Invertibility of the commutator of an element in a C^{*}-algebra and its Moore-Penrose inverse

by
Julio Benítez (Valencia) and Vladimir Rakočević (Niš)

Abstract

We study the subset in a unital C^{*}-algebra composed of elements a such that $a a^{\dagger}-a a^{\dagger}$ is invertible, where a^{\dagger} denotes the Moore-Penrose inverse of a. A distinguished subset of this set is also investigated. Furthermore we study sequences of elements belonging to the aforementioned subsets.

1. Introduction. Throughout this paper, \mathcal{A} will be a C^{*}-algebra with unit 1 and we will denote by \mathcal{A}^{-1} the subset of invertible elements in \mathcal{A}. An element $a \in \mathcal{A}$ is said to be idempotent when $a^{2}=a$. The term projection will be reserved for an element p of \mathcal{A} which is self-adjoint and idempotent, that is, $p^{*}=p=p^{2}$.

An element $a \in \mathcal{A}$ is said to have a Moore-Penrose inverse if there exists $x \in \mathcal{A}$ such that
(1.1) $\quad a x a=a, \quad x a x=x, \quad(a x)^{*}=a x, \quad(x a)^{*}=x a$.

It can be proved that if $a \in \mathcal{A}$ has a Moore-Penrose inverse, then the element x satisfying (1.1) is unique (see, for example, $[\mathrm{Pen}]$), and we write $x=a^{\dagger}$. The set of all elements of \mathcal{A} that have a Moore-Penrose inverse will be denoted by \mathcal{A}^{\dagger}. An element $a \in \mathcal{A}$ such that there exists $x \in \mathcal{A}$ with $a x a=a$ will be named regular. A basic result of the theory of Moore-Penrose inverses in C^{*}-algebras is that if $a \in \mathcal{A}$ then $a \in \mathcal{A}^{\dagger}$ if and only if a is regular (see [H-M, Kol2]).

Several characterizations of elements $a \in \mathcal{A}^{\dagger}$ such that $a a^{\dagger}=a^{\dagger} a$ can be found in the literature (see [Ben, Kol3]). In this paper we shall study the class of elements in a C^{*}-algebra that, in some sense, is complementary to the subset of \mathcal{A}^{\dagger} composed of elements that commute with their MoorePenrose inverses. When the C^{*}-algebra is the set of $n \times n$ complex matrices, it is customary to say that a matrix A is $E P$ when A commutes with its Moore-Penrose inverse, which justifies the following definition.

[^0]Definition 1.1. Let \mathcal{A} be a unital C^{*}-algebra. An element $a \in \mathcal{A}$ is said to be co-EP when $a \in \mathcal{A}^{\dagger}$ and $a a^{\dagger}-a^{\dagger} a$ is invertible. The subset of \mathcal{A} composed of co-EP elements will be denoted by $\mathcal{A}_{\mathrm{co}}^{\mathrm{ep}}$.

Let $a \in \mathcal{A}$. Since, as is easy to see, $a a^{\dagger}$ and $a^{\dagger} a$ are projections, the study of the invertibility of $a a^{\dagger}-a^{\dagger} a$ is related to the study of the invertibility of differences of two projections in a C^{*}-algebra. In Buc1, Buc2], Buckholtz characterized when $P-Q$ is invertible when P and Q are orthogonal projections of a Hilbert space. Koliha and Rakočević gave in [K-R2, Theorem 4.1] several characterizations of the invertibility of $p-q$ when p, q are nontrivial projections in a C^{*}-algebra. One of these characterizations uses the concept of the range projection. For the convenience of the reader we recall its definition, introduced by Koliha in Kol4].

Definition 1.2. Let $f \in \mathcal{A}$ be an idempotent. We say that $p \in \mathcal{A}$ is a range projection of f if p is a projection satisfying $p f=f$ and $f p=p$.

Let us recall ([Kol4, Theorem 1.3] and [K-R3, Theorem 1.3]) that for every idempotent $f \in \mathcal{A}$ there exists a unique range projection of f, denoted by f^{\perp}, given explicitly by the Kerzman-Stein formula (see [K-S])

$$
\begin{equation*}
f^{\perp}=f\left(f+f^{*}-1\right)^{-1} \tag{1.2}
\end{equation*}
$$

If f is a projection, then obviously $f^{\perp}=f$.
The following concept was introduced by Koliha and Rakočević in K-R2]. It allowed them (among other things) to characterize the invertibility of $p-q$ when p and q are nontrivial projections in a C^{*}-algebra.

Definition 1.3. Let $e, f \in \mathcal{A}$ be idempotents. We denote by $\pi(e, f)$ an idempotent $h \in A$ (if it exists) satisfying the conditions

$$
h^{\perp}=e^{\perp}, \quad(1-h)^{\perp}=f^{\perp}
$$

If, in addition, e and f are self-adjoint, the above reduces to $h^{\perp}=e$ and $(1-h)^{\perp}=f$. In other words, if $e, f \in \mathcal{A}$ are projections such that $h=\pi(e, f)$ exists, then

$$
h e=e, \quad e h=h, \quad(1-h) f=f, \quad f(1-h)=1-h .
$$

An element $a \in \mathcal{A}$ is quasipolar if 0 is an isolated singularity of the resolvent of a. Koliha proved in [Kol1, Theorem 4.2] that $a \in \mathcal{A}$ is quasipolar if and only if there exists an idempotent $p \in \mathcal{A}$ such that $a p=p a$ is quasinilpotent and $a+p \in \mathcal{A}^{-1}$. Such an idempotent is unique, and is called the spectral idempotent of a corresponding to 0 , written a^{π}. In Kol4, Theorem 3.6] it is proved that if $x \in \mathcal{A}$ then $x \in \mathcal{A}^{\dagger}$ implies that $x^{*} x$ and $x x^{*}$ are quasipolar and $x^{\dagger}=\left(x^{*} x+\left(x^{*} x\right)^{\pi}\right)^{-1} x^{*}=x^{*}\left(x x^{*}+\left(x x^{*}\right)^{\pi}\right)^{-1}$. Indeed, the only fact we shall use is the following:

$$
\begin{equation*}
x \in \mathcal{A}^{\dagger} \Rightarrow \text { there exist } y, z \in \mathcal{A}^{-1} \text { such that } x^{\dagger}=y x^{*}=x^{*} z \tag{1.3}
\end{equation*}
$$

2. Characterizations of co-EP elements in a C^{*}-algebra. The main result of this section characterizes when $a a^{\dagger}-a^{\dagger} a$ is invertible if a is an element of a unital C^{*}-algebra that has a Moore-Penrose inverse. Before presenting this characterization, let us prove the following lemma:

