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Invertibility of the commutator of an element
in a C∗-algebra and its Moore–Penrose inverse

by

Julio Beńıtez (Valencia) and Vladimir Rakočević (Nǐs)

Abstract. We study the subset in a unital C∗-algebra composed of elements a such
that aa† − aa† is invertible, where a† denotes the Moore–Penrose inverse of a. A distin-
guished subset of this set is also investigated. Furthermore we study sequences of elements
belonging to the aforementioned subsets.

1. Introduction. Throughout this paper, A will be a C∗-algebra with
unit 1 and we will denote by A−1 the subset of invertible elements in A. An
element a ∈ A is said to be idempotent when a2 = a. The term projection
will be reserved for an element p of A which is self-adjoint and idempotent,
that is, p∗ = p = p2.

An element a ∈ A is said to have a Moore–Penrose inverse if there exists
x ∈ A such that

(1.1) axa = a, xax = x, (ax)∗ = ax, (xa)∗ = xa.

It can be proved that if a ∈ A has a Moore–Penrose inverse, then the
element x satisfying (1.1) is unique (see, for example, [Pen]), and we write
x = a†. The set of all elements of A that have a Moore–Penrose inverse
will be denoted by A†. An element a ∈ A such that there exists x ∈ A with
axa = a will be named regular. A basic result of the theory of Moore–Penrose
inverses in C∗-algebras is that if a ∈ A then a ∈ A† if and only if a is regular
(see [H-M, Kol2]).

Several characterizations of elements a ∈ A† such that aa† = a†a can
be found in the literature (see [Ben, Kol3]). In this paper we shall study
the class of elements in a C∗-algebra that, in some sense, is complementary
to the subset of A† composed of elements that commute with their Moore–
Penrose inverses. When the C∗-algebra is the set of n×n complex matrices,
it is customary to say that a matrix A is EP when A commutes with its
Moore–Penrose inverse, which justifies the following definition.
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Definition 1.1. Let A be a unital C∗-algebra. An element a ∈ A is
said to be co-EP when a ∈ A† and aa† − a†a is invertible. The subset of A
composed of co-EP elements will be denoted by Aep

co.

Let a ∈ A. Since, as is easy to see, aa† and a†a are projections, the study
of the invertibility of aa† − a†a is related to the study of the invertibility of
differences of two projections in a C∗-algebra. In [Buc1, Buc2], Buckholtz
characterized when P −Q is invertible when P and Q are orthogonal projec-
tions of a Hilbert space. Koliha and Rakočević gave in [K-R2, Theorem 4.1]
several characterizations of the invertibility of p− q when p, q are nontrivial
projections in a C∗-algebra. One of these characterizations uses the con-
cept of the range projection. For the convenience of the reader we recall its
definition, introduced by Koliha in [Kol4].

Definition 1.2. Let f ∈ A be an idempotent. We say that p ∈ A is a
range projection of f if p is a projection satisfying pf = f and fp = p.

Let us recall ([Kol4, Theorem 1.3] and [K-R3, Theorem 1.3]) that for
every idempotent f ∈ A there exists a unique range projection of f , denoted
by f⊥, given explicitly by the Kerzman–Stein formula (see [K-S])

(1.2) f⊥ = f(f + f∗ − 1)−1.

If f is a projection, then obviously f⊥ = f .
The following concept was introduced by Koliha and Rakočević in [K-R2].

It allowed them (among other things) to characterize the invertibility of p− q
when p and q are nontrivial projections in a C∗-algebra.

Definition 1.3. Let e, f ∈ A be idempotents. We denote by π(e, f) an
idempotent h ∈ A (if it exists) satisfying the conditions

h⊥ = e⊥, (1− h)⊥ = f⊥.

