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Some translation-invariant
Banach function spaces which contain c0

by

P. Lefèvre (Lens), D. Li (Lens), H. Queffélec (Lille)
and L. Rodŕıguez-Piazza (Sevilla)

Abstract. We produce several situations where some natural subspaces of classical
Banach spaces of functions over a compact abelian group contain the space c0.

I. Introduction. Let G be a compact abelian group and Γ = Ĝ its
dual group. It is a familiar theme in Harmonic Analysis to compare the
“thinness” properties of a subset Λ ⊆ Γ with the Banach space properties
of the space XΛ, where X is a Banach space of Haar-integrable functions on
G and XΛ is the subspace of X consisting of the f ∈ X whose spectrum lies
in Λ: f̂(γ) = 0 if γ /∈ Λ. We refer to Kwapień–Pełczyński’s classical paper
[17] for such investigations.

It is known that, with Ψ2 denoting the Orlicz function ex
2 − 1:

(1) If LΨ2
Λ = L2

Λ, then Λ is a Sidon set (Pisier [35, Théorème 6.2]).
(2) If CΛ has a finite cotype, then Λ is a Sidon set (Bourgain–Milman [3]).

Recall that Λ is a Sidon set if every continuous function on G with spectrum
in Λ has an absolutely convergent Fourier series.

In a previous paper, we proved, among other facts, the following exten-
sion of (1) ([19, Theorem 2.3]):

(1′) If LΨ2
Λ has cotype 2, then Λ is a Sidon set.

We also showed the following variant of (2) ([19, Theorem 1.2]):

(2′) If UΛ has a finite cotype, then Λ is a Sidon set.

Here U = U(T) is the space of continuous functions on the circle group T
whose Fourier series converges uniformly on T.
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In this work, we study the implications on Λ of the fact that some Banach
space XΛ contains, or not, the space c0. In particular, we extend (1′) and
(2′).

The paper is organized as follows. In Section II, we show that if ψ
is an Orlicz function which violates the ∆2-condition, in a strong sense:
limx→+∞ ψ(2x)/ψ(x) = +∞ (which is the case for Ψ2), and if X0 is a linear
subspace of L∞ on which the norms ‖ ‖2 and ‖ ‖ψ are not equivalent, then
the closure X of X0 in Lψ contains c0. It follows that if Λ is not a Sidon set,
then LΨ2

Λ contains c0, and a fortiori that if LΨ2
Λ has a finite cotype, then Λ

is a Sidon set, which generalizes (1′).
In Section III, we extend (2′) by showing that: If Λ is not a set of uniform

convergence (i.e. if UΛ 6= CΛ), then UΛ does contain c0. In particular, if UΛ
has a finite cotype, then UΛ = CΛ, so CΛ has a finite cotype and therefore,
in view of (2), Λ is a Sidon set. This explains why the proof of (2′) in [19]
mimicked Bourgain and Milman’s.

In Section IV, we use the notion of invariant mean in L∞(G). We say that
Λ is a Lust-Piquard set if, for every function f ∈ L∞Λ , the product γf of f
with every character γ ∈ Γ has a unique invariant mean. Of course, if every
f ∈ L∞Λ is continuous (i.e. Λ is a Rosenthal set), then Λ is a Lust-Piquard
set. F. Lust-Piquard ([27]) showed that there are Lust-Piquard sets which
are not Rosenthal sets, and, more precisely, that Λ = P∩(5Z+2), where P is
the set of the prime numbers, is a Lust-Piquard set such that CΛ contains c0
(if Λ is a Rosenthal set, CΛ cannot contain c0). We construct here another
kind of “big” Lust-Piquard set Λ, namely a Hilbert set. Then CΛ contains
c0 by a result of the second-named author ([22, Theorem 2]).

In Section V, we investigate conditions under which the space CΛ is
complemented in L∞Λ . We conjecture that this happens only if CΛ = L∞Λ ,
i.e. Λ is a Rosenthal set. We are only able to show that, under that condition
of complementation, CΛ does not contain c0, and, moreover, every f ∈ L∞Λ
which is Riemann-integrable is actually in CΛ.

Notation. Throughout this paper, G is a compact abelian group, and
Γ = Ĝ is its (discrete) dual group. The Haar measure of G is denoted by
m, and integration with respect to m by dt or dx. We shall write the group
structure of Γ additively, so that, for γ ∈ Γ , the character −γ ∈ Γ is the
function γ ∈ C(G). When G is the circle group T = R/2πZ, we identify, as
usual, the character en: t 7→ eint with the integer n ∈ Z, and so the dual
group Γ with Z; the Haar measure is then dt/2π.

For f ∈ L1(G), the Fourier coefficient of f at γ ∈ Γ is f̂(γ) =�
G
f(t)γ(t)dt. If X is a linear function subspace of L1(G), we denote by

XΛ the subspace of those f ∈ X for which the Fourier coefficients vanish
outside of Λ.
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When we say that a Banach space X contains a Banach space Y , we
mean that X contains a (closed) subspace isomorphic to Y .
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II. Subspaces of Orlicz spaces. Let ψ be an Orlicz function, that is,
an increasing convex function ψ: [0,+∞[→ [0,+∞[ such that ψ(0) = 0 and
ψ(+∞) = +∞. We shall assume that ψ violates the ∆2-condition, in the
following strong sense:

(∗) lim
x→+∞

ψ(2x)
ψ(x)

= +∞.