Lemma 2.1. Let \mathcal{A} be a C^{*}-algebra with unity 1 and $a \in \mathcal{A}^{\dagger}$. If $h \in \mathcal{A}$ is an idempotent satisfying $h^{\perp}=a^{\dagger} a$ and $(1-h)^{\perp}=a a^{\dagger}$, then $a+a^{*} \in \mathcal{A}^{-1}$ and

$$
\begin{equation*}
a h^{*}=a, \quad h a=0, \quad\left(a+a^{*}\right)^{-1}=h^{*} a^{\dagger}(1-h)+\left(1-h^{*}\right)\left(a^{\dagger}\right)^{*} h \tag{2.1}
\end{equation*}
$$

Proof. From $h^{\perp}=a^{\dagger} a$ and $(1-h)^{\perp}=a a^{\dagger}$ we have

$$
\begin{equation*}
a^{\dagger} a h=h, \quad h a^{\dagger} a=a^{\dagger} a, \quad a a^{\dagger}(1-h)=1-h, \quad(1-h) a a^{\dagger}=a a^{\dagger} \tag{2.2}
\end{equation*}
$$

Recall that $a a^{\dagger}$ and $a^{\dagger} a$ are self-adjoint. Taking * in the second equality of (2.2) and premultiplying by a we have $a h^{*}=a$. Postmultiplying the last equality of (2.2) by a yields $h a=0$. Now, we will prove that $a+a^{*}$ is invertible with inverse $h^{*} a^{\dagger}(1-h)+\left(1-h^{*}\right)\left(a^{\dagger}\right)^{*} h$. Indeed,

$$
\begin{aligned}
&\left(a+a^{*}\right) {\left[h^{*} a^{\dagger}(1-h)+\left(1-h^{*}\right)\left(a^{\dagger}\right)^{*} h\right] } \\
&=a h^{*} a^{\dagger}(1-h)+a^{*} h^{*} a^{\dagger}(1-h)+a\left(1-h^{*}\right)\left(a^{\dagger}\right)^{*} h+a^{*}\left(1-h^{*}\right)\left(a^{\dagger}\right)^{*} h \\
& \quad=a a^{\dagger}(1-h)+a^{*}\left(a^{\dagger}\right)^{*} h=1-h+\left(a^{\dagger} a\right)^{*} h=1
\end{aligned}
$$

Set $u=a+a^{*}$ and $v=h^{*} a^{\dagger}(1-h)+\left(1-h^{*}\right)\left(a^{\dagger}\right)^{*} h$. Since $u v=1$ and u and v are self-adjoint, we get $1=1^{*}=(u v)^{*}=v^{*} u^{*}=v u$. Therefore, $v=u^{-1}$. ■

Theorem 2.2. Let \mathcal{A} be a unital C^{*}-algebra and $a \in \mathcal{A}$. Then the following conditions are equivalent:
(i) $a \in \mathcal{A}_{\mathrm{co}}^{\mathrm{ep}}$.
(ii) $a+a^{*} \in \mathcal{A}^{-1}$ and there exists an idempotent $p \in \mathcal{A}$ such that $a p=a$ and $p^{*} a=0$.
(iii) $a-a^{*} \in \mathcal{A}^{-1}$ and there exists an idempotent $p \in \mathcal{A}$ such that $a p=a$ and $p^{*} a=0$.
(iv) $a a^{*}+a^{*} a \in \mathcal{A}^{-1}$ and $a \mathcal{A} \cap a^{*} \mathcal{A}=\{0\}$.
(v) $a+a^{*} \in \mathcal{A}^{-1}, a\left(a+a^{*}\right)^{-1} a=a$, and $a^{*}\left(a+a^{*}\right)^{-1} a=0$.
(vi) $a-a^{*} \in \mathcal{A}^{-1}, a\left(a-a^{*}\right)^{-1} a=a$, and $a^{*}\left(a-a^{*}\right)^{-1} a=0$.
(vii) $a \mathcal{A} \oplus a^{*} \mathcal{A}=\mathcal{A}$.

Proof. Let 1 be the unity of \mathcal{A}.
$(\mathrm{i}) \Rightarrow(\mathrm{ii})$: We shall use the implication (viii) \Rightarrow (ii) of [K-R2, Theorem 4.1]. Checking the proof of that implication, we can observe that the two projections involved need not be nontrivial. Since $a a^{\dagger}, a^{\dagger} a$ are projections and $a a^{\dagger}-$ $a^{\dagger} a$ is invertible, by using the aforementioned implication, $h=\pi\left(a^{\dagger} a, a a^{\dagger}\right)$ exists. By definition of $\pi\left(a^{\dagger} a, a a^{\dagger}\right)$ we get $h^{\perp}=a^{\dagger} a$ and $(1-h)^{\perp}=a a^{\dagger}$. By

Lemma 2.1 we see that $a+a^{*} \in \mathcal{A}^{-1}$ and by setting $p=h^{*}$, another appeal to Lemma 2.1 finishes the proof of $(\mathrm{i}) \Rightarrow$ (ii).
(ii) \Leftrightarrow (iii): Assume that p is an idempotent such that $a p=a$ and $p^{*} a=0$. Since $\left(a+a^{*}\right)(2 p-1)=2 a p-a+2 a^{*} p-a^{*}=a-a^{*}$ and $2 p-1$ is invertible (because $(2 p-1)^{2}=1$) we have $a+a^{*} \in \mathcal{A}^{-1} \Leftrightarrow a-a^{*} \in \mathcal{A}^{-1}$.
(iii) \Rightarrow (iv): First, note that $1-p-p^{*} \in \mathcal{A}^{-1}$ because $\left(1-p-p^{*}\right)^{2}=$ $1+\left(p-p^{*}\right)\left(p-p^{*}\right)^{*}$. Now,

$$
\begin{aligned}
\left(a+a^{*}\right)\left(1-p-p^{*}\right)\left(a-a^{*}\right) & =\left[a(1-p)+a^{*}(1-p)-a p^{*}-a^{*} p^{*}\right]\left(a-a^{*}\right) \\
& =\left[a^{*}-a p^{*}-a^{*} p^{*}\right]\left(a-a^{*}\right) \\
& =a^{*} a-a p^{*} a-a^{*} p^{*} a-\left(a^{*}\right)^{2}+a p^{*} a^{*}+a^{*} p^{*} a^{*} \\
& =a^{*} a+a a^{*} .
\end{aligned}
$$

Since the hypothesis also implies that $a+a^{*} \in \mathcal{A}^{-1}$ (because (ii) $\Leftrightarrow($ iii)), the previous computations show that $a a^{*}+a^{*} a \in \mathcal{A}^{-1}$.

