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A Gowers tree like space and the space of its
bounded linear operators

by

GIORGOS PETSOULAS and THEOCHARIS RAIKOFTSALIS (Athens)

Abstract. The famous Gowers tree space is the first example of a space not contain-
ing co, £1 or a reflexive subspace. We present a space with a similar construction and prove
that it is hereditarily indecomposable (HI) and has {2 as a quotient space. Furthermore,
we show that every bounded linear operator on it is of the form Al + W where W is a
weakly compact (hence strictly singular) operator.

1. Introduction. As is well known, B. S. Tsirelson [T] constructed the
first Banach space not containing cg or ¢, for 1 < p < oco. After Tsirelson’s
fundamental example, the original question of whether every Banach space
contains an isomorphic copy ¢ or ¢, was replaced by the following: Does
every Banach space contain ¢y, #1 or a reflexive subspace?

A classical result of R. C. James [J1] asserting that a space with an
unconditional basis is either reflexive or has a subspace isomorphic to ei-
ther ¢y or ¢ provides an affirmative answer to the above question within
the class of Banach spaces containing an unconditional basic sequence. In
1994 W. T. Gowers, based on the fundamental construction of HI spaces by
Gowers and B. Maurey [GM], settled the above problem in the negative by
providing a Banach space not containing ¢y, £1 or a reflexive subspace. This
example became known as the Gowers tree space and we hereafter denote
it by GT. Gowers’ famous dichotomy [G2] implies that any space sharing
this property should be HI saturated, i.e. every infinite-dimensional closed
subspace of it contains a hereditarily indecomposable one.

The main idea behind the GT' construction is to endow each subspace
of the predual with a structure that resembles the tree structure of the
biorthogonal functionals of the basis of the James tree space (denoted by
JT), a space not containing ¢; and with nonseparable dual [J2]. In order
to achieve this, Gowers combines, to some extent, the Gowers and Maurey
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norm [GM] with that of JT'. The key point is the way the special functionals
are produced. Let us recall that the tree structure in J7' occurs on the basis
of the space which, through a suitable partial ordering, can be indexed as
(€t)tea<w with 2<% denoting the dyadic tree. Then the special functionals
are defined as s* = >, ef for all segments s C 2<%. In the case of GT
Gowers has defined, through a coding similar to the one used in [GM],
an infinitely branching tree structure of functionals which penetrates every
block subspace of (e} : n € N). The special functionals are defined again
as sums over all segments of this tree structure. Thus, the GT' construction
imposes a hereditary James tree type structure in every block subspace of
the predual of GT. Furthermore, there is a natural notion of disjointness
that characterizes special functionals as in the case of segments in JT™.
This is used in order to include fs-sums of “disjoint” special functionals
in the norming set of GT similar to the ¢3-convex combinations of disjoint
segments in JT*.

These so-called special combinations are on one hand essential as they
do not allow ¢; to embed into GT', and on the other hand they make some
crucial estimations very hard. This is because the special functionals used
to form an f5-special combination do not necessarily have disjoint supports.
Gowers overcomes this problem by using elaborate finite combinatorics and
advanced probabilistic arguments associated to the Hamming distance to
provide estimates for certain averages of rapidly increasing sequences (RIS)
(see Lemma 4 in [G1]). Namely, he shows that if one considers such a se-
quence (z;)*, then there would necessarily exist a choice of signs (¢;)*, such
that the norm ||[M~1S"M ¢ is approximately 1/,/logy(M + 1). As such
averages exist in every block subspace, GT' cannot contain ¢;. In addition, it
allows Gowers to show that every block sequence (y,), in GT has a further
block subsequence (zy), which is not weakly null. By a classical result of
W. B. Johnson and H. P. Rosenthal [JR] this implies that every infinite-
dimensional subspace of G'I" has nonseparable dual, as G'I" has a boundedly
complete basis, which also implies that ¢y does not embed into the space.

Gowers’ deep approach, however, is in its base existential and thus cannot
provide more precise estimates for the action of other types of functionals
on these averages which are necessary for proving additional properties of
the space (for example, that it is HI) and studying its operators. In this
paper we present a slight variant of G'I" which we denote by X4 and use
different techniques to investigate its properties. We fix two sequences of
natural numbers (m;); and (n;); and define the norming set Gg; for X4 to
be the minimal subset of coo(N) satisfying:

e G4 is symmetric, closed under projections on intervals and contains
the set {xe : n € N}.
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It is closed under the (A, 1/2m;) operations for all j.

It is rationally convex.

It contains the set S of all (finite) special functionals.

It contains the set {30, ajz¥ : a; € Q, N4 a2 < 1, (z1)2, C S,
indz} Nindzj = 0,7 # j}.

Recall that a set F© C coo(N) is closed under the (A, 1/m) operation if
for every block sequence f; < --- < fg in F with d < n the functional
f= % Zle fi lies in F. For such a functional f we write w(f) = m. The
set S of special functionals contains elements of the form z* = E )", f;
where F is a finite interval of N and (f;); is a special sequence. The latter
are defined through a standard coding function o. Namely, a block sequence
(fi)i is called special if w(f1) = 2my, and w(fiy1) = 2mgys,,. 5, fori > 1.
For such a sequence we set (ind f;); = {ji : w(fi) = 2m;,} = {j1 < o(f1) <
o(f1, f2) <---} and for a special functional z* = E') ", f;, indz* = {ind f; :
ran f; N E # 0}.

The norming set of GT is defined in a similar way. The only differences
are that the latter is closed under the (A,,1/+/logy(n + 1)) operations, for
all n € N, and that the coding function o in GT selects weights from a
lacunary subset J of the natural numbers (see [G1]).

As mentioned above, our methods differ significantly from those used by
Gowers. More precisely, we start with an arbitrary infinite RIS (y,,), and
refine it through repeated application of classical Ramsey theory to produce
a new RIS (wy,), with strong stability properties with respect to the action
of all types of functionals on its elements. In particular, starting with jo € N
and a RIS sequence (yy), it is shown that there exists a subsequence (wy, )y,
of (Y2n — Y2n—1)n such that for every ¢5-special combination y* = Zgzl a;x;
with ind 2] > jo for all @ < d, we have

(1) [{k € N: [y (wy)| > 5/mj, }| < 1025m3.

We call a sequence satisfying (1) a jo-separated RIS. This permits us to use
a Basic Inequality to derive precise estimates for the actions of function-
als on averages of a j-separated RIS. This is done by reducing evaluations
to the basis of an appropriately defined auxiliary space. The main diffi-
culty at this point is that given an fs-special combination y* = Z?:1 a;;,
the special functionals (:cf);-izl may have overlapping supports. After prov-
ing the Basic Inequality one can use standard arguments to establish the
existence of exact pairs and dependent sequences in every block subspace
of X4 (see, for example, [ATO]). This, in turn, implies that the space
is HI and enables us to study the structure of bounded linear operators
on the space as well as the properties of its predual, dual and second
dual.
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We believe that it is possible to apply an analogous procedure to rapidly
increasing sequences in the original Gowers tree space to prove that GT
shares similar properties. We also note that the proof of (1) above extends
techniques which have been developed by S. A. Argyros, A. Arvanitakis and
A. Tolias in [AAT], where a new class of spaces not containing cp, ¢1 or a
reflexive subspace is presented. Their constructions involve the method of
attractors and are different from that of GT' and the present one.

Our main results are the following.

THEOREM 1. The space X4 is HI and every bounded linear operator
T : Xyt — Xyt 15 of the form X + W where W is a strictly singular and
weakly compact operator.

THEOREM II. The predual (X4)« is HI and every bounded linear opera-
tor T : (Xgt)s« — (Xgt)s is of the form X + W where W is a strictly singular
and weakly compact operator.

We also show the following.

THEOREM III. For every infinite-dimensional closed subspace Y of Xy
the dual space Y* is nonseparable and contains an isomorphic copy of {s.
Therefore, Y has {2 as a quotient space.

The above result shows that no closed infinite subspace of Xy is quo-
tient HI, where a Banach space is said to be quotient HI if all of its infinite-
dimensional quotient spaces, over closed subspaces, are hereditarily indecom-
posable. A problem posed by S. A. Argyros mentioned in [F2] asks whether
there exists a reflexive HI space X such that the dual of no infinite-dimen-
sional subspace is HI. In the case of X4 we see, by Theorem III above, that
for every such subspace Y of X4, Y* is not HI. However, X4 is not reflexive
and thus the above problem remains open. Moreover, using techniques devel-
oped in [AAT], it can be shown that every quotient of X, with a w*-closed
kernel is HI. Hence, if we consider a quotient of X, by a block subspace Y’
we find that it is HI. For more details on properties of quotient HI spaces
we refer the interested reader to the work of V. Ferenczi [F1], [F2].

In addition we show the following.

THEOREM IV. For every infinite-dimensional closed subspace Y of Xy
its second dual space Y** contains an isomorphic copy of la(c), where ¢ is
the Cantor set, and thus Y* has l2(c) as a quotient space.

Theorems IIT and IV above illustrate the analogies between the triples
Xgt, Xy, X5f and JT, JT™, JT™. It seems peculiar, at first, that an HI space
containing no reflexive subspace is in a sense “surrounded” by Hilbert spaces
and that its dual and second dual share similar properties with the corre-
sponding ones of JT', which is hereditarily /5. However striking, this phe-
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nomenon is supported by deep results of S. A. Argyros, P. Dodos and
V. Kanellopoulos [ADK1]|, [ADK2]| asserting that for every separable Ba-
nach space X not containing ¢; with X™* nonseparable there is a James tree
type structure in X. In particular, it is shown that for such X there exist
two families A = (2¢)ie2<w C Bx and B = (2}*)pe2v C By (2¥ denotes
the Cantor set) such that B is w*-discrete, 1-unconditional accumulating to

zero and for every b € 2, zy, v, xpr.

This paper is organized as follows. Section 2 is devoted to preliminaries.
In Section 3 we give the definition of the norming set of the space. In Sec-
tion 4 we recall the definition of (C,€) rapidly increasing sequences (RIS)
and then show that in every block subspace of X4 one can find a (3, €) RIS
for every € > 0.

In Section 5 we investigate the combinatorial properties of RIS in X;.
We introduce the notion of jg-separated RIS for a given jo € N, mentioned
above, and show that for every jo € N, every block subspace Y of Xy
and € < 5/mj, there exists a jp-separated (6,¢) RIS in Y. Once this is
achieved, in the next section we verify that noj,-averages of vectors in a
jo-separated RIS satisfy precise estimates. This process goes through the
general technique called the Basic Inequality. The whole of Section 6 is
devoted to the proof of the Basic Inequality. In Section 7 we use the Basic
Inequality to establish the existence of dependent sequences in every block
subspace of Xy Subsequently, we pass in Sections 8 and 9 to study the
fundamental properties of the space and the space of its bounded linear
operators. In these two sections we prove Theorem I stated above.