If, in addition, e and f are self-adjoint, the above reduces to h⊥ = e
and (1 − h)⊥ = f . In other words, if e, f ∈ A are projections such that
h = π(e, f) exists, then

he = e, eh = h, (1− h)f = f, f(1− h) = 1− h.
An element a ∈ A is quasipolar if 0 is an isolated singularity of the

resolvent of a. Koliha proved in [Kol1, Theorem 4.2] that a ∈ A is quasipo-
lar if and only if there exists an idempotent p ∈ A such that ap = pa is
quasinilpotent and a+p ∈ A−1. Such an idempotent is unique, and is called
the spectral idempotent of a corresponding to 0, written aπ. In [Kol4, The-
orem 3.6] it is proved that if x ∈ A then x ∈ A† implies that x∗x and xx∗

are quasipolar and x† = (x∗x+ (x∗x)π)−1x∗ = x∗(xx∗ + (xx∗)π)−1. Indeed,
the only fact we shall use is the following:

(1.3) x ∈ A† ⇒ there exist y, z ∈ A−1 such that x† = yx∗ = x∗z.
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2. Characterizations of co-EP elements in a C∗-algebra. The
main result of this section characterizes when aa† − a†a is invertible if a is
an element of a unital C∗-algebra that has a Moore–Penrose inverse. Before
presenting this characterization, let us prove the following lemma:

Lemma 2.1. Let A be a C∗-algebra with unity 1 and a ∈ A†. If h ∈ A is
an idempotent satisfying h⊥ = a†a and (1 − h)⊥ = aa†, then a + a∗ ∈ A−1

and

(2.1) ah∗ = a, ha = 0, (a+ a∗)−1 = h∗a†(1− h) + (1− h∗)(a†)∗h.

Proof. From h⊥ = a†a and (1− h)⊥ = aa† we have

(2.2) a†ah = h, ha†a = a†a, aa†(1− h) = 1− h, (1− h)aa† = aa†.

Recall that aa† and a†a are self-adjoint. Taking ∗ in the second equality of
(2.2) and premultiplying by a we have ah∗ = a. Postmultiplying the last
equality of (2.2) by a yields ha = 0. Now, we will prove that a + a∗ is
invertible with inverse h∗a†(1− h) + (1− h∗)(a†)∗h. Indeed,

(a+ a∗)[h∗a†(1− h) + (1− h∗)(a†)∗h]

= ah∗a†(1− h) + a∗h∗a†(1− h) + a(1− h∗)(a†)∗h+ a∗(1− h∗)(a†)∗h
= aa†(1− h) + a∗(a†)∗h = 1− h+ (a†a)∗h = 1.

Set u = a+a∗ and v = h∗a†(1−h)+(1−h∗)(a†)∗h. Since uv = 1 and u and
v are self-adjoint, we get 1 = 1∗ = (uv)∗ = v∗u∗ = vu. Therefore, v = u−1.

Theorem 2.2. Let A be a unital C∗-algebra and a ∈ A. Then the fol-
lowing conditions are equivalent:

(i) a ∈ Aep
co.

(ii) a+a∗ ∈ A−1 and there exists an idempotent p ∈ A such that ap = a
and p∗a = 0.

(iii) a−a∗ ∈ A−1 and there exists an idempotent p ∈ A such that ap = a
and p∗a = 0.

(iv) aa∗ + a∗a ∈ A−1 and aA ∩ a∗A = {0}.
(v) a+ a∗ ∈ A−1, a(a+ a∗)−1a = a, and a∗(a+ a∗)−1a = 0.
(vi) a− a∗ ∈ A−1, a(a− a∗)−1a = a, and a∗(a− a∗)−1a = 0.

(vii) aA⊕ a∗A = A.

Proof. Let 1 be the unity of A.
(i)⇒(ii): We shall use the implication (viii)⇒(ii) of [K-R2, Theorem 4.1].

Checking the proof of that implication, we can observe that the two projec-
tions involved need not be nontrivial. Since aa†, a†a are projections and aa†−
a†a is invertible, by using the aforementioned implication, h = π(a†a, aa†)
exists. By definition of π(a†a, aa†) we get h⊥ = a†a and (1− h)⊥ = aa†. By
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Lemma 2.1 we see that a+ a∗ ∈ A−1 and by setting p = h∗, another appeal
to Lemma 2.1 finishes the proof of (i)⇒(ii).

(ii)⇔(iii): Assume that p is an idempotent such that ap = a and p∗a = 0.
Since (a+a∗)(2p−1) = 2ap−a+ 2a∗p−a∗ = a−a∗ and 2p−1 is invertible
(because (2p− 1)2 = 1) we have a+ a∗ ∈ A−1 ⇔ a− a∗ ∈ A−1.