To prove $a \mathcal{A} \cap a^{*} \mathcal{A}=\{0\}$, pick $x \in a \mathcal{A} \cap a^{*} \mathcal{A}$. There exist $u, v \in \mathcal{A}$ with $x=a u=a^{*} v$, hence $p^{*} a u=p^{*} a^{*} v$, and therefore $0=a^{*} v$, because $p^{*} a=0$ and $p^{*} a^{*}=a^{*}$. Thus, $x=a^{*} v=0$.
(iv) $\Rightarrow(\mathrm{v})$: Since $a a^{*}+a^{*} a$ is invertible, there exists $x \in \mathcal{A}$ such that

$$
\begin{equation*}
1=\left(a a^{*}+a^{*} a\right) x . \tag{2.3}
\end{equation*}
$$

Thus, $a=a a^{*} x a+a^{*} a x a$. Since $a^{*} a x a=a\left(1-a^{*} x a\right)$ we have $a^{*} a x a \in$ $a \mathcal{A} \cap a^{*} \mathcal{A}=\{0\}$. Therefore, $a=a a^{*} x a$, which means that a is regular. Property 1.3 leads to $a^{\dagger} a \mathcal{A} \subset a^{*} \mathcal{A}$. Having in mind that $a a^{\dagger} \mathcal{A} \subset a \mathcal{A}$ and $a \mathcal{A} \cap a^{*} \mathcal{A}=\{0\}$ we obtain $a a^{\dagger} \mathcal{A} \cap a^{\dagger} a \mathcal{A}=\{0\}$. To prove $a a^{\dagger} \mathcal{A}+a^{\dagger} a \mathcal{A}=\mathcal{A}$, it is sufficient to show that $1 \in a a^{\dagger} \mathcal{A}+a^{\dagger} a \mathcal{A}$. By (1.3), there exist $u, v \in \mathcal{A}^{-1}$ such that $a^{*}=a^{\dagger} u$ and $a^{*}=v a^{\dagger}$. Since $a^{*} a=\left(a^{*} a\right)^{*}=\left(v a^{\dagger} a\right)^{*}=a^{\dagger} a v^{*}$, from (2.3) we have

$$
1=a a^{*} x+a^{*} a x=a a^{\dagger} u+a^{\dagger} a v^{*} \in a a^{\dagger} \mathcal{A}+a^{\dagger} a \mathcal{A} .
$$

Note that the equivalence (i) \Leftrightarrow (ii) of [K-R2, Theorem 4.1] does not use the nontriviality of the projections involved. Thus, by that equivalence, the idempotent $h=\pi\left(a a^{\dagger}, a^{\dagger} a\right)$ exists, and so $h^{\perp}=a a^{\dagger}$ and $(1-h)^{\perp}=a^{\dagger} a$. By Lemma 2.1, we have $a+a^{*} \in \mathcal{A}^{-1}$. From (2.1) we get

$$
a\left(a+a^{*}\right)^{-1} a=a\left[h^{*} a^{\dagger}(1-h)+\left(1-h^{*}\right)\left(a^{\dagger}\right)^{*} h\right] a=a a^{\dagger} a=a
$$

and

$$
a^{*}\left(a+a^{*}\right)^{-1} a=a^{*}\left[h^{*} a^{\dagger}(1-h)+\left(1-h^{*}\right)\left(a^{\dagger}\right)^{*} h\right] a=0 .
$$

$(\mathrm{v}) \Rightarrow(\mathrm{vi})$: Set $q=\left(a+a^{*}\right)^{-1} a$. From the hypothesis, it is trivial to check that $q^{2}=q, a q=a$, and $a^{*} q=0$. The equalities $\left(a+a^{*}\right)(2 q-1)=a-a^{*}$ and $(2 q-1)^{2}=1$ lead to $a-a^{*} \in \mathcal{A}^{-1}$ and $\left(a-a^{*}\right)^{-1}=(2 q-1)\left(a+a^{*}\right)^{-1}$. Now we have

$$
a\left(a-a^{*}\right)^{-1} a=a(2 q-1)\left(a+a^{*}\right)^{-1} a=a\left(a+a^{*}\right)^{-1} a=a
$$

and

$$
a^{*}\left(a-a^{*}\right)^{-1} a=a^{*}(2 q-1)\left(a+a^{*}\right)^{-1} a=-a^{*}\left(a+a^{*}\right)^{-1} a=0
$$

(vi) \Rightarrow (vii): To prove $a \mathcal{A}+a^{*} \mathcal{A}=\mathcal{A}$ it is sufficient to prove $1 \in a \mathcal{A}+a^{*} \mathcal{A}$: in fact, since $a-a^{*}$ is invertible, there exists $x \in \mathcal{A}$ such that $1=\left(a-a^{*}\right) x$, and thus $1=a x+a^{*}(-x) \in a \mathcal{A}+a^{*} \mathcal{A}$. Now, let us prove $a \mathcal{A} \cap a^{*} \mathcal{A}=\{0\}$: if $y \in a \mathcal{A} \cap a^{*} \mathcal{A}$, there exist $u, v \in \mathcal{A}$ with $y=a u=a^{*} v$; hence

$$
y^{*}=v^{*} a=v^{*} a\left(a-a^{*}\right)^{-1} a=u^{*} a^{*}\left(a-a^{*}\right)^{-1} a=0
$$

and therefore $y=0$.
(vii) $\Rightarrow(\mathrm{i})$: Since $\mathcal{A}=a \mathcal{A}+a^{*} \mathcal{A}$, we have $1=a x+a^{*} y$ for some $x, y \in \mathcal{A}$. Thus, $a=a x a+a^{*} y a$. Hence $a^{*} y a=a(1-x a) \in a \mathcal{A} \cap a^{*} \mathcal{A}=\{0\}$. Therefore, $a=a x a$, which means that a is regular. By the equivalence (i) \Leftrightarrow (ii) of [K-R2, Theorem 4.1], the idempotent $h=\pi\left(a^{\dagger} a, a a^{\dagger}\right)$ exists, and thus $h^{\perp}=a^{\dagger} a$ and $(1-h)^{\perp}=a a^{\dagger}$. By the Kerzman-Stein formula (1.2) we get

$$
\begin{aligned}
a a^{\dagger} & -a^{\dagger} a=(1-h)^{\perp}-h^{\perp} \\
& =(1-h)\left[(1-h)+(1-h)^{*}-1\right]^{-1}-h\left[h+h^{*}-1\right]^{-1}=\left(1-h-h^{*}\right)^{-1}
\end{aligned}
$$

This implies that $a a^{\dagger}-a^{\dagger} a$ is invertible.
Corollary 2.3. Let \mathcal{A} be a unital C^{*}-algebra and $a \in \mathcal{A}_{\mathrm{co}}^{\mathrm{ep}}$. The idempotent p in conditions (ii) and (iii) of the preceding theorem is unique and satisfies

$$
\begin{equation*}
p=\left[\pi\left(a^{\dagger} a, a a^{\dagger}\right)\right]^{*} \tag{2.4}
\end{equation*}
$$

Proof. From $\left(a+a^{*}\right) p=a p+a^{*} p=a+0=a$ and the invertibility of $a+a^{*}$ we get $p=\left(a+a^{*}\right)^{-1} a$, proving the uniqueness. Now, 2.4 follows from the proof of the preceding theorem.