In Section 10 we study the structure of the triple Xg, Xy, X;. In par-
ticular we prove Theorems III and IV. These two results go through the
following proposition.

PROPOSITION. For eachi€N consider a 6-dependent sequence (wi f,’@)n
Assume that ind fi Nind f© = 0 for all i # i € N, and set b =" f} for
all i € N. Then (b} )ien with the X3, norm is equivalent to the standard lo
basis.

In the proof we use a second Basic Inequality to provide the lower ¢
estimates. Finally, in the last section we study the structure of the predual
space (X4¢)« and prove Theorem II.

2. Notation. Throughout, we make use of the following standard no-
tation.

We denote by coo(N) the set {f : N — R : f(n) # 0 for finitely many
n € N} and by C%(N) the set of all elements of coo(N) with rational coordi-
nates. For every x € coo(N) we denote by supp z the set {i € N : z(i) # 0}
and by ran x the minimal interval of N that contains supp .



238 G. Petsoulas and T. Raikoftsalis

We denote by (e;,), the standard Hamel basis of cyo(N).

Let E4q, Eo be two nonempty finite subsets of N. We write Fq < FEy if
max Fy < min Fy. If 21,29 € coo(N) we write 1 < z9 whenever ranz; <
ran 2. A sequence (xy)x in coo(N) is called a block sequence if x; < x; for all
1,7 with ¢ < j. For a function f : N — R and F an interval of N we denote
by Ef the restriction of f to F.

We say that a subset G of cgo(N) is closed under the (A, 6)-operation,
for 0 < 0 < 1, if 92?21 fi € G for every block sequence (f;)L; in G with
d<n.

We fix two sequences of natural numbers (m;); and (n;); defined recur-
sively as follows for j > 1:

mi = 24, mj+1 = m?,
ni =27 njp = (20))%, i1 = logg(miyy).
For a set A we denote by |A| the cardinality of A and by [A] the set of

its infinite subsets. We also denote by 2<% the dyadic tree and by 2¢ the set
of its infinite branches.

3. The norming set Gy

DEFINITION 3.1. We say that f € copo(N) has weight mj, and we write
w(f) = mj, if there exists a block sequence (f;)%; with | fillcc < 1 and
d < nj such that f = 5 S fi

DEFINITION 3.2. We fix two disjoint infinite subsets {21, {25 of N and set
Qs ={(f)L,:deN, f; e CBQO(N), fi 0, (f)L is a block sequence}.

As @, is countable we fix an injective coding function o : Qs — {25 satisfying

Moy, £, > max{1l/[fi(e))| :i=1,...,d and | € supp f;} - maxsupp fq.

DEFINITION 3.3. A block sequence (f;); such that (f;)7,; € @, for all
n is called o-special or simply special if w(f1) = m; for some j € (21, and
w(fi41) = Mo (py,... g, for all i > 1.

For a given special sequence (f;); we will denote by (ind f;); the sequence

i eNw(fi) =mj} ={h <ja<---}
where j; € £ and jit1 =o(f1,..., fi) for i € N.

DEFINITION 3.4. An infinite special functional is of the form 2*=FE )", f;
where (f;); is an infinite special sequence, E is an infinite interval of N and
the sum is convergent in the pointwise topology.

A finite special functional is of the form x* = E), f; where (f;); is an

infinite special sequence and F is a finite interval of N. The set of all finite
special functionals will be denoted by S.
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For every special functional * = E') ", f; we set
indz* = {ind f; : ran f; N E # 0}.
We call two special functionals x¥, x3 incomparable if ind 27 Nind 23 = 0.

REMARK 3.1 (Tree like property). If (f;)i, (g:); are two distinct special
sequences then there exists an i9 € N such that f; = g; for i < ip, w(fi,) =

w(io), fio # 9io and w(f;) # w(gi) for i > io.
We now define the norming set:

DEFINITION 3.5. Let Gy be the minimal subset of cyo(N) satisfying the
following;:

+e, € Gy for all n € N,

Gt is closed under the (Ay;, 1/2m;)-operation for every j € N.

G4t is rationally convex.

S C Gy

G4t contains {Zg:1 a;x; :a; € Q, Zgzl a? < 1, (xf)gzl C S and
indz; Nindz} = () for i # j}.

It is clear that G induces a norm on ¢y (N): we set
|z||ge =sup{f(z): f € Gg} forall € co(N),

and we denote by X, the completion of coo(N) under the norm || - || .
We also make use of the following terminology:

DEFINITION 3.6. Let f € Gy and f # 0. We say that f is of

o type 0 if f € {xe, :n € N},

o type I if [ € {ﬁj(fl +--+ fa) €N, d < ny, (fad, c Gy and
(fi)i is a block sequence},

o type ITif f e {XN% a0, € QX% a2 <1, (2%, CS and
indz} Nindz} = 0 for i # j},

o type I if f € {30 rifiideN,r; €QF, fi € Gy, Y0 73 =1}

NOTATION 3.1. For a special functional f = E) ", fi € Gg and k € N
we write
far=E > fi and fop=E > fi
w(fi)<my w(fi)>my
Similarly, for a type II functional y*= Zle a;x;} we write ind y* = U‘Zflzl ind z}
and

d d
* * * *
Yo = g a;r; o and Y3 = g iy > -
i=1 i=1
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DEFINITION 3.7. Let f € Gy with finite support and jo € N. A family
(fa)aca is called a jo-tree analysis of f if:

(1)
(2)

(3)
(4)

(®)

A is a finite tree, equipped with a partial ordering C, with a least
element denoted by 0, f, € Gy for all a € A and fy = f.

For a € A maximal, f, € {£e, : n € N}.

For a,b € A with a C b we have ran f; C ran f,.

For a € A not maximal we denote by S, the set of immediate suc-
cessors of a in A. If (fy)pes, can be written as a block sequence we
assume S, to be totally ordered as {b; < --- < bjg,|} so that b; < b;
iff ran fp, <ran f;, for b; # b; € S,.

For a € A not maximal f, has one of the following forms:

o If f, is of type I then f, = ﬁ > ses, fs» where [Sy| < nj, and
(fs)ses, is a block sequence.

e If f, is special then f, = E, ), fi, where Ej is a finite interval of N
and (f;); is a special sequence. Set F, = {i € N:ran f;NE, # 0} =
{if,...,ig } and So = {s1,...,84, } where fs, = Eqfi; and w(fs;) =
w(fi;) for all j € {1,...,d,}. Finally, we write fo = g fs-

o If f, is of type IT and f, <j, # 0 and f, >, # 0 then S, = {s1,s2}
and fo = fs; + fsy, Where f5, = fa,<jo and fs, = fa,Zjo- If
either fu<j, = 0 or fo>j, = 0 then f, = > g asfs, where
(as)ses, C Q, (fs)ses, are special functionals with disjoint sets of
indices and ) o a2 <1.

o If f, is of type III then f, = >

ZSG Sa Ts = ]..

ses, Tsfs, where g € Q" and

REMARK 3.2. The following can be readily established:

(1)
(2)

(3)
(4)

(5)

For f € Gg we have || f|loc < 1.

G4t is symmetric and closed under projections on intervals of N. The
Hamel basis (ep)n is a bimonotone and normalized Schauder basis
for X4;. Moreover, (e,), is boundedly complete.

Every f € Gg is of type 0, I, II or III. However, the type is not
uniquely defined.

For every jo € N, every f € Gy admits a jo-tree analysis, which in
general is not unique as functionals may have various types. This,
however, does not play any role as the proofs work for any jo-tree
analysis that one considers.

For every block sequence (wi)?zl in X4 and j € N such that d < no;
it follows that || S0, @illgr > 5o S0, ||zl gt-

— 2moj

4. Rapidly increasing sequences in X,. We begin by recalling the
definitions of a rapidly increasing sequence (RIS) and M-¢¥ averages.
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DEFINITION 4.1. Let (z,), be a block sequence in X4 and C, € positive
numbers. The sequence (x,,), will be called a (C,¢) RIS if:

o ||z, g < C forall n € N.
e There exists a strictly increasing sequence (j,)n, of natural numbers
such that |supp x,|/m;, , < € for all n € N.
e For n € N and f € Gy with w(f) = m; < m;, we have |f(zy,)| <
C/sz‘.
DEFINITION 4.2. Let k € N and M > 0. We call a vector x € Xy an
M-t% average if
o |lzflge > 1.
e There exists a block sequence (z;)% | with ||z]|g < M for all i =
1,...,k such that oz = %Z?ﬁ Z;.
Here we need three lemmas that establish the existence of a (3,¢) RIS
in every block subspace of X,;. We start with the following.

LEMMA 4.1. Let Z be a block subspace of X4 and k € N. Then there
exists an x € Z which is a 2-0% average.

This lemma is an immediate consequence of Remark 3.2(5); for a detailed
proof we refer the interested reader to [ATO, Lemma I1.22].

The following lemma is necessary to describe the behavior of functionals
with small weight acting on large ¢; averages; its proof follows a standard
technique which can be found in most of the articles in the relevant litera-
ture. For more details we refer to [ATO, Lemma II.23].

LEMMA 4.2. Let x € Xy be an M-¢% average for k € N and M > 0, and
let f € Gy with w(f) =m;. Then
M 2711'
< 1 .
@) < g (14 %)

Finally, combining Lemmas 4.1, 4.2 and a simple inductive argument we
obtain the following.

LEMMA 4.3. For every € > 0 and any block subspace Z of X4 there
exists a block sequence (xp)n in Z which is a (3,€) RIS and |zpllg > 1
for all n € N. In addition, each z, is a 2-01" average with (jn)n as in
Definition 4.1.

The proof is identical to that of Proposition I1.25 in [ATO] so we omit it.

5. Combinatorial properties of rapidly increasing sequences in
Xg4t- In this section we establish the existence of rapidly increasing sequences
that satisfy some strong combinatorial properties in every block subspace
of X4. Before proceeding it is necessary to give a brief description of the
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pointwise closure of S, the set of all finite special functionals. Namely, we
can readily establish

FactT 5.1. Every f € S has one of the following forms:

(1) f is a finite special functional.
(2) f is an infinite special functional.
(3) f can be written as f = Zle fi and

o fi)f:_f is a finite special sequence,
e fi can be represented as fr = mz;’;l & where (%), is
a block sequence and w(fx) = My(s,, 5 _,)- In this case we set

ind f = ind((fi);=)) Uw(fi)-
REMARK 5.1. Tt can be seen that for any two finite sequences (a;)%,
and (f;)%, such that

d
> i a7 <1,

)
*

o f;€8” foralli<dand ( fi)%, have disjoint sets of indices,

the functional Zgzl a; fi is an element of é;vt :

The following definition sums up all the desired combinatorial properties
of an RIS mentioned at the beginning of this section:

DEFINITION 5.1. Let jo € N and (x,), be a (C,e) RIS with 0 < € <
5/mj, and (jn)n its associated sequence of natural numbers. We will call
(Tn)n jo-separated if:

® j1 > jo-

e For every functional f € Gy of type I with w(f) > mj,, we have

[{k € N ()] > 5/mj,}| < 1.
e For every special functional z* with indz* > jy, we have |[{k € N :
@ (1) > 10/mjo}| < 2.

o If y* € Gy is of type II with indy* > jo, then [{k € N : |y*(xy)| >

5/mj, } < 1025mj20.

