
STUDIA MATHEMATICA 163 (2) (2004)

On Nikodym-type sets in high dimensions

by

Themis Mitsis (Iraklio)

Abstract. We prove that the complement of a higher-dimensional Nikodym set must
have full Hausdorff dimension.

1. Introduction. In [4] Nikodym constructed a subset F of the unit
square in R2 such that F has planar measure 1, and for every point x ∈ F
there exists a line passing through x intersecting F in that single point. Such
paradoxical sets are called Nikodym sets.

Falconer [3] extended Nikodym’s result to higher dimensions. He proved
that for every n > 2 there exists a set F ⊂ Rn such that the complement of
F has Lebesgue measure zero, and for every x ∈ F there is a hyperplane H
so that x ∈ H and F ∩H = {x}. We call such a set an n-Nikodym set .

The purpose of this paper is to show that the complement of an n-
Nikodym set, even though small in terms of Lebesgue measure, must be
large in terms of Hausdorff dimension. Namely, we use ideas from [1] and [2]
to prove the following.

Theorem. The Hausdorff dimension of the complement of an n-Niko-
dym set is equal to n.

A few remarks about our notation. Lk(·) denotes k-dimensional Lebesgue
measure and card(·) cardinality;B(x, r) is the ball with center x and radius r;
χA is the characteristic function of the set A; finally, x. y means x≤ Cy,
where C is some positive constant not necessarily the same at each occur-
rence.

2. Proof of the Theorem. Let E be the complement of an n-Nikodym
set in Rn. Without loss of generality we may assume that there is a subset
A of the unit cube with Ln(A) > 0 such that for every x ∈ A there exists a
set Hx with the following properties:
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(P1) Hx is a rotated translation of [0, 1]× · · · × [0, 1]︸ ︷︷ ︸
n−1

×{0}.

(P2) The center of Hx is the point x.
(P3) The normal vector to Hx makes an angle less than π/100 with the

unit vector en = (0, . . . , 0, 1).
(P4) Hx ∩ E = Hx \ {x}, so in particular Ln−1(E ∩Hx) = 1.

We will show that for every ε > 0 the (n − ε)-dimensional Hausdorff
measure of E is not zero. Therefore, the Hausdorff dimension of E must
equal n. To this end, fix a countable covering {B(xj , rj)} of E, and for
every integer k let

Jk = {j : 2−k ≤ rj ≤ 2−(k−1)},
Ek = E ∩

⋃

j∈Jk
B(xj , rj), Ẽk =

⋃

j∈Jk
B(xj , 2rj).

We will bound
∑

j r
n−ε
j from below by a constant depending only on ε.

Notice that for every x ∈ A there exists an integer kx such that

Ln−1(Ekx ∩Hx) ≥ 1
4k2

x

.

Indeed, if this were not the case for some x ∈ A, we would have

1 = Ln−1(E ∩Hx) ≤
∑

k

Ln−1(Ek ∩Hx) ≤
∑

k

1
4k2 <

1
2
.

Now let

Ak =
{
x ∈ A : Ln−1(Ek ∩Hx) ≥ 1

4k2

}
.(1)

Then
A =

⋃

k

Ak.

Therefore, there must be an integer N such that

Ln(AN ) ≥ Ln(A)
2N2 ,

because otherwise we would have

Ln(A) ≤
∑

k

Ln(Ak) ≤
∑

k

Ln(A)
2k2 < Ln(A).

Next, we decompose the unit cube into a grid of small cubes, each of
side 2−N :

[0, 1]n =
2N⋃

i1,...,in=1

n∏

k=1

[(ik − 1)2−N , ik2−N ] =
2N⋃

i1,...,in=1

Qi1...in .
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Let
I = {(i1, . . . , in) : Qi1...in ∩AN 6= ∅}.

Notice that for each (i1, . . . , in) ∈ I, property (P2) and (1) imply that there
exists a rectangle Ri1...in such that

• Ri1...in has dimensions 1× · · · × 1︸ ︷︷ ︸
n−1

×2−N .

• Ri1...in is parallel to Hx for some x ∈ Qi1...in .
• Ri1...in ∩Qi1...in 6= ∅.
• Ln(ẼN ∩Ri1...in) & N−22−N .

Now let

R′i1...in =
{
Ri1...in if (i1, . . . , in) ∈ I,

∅ otherwise.
Then

N−2Ln(A) . Ln(AN ) ≤
∑

(i1,...,in)∈I
2−nN = 2−(n−1)NN2

∑

(i1,...,in)∈I
N−22−N

. 2−(n−1)NN2
2N∑

i1,...,in=1

Ln(ẼN ∩R′i1...in)

= 2−(n−1)NN2
2N∑

i1,...,in−1=1

( �

ẼN

2N∑

in=1

χR′i1...in

)

≤ 2−(n−1)NN2Ln(ẼN )1/2
2N∑

i1,...,in−1=1

( � ( 2N∑

in=1

χR′i1...in

)2)1/2

= 2−(n−1)NN2Ln(ẼN )1/2
2N∑

i1,...,in−1=1

( 2N∑

l,m=1

�
χR′i1...in−1l

χR′i1...in−1m

)1/2

= 2−(n−1)NN2Ln(ẼN )1/2
2N∑

i1,...,in−1=1

( 2N∑

l,m=1

Ln(R′i1...in−1l ∩R′i1...in−1m)
)1/2

.

Now using property (P3), it is easy to show that for fixed i1, . . . , in−1 we
have

Ln(R′i1...in−1l ∩R′i1...in−1m) . 2−N

1 + |m− l| .
Consequently,

2N∑

l,m=1

Ln(R′i1...in−1l ∩R′i1...in−1m) . log 2N = N log 2.
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Therefore

N−2Ln(A) . 2−(n−1)NN2Ln(ẼN )1/22(n−1)NN1/2

and so
Ln(ẼN ) & N−9Ln(A)2.

On the other hand, by the definition of ẼN we have

Ln(ẼN ) . card(JN )2−nN .

Hence
card(JN ) & 2nNN−9Ln(A)2.

We conclude that∑

j

rn−εj & card(JN )(2−N )n−ε & 2NεN−9Ln(A)2 & Cε.

The proof is complete.
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[2] A. Córdoba, The Kakeya maximal function and spherical summation multipliers,
Amer. J. Math. 99 (1977), 1–22.

[3] K. J. Falconer, Sets with prescribed projections and Nikodym sets, Proc. London
Math. Soc. (3) 53 (1986), 48–64.

[4] O. Nikodym, Sur la mesure des ensembles plans dont tous les points sont rectili-
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