Let (Ω,A,P) be a probability space. The Orlicz space Lψ(Ω) is the space
of all (equivalence classes of) measurable functions f : Ω → C for which there
is a constant C ≥ 0 such that�

Ω

ψ

( |f(t)|
C

)
dP(t) ≤ 1

and then ‖f‖ψ is the least possible constant C.
Observe that (∗) implies that there exists a > 0 such that ψ(2t) ≥ 4ψ(t)

for every t ≥ a. Hence, for all n ≥ 0, one has ψ(2na) ≥ 4nψ(a). It follows
that for 2na ≤ x < 2n+1a, we have

ψ(x) ≥ ψ(2na) ≥ 4nψ(a) ≥
(
x

2a

)2

ψ(a) = Cx2.

Hence ψ(x) ≥ Cx2 for every x ≥ a, and so the norm ‖ ‖ψ is stronger than
the norm of L2.

Theorem II.1. Suppose that ψ is an Orlicz function as above. Let X0

be a linear subspace of L∞(Ω) on which the norms ‖ ‖2 and ‖ ‖ψ are not
equivalent. Then there exists in X0 a sequence which is equivalent , in the
closure X of X0 for the norm ‖ ‖ψ, to the canonical basis of c0.

Proof. We first remark that, thanks to (∗), we can choose, for each n ≥ 1,
a positive number xn such that

ψ

(
x

2

)
≤ 1

2n
ψ(x), ∀x ≥ xn.

Since ψ increases, for every x ≥ 0 we have

ψ

(
x

2

)
≤ 1

2n
ψ(x) + ψ(xn).
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Next, ψ is continuous since it is convex. Hence there exists a > 0 such
that ψ(a) = 1. Then, since ψ is increasing, for every f ∈ L∞(Ω) we have�

Ω

ψ

(
a
|f |
‖f‖∞

)
dP ≤ 1,

and so ‖f‖ψ ≤ (1/a)‖f‖∞.
Now, let αn, n ≥ 1, be positive numbers less than a/2 such that

∑
n≥1 αn

< a. We shall construct inductively a sequence of functions fn ∈ X0, with
‖fn‖ψ = 1, and a sequence of positive numbers βn ≤ 1/2n such that:

(i) P({|fn| > αn}) ≤ βn for every n ≥ 1;
(ii) if we set M1 = 1 and

Mn = ψ

(‖f1‖∞ + · · ·+ ‖fn−1‖∞
2

)
for n ≥ 2,

then (Mn + ψ(xn))βn ≤ 1/2n;
(iii) for every n ≥ 1, we have ‖gn‖ψ ≥ 1/2, with gn = fn � {|fn|>αn}.
For this, we start with β1 such that (1 + ψ(x1))β1 = 1/2. Since the

norms ‖ ‖ψ and ‖ ‖2 are not equivalent on X0, there is an f1 ∈ X0 with
‖f1‖ψ = 1 and P({|f1| > α1}) ≤ β1. Suppose now that f1, . . . , fn−1 and
β1, . . . , βn−1 have been constructed. We then choose βn ≤ 1/2n such that
(Mn + ψ(xn))βn ≤ 1/2n. Since the norms ‖ ‖ψ and ‖ ‖2 are not equivalent
on X0, we can find fn ∈ X0 such that ‖fn‖ψ = 1 and ‖fn‖2 is so small that

P({|fn| > αn}) ≤ βn.
Since ‖fn − gn‖ψ ≤ (1/a) ‖fn − gn‖∞ ≤ αn/a, we have ‖gn‖ψ ≥
‖fn‖ψ − αn/a ≥ 1/2, and that finishes the construction.

Now, consider

g =
+∞∑

n=1

|gn|.

Set An = {|fn| > αn} and

Bn = An \
⋃

j>n

Aj for n ≥ 1.

We have P(lim supAn) = 0, because
∑

n≥1 P(An) ≤∑n≥1 βn < +∞. Now g

vanishes off
⋃
n≥1Bn ∪ (lim supAn) and

�
Bn
ψ(|gn|) dP≤

�
Ω
ψ(|fn|) dP≤ 1.

Therefore�

Ω

ψ

( |g|
4

)
dP =

+∞∑

n=1

�

Bn

ψ

( |g|
4

)
dP

≤
+∞∑

n=1

�

Bn

1
2

[
ψ

(‖f1‖∞ + · · ·+ ‖fn−1‖∞
2

)
+ ψ

( |gn|
2

)]
dP

(by convexity of ψ and because gj = 0 on Bn for j > n)
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≤ 1
2

+∞∑

n=1

Mn P(An) +
1
2

+∞∑

n=1

1
2n

�

Bn

ψ(|gn|) dP+
1
2

+∞∑

n=1

ψ(xn)P(An)

≤ 1
2

+∞∑

n=1

(Mn + ψ(xn))βn +
1
2

+∞∑

n=1

1
2n
≤ 1.

Hence g ∈ Lψ(Ω).

It follows that the series
∑

n≥1 gn is weakly unconditionally Cauchy

in X. Since ‖gn‖ψ ≥ 1/2, it has, by Bessaga–Pełczyński’s theorem, a subse-
quence which is equivalent to the canonical basis of c0. The same is true for
(fn)n≥1 since

+∞∑

n=1

‖fn − gn‖ψ ≤
1
a

+∞∑

n=1

‖fn − gn‖∞ ≤
1
a

+∞∑

n=1

αn < 1.

That ends the proof.