By Lemma 4.3, in every block subspace of X, one can find a seminor-
malized (3,€) RIS. The rest of this section is devoted to showing that for
every block subspace Z of X, and every jo € N one can find a seminormal-
ized (6,¢) RIS in Z which is additionally jo-separated. We begin with the
following general lemma.

LEMMA 5.1. Let (zy)n be a bounded block sequence in Xg. Then there
exists an L € [N] such that the sequence (z*(xy))ner is convergent for every
special functional z*.

Proof. Since (z,)y is a block sequence we only need to consider the case
of infinite special functionals. We need the following.
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CLAIM. For every € > 0 and M € [N] there exists L € [M] and a finite
collection A = {x7,...,x]} of infinite special functionals such that for every
infinite special functional z* ¢ A we have limsup,, ¢y, |2*(x,)| < €.

Proof of Claim. Suppose not. Then there exist € > 0 and M € [N] for
which we can construct a decreasing sequence (M;); of infinite subsets of M
and a sequence (x}); of pairwise different infinite special functionals such
that |z} (x,)| > € for every n € M; with j > i. Set C = sup{||zn||4 : n € N}
and choose r > C/e. Since the functionals 7, ..., z, are mutually different,
by Remark 3.1 we can choose an arbitrarily large finite interval FE of N such
that the functionals 77 = Ez7,...,7, = Ex}, have mutually disjoint sets
of indices (ind Z)7~,. As (), is a block sequence and E is arbitrarily large
we can pick n € M,2 such that suppz, C E. Let also a; = (sgnz}(z,))/r
for i =1,...,r% Set f = 3.1 a;&. Then f € Gy and f(z,) > C. This
contradiction yields the claim.

Using the claim we can inductively construct a strictly decreasing se-
quence (Ly), of infinite subsets of M and a sequence (A;), of finite col-
lections of infinite special functionals such that for every infinite functional
r* ¢ Aj we have limsup,,cy, |2*(z,)| < 1/k. Thus, we can choose a diagonal
set Lo satisfying limsup,c;_ |2*(x,)| = 0 for every infinite special func-
tional x* with * ¢ (J,, An. Now since |J,, A, is countable, using a further
diagonal procedure we arrive at an infinite L C Lo such that (z*(xy,))ner
is convergent for every special functional x*. m

REMARK 5.2. It can be readily seen that if (z,), is (3, €) RIS and w,, =
Top—1 — Tap for n € N, then we can choose L € [N] such that (wp)ner is a
(6,€) RIS. Using this fact in conjunction with the previous lemma we can
assume that every (z,), which is a (6,¢) RIS has the additional property
that

lizn x*(xy) =0 for every special functional z*.

We will always assume this property, unless stated otherwise.

LEMMA 5.2. Let jo € N and (xy,), be a (6,€) RIS with 0 < € < 5/m;,.
Assume that the associated sequence (jn)n satisfies j1 > jo. Then for every
f € Gy of type I with w(f) > mj, we have |[{k € N : |f(zy)| > 5/mj,}| < 1.
Moreover, if the above set is nonempty then the element it contains depends
only on the weight of f.

Proof. Let f € Gg with w(f) = m; and @ > jo. Let By = {n € N :
Jn < i} and By = {n € N : j, > i}. Set m = max E; and M = min Fjs.
Then |f(x,)| < € for every n < m by the definition of RIS. Simultaneously,
|f(zn)| < 6/2m; < 3/mj, for every n > M. Thus, {k € N : |f(z})] >
5/mj,} € {m}. It is also clear that m depends only on w(f). m
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LEMMA 5.3. Let jo € N and (wy)n be a (6,€) RIS with 0 < e < 5/my,.
Assume that the associated sequence (jn)n satisfies j1 > jo. Then there exists
an L € [N] such that for every infinite special functional x* with ind z* > jo,
we have [{n € L : |z*(wy)| > 10/m;, }| < 1.

Proof. Suppose not. Then for every L € [N] there exist (I1,l3) € [L]?
and an infinite special functional chkll I2) such that ind xZ‘l_ ) > jo and
‘5”?11,12)(1"1@'” > 10/mj, for i = 1,2. By Ramsey’s theorem there exists
L € [N] such that for every (I1,lz) € [L]? there exists an infinite special
functional a7 ; ~with indzp > jo such that |27, 1, (wi;)| = 10/my, for
i1 = 1,2. Hence by passing to a subsequence we may assume that for any

n < k € N there exists an infinite special functional Ty, with ind 2y > jo
such that [z}, ; (w;)| > 10/myy,i = n, k. Let

oo
* 7
xn,k’ = En,k Z fn,k

i=1

where ( ffl .)i is a special sequence. For every n < k we set
Ok = min{i : maxsupp(Emkffhk) > min supp wy }.
Now if (B foy")(wn) > 5/mj, we set s, = > oF fi . and otherwise we

onk—1 p

set sy = > nk- We need the following

CrAIM. There ezists d € N such that |[Dy| = |{s;,;, : n < k}| < d for
every k > 2.

Proof of Claim. Let k € N. Let szj’k, j=1,...,d, be the distinct ele-
ments of Dy. We consider the following special functionals:

Zn, =Tk — Enyesn g J=1...,d
We can observe that ind z;;j > jo forall j =1,...,d, and as {s;j,k}?zl are
pairwise different, {z7_ ?:1 are incomparable.
Now for each j =1,...,d we have |z (wg)| = 5/mj,. Indeed, if Sk =

Zjijlk féj . then by Lemma 5.2,

On i 10 5 5

28, ) 2 fof )] = B3 ()] 2 05 = 2 =

ns k—1 .
If 3:1],,]6 = Z;:ﬁ’k fvzj,k we have
10
|5 (wi)| = |2, g (wi)| > "
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Thus, if we set

d
-~ Z sen(z], (wy))

we obtain y*(wy) > vd-5/m;, and thus d < (6/5)?m 0, which completes
the proof of the claim.

Now we can see that for every k > 2 and n < k we have [s}, ; (wn)| >
5/my,. Thus, for every k > 2 there exists a family {s}, : v = 1,...,d} of
special functionals such that for allm = 1,...,k—1 thereexists r € {1,...,d}
such that ]s;ﬁk(wn)| > 5/mj,. By passing to subsequences we may assume

thatsrk—ux eS" forallr—l ,d. Now for n € Nand r € {1,...,d}
we say that k is r-large fornif k > n and sy (wn)| = 5/my,. We know that
for every n € N there exists r € {1,...,d} such that the set

LR] ={k:kis r-large for n}

is infinite. Hence, there exist rg € {1 ,d} and M € [N] with LR]? infinite
for all m € M. Thus, since sy, — z7; and |87 k(Wm)| = 5/my, for infinitely
many k and m € M, it follows that |x (wm)| > 5/mj, for every m € M.
To complete the proof we need only ShOW that z7  cannot be of the form

Ty, = Z?;ll i + foo Where fo is an infinite functional with weight. Indeed,
suppose that 27 is of that from. If we set s7 , = Zfﬁ L [F we can assume

that there exists [ € N such that:

e my; € ind S;O,k for all k.
e If, for every k, fi is the unique element of {f¥ : i = 1,...,d;} with
w(fx) = mu, then f — fe.

Then since (wp,)menr is a RIS there exists mg € M such that | fx(wy,)| <
6/2m; < 3/mj, < 5/mj, for all m > mg. Thus limy, | fx(wm)| = | foo(wm)| <
5/my, for all m > my, a contradiction.

Now, by Fact 5.1, x* is necessarily an infinite special functional such that
|z* (wm)| > 5/mj,, which contradicts the assumption that z*(wy) — 0 (see
Remark 5.2), and the proof is complete. m

REMARK 5.3. Let (wy), be a block sequence such that for every infinite
special functional z* we have [{n € N : |2*(wy)| > 10/mj,} < 1. Then for
every finite special functional f we have |[{n € N: |f(wy)| > 10/mj, }| < 2.

REMARK 5.4. We point out that for every jo € N and (z1)r a (6,¢) RIS
with 0 < € < 5/mj, we can have, by passing to a subsequence, the additional
property that:

e For every f € Gy of type I with w(f) > mj, the set {k € N : |f(x})| >
5/ m?o} contains at most one element.
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e For every special functional z* with indz* > jo the set {k € N :
|x*(x)| > 10/m?0} contains at most two elements.

This can be shown by applying the same techniques as in Lemmas 5.2
and 5.3.

In order to control the action of type II functionals on the elements of a
(6,€) RIS as above, we need the following auxiliary lemma:

LEMMA 54. Let x € coo(N) and € > 0. There exists n € N such that
ly*(z)| < € for every y* = Zzzl aryy € Gy of type I with max{|oy| : k =
1,...,d} < 1/n.

Proof. Let 6 = ¢/||z[[1, where [|z][1 = >, cquppz |2(n)]. Clearly one can
choose mo € N such that >°2% ., 1/m; < 0. We pick n € N such that
1/n < €/(2mol|z||4). Let y* = Zi:l aryy € Gy of type II with max{|ay| :
k=1,...,d} <1/n.Forevery k =1,...,d we can decompose each y; as
Yo = Yp1 T Yio where indy;, C {1,...,mo} and indy;, C {mo +1,...}.
Thus y* = 2221 kY + 2221 kY o- Observe that

d o
* 1 1 €
(2) ’Zak@/k,z(x)‘ < lz[h Z 25 S |z]|16 < 3
— - m;
k=1 j=mo+1
and
d L.
3 )Zakyz,l(x)‘ < HngtmO n < 5
k=1

Combining (2) and (3) we obtain |y*(z)| < €. u

REMARK 5.5. Let jo € N and (wy,), be a (6,¢) RIS and suppose that
j1 > jo. Let also k € N. If y* = Z;‘i:l a;y; is a type II functional with
indy* > jo and we set yZ, = yZ, , then

d d
* * * 6
lyZp(wi)| < E il |y < (wie)| < E |yi < ()] < E 2
i=1 i=1 Go<i<jk t
3 1 4
< + = .

PROPOSITION 5.1. Let jo € N and (wy)n be a block sequence of averages
with increasing lengths. Then there exists an L € [N] such that for every
y* € Gg of type II with indy* > jo we have

{n € L:|y*(wn)| = 5/mj,}| < 1025m3 .