The following corollary collects some useful formulæ.
Corollary 2.4. Let \mathcal{A} be a unital C^{*}-algebra with unity 1. If $a \in \mathcal{A}_{\mathrm{co}}^{\mathrm{ep}}$ and $p=\left[\pi\left(a^{\dagger} a, a a^{\dagger}\right)\right]^{*}$, then:
(i) $\left[p^{*}\right]^{\perp}=a^{\dagger} a$ and $\left[1-p^{*}\right]^{\perp}=a a^{\dagger}$.
(ii) $p=\left(a+a^{*}\right)^{-1} a=\left(a-a^{*}\right)^{-1} a$.
(iii) $\left(a a^{\dagger}-a^{\dagger} a\right)^{-1}=1-p-p^{*}$.
(iv) $\left(a a^{\dagger}-a^{\dagger} a\right)^{-1}=\left(a+a^{*}\right)^{-1}\left(a a^{*}+a^{*} a\right)\left(a-a^{*}\right)^{-1}$.
(v) $\left(a a^{\dagger}-a^{\dagger} a\right)^{-1}=\left(a+a^{*}\right)^{-1}\left(a a^{*}-a^{*} a\right)\left(a+a^{*}\right)^{-1}$ $=\left(a-a^{*}\right)^{-1}\left(a a^{*}-a^{*} a\right)\left(a-a^{*}\right)^{-1}$.

Proof. Items (i), (iii), and (iv) are distilled from the proof of Theorem 2.2. Item (ii) follows from the proof of Corollary 2.3. Item (v) follows by mimicking the proof of $(\mathrm{iii}) \Rightarrow$ (iv) of Theorem 2.2 .

In the setting of Hilbert spaces, Buckholtz proved that if R and K are closed subspaces of a Hilbert space \mathcal{H}, and P_{R} and P_{K} denote the orthogonal projections onto these subspaces, then $P_{R}-P_{K}$ is invertible if and only if there exists an idempotent M with range R and kernel K (see Buc1, Buc2]). Moreover, $\left(P_{R}-P_{K}\right)^{-1}=M+M^{*}-I$. Observe that the formula in Corollary 2.4 (iii) is a version of this in the C^{*}-algebra setting when the projections are $a a^{\dagger}$ and $a^{\dagger} a$.

Example 2.5. Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space and $\mathcal{B}(\mathcal{H})$ the set of bounded operators in \mathcal{H}. Let $T \in \mathcal{B}(\mathcal{H})$ be invertible and $\alpha, \beta \in \mathbb{R}$ be such that $\alpha^{2}+\beta^{2}=1$ and $\beta \neq 0$. We consider the Hilbert space $\mathcal{H} \times \mathcal{H}$ endowed with the inner product $\langle(\mathbf{x}, \mathbf{y}),(\mathbf{u}, \mathbf{v})\rangle=\langle\mathbf{x}, \mathbf{u}\rangle+\langle\mathbf{y}, \mathbf{v}\rangle$. Define the operator R in $\mathcal{H} \times \mathcal{H}$ by $R(\mathbf{x}, \mathbf{y})=(\alpha T \mathbf{x}+\beta T \mathbf{y}, \mathbf{0})$. By checking (1.1), it is a textbook exercise to prove that R is Moore-Penrose invertible and $R^{\dagger}(\mathbf{x}, \mathbf{y})=\left(\alpha T^{-1} \mathbf{x}, \beta T^{-1} \mathbf{x}\right)$. Thus we can compute $R^{\dagger} R-R R^{\dagger}$ obtaining

$$
\left(R^{\dagger} R-R R^{\dagger}\right)(\mathbf{x}, \mathbf{y})=\beta(-\beta \mathbf{x}+\alpha \mathbf{y}, \alpha \mathbf{x}+\beta \mathbf{y})
$$

We can easily check that the operator $S \in \mathcal{B}(\mathcal{H} \times \mathcal{H})$ given by $S(\mathbf{x}, \mathbf{y})=$ $\left(-\mathbf{x}+\alpha \beta^{-1} \mathbf{y}, \alpha \beta^{-1} \mathbf{x}+\mathbf{y}\right)$ is the inverse of $R^{\dagger} R-R R^{\dagger}$. Hence R is co-EP. Furthermore, if we define $P \in \mathcal{B}(\mathcal{H} \times \mathcal{H})$ by $P(\mathbf{x}, \mathbf{y})=\left(\mathbf{0}, \alpha \beta^{-1} \mathbf{x}+\mathbf{y}\right)$, we get $P^{2}=P$ and $R P=R$. The computation

$$
\begin{aligned}
\langle P(\mathbf{x}, \mathbf{y}),(\mathbf{u}, \mathbf{v})\rangle & =\left\langle\left(\mathbf{0}, \alpha \beta^{-1} \mathbf{x}+\mathbf{y}\right),(\mathbf{u}, \mathbf{v})\right\rangle \\
& =\left\langle\mathbf{x}, \alpha \beta^{-1} \mathbf{v}\right\rangle+\langle\mathbf{y}, \mathbf{v}\rangle=\left\langle(\mathbf{x}, \mathbf{y}),\left(\alpha \beta^{-1} \mathbf{v}, \mathbf{v}\right)\right\rangle
\end{aligned}
$$

shows that $P^{*}(\mathbf{x}, \mathbf{y})=\left(\alpha \beta^{-1} \mathbf{y}, \mathbf{y}\right)$, which implies $P^{*} R=0$. Therefore, P is the idempotent given by Theorem 2.2 .
3. A distinguished subset of co-EP elements in a C^{*}-algebra. If $a \in \mathcal{A}_{\mathrm{co}}^{\mathrm{ep}}$, then the idempotent $\pi\left(a^{\dagger} a, a a^{\dagger}\right)$ exists. In this section we characterize the elements $a \in \mathcal{A}_{\mathrm{co}}^{\mathrm{ep}}$ such that $\pi\left(a^{\dagger} a, a a^{\dagger}\right)$ is a projection.

Definition 3.1. Let \mathcal{A} be a unital C^{*}-algebra. We denote by $\mathcal{A}_{\mathrm{co}}^{\mathrm{ep}}$ the subset of $\mathcal{A}_{\mathrm{co}}^{\mathrm{ep}}$ consisting of the elements a such that $\pi\left(a^{\dagger} a, a a^{\dagger}\right)$ is self-adjoint.