(iii)⇒(iv): First, note that 1 − p − p∗ ∈ A−1 because (1 − p − p∗)2 =
1 + (p− p∗)(p− p∗)∗. Now,

(a+ a∗)(1− p− p∗)(a− a∗) = [a(1− p) + a∗(1− p)− ap∗ − a∗p∗](a− a∗)
= [a∗ − ap∗ − a∗p∗](a− a∗)
= a∗a− ap∗a− a∗p∗a− (a∗)2 + ap∗a∗ + a∗p∗a∗

= a∗a+ aa∗.

Since the hypothesis also implies that a+a∗ ∈ A−1 (because (ii)⇔(iii)), the
previous computations show that aa∗ + a∗a ∈ A−1.

To prove aA∩ a∗A = {0}, pick x ∈ aA∩ a∗A. There exist u, v ∈ A with
x = au = a∗v, hence p∗au = p∗a∗v, and therefore 0 = a∗v, because p∗a = 0
and p∗a∗ = a∗. Thus, x = a∗v = 0.

(iv)⇒(v): Since aa∗ + a∗a is invertible, there exists x ∈ A such that

(2.3) 1 = (aa∗ + a∗a)x.

Thus, a = aa∗xa + a∗axa. Since a∗axa = a(1 − a∗xa) we have a∗axa ∈
aA ∩ a∗A = {0}. Therefore, a = aa∗xa, which means that a is regular.
Property (1.3) leads to a†aA ⊂ a∗A. Having in mind that aa†A ⊂ aA and
aA∩ a∗A = {0} we obtain aa†A∩ a†aA = {0}. To prove aa†A+ a†aA = A,
it is sufficient to show that 1 ∈ aa†A+a†aA. By (1.3), there exist u, v ∈ A−1

such that a∗ = a†u and a∗ = va†. Since a∗a = (a∗a)∗ = (va†a)∗ = a†av∗,
from (2.3) we have

1 = aa∗x+ a∗ax = aa†u+ a†av∗ ∈ aa†A+ a†aA.
Note that the equivalence (i)⇔(ii) of [K-R2, Theorem 4.1] does not use
the nontriviality of the projections involved. Thus, by that equivalence, the
idempotent h = π(aa†, a†a) exists, and so h⊥ = aa† and (1− h)⊥ = a†a. By
Lemma 2.1, we have a+ a∗ ∈ A−1. From (2.1) we get

a(a+ a∗)−1a = a[h∗a†(1− h) + (1− h∗)(a†)∗h]a = aa†a = a

and
a∗(a+ a∗)−1a = a∗[h∗a†(1− h) + (1− h∗)(a†)∗h]a = 0.

(v)⇒(vi): Set q = (a+a∗)−1a. From the hypothesis, it is trivial to check
that q2 = q, aq = a, and a∗q = 0. The equalities (a + a∗)(2q − 1) = a − a∗
and (2q− 1)2 = 1 lead to a− a∗ ∈ A−1 and (a− a∗)−1 = (2q− 1)(a+ a∗)−1.
Now we have

a(a− a∗)−1a = a(2q − 1)(a+ a∗)−1a = a(a+ a∗)−1a = a
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and

a∗(a− a∗)−1a = a∗(2q − 1)(a+ a∗)−1a = −a∗(a+ a∗)−1a = 0.

(vi)⇒(vii): To prove aA+a∗A = A it is sufficient to prove 1 ∈ aA+a∗A:
in fact, since a−a∗ is invertible, there exists x ∈ A such that 1 = (a−a∗)x,
and thus 1 = ax+ a∗(−x) ∈ aA+ a∗A. Now, let us prove aA ∩ a∗A = {0}:
if y ∈ aA ∩ a∗A, there exist u, v ∈ A with y = au = a∗v; hence

y∗ = v∗a = v∗a(a− a∗)−1a = u∗a∗(a− a∗)−1a = 0,

and therefore y = 0.
(vii)⇒(i): Since A = aA+a∗A, we have 1 = ax+a∗y for some x, y ∈ A.

Thus, a = axa + a∗ya. Hence a∗ya = a(1 − xa) ∈ aA ∩ a∗A = {0}. There-
fore, a = axa, which means that a is regular. By the equivalence (i)⇔(ii)
of [K-R2, Theorem 4.1], the idempotent h = π(a†a, aa†) exists, and thus
h⊥ = a†a and (1 − h)⊥ = aa†. By the Kerzman–Stein formula (1.2) we
get

aa† − a†a = (1− h)⊥ − h⊥

= (1− h)[(1− h) + (1− h)∗ − 1]−1 − h[h+ h∗ − 1]−1 = (1− h− h∗)−1.

