On Nikodym-type sets in high dimensions

by
Themis Mitsis (Iraklio)

Abstract

We prove that the complement of a higher-dimensional Nikodym set must have full Hausdorff dimension.

1. Introduction. In [4] Nikodym constructed a subset F of the unit square in \mathbb{R}^{2} such that F has planar measure 1 , and for every point $x \in F$ there exists a line passing through x intersecting F in that single point. Such paradoxical sets are called Nikodym sets.

Falconer [3] extended Nikodym's result to higher dimensions. He proved that for every $n>2$ there exists a set $F \subset \mathbb{R}^{n}$ such that the complement of F has Lebesgue measure zero, and for every $x \in F$ there is a hyperplane H so that $x \in H$ and $F \cap H=\{x\}$. We call such a set an n-Nikodym set.

The purpose of this paper is to show that the complement of an n Nikodym set, even though small in terms of Lebesgue measure, must be large in terms of Hausdorff dimension. Namely, we use ideas from [1] and [2] to prove the following.

Theorem. The Hausdorff dimension of the complement of an n-Nikodym set is equal to n.

A few remarks about our notation. $\mathcal{L}^{k}(\cdot)$ denotes k-dimensional Lebesgue measure and card (\cdot) cardinality; $B(x, r)$ is the ball with center x and radius r; χ_{A} is the characteristic function of the set A; finally, $x \lesssim y$ means $x \leq C y$, where C is some positive constant not necessarily the same at each occurrence.
2. Proof of the Theorem. Let E be the complement of an n-Nikodym set in \mathbb{R}^{n}. Without loss of generality we may assume that there is a subset A of the unit cube with $\mathcal{L}^{n}(A)>0$ such that for every $x \in A$ there exists a set H_{x} with the following properties:

[^0](P1) $\quad H_{x}$ is a rotated translation of $\underbrace{[0,1] \times \cdots \times[0,1]}_{n-1} \times\{0\}$.
(P2) The center of H_{x} is the point x.
(P3) The normal vector to H_{x} makes an angle less than $\pi / 100$ with the unit vector $e_{n}=(0, \ldots, 0,1)$.
(P4) $\quad H_{x} \cap E=H_{x} \backslash\{x\}$, so in particular $\mathcal{L}^{n-1}\left(E \cap H_{x}\right)=1$.
We will show that for every $\varepsilon>0$ the ($n-\varepsilon$)-dimensional Hausdorff measure of E is not zero. Therefore, the Hausdorff dimension of E must equal n. To this end, fix a countable covering $\left\{B\left(x_{j}, r_{j}\right)\right\}$ of E, and for every integer k let
\[

$$
\begin{gathered}
J_{k}=\left\{j: 2^{-k} \leq r_{j} \leq 2^{-(k-1)}\right\} \\
E_{k}=E \cap \bigcup_{j \in J_{k}} B\left(x_{j}, r_{j}\right), \quad \widetilde{E}_{k}=\bigcup_{j \in J_{k}} B\left(x_{j}, 2 r_{j}\right)
\end{gathered}
$$
\]

We will bound $\sum_{j} r_{j}^{n-\varepsilon}$ from below by a constant depending only on ε.
Notice that for every $x \in A$ there exists an integer k_{x} such that

$$
\mathcal{L}^{n-1}\left(E_{k_{x}} \cap H_{x}\right) \geq \frac{1}{4 k_{x}^{2}}
$$

Indeed, if this were not the case for some $x \in A$, we would have

$$
1=\mathcal{L}^{n-1}\left(E \cap H_{x}\right) \leq \sum_{k} \mathcal{L}^{n-1}\left(E_{k} \cap H_{x}\right) \leq \sum_{k} \frac{1}{4 k^{2}}<\frac{1}{2}
$$

Now let

$$
\begin{equation*}
A_{k}=\left\{x \in A: \mathcal{L}^{n-1}\left(E_{k} \cap H_{x}\right) \geq \frac{1}{4 k^{2}}\right\} \tag{1}
\end{equation*}
$$