We shall use the following notation: If $X, Y \subset \mathcal{A}$, then

$$
X \perp Y \Leftrightarrow x^{*} y=0 \forall(x, y) \in X \times Y
$$

It is evident (by the C^{*}-identity) that $X \perp Y$ implies that $X \cap Y \subset\{0\}$.
Theorem 3.2. Let \mathcal{A} be a C^{*}-algebra with unity 1 and $a \in \mathcal{A}$. Then the following conditions are equivalent:
(i) $a \in \mathcal{A}_{\mathrm{co}}^{\mathrm{ep}_{\perp}}$.
(ii) $a \in \mathcal{A}^{\dagger}$ and $a a^{\dagger}+a^{\dagger} a=1$.
(iii) $a \in \mathcal{A}^{\dagger}$ and $a \mathcal{A}=\{x \in \mathcal{A}: a x=0\}$.
(iv) $a \mathcal{A} \perp a^{*} \mathcal{A}$ and $a \mathcal{A}+a^{*} \mathcal{A}=\mathcal{A}$.
(v) $a \in \mathcal{A}^{\dagger}$ and $\left(a a^{\dagger}-a^{\dagger} a\right)^{2}=1$.

Proof. (i) \Rightarrow (ii): Let p be the idempotent given in Theorem 2.2 . We shall prove $a a^{\dagger}=1-p$ and $a^{\dagger} a=p$. By Corollary 2.3, we have $\pi\left(a^{\dagger} a, a a^{\dagger}\right)=p^{*}$. Applying the definition of $\pi(\cdot, \cdot)$ we have $\left(p^{*}\right)^{\perp}=a^{\dagger} a$ and $\left(1-p^{*}\right)^{\perp}=a a^{\dagger}$. Since $p=p^{*}$ we obtain $p=a^{\dagger} a$ and $1-p=a a^{\dagger}$.
(ii) \Rightarrow (iii): Postmultiplying $a a^{\dagger}+a^{\dagger} a=1$ by a leads to $a^{\dagger} a^{2}=0$, which by premultiplying by a yields $a^{2}=0$, and this implies that $a \mathcal{A} \subset\{x \in \mathcal{A}$: $a x=0\}$. To prove the opposite inclusion, pick $x \in \mathcal{A}$ with $a x=0$; then from $1=a a^{\dagger}+a^{\dagger} a$ we get $x=\left(a a^{\dagger}+a^{\dagger} a\right) x=a a^{\dagger} x \in a \mathcal{A}$.
(iii) \Rightarrow (iv): Since $a \in a \mathcal{A}=\{x \in \mathcal{A}: a x=0\}$, we obtain $a^{2}=0$. Since for any $x, y \in \mathcal{A}$ we have $(a x)^{*}\left(a^{*} y\right)=x^{*}\left(a^{2}\right)^{*} y=0$, we get $a \mathcal{A} \perp a^{*} \mathcal{A}$. To prove $a \mathcal{A}+a^{*} \mathcal{A}=\mathcal{A}$, it is sufficient to prove $1 \in a \mathcal{A}+a^{*} \mathcal{A}$: in fact, from $a^{\dagger} a-1 \in\{x \in \mathcal{A}: a x=0\}=a \mathcal{A}$, there exists $u \in \mathcal{A}$ such that $a^{\dagger} a-1=a u$. Thus, $1=a^{\dagger} a-a u=\left(a^{\dagger} a\right)^{*}-a u=a(-u)+a^{*}\left(a^{\dagger}\right)^{*} \in a \mathcal{A}+a^{*} \mathcal{A}$.
(iv) $\Rightarrow(\mathrm{v})$: Since $a \mathcal{A} \perp a^{*} \mathcal{A}$ we have $a^{2}=0$. By using 1.3 we get the existence of $y, z \in \mathcal{A}^{-1}$ such that $a^{\dagger}=y a^{*}$ and $a^{\dagger}=a^{*} z$, and therefore $\left(a^{\dagger}\right)^{2}=y a^{*} a^{*} z=0$. Since $a \mathcal{A} \oplus a^{*} \mathcal{A}=\mathcal{A}$, by Theorem 2.2 and Corollary 2.3 , there exists a unique idempotent p such that $a p=a$ and $p^{*} a=0$. Observe that $a^{\dagger} a$ is an idempotent and

$$
a\left(a^{\dagger} a\right)=a, \quad\left(a^{\dagger} a\right)^{*} a=a^{\dagger} a^{2}=0
$$

thus, the uniqueness of p yields $p=a^{\dagger} a$. Furthermore, $1-a a^{\dagger}$ is another idempotent and

$$
a\left(1-a a^{\dagger}\right)=a-a^{2} a^{\dagger}=a, \quad\left(1-a a^{\dagger}\right)^{*} a=\left(1-a a^{\dagger}\right) a=0
$$

Again, the uniqueness of p leads to $p=1-a a^{\dagger}$. Thus, $\left(a a^{\dagger}-a^{\dagger} a\right)^{2}=a a^{\dagger} a a^{\dagger}-a\left(a^{\dagger}\right)^{2} a-a^{\dagger} a^{2} a^{\dagger}+a^{\dagger} a a^{\dagger} a=a a^{\dagger}+a^{\dagger} a=1-p+p=1$.
$(\mathrm{v}) \Rightarrow(\mathrm{i})$: The hypothesis $\left(a a^{\dagger}-a^{\dagger} a\right)^{2}=1$ entails that $a a^{\dagger}-a^{\dagger} a$ is invertible, and by Corollary 2.4 we get $\left(a a^{\dagger}-a^{\dagger} a\right)^{-1}=1-p-p^{*}$, where p is the idempotent obtained in Theorem 2.2. Therefore, $\left(1-p-p^{*}\right)^{2}=$ $\left(a a^{\dagger}-a^{\dagger} a\right)^{-2}=1$. Now we have

$$
1=\left(1-p-p^{*}\right)^{2}=1-p-p^{*}+p p^{*}+p^{*} p
$$

Thus, $p+p^{*}=p p^{*}+p^{*} p$, which easily leads to $\left(p-p^{*}\right)\left(p-p^{*}\right)^{*}=0$. The C^{*}-identity yields $p=p^{*}$.

Corollary 3.3. If $a \in \mathcal{A}_{\mathrm{co}}{ }^{\mathrm{ep}}$, then the projector p given in Theorem 2.2 is $a^{\dagger} a$.

In case $a \in \mathcal{A}_{\mathrm{co}}^{\mathrm{ep}}{ }_{\perp}$, the following corollary gives some formulæ that relate a^{\dagger} to $\left(a+a^{*}\right)^{-1}$ and $\left(a-a^{*}\right)^{-1}$.