Proof. We assume that lim, *(wy) = 0 for every special functional z*.
For §; = 1/4mj, there exists j; € N with j; > jo such that 14/m;, < ;. For
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0 < €1 < 5/mj, by Lemma 4.2 there exists M; € [N] such that (wn)nenr, is
a (6,€1) RIS. By Lemma 5.3 and Remark 5.3 there is also an L; € [M;] such
that for every special 2* with indz* > j; we have [{n € Ly : |z*(w,)| >
10/mj, }| < 2. Let Iy = minL;. For 6; and w;,, by Lemma 5.4 we can
find 71 € N such that for every y* = >7 | oyl € Gy of type II with
max{|a;| : i =1,...,¢} < 1/r; we have |y*(y;,)| < d1. We can inductively
construct a strictly decreasing sequence (Lj,)nen of infinite subsets of N
such that if we set [,, = min L,, we have L,+1 C L,\{l,}, and sequences of
natural numbers (jy)nen with j, > jo,n € N for (r,)nen and (0y,)nen such
that (jin)nen, (Tn)nen are strictly increasing and 6,41 = 1/(4m;,2"r2) for
n € N and the following hold:

e For n € Nand y* = >7 | a;yf € Gg of type II with max{|o;| : i =
1,...,c} < 1/ry, we have |y*(wy,)| < 0 fori=1,...,n.

e For n € N and z* special with indz* > j, we obtain |[{k € L, :
|2 (wg)| = 10/my, }| < 2.

Observe that (wy,)ien for l; > jo is a (6,€) RIS for 5/mj, < e < 5/mj,. It
can also be seen that for n € N and x* special with indz* > j, we have
H{k € Ly : |25, (wy, )| > 14/my, }| < 2. Indeed, let & € N and |y%, (wy, )| >
14/my,. Then

™ (wi)| = [y e (wy,,) + yg(wi)| 2 |yS g (wr)] = |y (wy,)]
14 6 10
>—— =) — >
mj 1 mj

n n

12>jn
Therefore, for all n € N and «* € S with ind y* > j,,
{k € Ln : [ySg(wy,)| = dn}| < 2.

Let L={l1 <la <---} and n € N. Then for every y* special with ind y* >
jn we have the additional property that [{k > n : [yZ, (wy,)] > 6} < 2.
Let d = 1025m?0. It suffices to show that if we choose [,, < --- < [,,,
where p; < .-+ < pg are in N, and a type II functional y* = >°7 | a;yf
with index greater than jo — 1, then there exists k € {1,...,d} such that
ly* (w, )| < 5/my,. We consider the following sets:

Av={ie{l,...,c} || > 1/rp, },
Ap={ie{l,...,c}: 1/rp, <|oy| <1/rp,_,} forl<k<d,
Ag={ie{l,....c}:1/rp, > |as|}.

We observe that |Ag| < Tz%k for 1 <k < d. For kg € {1,...,d} we have

‘ > aiy; (wy,, )| < Opy, <01 <

m;
; J0
ZGU]->k0 A]’
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and

Y awitw, )| S| Y el (u,)

ierSkoAj iEUjSkoAj

+ ‘ Z aiyz>pk0 (wlpko )

iergkOAJ

4 .
— + ’ Z QiYi,>pp, (wlp]m) .

mas
Jo ;
lerSkoAj

IN

For 1 < j < ko < dweset By, ={i € Aj: |y2‘7>pl€O (wlpko)\ > 0p;+1} and
By, = Uj<k0 B - If kg > j then py, > p;+1, and therefore for ¢ € A; there

exists at most one Bj, that contains i. Consequently, each i € {1,...,c} is
contained in at most one Bj. Moreover,
ko—1
* _ ok
Z ’O‘lyi,>pk0 (wlpko )‘ - E E ’O‘Zyz,>pk0 (wlpko )‘
ier<k0 Aj\BkO 7=1 iEAj\Bjka
ko—1
< E |Aj|5pj+1
ko 1 1

T < .
- Z Py 4m] 202 Amy,

At this point we need the following
CLAIM. There exists A C {1,...,d} with |A| > d/2+ 1 such that

’ Z aiy;>Pk (wlpk) <

1€AL

Proof of Claim. Suppose not. Then there exists B C {1,...,d} with

|B| > d/2 such that |}, ouy; -, (w, )| = 1/4mj, for every k € B.
Thus, > ;ca, a? > 1/256m2 for all kK € B and

forall k€ A.

4mj0

1 d

d
ZO‘ _ZZO‘ 2 256m2,  512m?2, > L

k=1 ’LeAk

a contradiction.

Furthermore, there must exist an £ C {1,...,d} with |E| > d/2+1 such
that | >,cp, @iy;~p, (wr, )| < 1/4my, for all k € E. Indeed, if this were not
the case then there would exist an F' C {1,...,d} with |F| > d/2 such
that [ ;cp, @iyi sy, (Wi, )| = 1/4m, for all k € F. Therefore, >, 5. a? >
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1/256m? for every k € F. But this means that

Jo
d
2>ZZO‘ >ZZO‘1—2 2562~ 512m2’
0

k=114€By

a contradiction. Thus for an appropriate kg € A N E we have

. 4
Sruitn|<]| T oty ] s
’LEUJ>k0 J 70

+ Z Oéiy;j >Pkg (wlpko ) ‘

ieuj<k0 Aj\By,

g ark
+ azyz,>pk0 (wlpko )
iGBkO

. )
+ E aiyi,>pk0 (wlpk ) < - .
. 0 Mg
lEAkO

All the above yields the following

PROPOSITION 5.2. Let jo € N and 0 < € < 5/mj,. In every block sub-
space Z of Xg4 there exists a (6,€) RIS which is jo-separated.

Applying similar arguments to those in Lemma 5.3 and Proposition 5.1
the following can be readily established:

REMARK 5.6. Let jo € N and consider a (6, €) RIS (wy), with € < 5/mj,
and j; > jo and minsuppx; > mj, with the following property: There
exists a finite set B = {z7,...,z}} of infinite special functionals such that
z*(wy,) — 0 for every special 2* ¢ B. Then there exists an L € [N] such that

e For every special functional z* ¢ B with ind z* > jp the set {k € L :
|z*(wy)| > 10/mj, } contains at most two elements.
e For every y* = Z?Zl a;x} € Gy of type II with indy* > jo and 2} ¢ B
for all i = 1,...,d we have [{k € L : |[y*(wn)| > 5/mj,}| < 1025m7 .
In the following section we make use of the following crucial observation.
REMARK 5.7. Let jo € N and (z)r be a block sequence. We can assume
that minsuppx1 > mj,. In this case, for every special functional x* such
that z* = 27, Li = 2?21 fi then the set

{i € {1,...,d} : 3k € N such that ran f; Nranx, # 0}

contains at most one element. Indeed, suppose that there exists at least one
such i and set i9g = min{s : 3k with ran f; Nranzy # 0}. Then maxsupp fi,
> mj, and by the definition of the coding o we have o(f1,..., fi,) > jo and
hence ig = d.

+ 2%, if we write 2%
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6. The Basic Inequality. At this point we need to provide precise
estimates for the norms of nj -averages of the vectors in a jp-separated
(6,€) RIS. As is common in the relevant literature, we do this after reducing
estimates to the norms of corresponding averages of the basis of an auxiliary
space Tjg%. This is done mainly in two steps. First, we make use of a Basic
Inequality (Proposition 6.1), and then we enlarge the norming set of T]g?t and
provide exact estimates for the norms of nj -averages of the basis of Tg%.
This along with the results in the previous section, which imply that for
every jo € N and every block subspace Z of X4 one can find (z), in Z
that is a jo-separated (6,€¢) RIS with € < 5/mj, and minsuppzi > mj,
leads to the existence of exact pairs and dependent sequences in every block
subspace. We start with the definition of the norming set of Tfﬁ.

6.1. The auziliary space. We note that in what follows we make use of
the terminology developed above considering weights and types of function-
als, as in all the following cases their meaning is quite analogous to the ones
considered so far.

DEFINITION 6.1. Let jo € N. We define ngf to be the minimal subset
of ¢oo(N) with the following properties:
{xe} :n e N} C Wg?
o W7} is closed under the (Azn,,1/m;)-operation for all j € N.
o Wg]f is closed under the (Am?'o’ 1/2) operation.

e For d < jy and f1,..., fg in ngf such that each f; is of type I and
w(fi) < my, for all i, w(f;) # w(f;) for i # j, and for aq,...,a4 € Q
with Z?:1 a? <1, we have Z?:l a; fi € Wg]f We call this last sum a
result of the (jo,{2) operation.

. ngf is rationally convex.

The set Wg]f induces the following norm on cyo(N):
quwgg = sup{|f(x)| : f € W} for x € coo(N).

The completion of (cpo(N), || - ||th0) is denoted by Té%. The next step is to

estimate the norms of njo-averagegs of the basis of Té?t. However, in this case
the presence of /3 convex combinations in the tree analysis of a functional
f e W;f impedes the direct use of standard techniques developed in the
past (see for example [AT, Remark 3.18]). In order to achieve the desired
estimates we need to enlarge ng to a set G’ defined below that contains
only type I functionals and their convex combinations. This enlargement,
however, results in slightly worse estimates compared to the ones obtained
in [AT, Remark 3.18].
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We start with the definition of the larger norming set:

DEFINITION 6.2. We define G% to be the minimal subset of cgo(N) with
the following properties:

(1) {%ex: k € N} C GJo.

(2) G’ is closed under the (A2n;,1/,/myj) operations for j < jo and
under the (Agp;,1/m;) operations for j > jo.

(3) G7 is closed under the (A,, g ,1/2) operation.

(4) GY° is rationally convex.

There is an alternative way to define the sets Wg]f and G7 using a
recursive construction. Namely, we set Ag = By = {£er : k € N} and
Wy = Go = convg(Ap). Let n € N and suppose that A,, Wy, By, Gy, have
been defined for k < n. We then define A,,+; to be the union of A,, and the
set of f € coo (N) of one of the following forms:

Z fis d < 2nj, (fi)i is a block sequence, f; € Wy,
i=1

1
=3 Z fis d< mi-’o, (supp fi); are mutually disjoint,

d d
f:Zaifu a; €Q, Za? <1,d < jo, (fi)i are type I with
i=1 i=1
w(fz) S mjo and f’L S an
and we set Wy, 11 = convg(Ap+1). Analogously we define By to be the
union of B,, and the set of f € coo(N) of one of the following forms:

d < 2nj, (fi): is a block sequence f; € Wy, j < jo.
Zf“ d < 2nj, (fi): is a block sequence f; € Wy, j > jo.
i=1

1
=3 Z fis d< mg-’o, (supp fi); are mutually disjoint,

and we set Gp41 = convg(By41). We can see that W;f = U, Wn and
GIo = U,, Gn- The following lemma establishes the connection between the
sets W7 and G,

LEMMA 6.1. The set ng is a subset of GJo.
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Proof. We use induction to prove that W,, C G,, for every n € N. For
n = 0 this is obvious. Let n € N and suppose that W,, C G,. To prove
that W11 C G411 it is enough to show that A,+1 € Gpiq. Let f € Ay
If f € A, then clearly f € G411 by the inductive hypothesis. If not, we
distinguish the following cases:

o [ = ,%J.Z?:l fi, (f)L, is a block sequence, f; € W, and d < 2n;.