This implies that aa† − a†a is invertible.

Corollary 2.3. Let A be a unital C∗-algebra and a ∈ Aep
co. The idem-

potent p in conditions (ii) and (iii) of the preceding theorem is unique and
satisfies

(2.4) p = [π(a†a, aa†)]∗.

Proof. From (a + a∗)p = ap + a∗p = a + 0 = a and the invertibility of
a + a∗ we get p = (a + a∗)−1a, proving the uniqueness. Now, (2.4) follows
from the proof of the preceding theorem.

The following corollary collects some useful formulæ.

Corollary 2.4. Let A be a unital C∗-algebra with unity 1. If a ∈ Aep
co

and p = [π(a†a, aa†)]∗, then:

(i) [p∗]⊥ = a†a and [1− p∗]⊥ = aa†.
(ii) p = (a+ a∗)−1a = (a− a∗)−1a.

(iii) (aa† − a†a)−1 = 1− p− p∗.
(iv) (aa† − a†a)−1 = (a+ a∗)−1(aa∗ + a∗a)(a− a∗)−1.
(v) (aa† − a†a)−1 = (a+ a∗)−1(aa∗ − a∗a)(a+ a∗)−1

= (a− a∗)−1(aa∗ − a∗a)(a− a∗)−1.

Proof. Items (i), (iii), and (iv) are distilled from the proof of Theo-
rem 2.2. Item (ii) follows from the proof of Corollary 2.3. Item (v) follows
by mimicking the proof of (iii)⇒(iv) of Theorem 2.2.
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In the setting of Hilbert spaces, Buckholtz proved that if R and K are
closed subspaces of a Hilbert spaceH, and PR and PK denote the orthogonal
projections onto these subspaces, then PR − PK is invertible if and only
if there exists an idempotent M with range R and kernel K (see [Buc1,
Buc2]). Moreover, (PR − PK)−1 = M + M∗ − I. Observe that the formula
in Corollary 2.4(iii) is a version of this in the C∗-algebra setting when the
projections are aa† and a†a.

Example 2.5. Let (H, 〈·, ·〉) be a Hilbert space and B(H) the set of
bounded operators in H. Let T ∈ B(H) be invertible and α, β ∈ R be such
that α2 + β2 = 1 and β 6= 0. We consider the Hilbert space H × H en-
dowed with the inner product 〈(x,y), (u,v)〉 = 〈x,u〉 + 〈y,v〉. Define the
operator R in H × H by R(x,y) = (αTx + βTy,0). By checking (1.1),
it is a textbook exercise to prove that R is Moore–Penrose invertible and
R†(x,y) = (αT−1x, βT−1x). Thus we can compute R†R − RR† obtain-
ing

(R†R−RR†)(x,y) = β(−βx + αy, αx + βy).

We can easily check that the operator S ∈ B(H × H) given by S(x,y) =
(−x + αβ−1y, αβ−1x + y) is the inverse of R†R − RR†. Hence R is co-EP.
Furthermore, if we define P ∈ B(H ×H) by P (x,y) = (0, αβ−1x + y), we
get P 2 = P and RP = R. The computation

〈P (x,y), (u,v)〉 = 〈(0, αβ−1x + y), (u,v)〉
= 〈x, αβ−1v〉+ 〈y,v〉 = 〈(x,y), (αβ−1v,v)〉

shows that P ∗(x,y) = (αβ−1y,y), which implies P ∗R = 0. Therefore, P is
the idempotent given by Theorem 2.2.

3. A distinguished subset of co-EP elements in a C∗-algebra. If
a ∈ Aep

co, then the idempotent π(a†a, aa†) exists. In this section we charac-
terize the elements a ∈ Aep

co such that π(a†a, aa†) is a projection.

Definition 3.1. Let A be a unital C∗-algebra. We denote by Aep⊥
co the

subset ofAep
co consisting of the elements a such that π(a†a, aa†) is self-adjoint.

We shall use the following notation: If X,Y ⊂ A, then

X ⊥ Y ⇔ x∗y = 0 ∀(x, y) ∈ X × Y.
It is evident (by the C∗-identity) that X ⊥ Y implies that X ∩ Y ⊂ {0}.