Of course, the proof shows that the assumption that the norm ‖ ‖ψ is
not equivalent to ‖ ‖2 can be replaced by the non-equivalence of ‖ ‖ψ to
many other norms. We only used the fact that the topology of convergence
in measure is not equivalent on X0 to the topology defined by ‖ ‖ψ.

When we apply this result to the probability space (G,m), we get (see
[19, Theorem 2.3]):

Theorem II.2. Let ψ be as in Theorem II.1 and let G be a compact
abelian group. Then, for Λ ⊆ Γ = Ĝ, either LψΛ has cotype 2, or it con-
tains c0. In particular , either Λ is a Sidon set and LΨ2

Λ = L2
Λ, or LΨ2

Λ

contains c0 (and so it does not have finite cotype).

Proof. Observe that when LψΛ 6= L2
Λ, the norms ‖ ‖ψ and ‖ ‖2 are not

equivalent on X0 = PΛ, the subspace of trigonometric polynomials whose
spectrum is contained in Λ. So the first part follows directly from Theo-
rem II.1. The second one follows from Pisier’s characterization of Sidon sets
([35, Théorème 6.2]): Λ is a Sidon set if and only if LΨ2

Λ = L2
Λ.

Remark. It is proved in [19, Theorem 2.3] that Λ is a Λ(ψ)-set
(i.e. LψΛ = L2

Λ) when LΨ2
Λ ⊆ L

ψ
Λ ⊆ L2

Λ and LψΛ has cotype 2.

III. Uniform convergence. A function f ∈ C(T) is said to have a
uniformly convergent Fourier series if ‖Sk(f) − f‖∞ → 0 as k → +∞,
where

Sk(f) =
k∑

j=−k
f̂(j)ej .
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The space U(T) of uniformly convergent Fourier series is the space of all
such f ∈ C(T). With the norm

‖f‖U = sup
k≥1
‖Sk(f)‖∞,

U(T) becomes a Banach space.
A set Λ ⊆ Z is said to be a set of uniform convergence (UC-set) if

UΛ = CΛ as linear spaces. They are then isomorphic as Banach spaces. There
exist sets Λ which are not UC-sets but for which CΛ does not contain c0
(for instance, a Rosenthal set which contains arbitrarily long arithmetic
progressions [38]). For UΛ the situation is different:

Theorem III.1. If Λ is not a UC-set , then UΛ contains c0.

Corollary III.2. If UΛ has a finite cotype, then Λ is a Sidon set.

Proof. If UΛ has a finite cotype, it cannot contain c0. Hence UΛ is iso-
morphic to CΛ. It follows that CΛ has a finite cotype, and so Λ is a Sidon
set, by Bourgain–Milman’s theorem [3].

Remark. This result was proved in [19, Theorem 1.2], by adapting the
proof of Bourgain and Milman. Now it becomes clear why this proof hap-
pened to mimic the original one.

Proof of Theorem III.1. Since Λ is not a UC-set, there exists a trigono-
metric polynomial P1 ∈ CΛ with ‖P1‖U = 1 and ‖P1‖∞ ≤ 1/2. Let N1 ≥ 2
be such that P̂1(n) = 0 for |n| ≥ N1. The spaces UΛ\Λ∩{−N1+1,...,0,...,N1−1}
and CΛ\Λ∩{−N1+1,...,0,...,N1−1} remain non-isomorphic, and so we can find a
trigonometric polynomial P2 such that P̂2(n) = 0 for |n| ≤ N1 − 1 with
‖P2‖U = 1 and ‖P2‖∞ ≤ 1/4. Carrying on this construction, we get a se-
quence of integers 2 ≤ N1 < N2 < · · · and a sequence of trigonometric
polynomials Pl ∈ CΛ such that ‖Pl‖U = 1, ‖Pl‖∞ ≤ 1/2l and P̂l(n) = 0 for
n /∈ {±Nl−1, . . . ,±(Nl − 1)}.

Now, fix an integer L ≥ 1 and a sequence a1, . . . , aL of complex numbers.
For each k ≥ 1, let lk be such that Nlk ≤ k < Nlk+1. When L ≥ lk + 1, we
have

∥∥∥Sk
( L∑

l=1

alPl

)∥∥∥
∞
≤
∥∥∥

lk∑

l=1

alPl

∥∥∥
∞

+ ‖alk+1Sk(Plk+1)‖∞

≤ max
1≤j≤lk

|aj |
lk∑

l=1

‖Pl‖∞ + |alk+1| ‖Plk+1‖U

≤ 2 max{|a1|, . . . , |alk |, |alk+1|, . . . , |aL|}.
The inequality ‖Sk(

∑L
l=1 alPl)‖∞ ≤ 2 max{|a1|, . . . , |alk |, |alk+1|, . . . , |aL|}

remains trivially true for L ≤ lk, because in this case Sk(
∑L

l=1 alPl) =
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∑L
l=1 alPl. Therefore we get

∥∥∥
L∑

l=1

alPl

∥∥∥
U
≤ 2 max{|a1|, . . . , |aL|}.

It follows that the series
∑

l≥1 Pl is weakly unconditionally Cauchy. Since
it is obviously not convergent, UΛ contains a subspace isomorphic to c0 by
Bessaga–Pełczyński’s theorem (see [6, pp. 44–45, Theorems 6 and 8]).