Corollary 3.4. If $a \in \mathcal{A}_{\mathrm{co}}^{\mathrm{ep}}{ }^{\perp}$, then:
(i) $a^{\dagger}=\left(a+a^{*}\right)^{-1} a\left(a+a^{*}\right)^{-1}$.
(ii) $a^{\dagger}=\left(a+a^{*}\right)^{-1} a\left(a-a^{*}\right)^{-1}$.
(iii) $a^{\dagger}=\left(a-a^{*}\right)^{-1} a\left(a+a^{*}\right)^{-1}$.
(iv) $a^{\dagger}=\left(a-a^{*}\right)^{-1} a\left(a-a^{*}\right)^{-1}$.

Proof. Observe that by $\sqrt{1.3}$ there exists $y \in \mathcal{A}^{-1}$ such that $a^{\dagger}=y a^{*}$. From the proof of Theorem 3.2 , one finds that $a^{2}=0$. Hence $a^{\dagger} a^{*}=y a^{*} a^{*}=$ $y\left(a^{2}\right)^{*}=0$. Furthermore, $a^{*} a^{\dagger} a=a^{*}\left(a^{\dagger} a\right)^{*}=\left(a^{\dagger} a a\right)^{*}=0$. Therefore,

$$
\left(a+a^{*}\right) a^{\dagger}\left(a+a^{*}\right)=a+a a^{\dagger} a^{*}+a^{*} a^{\dagger} a+a^{*} a^{\dagger} a^{*}=a .
$$

The remaining assertions are proved in a similar way.
Example 3.5. This is a continuation of Example 2.5, If we set $\alpha=0$ and $\beta=1$ we get $R(\mathbf{x}, \mathbf{y})=(T \mathbf{y}, \mathbf{0})$ and $R^{\dagger}(\mathbf{x}, \mathbf{y})=\left(\mathbf{0}, T^{-1} \mathbf{x}\right)$. Obviously,

$$
\begin{aligned}
\left(R R^{\dagger}+R^{\dagger} R\right)(\mathbf{x}, \mathbf{y}) & =R\left(\mathbf{0}, T^{-1} \mathbf{x}\right)+R^{\dagger}(T \mathbf{y}, \mathbf{0}) \\
& =(\mathbf{x}, \mathbf{0})+(\mathbf{0}, \mathbf{y})=(\mathbf{x}, \mathbf{y}) .
\end{aligned}
$$

Thus, the operator R satisfies item (ii) of Theorem 3.2, Another way of seeing this is by setting $\alpha=0$ and $\beta=1$ in the expression for the idempotent P obtained in Example 2.5 we get $P(\mathbf{x}, \mathbf{y})=(\mathbf{0}, \mathbf{y})$, which is obviously self-adjoint.
4. Limits of sequences of co-EP elements in a C^{*}-algebra. In this section we shall research the following problem. Let $\left(a_{m}\right)_{m=1}^{\infty}$ be a convergent sequence in a C^{*}-algebra and $a=\lim _{n \rightarrow \infty} a_{n}$. We ask:
(a) if $a_{n} \in \mathcal{A}_{\mathrm{co}}^{\mathrm{ep}}$ for all $n \in \mathbb{N}$, when $a \in \mathcal{A}_{\mathrm{co}}^{\mathrm{ep}}$?
(b) if $a_{n} \in \mathcal{A}_{\mathrm{co}}^{\mathrm{ep}} \perp$ for all $n \in \mathbb{N}$, when $a \in \mathcal{A}_{\mathrm{co}}^{\mathrm{ep}{ }_{\perp}}$?

We shall introduce some notation before answering these questions. To motivate the following definition, let us recall that the minimal angle between two nonzero subspaces $\mathcal{M}, \mathcal{N} \subset \mathbb{R}^{n}$ is the number $\theta \in[0, \pi / 2]$ for which $\cos \theta=\left\|P_{\mathcal{M}} P_{\mathcal{N}}\right\|$, where $P_{\mathcal{M}}$ and $P_{\mathcal{N}}$ are the orthogonal projectors onto \mathcal{M} and \mathcal{N}, respectively (see [Mey, Chapter 5]).

Definition 4.1. Let p and q be two projections in a C^{*}-algebra. The angle between p and q is defined to be the number $\theta_{p, q} \in[0, \pi / 2]$ such that $\cos \theta_{p, q}=\|p q\|$.

By observing that $\|p q\|=\left\|(p q)^{*}\right\|$, one sees that $\theta_{p, q}=\theta_{q, p}$.
Theorem 4.2. Let \mathcal{A} be a unital C^{*}-algebra and $\left(a_{n}\right)_{n=1}^{\infty}$ a sequence of elements in $\mathcal{A}_{\mathrm{co}}^{\mathrm{ep}}$ that converges to a. Then the following conditions are equivalent:
(i) $a \in \mathcal{A}^{\dagger}$ and $\lim _{n \rightarrow \infty} a_{n}^{\dagger}=a^{\dagger}$ and there exist $\theta_{0}>0$ and $n_{0} \in \mathbb{N}$ such that $\theta_{a_{n} a_{n}^{\dagger}, a_{n}^{\dagger} a_{n}}>\theta_{0}$ for all $n \geq n_{0}$.
(ii) $a \in \mathcal{A}_{\mathrm{co}}^{\mathrm{ep}}$.

Proof. (i) \Rightarrow (ii): Since $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} a_{n}^{\dagger}=a^{\dagger}$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(a_{n} a_{n}^{\dagger}-a_{n}^{\dagger} a_{n}\right)=a a^{\dagger}-a^{\dagger} a \tag{4.1}
\end{equation*}
$$