Theorem 3.2. Let A be a C∗-algebra with unity 1 and a ∈ A. Then the
following conditions are equivalent:

(i) a ∈ Aep⊥
co .

(ii) a ∈ A† and aa† + a†a = 1.
(iii) a ∈ A† and aA = {x ∈ A : ax = 0}.
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(iv) aA ⊥ a∗A and aA+ a∗A = A.
(v) a ∈ A† and (aa† − a†a)2 = 1.

Proof. (i)⇒(ii): Let p be the idempotent given in Theorem 2.2. We shall
prove aa† = 1− p and a†a = p. By Corollary 2.3, we have π(a†a, aa†) = p∗.
Applying the definition of π(·, ·) we have (p∗)⊥ = a†a and (1− p∗)⊥ = aa†.
Since p = p∗ we obtain p = a†a and 1− p = aa†.

(ii)⇒(iii): Postmultiplying aa† + a†a = 1 by a leads to a†a2 = 0, which
by premultiplying by a yields a2 = 0, and this implies that aA ⊂ {x ∈ A :
ax = 0}. To prove the opposite inclusion, pick x ∈ A with ax = 0; then
from 1 = aa† + a†a we get x = (aa† + a†a)x = aa†x ∈ aA.

(iii)⇒(iv): Since a ∈ aA = {x ∈ A : ax = 0}, we obtain a2 = 0. Since
for any x, y ∈ A we have (ax)∗(a∗y) = x∗(a2)∗y = 0, we get aA ⊥ a∗A. To
prove aA + a∗A = A, it is sufficient to prove 1 ∈ aA + a∗A: in fact, from
a†a−1 ∈ {x ∈ A : ax = 0} = aA, there exists u ∈ A such that a†a−1 = au.
Thus, 1 = a†a− au = (a†a)∗ − au = a(−u) + a∗(a†)∗ ∈ aA+ a∗A.

(iv)⇒(v): Since aA ⊥ a∗A we have a2 = 0. By using (1.3) we get the
existence of y, z ∈ A−1 such that a† = ya∗ and a† = a∗z, and therefore
(a†)2 = ya∗a∗z = 0. Since aA⊕a∗A = A, by Theorem 2.2 and Corollary 2.3,
there exists a unique idempotent p such that ap = a and p∗a = 0. Observe
that a†a is an idempotent and

a(a†a) = a, (a†a)∗a = a†a2 = 0,

thus, the uniqueness of p yields p = a†a. Furthermore, 1 − aa† is another
idempotent and

a(1− aa†) = a− a2a† = a, (1− aa†)∗a = (1− aa†)a = 0.

Again, the uniqueness of p leads to p = 1− aa†. Thus,

(aa†−a†a)2 = aa†aa†−a(a†)2a−a†a2a†+a†aa†a = aa†+a†a = 1−p+p = 1.

(v)⇒(i): The hypothesis (aa† − a†a)2 = 1 entails that aa† − a†a is in-
vertible, and by Corollary 2.4 we get (aa† − a†a)−1 = 1 − p − p∗, where
p is the idempotent obtained in Theorem 2.2. Therefore, (1 − p − p∗)2 =
(aa† − a†a)−2 = 1. Now we have

1 = (1− p− p∗)2 = 1− p− p∗ + pp∗ + p∗p.

Thus, p + p∗ = pp∗ + p∗p, which easily leads to (p − p∗)(p − p∗)∗ = 0. The
C∗-identity yields p = p∗.

Corollary 3.3. If a ∈ Aep⊥
co , then the projector p given in Theorem 2.2

is a†a.

In case a ∈ Aep⊥
co , the following corollary gives some formulæ that relate

a† to (a+ a∗)−1 and (a− a∗)−1.
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Corollary 3.4. If a ∈ Aep⊥
co , then:

(i) a† = (a+ a∗)−1a(a+ a∗)−1.
(ii) a† = (a+ a∗)−1a(a− a∗)−1.

(iii) a† = (a− a∗)−1a(a+ a∗)−1.
(iv) a† = (a− a∗)−1a(a− a∗)−1.