Remark 1. There is a stronger notion of CUC-set. Λ ⊆ Z is a CUC-set
if ∥∥∥

k2∑

j=k1

f̂(j) ej − f
∥∥∥
∞
−−−−−→
k1→−∞
k2→+∞

0 for every f ∈ CΛ.

Obviously, for subsets of N, the two notions coincide. Theorem III.1 is not
valid for CUC-sets: let H be an Hadamard lacunary sequence. Then Λ =
H −H is not a CUC-set (Fournier [8]), but it is UC and Rosenthal, so that
UΛ = CΛ does not contain c0.

However, it is not known whether CΛ1∪Λ2 lacks c0 whenever this is true
for CΛ1 and CΛ2 . If we replace the space C(G) by U(T), the answer is in the
negative. Indeed, J. Fournier shows ([8]), completing Soardi and Travaglini’s
work [43], that there exist two UC-sets Λ1, Λ2 ⊆ Z which are Rosenthal sets
but Λ1 ∪ Λ2 = H +H −H is not UC. Therefore UΛ1 = CΛ1 and UΛ2 = CΛ2

do not contain c0, though UΛ1∪Λ2 contains c0.

Remark 2. UC-sets Λ for which CΛ contains c0 are constructed in [24].

Remark 3. We stated Theorem III.1 for uniform convergence because
it is the classical case. Actually, J. Fournier ([8, p. 72]) and S. Hartman ([13,
p. 107]) introduced the space L1-UC as the set of all f ∈ L1(T) for which
‖Sk(f)− f‖1 → 0 as k → +∞. It is normed by ‖f‖UL1 = supk≥1 ‖Sk(f)‖1.
We call Λ an L1-UC-set if (L1-UC)Λ = L1

Λ. The same proof as above shows
that if (L1-UC)Λ 6= L1

Λ, then (L1-UC)Λ contains c0. More generally, let
Λ ⊆ Z and let X be a Banach space contained, as a linear subspace, in
L1(T) such that the linear space generated by X ∩Λ is dense in X. We can
define X-UC in an obvious way, and we have: if X-UC is not isomorphic
to X, then it contains c0.

We give another consequence of Theorem III.1. Recall (see [30]) that
Λ ⊆ Γ is a Riesz set if every measure with spectrum in Λ is absolutely
continuous with respect to the Haar measure (in short, MΛ = L1

Λ).

Corollary III.3. If UΛ does not contain c0, then Λ is a Riesz set.

Proof. If UΛ 6⊇ c0, then UΛ = CΛ, by Theorem III.1, and so CΛ 6⊇ c0.
It then follows that Λ is a Riesz set (F. Lust-Piquard [25], her first Thé-
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orème 3.1). Let us recall why. For µ ∈ MΛ, the convolution operator Cµ:
f ∈ C(G) 7→ f ∗ µ ∈ CΛ ⊆ C(G) is weakly compact, because C(G) has
Pełczyński’s property (V ) and CΛ 6⊇ c0. Its adjoint operator ν ∈ M(G) 7→
ν ∗ µ ∈MΛ is also weakly compact. Hence, if (Kj)j is an approximate unit
for the convolution, there is a sequence (jn)n such that Kjn ∗ µ is weakly
convergent. Since Kj ∗µ converges weak-star to µ, it follows that µ ∈ L1

Λ.

Remark. Another proof can be given, without using Theorem III.1,
but using the fact that U(T) has Pełczyński’s property (V ) (Saccone [42,
Theorem 2.2]; for UN(T), see Bourgain [1, Lemme 2 and Lemme 3], and
Saccone [41, Theorem 4.1]). Then, as before, Kjn ∗ µ is weakly convergent,
in U(T)∗ this time. So there are convex combinations which converge in
the norm of U(T)∗. But then they converge in the norm of UN(T)∗, and so
u ∈ L1(G) (see D. Oberlin [33, p. 310]). Note that Oberlin’s argument (as
well as Bourgain’s) depends on Carleson’s theorem (via [47]).

IV. Invariant means and Hilbert sets. An invariant mean M on
L∞(G) is a continuous linear functional on L∞(G) such that M( � ) = ‖M‖
= 1 and M(fx) = M(f) for every f ∈ L∞(G). The Haar measure m de-
fines an invariant mean, and W. Rudin ([40]) showed that, for infinite com-
pact abelian groups G, there always exist other invariant means on L∞(G).
A function f ∈ L∞(G) has a unique invariant mean if M(f) = f̂(0) for
every invariant mean M on L∞(G). Every continuous function (or, even,
every Riemann-integrable function: [39, p. 38] or [44]) has a unique invari-
ant mean.

Definition IV.1. A subset Λ of Γ = Ĝ is called a Lust-Piquard set if
γf has a unique invariant mean for every f ∈ L∞Λ and every γ ∈ Γ .

In other words, Λ is a Lust-Piquard set if for every invariant mean M
on L∞(G) and every f ∈ L∞Λ , one has

M(γf) = f̂(−γ).

In [26] (and then in [21]; see also [28]), F. Lust-Piquard called them
totally ergodic sets. We use a different name because J. Bourgain ([2, 2.I,
p. 206]), used the term “ergodic set” for another property (see also [24]).

Note that it is required that the invariant means agree on
⋃
γ∈Γ L

∞
Λ−γ ,

and not only on L∞Λ , because the invariant means may coincide on L∞Λ
for trivial reasons; for instance, all the invariant means are equal to 0 on
L∞2Z+1 (since f(x + 1/2) = −f(x) for f ∈ L∞2Z+1). It is clear that if Λ is a
Lust-Piquard set, then Λ− γ is also a Lust-Piquard set for every γ ∈ Γ .