If mj; > mj, then since f; € W, we have f € B, C Gpyq. If
mj < mj, then f can be written as f =

(kX ). Now
since (\/% Z?:l fi) € Bpy1 we have f € Gpy.

o f= %Zle fiy fi € Wy, (supp f;); are mutually disjoint and d < m?o.
Then since f; € W, C G, for all i = 1,...,d, we have f € B,+1 C
Gn+1

o f= Zz 1a1fl’ d < jo, Zz 1az <1 w(fl) < My, w(fl) 7& w(fj) for

i # j and f; € W, for all i. Then we can rewrite f as f = fo 1 \|/a1;T|1f/

where f! = FZQ”Z Sgn(az)fj for all ¢ and f] € W, for all i, j. Thus

f! € Bp4q for all i as all the sets we consider are symmetric. Now
since the functionals (f;); have pairwise different weights we obtain

Zg:1 la;|//m; < 1 and thus f € G,.

The induction is complete. m

We define the tree analysis for a functional f € G’0 as follows:

DEFINITION 6.3. Let f € G0, f # 0. A family (f,)aca With f, € G% for
all a € A is called a tree analysis of f if:

e A is a finite tree with a least element denoted by 0 and fo = f.

e For a,b € A with a C b we have ran f; C ran f,.

e For a € A maximal we have f, € {£e, : n € N}.

e For a € A not maximal, if we denote by S, the immediate successors
of a in A then f, has one of the following forms:

Z fsy 18] < 2nj,, (fs)ses, block, mj, < My,
\ Mo SESq

— Z fso  1Sal < 2nj,, (fs)ses, block, mj, = my,
Myja SESq
=5 Z fs |Sq] < mjo, (supp fs)ses, mutually disjoint,
SESa

fa:ZquS7 ZQS:17qS€Q+'

SESa SGSa
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Before providing estimates for averages of the basis of Té% we need the
following fact that will allow us to consider only functionals in G7° such that
convex combinations do not appear in their tree analysis.

FAcT 6.1. Let G{O be the minimal subset of coo(N) that satisfies (1)~(3)
of Definition 6.2. Then every f € G’ with weight w(f) can be written as
Z?:l Nifi with (fi)L, € G°, w(f;) = w(f) for all i and Zle Ai = 1 with
N € QT for alli.

The proof of this fact uses standard arguments similar to the ones in
Lemma 3.15 in [AT] and so we omit it.

LEMMA 6.2. Let jo € N with jo > 2. Let also g € G{O andky < - <k
be a sequence of natural numbers. Then

‘g<1 Zk> ‘ . { 2/mimg, i w(g) =mi, i < jo,

—L/my if w(g) = m4, i > jo.

’fljo

"o r=1

Here we make the convention w(g) = 1/2 if g is of the form f = %Z?:l Ji

where (g;); have disjoint supports and d < mg?o.

For the proof we refer to Lemma 3.16 and Proposition 3.19 in [AT]. We
can readily see that by Fact 6.1 we obtain exactly the same estimates for
functionals in G70.

We use the following piece of notation:

DEFINITION 6.4. Let (xj); be a block sequence in Xy, jo € N and
[ € Gg with a jo-tree analysis (fy)qea. For each £ € N we denote by Ay,
the set of all a € A such that:

e ran f, Nranxy # 0.

e For every b C a with b € S, such that f, € S or f, is of type I we
have ran f, Nranx; = ran f, Nran .

e There exists no b C a such that b € Sy, fy is of type Il and f, = fu >j,-

e Either f, is of type 0, type I or special and ran f, Nranzy # ran f, N
ran zy, for every b € Sy, or fo = fu>j, and a € S, and f, is of type IL

DEFINITION 6.5. Let (2j)ken be a block sequence in Xy, jo € N, f € Gy
and (fa)aeca a jo-tree analysis of f. Let a € A. Weset D, = | Jy5,{k : b € Ar}
and E, = {k:a € Ax}. B

REMARK 6.1. Let f € Gy and (fq)aca be a jo-tree analysis of f. Let

also (zp)reny be a block sequence and k£ € N. Then we can establish the
following properties of Ay:

e If a1, as € A then the nodes a1, as are incomparable.
e For a € A not maximal, if (fs)ses, is a block sequence then so is

(DS)SESQ'
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o Let a € A be such that f, is of type II and f, = fs;, + fs,, Where
fs1 = fa,<jo and fs, = fa,>j,- Then for i,j = 1,2, if there is k € D,
such that ranzy Nran fs; # 0 then k € D,

e For every k such that ran xy Nsupp f # 0 there exists a € A such that
k € D,. In particular, Dy = {k € N : supp f Nranxzy # 0}.

For the proof we refer to Lemma 4.6 in [AT].

PrOPOSITION 6.1 (Basic Inequality). Let jo € N, jo > 3 and (xp)r a
Jo-separated (C,€) RIS with minsuppz1 > mj,, 0 < € < 5/mj, and C > 1.
Let also (\k)r be an arbitrary finite sequence of scalars. Then for every
[ € Gy of type I such that w(f) < mj, there exist g1, g2, g3 € coo(N) with
nonnegative coordinates satisfying

e g; € G and w(g;) = w(f) for j =1,2,
o lgsle < oy 22,

such that

1 1
‘f(%:/\kxk)‘ < 40(2 91+ 592 +93> (Ek: |)‘k|€k>-
Proof. Let f € Gg be of type I with w(f) < mj, and (fa)aca 2 jo-

tree analysis of f. We will recursively construct for each a € A functionals
9%, 95, 95 € coo(N) such that

e suppg? C D, for i =1,2,3 and g¢ € G’.

¢ [|95]lc < 10/mj, and if f, is of type I with w(f,) = m;, < mj, then
98100 < 7 - 7o and w(fa) = w(gf) = w(g5)-

fa( > )\Mk)‘ < 4C(g%+g§‘+g§)( > |)\k|6k>-

k€D, ke€Dg

The proof is by induction. Let a € A be maximal. Then if D, = 0 we
set gf = g5 = g5 = 0. If D, # ) we can see that D, is a singleton, say
Do = {ko}. We set gf = e , g8 = 0, g3 = 0 and the inequality is easily
verified.

Let a € A be not maximal and suppose gl{,gg,gg have been defined
for every b € A with b O a according to our inductive hypotheses. We
distinguish the following cases:

CASE 1: f, is of type  with f, = ﬁ > scs, fs and ju > jo. By Lemma

Ja a
5.2 there exists at most one k, € D, such that |f,(xg,)| > 5/m;,. Suppose
without loss of generality that such a k, exists. We set gf = %e,‘;a, g5 =0

and g3 = m%o ZkeDa\{ka} er. Then
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fa(kez[;a )\Mk)‘ < Ak )| + ’fa( > Ak@k;)‘

k€D \{ka}

<4C(gf +95+ ) ( D eler):

k€D,
CASE 2: f, is of type I with f, = 52> ¢ fs and j, < jo. We
Ja a
enumerate S, as {s§ < --- < s?}; we know that |S,| < n;,. We can see

that D, = Eo U U,eq, Ds and |E,| < nj,. By Remark 6.1 we find that
(Dsa)i_, are successive subsets of N, and thus (g7")i_;, (95')i—; and (g3')i_;
are block sequences. Now since (zy)x is a jo-separated (C,e) RIS we have
|fa(zk)| < C/2m;, for all k. Hence,

fa( > /\ka?k) < fa< > )\kﬂck)‘ +
keDq keEq

2771%1 SGZSG fs( Z )\kxk) :

kEUSESa Ds
But
fa( > Akwk)) Z | Akl
kEE, Mo 1B,
and
1
oy 25X )| =g T E )
2 s€S, kGUsESa Dg 2 s€S, keDg
Thus
fa( > )\kxk)‘
keD,
<0 (5= St e Yt g Y )( > hcler)
vV M, SES, SES @ s€8, keUsesa Dg
D Il
2y/mj, kEE,
We set
1 1
gt = ,(ZeiJngf), g5 = Zgg, 9 = > g5
VMo N e E, s€8, VMo s€8q Qmja s€S,

In what follows we actually use the following stronger inequality:
(4) fa( Z /\kﬂfk>‘ < 4C’< 97 + 92 +Q3>< Z |/\k\€k)

In addition we observe that w(g$) = w(g$) = w(f,) and g, g3 € G. The
latter holds as |Eq|+|S,| < 2nj, and by Remark 6.1 the family {e; : k € E,}
U{gj : s € S, } consists of successive functionals. Finally, as ||g3|lcc < 10/m;,
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for all s € S, and (supp g5)scs, are successive we have the crucial prop-
erty

1 1 10

a
< - — .
HgB”OO — 2 my, mj,

CASE 3: f, is a type III functional, i.e. f, = > cq 7sfs With rg € Q*
and » g 7s = 1. In this case we set gff = > g 7sgf for i = 1,2,3 and
all the desired properties can be readily verified.

CASE 4: f, is a special functional. Then f, = Zsesa fs where each f,
is as in Definition 3.7. We set S} = {s € S, : ind fs < jo} and S? = S, \ S..
Observe that |S}| < jo. Let k, € N be such that there exist s; € S! and
sy € 52 satisfying ran xy, Nran fs, # () for i = 1,2. We can assume that such
a k, exists. We define

Dejo={k € Do :wp <wg,}, Dsjo=1{k€ Do: x> wp,}

Also by Remark 5.7 the set {s € S} : Ik € D<j,, ran f; Nranz, # 0}
contains at most one element, say so. We note that

D, = ngo U D>]’0 U {ka}

and we have the following estimates:

JZ(Z)\M/I@)’: fa< S Mkt Y )\kwk+)\ka$ka>

keDq k€D, k€D>j,
1
<205 Dl + [Fio (22 M) |+ £ D0 M)
kEDsO kED>]‘O

and by our inductive hypothesis and inequality (4),

o ¥ nan)| sac(Gar +jap 400 ) (5 bk,
keDs

0 ke€Ds,

As (zp)k is jo-separated, the set Lo = {k € Dsjy : [(Xseq2 fo)(zr)| =

10/m, } contains at most two elements, hence

fa( > )\kﬂﬂk)‘ <C> ‘)\k|+73L0 >

keD, keLa 90 keD< sy \La
1 . 110 \
< 40(2 Seitiar O ek)( > Ihulen).
k€Lq k€D= jo\La k€D~ j,

Finally, we have
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fa< Z Ak%)‘ < 40(; eL)(’/\ka\eka)
keD,
+ 40(;,0?0 + %9;0 + g§°> ( > WI%)

keDs,,
1

3 ek>( > wler)

k€L, Mo k€D jo\La k€D j,
= 40(91 + 595 +93> ( Z |)‘k’€k)
k€Dq

where we have set

1
91 5( + €k, +Z€k) 95 = g5,

k€L,

2 £ s
95 = m; Z ¢k + 95’
10 keDsj,\La

We can see that ¢§ € Wg since the set {g1°}U{e; }U{ej : k € Ly} consists
of successive functionals and has cardinality almost 4, which is less than

. At the same time [|g4||c < 10/my, and of course g§ = 3g5° € G¥0. In
addltlon supp(g") C D, for i = 1,2,3 and supp g{" Nsupp g§ = 0 for i = 1,2.
We point out that if ind f, < jo then the functionals gf for ¢ = 1,2,3 have

the following important properties:

P1. g¢ = 2910 fori=1,2.