Proof. Observe that by (1.3) there exists y ∈ A−1 such that a† = ya∗.
From the proof of Theorem 3.2, one finds that a2 = 0. Hence a†a∗ = ya∗a∗ =
y(a2)∗ = 0. Furthermore, a∗a†a = a∗(a†a)∗ = (a†aa)∗ = 0. Therefore,

(a+ a∗)a†(a+ a∗) = a+ aa†a∗ + a∗a†a+ a∗a†a∗ = a.

The remaining assertions are proved in a similar way.

Example 3.5. This is a continuation of Example 2.5. If we set α = 0
and β = 1 we get R(x,y) = (Ty,0) and R†(x,y) = (0, T−1x). Obviously,

(RR† +R†R)(x,y) = R(0, T−1x) +R†(Ty,0)
= (x,0) + (0,y) = (x,y).

Thus, the operatorR satisfies item (ii) of Theorem 3.2. Another way of seeing
this is by setting α = 0 and β = 1 in the expression for the idempotent
P obtained in Example 2.5: we get P (x,y) = (0,y), which is obviously
self-adjoint.

4. Limits of sequences of co-EP elements in a C∗-algebra. In this
section we shall research the following problem. Let (am)∞m=1 be a convergent
sequence in a C∗-algebra and a = limn→∞ an. We ask:

(a) if an ∈ Aep
co for all n ∈ N, when a ∈ Aep

co?
(b) if an ∈ Aep⊥

co for all n ∈ N, when a ∈ Aep⊥
co ?

We shall introduce some notation before answering these questions. To
motivate the following definition, let us recall that the minimal angle be-
tween two nonzero subspaces M,N ⊂ Rn is the number θ ∈ [0, π/2] for
which cos θ = ‖PMPN ‖, where PM and PN are the orthogonal projectors
onto M and N , respectively (see [Mey, Chapter 5]).

Definition 4.1. Let p and q be two projections in a C∗-algebra. The
angle between p and q is defined to be the number θp,q ∈ [0, π/2] such that
cos θp,q = ‖pq‖.

By observing that ‖pq‖ = ‖(pq)∗‖, one sees that θp,q = θq,p.

Theorem 4.2. Let A be a unital C∗-algebra and (an)∞n=1 a sequence
of elements in Aep

co that converges to a. Then the following conditions are
equivalent:
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(i) a ∈ A† and limn→∞ a
†
n = a† and there exist θ0 > 0 and n0 ∈ N such

that θ
ana
†
n,a
†
nan

> θ0 for all n ≥ n0.
(ii) a ∈ Aep

co.

Proof. (i)⇒(ii): Since limn→∞ an = a and limn→∞ a
†
n = a†, we have

(4.1) lim
n→∞

(ana†n − a†nan) = aa† − a†a.

Since an ∈ Aep
co, there exist idempotents pn obtained in Theorem 2.2. By

Corollary 2.4, we have (ana
†
n − a†nan)−1 = 1 − pn − p∗n. Observe that pn is

not a trivial idempotent (if pn = 0, then an = anpn = 0; if pn = 1, then
an = p∗nan = 0; in both cases, an = 0 /∈ Aep

co, contrary to the hypothesis).
By [K-R2, Lemma 2.3] we have ‖1−pn−p∗n‖ = ‖pn‖ = ‖p∗n‖, and by [K-R2,
Theorem 3.1] we have ‖p∗n‖ = (1−‖(p∗n)⊥(1−p∗n)⊥‖2)−1/2. Moreover, we use
item (i) of Corollary 2.4 to obtain ‖(p∗n)⊥(1 − p∗n)⊥‖ = ‖(a†nan)(ana

†
n)‖ =

cos θ
a†nan,ana

†
n
. Thus by Corollary 2.4(iii) we get

‖(ana†n − a†nan)−1‖ =
1

sin θ
ana
†
n,a
†
nan

.

By assumption, the sequence (‖(ana†n − a†nan)−1‖)∞n=1 is bounded. Hence
(4.1) implies that aa† − a†a ∈ A−1, i.e., a ∈ Aep

co.
(ii)⇒(i): To prove this, we only have to prove that

(4.2) lim
n→∞

a†n = a†.

In fact: if (4.2) is true, then limn→∞(ana
†
n−a†nan) = aa†−a†a. Thus (recall

that a ∈ Aep
co by hypothesis), limn→∞(ana

†
n − a†nan)−1 = (aa† − a†a)−1.