It is obvious that every Rosenthal set is a Lust-Piquard set (since every
continuous function has a unique invariant mean), and it is shown in [21]
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that every Lust-Piquard set is a Riesz set. On the other hand, Y. Katznelson
(see [39, pp. 37–38]) proved that N is not a Lust-Piquard set.

F. Lust-Piquard ([27, Theorems 2 and 4]) showed that Λ = P∩ (5Z+ 2),
where P is the set of prime numbers, is totally ergodic (a Lust-Piquard set
in our terminology) although CΛ contains c0.

In the following theorem, we give another example of such a situation.
Let us recall that H ⊆ Z is a Hilbert set if there exist two sequences of
integers (pn)n≥1 and (qn)n≥1, with qn 6= 0, such that

H =
⋃

n≥1

{
pn +

n∑

k=1

εkqk ; ε1, . . . , εn = 0 or 1
}
.

It is shown in [22, Theorem 2] that CH contains c0 when H is a Hilbert set.

Theorem IV.2. There exists a Hilbert set H ⊆ N which is a Lust-
Piquard set.

We begin with a lemma, which is implicit in [27, proof of Theorem 4].

Lemma IV.3. The family of Lust-Piquard sets in Γ is localizable for the
Bohr topology.

Let us recall that the Bohr topology of a discrete abelian group Γ is the
topology of pointwise convergence, when Γ is seen as a subset of C(G); it is
also the natural topology on Γ as a subset of the dual group of Gd, the group
G with the discrete topology. A class F of subsets of Γ is localizable for the
Bohr topology if Λ ∈ F whenever for every γ ∈ Γ there is a neighbourhood
Vγ of γ for the Bohr topology such that Λ ∩ Vγ ∈ F . This notion is due to
Y. Meyer ([30]).

For the sake of completeness, we give a proof.

Proof of Lemma IV.3. We are going to prove that if Vγ is a neighbour-
hood of γ ∈ Γ such that Λ∩Vγ is a Lust-Piquard set, then γf has a unique
invariant mean for every f ∈ L∞Λ , and that will prove the lemma.

By the regularity of the algebra L1(Gd) = `1(G) =Md(G), there exists
a discrete measure ν ∈ Md(G) such that ν̂(γ) = 1 and ν̂ = 0 outside Vγ .
Since (γf) ∗ (γν) ∈ L∞(Λ∩Vγ)−γ , and since (Λ∩Vγ)− γ is a Lust-Piquard set,
we have

M((γf) ∗ (γν)) = [(γf) ∗ (γν)]∧(0) = f̂(γ) ν̂(γ) = f̂(γ).

But γν is a discrete measure, and for every discrete measure µ we have

M(µ ∗ g) = M(g) µ̂(0)

for every g ∈ L∞(G) and every invariant mean M . This is so since if
µ =

∑
k ak δxk with

∑
k |ak| < +∞, we have M(µ ∗ g) =

∑
k akM(gxk) =∑

k akM(g).
Hence M(γf) = f̂(γ), as required.
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Proof of Theorem IV.2. We are going to construct a Hilbert set H ⊆ N
which is discrete in Z for the Bohr topology. For such a set, there is, for
every k ∈ Z, some Bohr neighbourhood Vk of k such that H ∩ Vk is finite.
Therefore, we have L∞H∩Vk = CH∩Vk , and so H ∩ Vk is a Lust-Piquard set.

Let (dn)n≥0 be a strictly increasing sequence of positive integers such
that

dn | dn+1, n ≥ 0,
+∞∑

n=0

2n+1

dn
< 1.

For every k ∈ Z, consider

V (k) = k + d|k|Z,

which is a Bohr neighbourhood of k.
Now, we are going to show that for every n ≥ 0 we can choose an integer

rn ∈ {0, 1, . . . , dn − 1} such that if

Hn = dn + rn +
{ n−1∑

l=0

εldl ; εl = 0 or 1
}
,

then Hp∩V (k) = ∅ for every k ∈ Z and every p > |k|. The set H =
⋃
n≥0 Hn

will be the required set.
We are going to do this by induction. First, we may choose an arbitrary

r0 ∈ {0, 1, . . . , d0 − 1}, and we set H0 = {d0 + r0}. Suppose now that we
have found r1, . . . , rp−1 such that the previous conditions are satisfied:

Hj ∩ V (k) = ∅ for 1 ≤ j ≤ p− 1, |k| < j.

To find rp, note that m ∈ Hp ∩ V (k) if and only if

(1) m ∈ k + d|k|Z

and there exist ε0, ε1, . . . , εp−1 ∈ {0, 1} such that

(2) m = dp + rp +
p−1∑

l=0

εldl.

Since, for 0 ≤ l < p, one has dl | dl+1 | . . . | dp, conditions (1) and (2) are
equivalent to rp ≡ 0 (mod d0) for k = 0, and for 1 ≤ l = |k| < p to

k ≡ rp +
|k|−1∑

j=0

εjdj (mod d|k|).

For each such k (0 ≤ |k| < p), there are

dp
d|k|
· 2|k|
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possible choices for rp. As

dp
d0

+ 2
p−1∑

l=1

2l
dp
dl
≤ dp
d0

+ 2
+∞∑

l=1

2l
dp
dl

< dp,

by hypothesis, we can find an rp ∈ {0, 1, . . . , dp − 1} such that the set Hp

constructed from it satisfies Hp ∩ V (k) = ∅ for |k| < p. That ends the
proof.