Since $a_{n} \in \mathcal{A}_{\mathrm{co}}^{\mathrm{ep}}$, there exist idempotents p_{n} obtained in Theorem 2.2. By Corollary 2.4, we have $\left(a_{n} a_{n}^{\dagger}-a_{n}^{\dagger} a_{n}\right)^{-1}=1-p_{n}-p_{n}^{*}$. Observe that p_{n} is not a trivial idempotent (if $p_{n}=0$, then $a_{n}=a_{n} p_{n}=0$; if $p_{n}=1$, then $a_{n}=p_{n}^{*} a_{n}=0$; in both cases, $a_{n}=0 \notin \mathcal{A}_{\mathrm{co}}^{\mathrm{ep}}$, contrary to the hypothesis). By [K-R2, Lemma 2.3] we have $\left\|1-p_{n}-p_{n}^{*}\right\|=\left\|p_{n}\right\|=\left\|p_{n}^{*}\right\|$, and by K-R2, Theorem 3.1] we have $\left\|p_{n}^{*}\right\|=\left(1-\left\|\left(p_{n}^{*}\right)^{\perp}\left(1-p_{n}^{*}\right)^{\perp}\right\|^{2}\right)^{-1 / 2}$. Moreover, we use item (i) of Corollary 2.4 to obtain $\left\|\left(p_{n}^{*}\right)^{\perp}\left(1-p_{n}^{*}\right)^{\perp}\right\|=\left\|\left(a_{n}^{\dagger} a_{n}\right)\left(a_{n} a_{n}^{\dagger}\right)\right\|=$ $\cos \theta_{a_{n}^{\dagger} a_{n}, a_{n} a_{n}^{\dagger}}$. Thus by Corollary 2.4 (iii) we get

$$
\left\|\left(a_{n} a_{n}^{\dagger}-a_{n}^{\dagger} a_{n}\right)^{-1}\right\|=\frac{1}{\sin \theta_{a_{n} a_{n}^{\dagger}, a_{n}^{\dagger} a_{n}}}
$$

By assumption, the sequence $\left(\left\|\left(a_{n} a_{n}^{\dagger}-a_{n}^{\dagger} a_{n}\right)^{-1}\right\|\right)_{n=1}^{\infty}$ is bounded. Hence (4.1) implies that $a a^{\dagger}-a^{\dagger} a \in \mathcal{A}^{-1}$, i.e., $a \in \mathcal{A}_{\mathrm{co}}^{\mathrm{ep}}$.
$(\mathrm{ii}) \Rightarrow(\mathrm{i})$: To prove this, we only have to prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n}^{\dagger}=a^{\dagger} \tag{4.2}
\end{equation*}
$$

In fact: if 4.2 is true, then $\lim _{n \rightarrow \infty}\left(a_{n} a_{n}^{\dagger}-a_{n}^{\dagger} a_{n}\right)=a a^{\dagger}-a^{\dagger} a$. Thus (recall that $a \in \mathcal{A}_{\mathrm{co}}^{\mathrm{ep}}$ by hypothesis), $\lim _{n \rightarrow \infty}\left(a_{n} a_{n}^{\dagger}-a_{n}^{\dagger} a_{n}\right)^{-1}=\left(a a^{\dagger}-a^{\dagger} a\right)^{-1}$. Therefore, the sequence $\left(\left\|\left(a_{n} a_{n}^{\dagger}-a_{n}^{\dagger} a_{n}\right)^{-1}\right\|\right)_{n=1}^{\infty}$ is bounded, and as in the proof of $(\mathrm{i}) \Rightarrow(\mathrm{ii})$, there exist $\theta_{0}>0$ and $n_{0} \in \mathbb{N}$ such that $\theta_{a_{n} a_{n}^{\dagger}, a_{n}^{\dagger} a_{n}}>\theta_{0}$ for all $n \geq n_{0}$.

Let us prove 4.2 : Let p_{n} and p be the idempotents obtained in Theorem 2.2, i.e.,

$$
\begin{equation*}
p_{n}=\left(a_{n}+a_{n}^{*}\right)^{-1} a_{n} \quad \forall n \in \mathbb{N}, \quad p=\left(a+a^{*}\right)^{-1} a . \tag{4.3}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} p_{n}=p \tag{4.4}
\end{equation*}
$$

Let us remark that the invertibility of $a_{n} a_{n}^{\dagger}-a_{n}^{\dagger} a_{n}$ implies the invertibility of $a_{n} a_{n}^{\dagger}+a_{n}^{\dagger} a_{n}$ and that (see [K-R1, Theorem 3.5])

$$
\begin{align*}
\left(a_{n} a_{n}^{\dagger}+a_{n}^{\dagger} a_{n}\right)^{-1} & =1-p_{n}-p_{n}^{*}+2 p_{n} p_{n}^{*} \tag{4.5}\\
\left(a a^{\dagger}+a^{\dagger} a\right)^{-1} & =1-p-p^{*}+2 p p^{*}
\end{align*}
$$

Also, from Corollary 2.4 (iii) we have

$$
\begin{equation*}
\left(a_{n} a_{n}^{\dagger}-a_{n}^{\dagger} a_{n}\right)^{-1}=1-p_{n}-p_{n}^{*}, \quad\left(a a^{\dagger}-a^{\dagger} a\right)^{-1}=1-p-p^{*} \tag{4.6}
\end{equation*}
$$

Clearly, 4.4-4.6 imply

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(a_{n} a_{n}^{\dagger}-a_{n}^{\dagger} a_{n}\right)^{-1} & =\left(a a^{\dagger}-a^{\dagger} a\right)^{-1} \\
\lim _{n \rightarrow \infty}\left(a_{n} a_{n}^{\dagger}+a_{n}^{\dagger} a_{n}\right)^{-1} & =\left(a a^{\dagger}+a^{\dagger} a\right)^{-1}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(a_{n} a_{n}^{\dagger}-a_{n}^{\dagger} a_{n}\right)=a a^{\dagger}-a^{\dagger} a, \quad \lim _{n \rightarrow \infty}\left(a_{n} a_{n}^{\dagger}+a_{n}^{\dagger} a_{n}\right)=a a^{\dagger}+a^{\dagger} a \tag{4.7}
\end{equation*}
$$

Therefore, $\lim _{n \rightarrow \infty} a_{n} a_{n}^{\dagger}=a a^{\dagger}$, i.e., $\lim _{n \rightarrow \infty} a_{n}^{\dagger}=a^{\dagger}$ (see, e.g., Kol4, Theorem 3.7] or [Rak, Theorem 2.2]).

Example 4.3. This is a continuation of Example 2.5. Define $R_{n}(\mathbf{x}, \mathbf{y})=$ $\left(\alpha_{n} T \mathbf{x}+\beta_{n} T \mathbf{y}, 0\right)$, where $\alpha_{n}=\cos (1 / n)$ and $\beta_{n}=\sin (1 / n)$ for $n \in \mathbb{N}$ and $L(\mathbf{x}, \mathbf{y})=(T \mathbf{x}, \mathbf{0})$. The following elementary facts can be easily checked:
(a) $\lim _{n \rightarrow \infty} R_{n}=L$.
(b) L is Moore-Penrose invertible and $L^{\dagger}(\mathbf{x}, \mathbf{y})=\left(T^{-1} \mathbf{x}, \mathbf{0}\right)$.
(c) $L L^{\dagger}-L^{\dagger} L=0$, which implies that the subset of co-EP elements in a C^{*}-algebra is not always closed.
(d) $\lim _{n \rightarrow \infty} R_{n}^{\dagger}=L^{\dagger}$.
(e) Let $U_{n}=R_{n}\left(R_{n}^{\dagger}\right)^{2} R_{n}$. If $\theta_{n} \in[0, \pi / 2]$ is the angle between $R_{n} R_{n}^{\dagger}$ and $R_{n}^{\dagger} R_{n}$, then by using $\cos ^{2} \theta_{n}=\left\|\left(R_{n} R_{n}^{\dagger}\right)\left(R_{n}^{\dagger} R_{n}\right)\right\|^{2}=\left\|U_{n}\right\|^{2}=$ $\left\|U U^{*}\right\|$ we get $\theta_{n}=1 / n$.
This example shows that the condition "there exist $\theta_{0}>0$ and $n_{0} \in \mathbb{N}$ such that $\theta_{a_{n} a_{n}^{\dagger}, a_{n}^{\dagger} a_{n}}>\theta_{0}$ for all $n \geq n_{0}$ " in Theorem 4.2 cannot be removed.