Therefore, the sequence (‖(ana†n − a†nan)−1‖)∞n=1 is bounded, and as in the
proof of (i)⇒(ii), there exist θ0 > 0 and n0 ∈ N such that θ

ana
†
n,a
†
nan

> θ0
for all n ≥ n0.

Let us prove (4.2): Let pn and p be the idempotents obtained in Theo-
rem 2.2, i.e.,

(4.3) pn = (an + a∗n)−1an ∀n ∈ N, p = (a+ a∗)−1a.

Hence

(4.4) lim
n→∞

pn = p.

Let us remark that the invertibility of ana
†
n − a†nan implies the invertibility

of ana
†
n + a†nan and that (see [K-R1, Theorem 3.5])

(4.5)
(ana†n + a†nan)−1 = 1− pn − p∗n + 2pnp∗n,

(aa† + a†a)−1 = 1− p− p∗ + 2pp∗.
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Also, from Corollary 2.4(iii) we have

(4.6) (ana†n − a†nan)−1 = 1− pn − p∗n, (aa† − a†a)−1 = 1− p− p∗.
Clearly, (4.4)–(4.6) imply

lim
n→∞

(ana†n − a†nan)−1 = (aa† − a†a)−1,

lim
n→∞

(ana†n + a†nan)−1 = (aa† + a†a)−1.

Hence,

(4.7) lim
n→∞

(ana†n − a†nan) = aa† − a†a, lim
n→∞

(ana†n + a†nan) = aa† + a†a.

Therefore, limn→∞ ana
†
n = aa†, i.e., limn→∞ a

†
n = a† (see, e.g., [Kol4, Theo-

rem 3.7] or [Rak, Theorem 2.2]).

Example 4.3. This is a continuation of Example 2.5. Define Rn(x,y) =
(αnTx + βnTy, 0), where αn = cos(1/n) and βn = sin(1/n) for n ∈ N and
L(x,y) = (Tx,0). The following elementary facts can be easily checked:

(a) limn→∞Rn = L.
(b) L is Moore–Penrose invertible and L†(x,y) = (T−1x,0).
(c) LL† − L†L = 0, which implies that the subset of co-EP elements in

a C∗-algebra is not always closed.
(d) limn→∞R

†
n = L†.

(e) Let Un = Rn(R†n)2Rn. If θn ∈ [0, π/2] is the angle between RnR
†
n

and R†nRn, then by using cos2 θn = ‖(RnR†n)(R†nRn)‖2 = ‖Un‖2 =
‖UU∗‖ we get θn = 1/n.

This example shows that the condition “there exist θ0 > 0 and n0 ∈ N such
that θ

ana
†
n,a
†
nan

> θ0 for all n ≥ n0” in Theorem 4.2 cannot be removed.

Example 4.4. This is a continuation of Example 3.5. Let Rn(x,y) =
(y/n,0) for n ∈ N. It is evident that limn→∞Rn = 0 and R†n(x,y) = (0, nx),
which shows that (R†n)∞n=0 does not converge. This proves that the condition
limn→∞ a

†
n = a† in Theorem 4.2 cannot be removed.

Theorem 4.5. Let A be a unital C∗-algebra and (an)∞n=1 a sequence of
elements in Aep⊥

co that converges to a ∈ A. Then the following conditions are
equivalent:

(i) a ∈ A† and limn→∞ a
†
n = a†.

(ii) a ∈ Aep⊥
co .

Proof. (i)⇒(ii): Since limn→∞ an = a and limn→∞ a
†
n = a†, and more-

over limn→∞(ana
†
n + a†nan) = 1 (this last relation is guaranteed by Theo-

rem 3.2), we obtain aa† + a†a = 1. The conclusion follows again by Theo-
rem 3.2.
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(ii)⇒(i): By Corollary 3.4 we have, for every n ∈ N,

(4.8) a†m = (am + a∗m)−1am(am + a∗m)−1, a† = (a+ a∗)−1a(a+ a∗)−1.

Since limn→∞ an = a, we have limn→∞ a
∗
n = a∗. Recall that the function

φ : A−1 → A−1 given by φ(x) = x−1 is continuous. By Theorem 2.2, for each
n ∈ N we have an + a∗n ∈ A−1 and a+ a∗ ∈ A−1. Hence limn→∞(an + a∗n)−1

= (a + a∗)−1. From (4.8) we have limn→∞ a
†
n = a†, which finishes the

proof.
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