Remark 1. A subclass of Hilbert sets are the IP -sets, i.e. sets F for
which there exists a sequence (pn)n≥1 of integers such that

F =
{ n∑

k=1

εkpk ; ε1, . . . , εn = 0 or 1, n ≥ 1
}
.

Question. Does there exist an IP -set F which is a Lust-Piquard set?

Every point of an IP -set F is non-isolated in F (see [10, Theorem 2.19];
note that every point of an IP -set is inside the translation by this point of
a sub-IP -set). Therefore we cannot use an argument similar to that of the
previous theorem. Hilbert sets and IP -sets are different in several ways. For
instance, every set Λ ⊆ Z which has a positive uniform density contains a
Hilbert set ([14, Theorem 11.11], [22, Theorem 4]), but not necessarily an
IP -set ([14, Theorem 11.6], [32, p. 151]). Another difference is that CΛ never
has the Unconditional Metric Approximation Property if Λ ⊆ Z is an IP -set
([23, Proposition 11]), but can have this property when Λ is a Hilbert set
([23, Theorem 10]).

Remark 2. Let F be a class of subsets of Γ which contains all the fi-
nite sets and which is localizable for the Bohr topology. It follows from the
proof of Theorem IV.2 that such a class must contain some Hilbert sets.
In particular F has to contain sets Λ such that Λ contains parallelepipeds
of arbitrarily large dimensions. Note that this last assertion is actually im-
plicit in [27]. Indeed, by Dirichlet’s theorem

∑
n∈P∩(5Z+2) 1/n = +∞, and

by [31, Corollary 2], we have
∑

n∈Λ 1/n < +∞ when Λ does not contain
parallelepipeds of arbitrarily large dimensions. It is known that the sets be-
longing to the following classes cannot contain parallelepipeds of arbitrarily
large dimensions:

(a) Λ(p)-sets (see [31, Theorem 3] and [9, Theorem 4]).
(b) UC-sets ([9, Theorem 4]).
(c) p-Sidon sets ([15, Lemma 1]).
(d) Stationary sets ([18, Proposition 2.5]).
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(e) q-Rider sets (see [24] or [19] for the definition). Note that, for 1 ≤
q < 4/3, q-Rider sets are p-Sidon sets for every p > q/(2 − q)
(see [20]), and so the result is in (c). For 4/3 ≤ q < 2, there is
no explicit published proof of that, and therefore we shall give one
in Proposition IV.4, after this Remark.

Hence these classes are not localizable for the Bohr topology.

Remark 2 shows that there is no hope to construct sets of the above
classes by way of localization.

Proposition IV.4. If Λ is a q-Rider set , 1 ≤ q < 2, then Λ cannot
contain parallelepipeds of arbitrarily large dimensions.

Proof. A Sidon set (with constant less than 10, say) inside a paral-
lelepiped P of size 2n cannot contain more than Cn log n elements ([16,
Chapter 6, §3, Theorem 5, p. 71]), whereas if P were contained in a
q-Rider set, it should contain a quasi-independent (hence Sidon with
constant less than 10) set of size at least C2εn, with ε = (2 − q)/q ([36] or
[37, Teorema 2.3]).

Note that another proof of Proposition IV.4 is implicit in [15]. Indeed
the proof given in [15, Lemma 1] that p-Sidon sets share this property only
uses the fact, proved in [4, Eq. (9)], that if Λ is a p-Sidon set, then, with
α = 2p/(3p − 2), there is a constant C > 0 such that ‖f‖r ≤ C

√
r ‖f̂‖α

for all r ≥ 2 (equivalently: ‖f‖Ψ2 ≤ C ′‖f̂‖α) for every f ∈ CΛ. Now the
fourth-named author proved that these inequalities characterize p-Rider sets
([36]; see also [37, Teorema 2.3]).

V. Complemented subspaces. Since Λ is a Rosenthal set if L∞Λ = CΛ,
it is natural to ask whether Λ is a Rosenthal set if there exists a projection
from L∞Λ onto CΛ. We have not been able to answer this, even if this projec-
tion were to have norm 1 (see [12], where the condition that the space does
not contain `1 is crucial), but we have a partial result. Recall that it is not
known whether CΛ 6⊇ c0 implies that Λ is a Rosenthal set.

Theorem V.1. Let Λ ⊆ Γ be such that there exists a surjective projec-
tion P : L∞Λ → CΛ. Then CΛ does not contain c0. Moreover , every Riemann-
integrable function in L∞Λ is actually in CΛ.

Recall that a function h: G → C is Riemann-integrable if it is bounded
and almost everywhere continuous. Actually, the last assertion of the propo-
sition means that every element of L∞Λ which contains a Riemann-integrable
function contains also a continuous one.

Proof. (1) By [22, Proposition 14], if CΛ contains c0, there is a sequence
(fn)n≥1 in CΛ which is equivalent to the canonical basis of c0, and whose
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w∗-linear span F in L∞Λ is isomorphic to `∞. The restriction P |F is a pro-
jection from F onto a subspace of CΛ which contains E = span{fn ;n ≥ 1}.

Observe that E is a separable subspace of CΛ. So there exists a countable
subset Λ1 ⊆ Λ such that E ⊆ CΛ1 . Moreover, there exists a countable
subgroup Γ0 ⊆ Γ such that Λ1 is contained in Γ0. Taking Λ0 = Λ ∩ Γ0, we
have E ⊆ CΛ0 , and CΛ0 is a separable space.