1 10
P2. [|g5°]lc < ——
Jsg

Mo .
CASE 5:f, is a type II functional. We distinguish the following sub-

cases:

SUBCASE A: ind f, < jo and f, = ZSESa asfs where ZSGSa a2 <1 and
(fs)s are special functionals with disjoint sets of indices. Then

(35 ) (35 em)| = 32 (32 v
< 40( Z |as|<gf + %95 +9§>>( Z \)\k|ek>.

s€Sq k€D

We set gf = > icg, laslgt, 95 = Dses, laslgs and g5 = > g, las|g3. Ac-
cording to Properties P1 and P2 established in the previous case and as

ind fs < jo for s € S, we have the following;:
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e g% € G for i = 1,2. This is based on the observation that w(g;) =
w(gs) for all s € S, and as (ind fs)s are all smaller than jo and mu-
tually disjoint it follows that gf, ¢S are both the result of the (jo,¢2)
operation.

o [195l00 < D llg5lloo <
EIS s€S,

1 1 10 5
- < )
2 mj, Mg mj,

Finally, we have the following stronger inequality:

fa( > /\kwkﬂ < 4C<91 +59 +93>( > P\k|€k>

k€D, k€Dq

We note that the % in front of g9 is crucial for the last subcase of the type
II functionals.

SUBCASE B: ind f, > jo and f, = Y g asfs where Y- ¢ a2 <1 and
(fs)s are special functionals with disjoint sets of indices. Then by Remark
6.1, either D, = ) in which case we set g = g = g§ = 0, or D, = E,.
If D, # 0 we set Ly = {k € Dgy : |fo(zg)| > 5/mj,} and as (xy)j is
jo—separated it follows that |Ly| < 1025m2 We set gf =0, g5 = % > keL, €

and ¢ = D _keDo\Lq €k We can see that g5 € G, |9%]le < 5/mj, and

mJO

supp g;' € Da.
The following inequality is straightforward:

fo( Z Akxk)‘ <4c< g8 +g3>< > Aler).

k€Dg

We note again that g3 is multiplied by 3 5 for later use.

SUBCASE C: fq is of the form f, = fs, + fs, where fs, = f4 <j, and
fss = fa>jo- By Remark 6.1, D, = D, U D,, and for every k € D,,
ranzy Nran fs; # () if and only if k € Dy,, for i = 1, 2. Thus we set g = g7,
95 = %(9‘52 + ¢5'). The functionals g3%, g5' are elements‘ of G’0 and since g§
is their convex combination we conclude that g§ € G7°. Finally, set g§ =
gs' + g5°. The estimates take the following form:

f32< > )\kxk>‘
k€Ds,

fa(kezD: )\kxk)) < fsl(kezD: )\kxk)‘ +
§4C< +;9 + 95 >< > I/\k\ek)

kEDs,

(o +07) (T )

kEDs,
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1 1
< 40<2gf1 59 +g§1) ( > M%)

k€Dg

+4O<;g§2 +g§2)( > Iele)

k€D,

<4C(gt + g8+ ) (D Iulen)-
k€Dq

Moreover, g¢ € G% for i = 1,2, ||g§|lcc < 10/mj, and supp g¢ C D,.
The induction is complete. =

7. Consequences of the Basic Inequality and exact pairs. In this
section we analyze the consequences of the Basic Inequality. In particular,
we recall the definitions of exact pairs and dependent sequences and then
prove that every block subspace of X4 contains a dependent sequence. We
start with

LEMMA 7.1. Let jo € N with jo > 3. Let also (xy)r be a (C,€) RIS which
s jo-separated. Then for every choice of natural numbers ki < --- < k
we have

Proof. We set z = —— :Liol xy,. Let f € Gyt. We distinguish the follow-

’njo

njo

leo
1
Mo 521

15C
< .
mjo

gt

ing cases:
o fe{%e;: ke N} Then |f(x)] < C/nj, < 15C/my,.
o w(f) > mj,. Then

C+ (nj, — 1)
f(2)] < o o 5O

N Mo

o w(f)=my < mj,. Then by the Basic Inequality there exist g1, g2, g3
with g; € G0, w(gj) = m; for j = 1,2 and ||g3|cc < - rr% such that

— m;

1 1 1 &
|f(z)] < 4C<291 + 292+93> (nzekz)-

Jo =1

Thus, by Lemma 6.2 we have

uwn<4o(

\/ TG 1, mg mj,
o fis of type Il, f = Z?:l a;x; where (xf)le are special functionals
with disjoint sets of indices. We write f = f<j, + f>j,. For f>;, we

4 1 10> 8C
< .

Mg
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have
[{k € Nt | £ (wi)| > 5/mj, }| < 1025m?2,
and thus

C-1025m2 + -2 (n30—1025m) 6C
| f>jo ()] < <

njo mj,
For f<j, we have |f<jy ()| < S0 |2f o (2)] < Sicqlfilw)| where
fi € Gy are of type I and w(f;) = m; < mj, and |A| < m;,. By the
Basic Inequality we obtain

10 8C
Feio(x) < 4C ( > <
ol g;: Vi, mmg,

Finally, | f(x)] < 15C/my,.
f is of type III with f = 2?21 i fi such that ¢; € Q7, 3. ¢; = 1 and

Mg

fi is not of type III for every ¢ = 1,...,d. Using the previous cases we
have
d
15C _ 15C
f@) <> g—<—. =
Jo Mo

An immediate consequence of the above lemma and Proposition 5.2 is

COROLLARY 7.1. The space X4 does not contain an isomorphic copy

of £y.

In the rest of this section we define exact pairs and prove that one can
find a (C, j) exact pair for each j € N.

DEFINITION 7.1. Let z € X4 and ¢ € Gg. The pair (z,¢) is called a
(C,j) exact pair for some C' > 1 and j € N if:

Jallge < 30C.

¢ is of type I and w(¢) = m;.

ran ¢ = ranzx and ¢(z) = 1.

If f € Gy is of type I with w(f) = m; < my then |f(x)| < 100C/\/m;.

PROPOSITION 7.1. Let Z be a block subspace of X4 and j € N. Then
there exists a (6,7) exact pair (w, ) with w € Z.

Proof. By Proposition 5.2 there exists a j-separated (6, €) RIS (xy)r with
0 < e<b5/mj;and z, € Z for all k. Additionally, each x}, is a 2—671” k average
and thus ||zg|lg¢ > 1. We can also assume that limy 2*(x;) = 0 for every
special z*. We choose (fi)r C Gg such that ran fy = ranzy, and fi(zg) =1
for all k. Set
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Then (w, f) is a (6,7) exact pair. Indeed, by the choice of (fx)r we have
ran f = ranw and f(w) = 1. Moreover, Lemma 7.1 yields |g(w)| <
100C//my; for every g € G4 with w(g) =m; <m;. =

DEFINITION 7.2. A sequence of pairs (wy, fi)ren with wy € Xy is said
to be C-dependent if:

o (wy, fr) is a (C, ji) exact pair for every k € N.
o (fr)r is a special sequence with w(fx) = m;,.

The last proposition of this section establishes the existence of a 6-
dependent sequence in every subspace of Xy with the additional property
that the sequence is weakly Cauchy. The existence of a 6-dependent sequence
in every subspace of X, is an immediate consequence of Proposition 7.1. To
prove that it is weakly Cauchy we need the following lemma which describes
the structure of Xy, and for which we give a short proof. For a detailed ex-
position, see [ATO, Proposition I1.26].

LEMMA 7.2. The dual of the space Xg¢ can be described as follows:

gt = {en :n e NYU{f : [ is an infinite special functional}w”.

Proof. Suppose otherwise and set

= ({e;; :n € NJU{f : f is an infinite special functional}>l|.H.

Then there exists a functional z* € X}, \ Z of norm 1. Thus, there exists
z** € X7 such that 2**(z*) = 6 > 0 and 2™*(f) = 0 for every f € Z.
We may assume that ||z**|| < 1. By Corollary 7.1 and the Odell-Rosenthal
theorem [OR] there exists a sequence (xy,), in Xy with [|z,]] < 1 for all

n € N such that z, W By passing to a subsequence we may assume
that 2*(x,) > 60/2 for all n € N. In addition, as e; € Z for all k € N,
using a sliding hump argument, we may suppose that (z,), is in fact a
block sequence. Using the fact that z*(x,) > 6/2 we can construct a block
sequence (yy)n of successive ¢1 averages of (x,), with increasing lengths and
x*(yn) > 0/2 for all n. Thus, by passing to subsequences, we assume that
(Yn)n is a (6,€) RIS. As f(yn) — O for every infinite special functional f,
we can pass to a further subsequence and suppose that (yn) is j-separated
for j satisfying 60/m; < /2. Thus, setting y = 1 Zl 1 Yi, we obtain the
following contradictory facts: ||y|| > z*(y) > 6/2, and by Lemma 7.1, ||y|| <
60/m; < /2. This completes the proof. m

PROPOSITION 7.2. Let Y and Z be block subspaces of X4¢. Then there
exists a 6-dependent sequence (wg, fi)r with wop—1 € Y and woy, € Z for all
k € N. In addition, (wog—1 — wak) s weakly null.
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Proof. By repeated application of Proposition 7.1 we can inductively
construct a 6-dependent sequence (wy, fx)r With wor_1 € Y and we, € Z
for all £ € N. Each wy, is of the form