Example 4.4. This is a continuation of Example 3.5. Let $R_{n}(\mathbf{x}, \mathbf{y})=$ $(\mathbf{y} / n, \mathbf{0})$ for $n \in \mathbb{N}$. It is evident that $\lim _{n \rightarrow \infty} R_{n}=0$ and $R_{n}^{\dagger}(\mathbf{x}, \mathbf{y})=(\mathbf{0}, n \mathbf{x})$, which shows that $\left(R_{n}^{\dagger}\right)_{n=0}^{\infty}$ does not converge. This proves that the condition $\lim _{n \rightarrow \infty} a_{n}^{\dagger}=a^{\dagger}$ in Theorem 4.2 cannot be removed.

TheOrem 4.5. Let \mathcal{A} be a unital C^{*}-algebra and $\left(a_{n}\right)_{n=1}^{\infty}$ a sequence of elements in $\mathcal{A}_{\mathrm{co}}^{\mathrm{ep}}{ }^{\perp}$ that converges to $a \in \mathcal{A}$. Then the following conditions are equivalent:
(i) $a \in \mathcal{A}^{\dagger}$ and $\lim _{n \rightarrow \infty} a_{n}^{\dagger}=a^{\dagger}$.
(ii) $a \in \mathcal{A}_{\mathrm{co}}^{\mathrm{ep}}{ }^{\mathrm{L}}$.

Proof. (i) \Rightarrow (ii): Since $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} a_{n}^{\dagger}=a^{\dagger}$, and moreover $\lim _{n \rightarrow \infty}\left(a_{n} a_{n}^{\dagger}+a_{n}^{\dagger} a_{n}\right)=1$ (this last relation is guaranteed by Theorem 3.2, we obtain $a a^{\dagger}+a^{\dagger} a=1$. The conclusion follows again by Theorem 3.2.
$($ ii $) \Rightarrow$ (i): By Corollary 3.4 we have, for every $n \in \mathbb{N}$,

$$
\begin{equation*}
a_{m}^{\dagger}=\left(a_{m}+a_{m}^{*}\right)^{-1} a_{m}\left(a_{m}+a_{m}^{*}\right)^{-1}, \quad a^{\dagger}=\left(a+a^{*}\right)^{-1} a\left(a+a^{*}\right)^{-1} \tag{4.8}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty} a_{n}=a$, we have $\lim _{n \rightarrow \infty} a_{n}^{*}=a^{*}$. Recall that the function $\phi: \mathcal{A}^{-1} \rightarrow \mathcal{A}^{-1}$ given by $\phi(x)=x^{-1}$ is continuous. By Theorem 2.2, for each $n \in \mathbb{N}$ we have $a_{n}+a_{n}^{*} \in \mathcal{A}^{-1}$ and $a+a^{*} \in \mathcal{A}^{-1}$. Hence $\lim _{n \rightarrow \infty}\left(a_{n}+a_{n}^{*}\right)^{-1}$ $=\left(a+a^{*}\right)^{-1}$. From 4.8 we have $\lim _{n \rightarrow \infty} a_{n}^{\dagger}=a^{\dagger}$, which finishes the proof.

Acknowledgements. The authors thank the referee for his/her valuable comments, which greatly improved the presentation of the paper.

The second author was supported by the Ministry of Science, Technology and Development, Republic of Serbia.

References

[Ben] J. Benítez, Moore-Penrose inverses and commuting elements of C^{*}-algebras, J. Math. Anal. Appl. 345 (2008), 766-770.
[Buc1] D. Buckholtz, Inverting the difference of Hilbert space projections, Amer. Math. Monthly 104 (1997), 60-61.
[Buc2] -, Hilbert space idempotents and involutions, Proc. Amer. Math. Soc. 128 (2000), 1415-1418.
[H-M] R. E. Harte and M. Mbekhta, On generalized inverses in C^{*}-algebras, Studia Math. 103 (1992), 71-77.
[K-S] N. Kerzman and E. M. Stein, The Szegö kernel in terms of Cauchy-Fantappiè kernels, Duke Math. J. 45 (1978), 197-224.
[Kol1] J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), 367-381.
[Kol2] -, The Drazin and Moore-Penrose inverse in C^{*}-algebras, Math. Proc. Roy. Irish Acad. 99A (1999), 17-27.
[Kol3] -, Elements of C^{*}-algebras commuting with their Moore-Penrose inverse, Studia Math. 139 (2000), 81-90.
[Kol4] -, Range projections of idempotents in C^{*}-algebras, Demonstratio Math. 34 (2001), 91-103.
[K-R1] J. J. Koliha and V. Rakočević, Invertibility of the sum of idempotents, Linear Multilinear Algebra 50 (2002), 285-292.
[K-R2] -, —, On the norm of idempotents in C^{*}-algebras, Rocky Mountain J. Math. 34 (2004), 685-697.
[K-R3] -, 一, Range projections and the Moore-Penrose inverse in rings with involution, Linear Multilinear Algebra 55 (2007), 103-112.
[Mey] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, PA, 2000.
[Pen] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Phil. Soc. 51 (1955), 406-413.
[Rak] V. Rakočević, On the continuity of the Moore-Penrose inverse in C^{*}-algebras, Math. Montisnigri 2 (1993), 89-92.

Julio Benítez
Departamento de Matemática Aplicada
Instituto de Matemática Multidisciplinar
Universidad Politécnica de Valencia
Camino de Vera s/n
46022, Valencia, Spain
E-mail: jbenitez@mat.upv.es

Vladimir Rakočević
Department of Mathematics Faculty of Science and Mathematics

University of Niš
Višegradska, 33
18000 Niš, Serbia
E-mail: vrakoc@bankerinter.net

[^0]: 2010 Mathematics Subject Classification: Primary 46L05; Secondary 47B15.
 Key words and phrases: C^{*}-algebras, Moore-Penrose inverse, idempotents.