The set Γ0 being a subgroup, there exists a measure µ onG whose Fourier
transform is µ̂ = � Γ0 . The map f 7→ f ∗ µ gives a projection from CΛ onto
CΛ0 , and Sobczyk’s theorem gives a projection from CΛ0 onto E. So there
exists a projection from F ' `∞ onto E ' c0, which is a contradiction.

(2) We first assume that the group G is metrizable, so that C(G) is sepa-
rable. Let RIΛ be the subspace of L∞Λ consisting of the Riemann-integrable
functions (more precisely: the elements of L∞Λ which have a Riemann-inte-
grable representative).

Consider the restriction of P to RIΛ. For f ∈ RI, the set

{x 7→ ξ(fx) ; ξ ∈ L∞(G)∗, ‖ξ‖ ≤ 1}
is stable ([46, Theorem (15-6)(c)]). Let µ ∈ (CΛ)∗, and set ϕ(x, y) =
(P ∗µy)(fx) for x, y ∈ G. The map x ∈ G 7→ fx ∈ L∞(G) is scalarly
measurable ([45, Theorem 16]) and y 7→ P ∗µy is continuous for the w∗-
topology. Moreover {x 7→ (P ∗µy)(fx) ; y ∈ G} is stable, so by [46, Theo-
rem (10-2-1)], ϕ is measurable. Measurability refers here to the completion
of the product measure m ⊗ m on G × G, so in order to deduce that the
map x ∈ G 7→ ϕ(x, x) = (P ∗µx)(fx) is measurable, we need the following
lemma (note that our ϕ is bounded).

Lemma V.2. Let G be a metrizable compact abelian group, and ϕ: G×
G→ C a function such that :

(a) ϕ ∈ L∞(G×G);
(b) the map y 7→ ϕ(x, y) is continuous for every x ∈ G.

Then the map x 7→ ϕ(x, x) is measurable.

Proof. G being metrizable, there exists a bounded sequence (fn)n in
L1(G) such that

(3) g(0) = lim
n→∞

�

G

fng dm for every g ∈ C(G).

This sequence (fn)n represents an approximate identity.
For every n, the function (x, y) 7→ fn(x−y)ϕ(x, y) is integrable in G×G.

Define

Fn(x) =

�

G

fn(x− y)ϕ(x, y) dm(y) =

�

G

fn(t)ϕ(x, x− t) dm(t).
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By Fubini’s theorem Fn is defined almost everywhere, and is integrable. So
Fn is measurable for every n. The lemma follows since, by (3),

ϕ(x, x) = lim
n→∞

Fn(x) for every x ∈ G.

The fact that the map x ∈ G 7→ (P ∗µx)(fx) = 〈µ, [P (fx)]−x〉 is measurable
means, since µ is arbitrary, that x 7→ [P (fx)]−x ∈ CΛ is scalarly measur-
able. Since we have assumed that C(G) is separable, this map is strongly
measurable, by Pettis’s measurability theorem ([7, II, §1, Theorem 2]). Now
we showed at the beginning of the proof that CΛ does not contain c0; so
a result of J. Diestel [5] (see [7, II, §3, Theorem 7]) says that this map is
Pettis-integrable, which means that if we define Qf using

〈Qf, µ〉 =

�

G

〈fx, P ∗(µx)〉 dx

for every µ ∈ (CΛ)∗, then Q maps RIΛ into CΛ, and not only into its bidual
(see the definition of Pettis-integrability in [7, II, §3, p. 53, Definition 2], or
in [46, Definition (4-2-1)]).

Thus Q is a projection from RIΛ onto CΛ such that Q(fx) = (Qf)x for
every f ∈ RIΛ and every x ∈ G.

We want to prove that Qf = f for every f ∈ RIΛ, and for that
we have to see that Q̂f(γ) = f̂(γ) for every γ ∈ Γ . But it suffices to
show that Q̂f(0) = f̂(0), since, after replacing Λ by Λ − γ and Q by Qγ :
L∞Λ−γ → CΛ−γ , with Qγ(g) = γQ(γg), we then get, for f ∈ RIΛ with g = γf ,

Q̂f(γ) = [γ(Qf)]∧(0) = Q̂γg(0) = ĝ(0) = (̂γf)(0) = f̂(γ).

So, let f ∈ RIΛ. Every Riemann-integrable function has a unique invari-
ant mean ([39, Lemma 7], [44]); hence there are ([39, Proposition, p. 38],
or [26, Proposition 1]) convex combinations

∑
k∈In cn,k fxn,k , cn,k > 0,∑

k∈In cn,k = 1, of translates of f which converge in norm to the constant

function f̂(0) � . We have

Q
( ∑

k∈In
cn,kfxn,k

)
−−−→
n→+∞

Q[f̂(0) � ] = f̂(0) � .

But Q(
∑
k∈In cn,kfxn,k) =

∑
k∈In cn,k(Qf)xn,k , and its Fourier coefficient

at 0 is ∑

k∈In
cn,kQ̂f(0) = Q̂f(0).

Therefore Q̂f(0) = f̂(0).

