22w < elVILIAIZ2 2ty (-
On the other hand, by Plancherel’s theorem

31 = § (1ot § )Ifer @i P

R N1
It is known that

2
(W(z’%é)\ dt) < o2 min(2*¢], |25 ) for e € (0,1/1)
1

(see Sato [9]). Therefore
(5:3) U .(NII5 < elgllF2~=F§ | Fr(25 gD de < ellgllz2~=V]|£115-
Interpolating between (5.2) and (5.3), we get
U5 (I Z 2oy < ellVITIIE D2 =D £ 2 0 0r (o
for all § € (0,1). Substituting w'/? for w and writing s = 1/6, we have
U5 k(P12 < cllV I 20 -2~ =0)<ll Hf”%z(MsMg(w))-
Let ﬁ be as in Section 2. Then

1T (P72 00y = ZHU, 2wy = D MU k(A 72 ()
P
2(1—0) 0 — (1—0)e 5| 2
< VTl "2 ! ;|Aa+kf||L2(MsMg(w))

< clVISI 72 OO £ e ars -

From this we get the conclusion of Theorem 7, since gy (f) < >_; T;(f).
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6. Proofs of Theorems 5 and 6. Let ¢ be as in Section 2. First we
prove Theorem 5. For 3 > 0, let

D,={0ecS" 1.V (9) >2°|V|:},
where s is a positive integer. We write z = uf, v > 0, § € S"~! and
Y(ub) = 2(u,0). Put 2s(u,0) = 2(u,0)xp.(0) and 2° = 2 — (2. As in the
proof of Theorem 7, we decompose () = >, L;(x,t). Split L; as
Lj({l}, t) = t_n‘(z(t_l“rL 9)X(1,2}(2_jt) = K]S(‘Tv t) + R;(‘T7 t) + S]S (.’13, t))

where ) A
K3 (x,t) =t7"2°(+,0) * g5 (T u)x(1,2)(2771),

R (w,t) = t7"02:( 0) % dg-se (™ u)x(1,2)(2771),
S; (1‘, t) = tinQ(tiluv H)X(I,Q] (27jt)
— 702, 0) * dyns (1T u)x(1,2)(2771).

We use the Calderén-Zygmund decomposition with u = A/A, A = ||V||;.
We note

sup [[(8/0u)™2°(-,0) * da-e ()| 124wy < 27 V|V,

0<m<¥

uniformly in § € S"~!. Thus, taking 3 small enough, as in Fan-Sato [5] we
have

(6.1) erw (Z ], % B;_ )‘ >A}\gc2—sosZ‘Q|
Q

for some g¢ > 0, where | - | is as in Section 5. On the other hand,
K5 (uf, )] < 27|V [l1u™ "X (10,8 (277 ),
so that

1/2
(6.2) HZKSt*B] ) dt/t) ‘

Ll(H)_H< ‘ZKSt*Bﬂ .

< 2|V Zlng w)|lbgl:-
Q

Using the estimates obtained by interpolating between (6.1) and (6.2), tak-
ing 3 small enough, as in the proof of Theorem 1 we have, for any 6 € (0, 1),

(6.3) w({xeR""ZZ 5], % B, (@ )( >)\}>

< CA)\71||f||L1(M(w1/6)e).

L' (w)

Next, note that
RS (ub, t) |3 < Va(0)u™ "X /a,8) (277 u),
where V,(0) = V(0)xp,(0). Thus
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| i85l By
J
Therefore, for any € > 0,

6.4) Y ( SR+ By

s>1

Ly S ¢ Bj-sllnionry, wy < ellf sy, (-
w j

Ly, (H)

—1—¢ —1—¢
< By 5T IAIMM gt v s (@) do

< Y IIMMy gt g (W)
By Hoélder’s inequality, we see that
I1S5)e * Bi—sllLy, (o) < c@q(27°)IBjsll 1. (are w))-
Thus