Then

$$
A=\bigcup_{k} A_{k}
$$

Therefore, there must be an integer N such that

$$
\mathcal{L}^{n}\left(A_{N}\right) \geq \frac{\mathcal{L}^{n}(A)}{2 N^{2}}
$$

because otherwise we would have

$$
\mathcal{L}^{n}(A) \leq \sum_{k} \mathcal{L}^{n}\left(A_{k}\right) \leq \sum_{k} \frac{\mathcal{L}^{n}(A)}{2 k^{2}}<\mathcal{L}^{n}(A)
$$

Next, we decompose the unit cube into a grid of small cubes, each of side 2^{-N} :

$$
[0,1]^{n}=\bigcup_{i_{1}, \ldots, i_{n}=1}^{2^{N}} \prod_{k=1}^{n}\left[\left(i_{k}-1\right) 2^{-N}, i_{k} 2^{-N}\right]=\bigcup_{i_{1}, \ldots, i_{n}=1}^{2^{N}} Q_{i_{1} \ldots i_{n}}
$$

Let

$$
I=\left\{\left(i_{1}, \ldots, i_{n}\right): Q_{i_{1} \ldots i_{n}} \cap A_{N} \neq \emptyset\right\}
$$

Notice that for each $\left(i_{1}, \ldots, i_{n}\right) \in I$, property (P2) and (1) imply that there exists a rectangle $R_{i_{1} \ldots i_{n}}$ such that

- $R_{i_{1} \ldots i_{n}}$ has dimensions $\underbrace{1 \times \cdots \times 1}_{n-1} \times 2^{-N}$.
- $R_{i_{1} \ldots i_{n}}$ is parallel to H_{x} for some $x \in Q_{i_{1} \ldots i_{n}}$.
- $R_{i_{1} \ldots i_{n}} \cap Q_{i_{1} \ldots i_{n}} \neq \emptyset$.
- $\mathcal{L}^{n}\left(\widetilde{E}_{N} \cap R_{i_{1} \ldots i_{n}}\right) \gtrsim N^{-2} 2^{-N}$.

Now let

$$
R_{i_{1} \ldots i_{n}}^{\prime}= \begin{cases}R_{i_{1} \ldots i_{n}} & \text { if }\left(i_{1}, \ldots, i_{n}\right) \in I \\ \emptyset & \text { otherwise }\end{cases}
$$

Then

$$
\begin{aligned}
& N^{-2} \mathcal{L}^{n}(A) \lesssim \mathcal{L}^{n}\left(A_{N}\right) \leq \sum_{\left(i_{1}, \ldots, i_{n}\right) \in I} 2^{-n N}=2^{-(n-1) N} N^{2} \sum_{\left(i_{1}, \ldots, i_{n}\right) \in I} N^{-2} 2^{-N} \\
& \lesssim 2^{-(n-1) N} N^{2} \sum_{i_{1}, \ldots, i_{n}=1}^{2^{N}} \mathcal{L}^{n}\left(\widetilde{E}_{N} \cap R_{i_{1} \ldots i_{n}}^{\prime}\right) \\
& =2^{-(n-1) N} N^{2} \sum_{i_{1}, \ldots, i_{n-1}=1}^{2^{N}}\left(\int_{\widetilde{E}_{N}} \sum_{i_{n}=1}^{2^{N}} \chi_{R_{i_{1} \ldots i_{n}}^{\prime}}\right) \\
& \leq 2^{-(n-1) N} N^{2} \mathcal{L}^{n}\left(\widetilde{E}_{N}\right)^{1 / 2} \sum_{i_{1}, \ldots, i_{n-1}=1}^{2^{N}}\left(\int\left(\sum_{i_{n}=1}^{2^{N}} \chi_{R_{i_{1} \ldots i_{n}}^{\prime}}\right)^{2}\right)^{1 / 2} \\
& =2^{-(n-1) N} N^{2} \mathcal{L}^{n}\left(\widetilde{E}_{N}\right)^{1 / 2} \sum_{i_{1}, \ldots, i_{n-1}=1}^{2^{N}}\left(\sum_{l, m=1}^{2^{N}} \int \chi_{R_{i_{1} \ldots i_{n-1} l}^{\prime}} \chi_{R_{i_{1} \ldots i_{n-1} m}^{\prime}}\right)^{1 / 2} \\
& =2^{-(n-1) N} N^{2} \mathcal{L}^{n}\left(\widetilde{E}_{N}\right)^{1 / 2} \sum_{i_{1}, \ldots, i_{n-1}=1}^{2^{N}}\left(\sum_{l, m=1}^{2^{N}} \mathcal{L}^{n}\left(R_{i_{1} \ldots i_{n-1} l}^{\prime} \cap R_{i_{1} \ldots i_{n-1} m}^{\prime}\right)\right)^{1 / 2} .
\end{aligned}
$$