(3) In order to finish the proof, we have to explain why we may assume
that G is metrizable.
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Let Λ be as in the theorem, and f ∈ RIΛ. As explained in the proof
of the first part of the theorem, there exists a countable subgroup Γ0 ⊆ Γ
such that f ∈ RIΛ0 for Λ0 = Λ∩Γ0, and there exists a projection from L∞Λ0

onto CΛ0 .
LetH be the annihilator of Γ0; that is,H is the following closed subgroup

of G:
H = Γ⊥0 = {x ∈ G ; γ(x) = 1, ∀γ ∈ Γ0}.

The quotient group G/H is metrizable since its dual group Γ0 is countable.
Let πH denote the quotient map from G onto G/H. It is known that that
the map g 7→ g ◦πH gives an isometry from L∞Λ0

(G/H) onto L∞Λ0
(G) sending

CΛ0(G/H) onto CΛ0(G).
In order to finish our reduction to the metrizable case we only have to see

that this isometry sends RIΛ0(G/H) onto RIΛ0(G). It is easy to see, via the
map g 7→ g ◦ πH , that having a Riemann-integrable function g: G/H → C
is the same as having a Riemann-integrable function g: G → C with the
property g(x + h) = g(x) for every x ∈ G and every h ∈ H. Therefore
the above isometry sends RIΛ0(G/H) into RIΛ0(G). The surjectivity of this
map is a consequence of the following proposition:

Proposition V.3. Let f : G→ C be a Riemann-integrable function such
that f̂(γ) = 0 for every γ ∈ Γ \ Γ0. Then there exists a Riemann-integrable
function g: G→ C such that :

(a) f = g almost everywhere;
(b) g(x) = g(x+ h) for all x ∈ G and h ∈ H.

Proof. We can and will assume that f is in fact real-valued. Take an
increasing sequence (Kn)n of compact subsets of G such that if B =

⋃
nKn,

then:
(i) f is continuous at every point of B;
(ii) m(G \B) = 0.

Using the compactness of Kn and the continuity of f on B, one can find a
neighbourhood Wn of 0 such that

(4) |f(x)− f(x+ y)| ≤ 1
n

for every x ∈ Kn and every y ∈Wn.

Let (Vn)n be a decreasing sequence of open symmetric neighbourhoods
of 0 such that Vn + Vn ⊆Wn for every n. For every n, define fn as

fn(x) =
1

m(Vn)

�

Vn

f(x− y) dm(y), x ∈ G.

Then fn is a continuous function since it is the convolution of f and

ψn =
1

m(Vn) � Vn .
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We also have

f̂n(γ) = f̂(γ)ψ̂n(γ) = 0 for all γ ∈ Γ \ Γ0.

Then the continuous function fn only depends on the classes in G/H; that
is,

fn(x) = fn(x+ h) for all x ∈ G, h ∈ H and n.

Define

g(x) =
1
2

(lim sup
n→∞

fn(x) + lim inf
n→∞

fn(x)), x ∈ G.

It is clear that g(x) = g(x + h) for all x ∈ G and h ∈ H. Since Vn ⊆ Wn,
we deduce from (4) that |fn(x) − f(x)| ≤ 1/n for all x ∈ Kn. If x ∈ B =⋃
nKn, then there exists N such that x ∈ Kn for all n ≥ N . Therefore
|fn(x) − f(x)| ≤ 1/n for all n ≥ N , and g(x) = f(x). So f = g almost
everywhere.

In order to finish the proof we are going to see that every point of B is
a point of continuity of g, and so g is Riemann-integrable. Let x be in B.
Given ε > 0, there exists N such that 1/N ≤ ε and x ∈ Kn for all n ≥ N .
We are going to prove

(5) |g(x)− g(x+ y)| ≤ ε for every y ∈ VN .

So g will be continuous at x.
Take n ≥ N and y ∈ VN . For every z ∈ Vn we have y + z ∈ WN and

|f(x)−f(x+y+z)| ≤ 1/N . By the definition of fn we get |f(x)−fn(x+y)|
≤ 1/N for every n ≥ N . Then we obtain (5) easily, since f(x) = g(x).

Remarks. (1) Actually the proof shows that if Λ is a Lust-Piquard set
and if there exists a surjective projection Q: L∞Λ → CΛ which commutes
with translations, then Λ is a Rosenthal set.

(2) Talagrand’s work [45] uses Martin’s axiom, and in [46] another axiom
is used, called L. But these axioms do not intervene in the results we use
(they are needed to obtain Riemann-integrability from the weak measura-
bility of translations: see [46, Theorem (15-4)]).

(3) F. Lust-Piquard and W. Schachermayer ([29, Corollary IV.4 and
Proposition IV.15]; see also [11, Theorem V.1, Corollary VI.18, and Exam-
ple VIII.10]) showed that if L1(G)/L1

Γ\(−Λ) does not contain `1 (which is
equivalent to L∞Λ having the weak Radon–Nikodym property [46, Corollary
(7-3-8)]), then L∞Λ = RIΛ. Hence Λ must be a Rosenthal set if L∞Λ has
the weak Radon–Nikodym property and there exists a projection from L∞Λ
onto CΛ. However, a direct proof is available. For a more general result, see
[11, Example following Proposition VII.6].

(4) The first part of the proof is the same as the one used by A. Pełczyński
([34, Cor. 9.4(a)]) to show that A(D) = CN is not complemented in H∞=L∞N .
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Question. When Λ is not a Rosenthal set, or merely when CΛ contains
c0, how big can L∞Λ /CΛ be?
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1977–1978, École Polytechnique, Palaiseau, 1978, exp. no. 26.
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