Wg = 2;717]’“ Z Yi
Ik ieF,
where |Fy| = n;,. Furthermore, we assume that for each k the sequence
(vi)ier, is a jg-separated (6,€) RIS with 0 < € < 5/m§k which also satisfies
the conclusion of Remark 5.4. Now consider a special functional f =", g;
where (g;); is a special sequence different from (f;);. By Remark 3.1 there
exists 7 € N such that

fZ:g’L fori:la"wru fT’+1 #g’/‘-i-l? w(fT+1):w(gT+1)7

while w(f;) # w(g;) for i > r + 1. Let € > 0. We pick [l € N with [ > r+1
and 1/m;j, < e. Set 4o = min{i € N : indg; > j;}. We choose ky € N such
that
My, . .
P <e, rang;, <ranwyg,—1, indgi, < jory—1-
Jkg
For k > ko we have

lg(wr)| < > |gi(wk)| + 2" (wy)|

mj, <w(gi)=m;<myj,

where ind z* > ji. However,

> gl < S 22 < 6ooe

mj, <w(gi)=m;<mj, J<i<jg

and by Remark 5.4,

* My, 10
< 8+ ——(n;, —2)) <18e.
|z* (wy,)| < " < + - (M, )) < 18¢
Therefore, limy (D, g;) (wi) = 0 for every special sequence (g;); distinct from

(fi)i- Consequently, Lemma 7.2 shows that (wor_1 — wa)r is weakly null. =

REMARK 7.1. In the proof of the above proposition we have seen that
limg, z*(wy) = 0 for every dependent sequence (fx,wy)r and every special
functional «* distinct from ), f;. Using this along with Remark 5.6 we can
obtain, for every jo > 3, an L € [N] such that:

e For every special z* such that «* # ) . f; and indz* > jo the set
{k € L:|z*(wg)| > 10/m;,} contains at most two elements.

e For every y* = E;-lzl ajz; € Gg of type II with indy* > jo and

z; # >, fi for all j we have [{k € L : [y*(wg)| > 5/mjy}| < 1025m]20.
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8. The basic properties of X ;. In this section we establish the basic
properties of X4 . In particular, we show that every infinite-dimensional
closed subspace of X4 has nonseparable dual and that X, is hereditarily
indecomposable (HI).

DEFINITION 8.1. Let jo € N and Y be a block subspace of X,. A se-
quence (wy, fi, ji)ieo<w of triples will be called a special tree in Y if:

e For every t € 2<%, (wy, f1) is a (C, j;) exact pair for some C' > 1 and
wg €Y.
e For every t € 2<¥ we have j; = o((f])vrt)-
e For every t € 2<% we have wy~g < wy~1 and wy < wy for all ¢/ € 2<¥
with [¢/| < [¢].
If moreover jy > jo and minsupp wyg > m, then the sequence will be called
a jo-special tree.

THEOREM 8.1. Let Y be a closed infinite-dimensional subspace of Xgt.
Then Y™ is nonseparable.

Proof. We can reduce the problem to the case of an arbitrary block
subspace Y. We shall construct an uncountable set A C X7, such that
lx*ly —y*|y|| > 0 for all *, y* € A and an appropriate 0. By recursive appli-
cations of Proposition 7.1 we can construct a special tree T = (wy, ft, jt)1ea<w
such that w; € Y for all t € 2<“. Let A = {>_,~; fi : b is a branch of 2<“}.
Let by,by be two different branches of 2<% and gp,, g, the corresponding
elements of A. Since by # b there exists ¢t € by \ ba. Hence,

(gbl _gbz)(wt) > 1
Jwellge ~ — 30-6

Thus if we set § = 1/180 the proof is complete. m

1901y = goalv || =

THEOREM 8.2. The space Xy 1s HI.

Proof. Let Z and Y be two infinite-dimensional block subspaces of X4
and let € > 0. According to Proposition 7.2 there exists a 6-dependent
sequence (wg, fx)r such that wep_1 € Y and wy, € Z for all k and in
addition (wer_1 — wag)y is weakly null. By Mazur’s theorem there exists an
ng € N and a sequence (\;)1°; of scalars with A\; € R and Y%, \; = 1 such
that H Z?:Ol i(wgi,l — wgi)”gt < €. We set y = Z:‘Lil ANwoi—1 €Y and z =
S0 Ajwa; € Z. We observe that ||y — z|lg¢ < € while if we set f = 379 f;
then f € Gy since (f;); is a special sequence and ||y + z||g > f(y +2) = 2.
Thus, ||y — z|lgt < € < €|y + 2||4+ and we have shown that Xy is HI. =

9. The space of bounded linear operators on X,. In this section
we study the structure of operators on Xy. In particular, we show that every
bounded linear operator T': Xy — X4 is of the form A\ + W, where I is
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the identity operator and W a weakly compact operator. We start with the
following central lemma:

LEMMA 9.1. Let Y be a block subspace of Xg¢ and T' : Y — Xy be
a bounded linear operator. Suppose that (yn)n s a block sequence of 2-£;
averages with increasing lengths in Y such that (T'(yy))n is also a block
sequence. Then lim,, dist(Ty,, Ry,) = 0.

Proof. Suppose not. Then there exist L € [N] and 6 > 0 such that
dist(Tyn, Ry,) > d for all n € L. By the Hahn—Banach theorem there exists
¢n € Bx;, such that On(yn) = 0 and ¢, (Ty,) > 6 for all n € L. As Bx:, =

th , we may assume that ¢, € Gy for all n € L and ran¢,, C ranTy,.
Now since (yn)ner is a sequence of 2-¢; averages with increasing lengths one
can inductively construct in Y a 6-dependent sequence (wg, fi)r such that
each wy, is of the form
2m
Wi 215 Z Y;

Ik 1€ Fy

and |Fj| = nj,. As, by Proposition 7.2, (wy)j, is weakly Cauchy, there exists
no € N and a convex combination uy,, of the form

Ung = A (Wapky—1 — Wak, )+ + Ang (Wak, -1 — Wak, )y K1 <0 <.
such that [|un, || < i - 3. We observe that ||T (un,)|| < §/2. Set

L
LSy,

jk ZeFk

w,’;:

> /2. Finally,
)

and observe that w; € Gy, ranwj, C ranTy; and wj(Tyy
) /2. This is a

setting f = w3, |+ + w;‘kmil we obtain f (7 (up,)
contradiction which completes the proof. m

)
>

We need a slight modification of the above lemma; we omit the proof as
it is quite similar to the one above.

LEMMA 9.2. Let Y be a block subspace of Xgt andT : Y — X4 a bounded
linear operator. Suppose that (yn)n is a block sequence of 2-01 averages with
increasing lengths in 'Y such that:

o lyall > 5> 0.
o (T(wy))n is also a block sequence, where wy, = Yon—1 — Yo, for all n.

Then lim,, dist(T'wy,, Rw,) = 0.

PropoOSITION 9.1. Let Y be an infinite-dimensional closed subspace
of Xg¢. Then every bounded linear operator T :'Y — Xy takes the form
M + S where S is a strictly singular operator.
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For the proof we refer to [AT, Theorem IV.12]. The next proposition
concludes the investigation of the structure of the bounded linear operators
on Xg. Its proof is similar to the proof of Theorem 9.4 in [ATO], but we
include it for completeness.

PROPOSITION 9.2. Every bounded linear operator T' : Xy — Xg¢ 15 of
the form A + W where W is a weakly compact operator.

Proof. Let T' : X4t — X4 be a bounded linear operator and suppose
that it is not weakly compact. We shall show that 7" is not strictly singular.
Since T' is not weakly compact there exists a normalized sequence (x,)n
such that (T'z,), has no weakly convergent subsequence. However, since
X4t does not contain ¢; we may assume that (T'z,), is nontrivial weakly
Cauchy. Denote by y*™* € X7 \ Xy the w*-limit of (T'z,,), and assume also
that 2™ € X737 \ Xyt is the w*-limit of (x5, ),. Obviously y** = T 2™,

As the basis (ey, )y, is boundedly complete we may assume that x,, = z+u,

for all n € N where z = ), **(e})e; and (uy), is a block sequence. We

observe that u, Y #** — z and Tuy, v, y** —Tx. Thus, we may assume that
x =0 and (z,), is a block sequence. Similarly, we may assume that there
exists a block sequence (2,), and z € X4 such that Tx,, = 2+ 2, for each n.
We set 0 = dist(y™*, Xg4¢). If we write z = > | ape, we know that there
exists ng € N such that

H i anenH<9/4.

n=ng+1
We claim that there exists y* € Bx: such that y™(y*) > 30/4 and
Y*[spanfer,...eny} = 0. To see this we set

no )
w1 = E an€n, w2 = E anCn.
n=1 n=ng+1

As [ly™ —w1 || = dist(y™*, X4¢) we may choose 2™ € By, such that [y (z*) —
z*(wy)] > 30/4. We set y* = P[’;0+1’Oo)(x*), where P7 o
canonical projection onto the interval [ng + 1,00) associated to the basis
(e5,)n of the predual. Observe now that y*[s,ane,...., =0 and

) denotes the

5"0}
Y (y*) = li7rln y (Txy,) = lirrln y* (2 + zn) = ¥y (wy + wo) + lizn y* (zn)
= 2" (w2) +limy" (z,).
Since (zp)n is a block sequence it can be readily seen that lim, y*(z,) =

lim,, x*(z,). Therefore, y**(y*) = z*(w2) + lim,, 2*(2,), and as lim,, z*(z,) =
y**(z*) — 2*(z), we obtain

™ ()] = ly™ (27) — 2" (w1)| > 36/4.
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As y*(Tzy,) — y*™*(y*) we may also assume that y*(Tz,,) = y*(z + 2,) >
360/4 for all n. Since |y*(z)| < /4 we obtain

y*(zn) > 0/2  for all n.

Pick 2 € Bx:, such that 2**(z*) > ¢ > 0 and suppose also that z*(z,) > ¢
for all n € N. We inductively construct a block sequence (yn)n of (zn)n
such that (y,), are 2-f1 averages with increasing lengths. Now as (y, ), are
convex combinations of (z,), we can see that for all n we have

lynll > 2*(yn) > 6,  y*(Tyn) > 36/4.

In addition we observe that there exists a block sequence (vy,),, of convex
combinations of (z,), such that for all n we have

Tyn = 2 + vy,
which gives
lonll = y*(Tyn) — y*(2) > 6/2
for all n. We set w, = yon—1 — y2n, and observe that (T'w,), is a block

sequence. Hence, by Lemma 9.2, dist(7Twy,, Rw,) — 0, and thus there exists
a sequence (), of reals such that

I Tw, — Apwy|| — 0.