(65) DDl * By-slliy oo < e 30371 brarare -
s 7 s

By (6.3)—(6.5) we can treat g, (b) as in the proof of Theorem 1 by choosing
a suitable exceptional set E. To estimate g, (g) we apply Theorem 7:

w({z € R" : [gyp(9)(@)] > A}) < A[l90(9) 72w
< AT VIR T G122 e areas -
This completes the proof of Theorem 5.
Next we turn to the proof of Theorem 6. Decompose
Lj(z,t) =t 02t ], 0)x (1,2 (277t) = K (2,t) + R} (z,t) + S5 (,1),

where L )
K3 (,1) = Q5 (,0) % oo (1 u)x 1, (277),

RS (x,t) = t7"2(t ™ u, 0)x (1,2 (2770),
S5 (w,t) =t 02° (6 u, 0)x (1,9 (277t)
—t7"02%(-,0) * ¢27ﬂ5(t_1U)X(1,2](2_jt)-
Here 2%, (2, are as above. We use the Calderén—Zygmund decomposition

also with u = A/A, A= ||V|.
Since Wi (t) < cot®, we have

(6.6) D IS5l * Bimsllpagry < eco2™° Y [IBj—lhr-
j J

On the other hand, |S5(uf,t)|y < 25|V [[yu™"X[1/4,8) (277 u), and hence

61 | S B, <@ IVIRY int M) ool
J Q

L3, (H)
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Using the estimates obtained by interpolating between (6.6) and (6.7), tak-
ing ( small enough, we have, for any 6 € (0,1),

w({x eR™: ‘ZZ[SJS]t * Bj_s(x)‘ﬁ > A})

< ca H([IVIl1 + co) A F I arcuwrsoys)-

The rest of the proof is similar to the case of Theorem 5. This completes
the proof.

References

[1] M. Christ, Weak type (1,1) bounds for rough operators, Ann. of Math. 128 (1988),
19-42.
[2] M. Christ and J. L. Rubio de Francia, Weak type (1,1) bounds for rough operators,
II, Invent. Math. 93 (1988), 225-237.
[3] Y. Ding, D. Fan and Y. Pan, Weighted boundedness for a class of rough Marcinkie-
wicz integrals, Indiana Univ. Math. J. 48 (1999), 1037-1055.
[4] J. Duoandikoetxea and J. L. Rubio de Francia, Mazimal and singular integral
operators via Fourier transform estimates, Invent. Math. 84 (1986), 541-561.
[5] D. Fan and S. Sato, Weak type (1,1) estimates for Marcinkiewicz integrals with
rough kernels, Tohoku Math. J. 53 (2001), 265-284.
[6] S. Hofmann, Weak (1,1) boundedness of singular integrals with nonsmooth kernel,
Proc. Amer. Math. Soc. 103 (1988), 260—264.
[7] —, Weighted weak-type (1, 1) inequalities for rough operators, ibid. 107 (1989), 423~
435.
[8] B. Muckenhoupt and R. L. Wheeden, Weighted norm inequalities for singular and
fractional integrals, Trans. Amer. Math. Soc. 161 (1971), 249-258.
[9] S. Sato, Remarks on square functions in the Littlewood—Paley theory, Bull. Austral.
Math. Soc. 58 (1998), 199-211.
[10] A. Seeger, Singular integral operators with rough convolution kernels, J. Amer.
Math. Soc. 9 (1996), 95-105.
[11] A. Seeger and T. Tao, Sharp Lorentz space estimates for rough operators, Math.
Ann. 320 (2001), 381-415.
[12] E. M. Stein, On the functions of Littlewood—Paley, Lusin, and Marcinkiewicz, Trans.
Amer. Math. Soc. 88 (1958), 430—466.
[13] T. Tao, The weak-type (1,1) of Llog L homogeneous convolution operator, Indiana
Univ. Math. J. 48 (1999), 1547-1584.
[14] A. Vargas, Weighted weak type (1,1) bounds for rough operators, J. London Math.
Soc. (2) 54 (1996), 297-310.

Department of Mathematics Department of Mathematics
University of Wisconsin-Milwaukee Faculty of Education
Milwaukee, WI 53201, U.S.A. Kanazawa University
E-mail: fan@csd.uwm.edu Kanazawa 920-1192, Japan

E-mail: shuichi@kenroku.kanazawa-u.ac.jp

Received January 20, 2003
Revised version December 1, 2003 (5130)