Now using property (P3), it is easy to show that for fixed i_{1}, \ldots, i_{n-1} we have

$$
\mathcal{L}^{n}\left(R_{i_{1} \ldots i_{n-1} l}^{\prime} \cap R_{i_{1} \ldots i_{n-1} m}^{\prime}\right) \lesssim \frac{2^{-N}}{1+|m-l|}
$$

Consequently,

$$
\sum_{l, m=1}^{2^{N}} \mathcal{L}^{n}\left(R_{i_{1} \ldots i_{n-1} l}^{\prime} \cap R_{i_{1} \ldots i_{n-1} m}^{\prime}\right) \lesssim \log 2^{N}=N \log 2
$$

Therefore

$$
N^{-2} \mathcal{L}^{n}(A) \lesssim 2^{-(n-1) N} N^{2} \mathcal{L}^{n}\left(\widetilde{E}_{N}\right)^{1 / 2} 2^{(n-1) N} N^{1 / 2}
$$

and so

$$
\mathcal{L}^{n}\left(\widetilde{E}_{N}\right) \gtrsim N^{-9} \mathcal{L}^{n}(A)^{2}
$$

On the other hand, by the definition of \widetilde{E}_{N} we have

$$
\mathcal{L}^{n}\left(\widetilde{E}_{N}\right) \lesssim \operatorname{card}\left(J_{N}\right) 2^{-n N}
$$

Hence

$$
\operatorname{card}\left(J_{N}\right) \gtrsim 2^{n N} N^{-9} \mathcal{L}^{n}(A)^{2}
$$

We conclude that

$$
\sum_{j} r_{j}^{n-\varepsilon} \gtrsim \operatorname{card}\left(J_{N}\right)\left(2^{-N}\right)^{n-\varepsilon} \gtrsim 2^{N \varepsilon} N^{-9} \mathcal{L}^{n}(A)^{2} \gtrsim C_{\varepsilon}
$$

The proof is complete.

References

[1] J. Bourgain, Besicovitch type maximal operators and applications to Fourier analysis, Geom. Funct. Anal. 1 (1991), 147-187.
[2] A. Córdoba, The Kakeya maximal function and spherical summation multipliers, Amer. J. Math. 99 (1977), 1-22.
[3] K. J. Falconer, Sets with prescribed projections and Nikodym sets, Proc. London Math. Soc. (3) 53 (1986), 48-64.
[4] O. Nikodym, Sur la mesure des ensembles plans dont tous les points sont rectilinéairement accessibles, Fund. Math. 10 (1927), 116-168.

Department of Mathematics
University of Crete
Knossos Ave.
71409 Iraklio, Greece
E-mail: tmitsis@yahoo.com

Received April 1, 2003

[^0]: 2000 Mathematics Subject Classification: Primary 28A75; Secondary 28A78.
 Key words and phrases: Nikodym set, Hausdorff dimension.