We can see that the sequence (Ay,),, is bounded and assume that A, — A # 0.
We set s, = wy/||wg|| and pass to a subsequence to obtain

D sk — Asel| < [Al/2.
k=1

We claim that if we set F' = span{sy : k € N} then T restricted to F' is
an isomorphic embedding and hence 7' is not strictly singular. Indeed, let
z € F with ||z|| = 1 be of the form z = Y7, bgsg. Since |by| < 1 for each k,
we have

T = all < 3 [bil [T = Asil| < [Al/2
k=1
Therefore, [|Tz| > |A|/2. =

10. The James tree structure of X . In this section we show that
{5 is contained in both the dual and second dual of X4;. The basic tool for
proving this is Proposition 10.1 asserting that a sequence of incomparable
special functionals constructed through dependent sequences is equivalent to
the standard /2 basis. The proof of the proposition is based on Proposition
10.2 which is another Basic Inequality. It provides estimates for o sums
of certain averages of vectors of the corresponding dependent sequences.
After establishing the above propositions we apply them to indicate the
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similarities in the structure of the triples X4, X7, X737 and JT', JT™, JT™,
where JT denotes the James tree space. Among these applications we find
that every subspace of X4; has £ as a quotient space, and its dual contains /.
Moreover, it is shown that ¢3(c) (¢ denotes the Cantor set) is isomorphic to

a subspace of X7;, and X}, has l5(c) as a quotient space. We start with

ProposITION 10.1. For all i € N consider a 6-dependent sequence
(wps fr)n- Assume that ind f,, N ind f =0 for alli # i € N and set
bf = >, fL for all i € N. Then (b})ien is equivalent to the standard o
basis.

Proof. Let 0 < ¢ < 1, d € N and consider scalars aq,...,aq such that
S°4 a2 = 1. Clearly, by the definition of the norming set, || Zgzl a;bf]| < 1.

i=1"1

To complete the proof we shall show that

d
1
< b
14400 = H ;a’bl

For that, first choose jo € N which satisfies the following conditions:
d
d-5-720° <myy, 2d<mjo—2, dY l|ai| <mj, 1/mj, <e,
i=1
and then a finite sequence {li:1<i<d, 1<t<nj} such that if we set
T4 = wy; then (x( 4))(,q) has the following properties:
t

P1. w(fé) > my, for every (t,1).

P2. minsupp z ;) > my, and ||z ;|| < 180 for all ¢, 4. In addition, there
exists a sequence (j ;))t,; of natural numbers such that jo < j ) <
Jiti+n) foralle =1,....d—1and j q) < j41,1) for all £ € N, and for
all f € Gy with w(f) =my, [ < j ) we have |f(zq4)| < 600//my.
Furthermore,

[supp x(t,i)‘ <

, teN i=1,...,d—1,
Mjei41) \/mijo
|Supp (¢ 4) | _ 1
Mt \/WE.

P3. For every special functional z* ¢ {b7,...,b3} with indz* > jo, and
every i, at most two t satisfy [2*(z ;)| > 1202/, /mj,.

P4. For every y* = 2221 a;xy, € Gy of type II with indy* > jo and
xp ¢ {b],...,b5} forall k =1,...,d, and for every i, the cardinality
of {t : |y*(z 1)) > 602/,/mj,} is at most 5 - 720%my,.

P5. For every i # i’ we have by (x( ;)] < 1/m§0 forallt=1,...,nj.

Pé6. (ac(tyi))(t,i) ordered lexicographically is a block sequence.
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The choice of such a sequence (:U(m))(m) is possible through the use of Re-
mark 7.1 and Proposition 7.2. Set

Property P5 yields
d d
Zaibf(Zaizi) > 1—e
i=1 i=1

It remains to show that || Zgzl a;%i||gt is bounded by a constant. This is
done in the following two lemmas where a second Basic Inequality is stated
and proved. Namely, we shall show that

d
(5) H ;aizi

The auxiliary space is defined through the following norming set:

< 14400. w
gt

DEFINITION 10.1. Let k¢ ; = minsuppw,) and s; = {kg,) @t =
1,...,n5} for i =1,...,d. We denote by D the minimal subset of cyo(N)
satisfying:

e D contains the set {E?Zl NSt D )\ZZJ- <1, A4y ) € Q and
(s7;); are disjoint subsets of s;} U {e}, : n € N}.

e D is closed under the (Asgy,,,1/m;) operations for all j € N.

e D is closed under the (Am?O, 1/2) operation.

e For every sequence (fy);_; with r < jo, fi of type I, w(fx) < mj, and
w(fi) # w(fi) for all k # k' < d, we have Ei:l ay fr € D whenever

)
D k=10 < 1.
e D is rationally convex.

We use an enlarged norming set D’ that contains D, as in Section 5,
defined as follows.

DEFINITION 10.2. Let k¢ ; = minsuppw,;) and s; = {ky,) @t =
1,...,d}. We consider the minimal subset D’ of ¢oo(N) that satisfies:

e D' contains the set {Z?Zl D NiGSTi D )\127]- <1, Ay € Q and
(s7;); are disjoint subsets of s;} U {ej, : n € N}.

e D' is closed under the (Asgy;,1/,/m;) operations for all j < jo and
under the (Azn;,1/m;) operations for all j > jo.

e D’ is closed under the (Amio’ 1/2) operation.

e D’ is rationally convex.
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For each i € {1,...,d} we set

S
D DL
Mo =1
Before proceeding we need a slight modification of Definition 3.7.

NoTATION 10.1. For every functional y* = ) _, frzi € Gg of type II
we set

I ={ke{l,...r} : a}, = Eb; for some i € {1,...d}
and some interval E of N}.

DEFINITION 10.3. Let f € Gy and jo € N and (b}); be a finite collection
of infinite special functionals. A family (fy)eca is called a jo-tree analysis of
[ with respect to (b}); if:

(1) Ais afinite tree with a least element denoted by 0 and f, € Gy for
all a € A with fy = f.

(2) For a,b € A with a < b we have ran f;, C ran f,.

(3) For a € A maximal we have f, € {£e, : n € N}.

(4) For a € A not maximal, if we denote by S, the immediate successors
of a in A then f, has one of the following forms:

o If fa is of type I then fa = ﬁ Zsesa f87 ’Sa| < Mo and (fs)sESa
is a block sequence.

o If f, is special then f, = E, ), fi, where E, is a finite interval of
N and (f;); is a special sequence. We set F,, = {i € N : ran f; N
E, # 0} = {if,...,i5 } and Sy = {s1,...,84,} where fs, = Eof;,
and w(fs;) = w(f;) for all j € {1,...,d,}. Finally, we write
Jo = Zsesa s

o If f, is of type I with f, = >, Bk} then S, = {s1, 52,53} and
fa = fsy+fso+fss, where fo, = Zke[g ﬁkszjo’ fso = Ekeja Bray,
and fs, = Zke[g B}, >,- In addition, as in Definition 3.7, if two
of the functionals fs;, i = 1,2,3, are zero then f, = Zsesa asfs,
where (as)ses, C Q, (fs)ses, are special functionals with disjoint
sets of indices and ) ¢ a2 <1.

o If fyisof type Illl then fo=>" g 7sfs, 75 € Q" and > ses, Ts=1.

Now let f € G4 and (fa)aca be a tree analysis of f as above. Define
A,y to be the set of all a € A such that:

e ran f, Nranxg ;) # 0.

e For every b C a with b € S, such that f, € S or f, is of type I we
have ran f, Nranz(; ;) = ran fp Nranz ;).

e There exists no b C a such that f, = Eb; for an interval F and
i€{l,...,d}orbeS,, fu,isof type Il and f, = Zkel& B} > jo-
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e Either f, is of type 0 or I or special and ran f, Nranz; ;) # ran fo N

ranx ;) for every b € S, or f, = Zkel; By > jys OF fa = > ket ey,
and a € S, and f, is of type II.

For each a € A we set
Dé:{te{1,...,7%}:Elb:lawitthA(tvi)}, i=1,...,d,

d
D, = UDZU
i=1 d
Eé:{te{1,...,nj0}:aEA(t,,;)}, EaZUEé,
i=1

E,={ic{l,....,d}: D\ #0}, H,={ic{l,...,d}:E #0}.

PROPOSITION 10.2. Let f € Gg. Then there exist g1, g2, g3, ga € coo(N)
with nonnegative coordinates satisfying

1204
v/ Mo ’

91,92, 93 S -D/v Hg4”00 S
such that

()

d
<4C(g1 + g2 + g3 +94)(Z |az'|5¢) (C = 1200).

i=1
Proof. We observe that
d 1 Tjo d
> iz = — ( >0 b(m)ﬂﬁ(m))
i=1 70 T i=1 i=1
where by, ;) = a; fort =1,...,nj. Let f € Gy and (fa)aca be a tree analysis

of f. We will recursively construct for each a € A functionals ¢{, g5, g%, 9§ €
coo(N) such that:

e suppg? C D, for i =1,2,3,4 and g% € D'.
o [0}l < 1204/ 5,

1
fa< Z b(t,i)x(t,i)>‘

.
10 (ti)eD,

1
< 4C(gi + g5 + g5 + 94) <n > |b(t,z‘)|ek(tﬂ->>-

o (11)eDa
In case f, is of type I with w(f,) = m;, < mj, we have the stronger
conditions
1 1204
193 ]lc < — w(fa) = w(gy) = w(g3) = w(gs).

My, /Mj,
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The proof is by induction. We present the proof without considering restric-
tions to intervals, as for those one can apply the same techniques used in
Proposition 6.1.

Let a € A be a maximal node. Then if D, = 0 we set g¢ = 0 for
i=1,2,3,4.If D, # () we can see that D, is a singleton, say D, = {(ta,4)}-
We set g = 6’:(75@,1'@) ,95 = 0,95 = g§ = 0 and the inequality is easily verified.

Let a € A be nonmaximal and suppose that (g?)%_, have been defined
for every b € A with b J a according to our inductive hypotheses. We
distinguish the following cases:

CASE 1: f, is of type I with f, = ﬁzses fs and j, > jo. By the

Ja
choice of (z(,)) there exists at most one (t4,1q) € Do such that | fo (s, 5,))] >

601/, /m;,. Suppose without loss of generality that such a (tq,14) ex1sts We

a 1 % 2 _ 3 _ a
set g1 = 2 ek(ta,ia)’ 9o = 079(1 =0, and 914 = \/TTJO Z t,9)€Do\{(ta,ia)} k ((t,0)°

The inequalities are easily verified.
Moreover, we can see that gf,¢9,95 € D', |9}/« < 601/,/m;, and
supp gy € Dg, 1 =1,2,3,4.

CASE 2: f, is of type I with f, = 2m] ZSES fs and j, < jo. We enu-
merate S, as {s§ < --- < s%}; we know that [S,| < nj,. We can see that
Dy = Eq UlU,eq, Ds and |Ea| < nj,. By Remark 6.1, (Dsa)i_; are succes-
sive subsets of N and thus (¢7")I_1, (95°)i—;1, (93")i_; and (g4")I_, are block
sequences. By the choice of (z(;)) we have |fi(z(4)| < 600/,/my, for all
(t,7). Set

1 *
g = \/@(( Y Gyt ng),

t i)GEa SESq

QZZ

1
g5 =—=>_ o, Lo
VMa jog VMia e, Mja se3,

We obtain the following stronger inequality:

( Z b t ’L t ’L > ‘
"o (t,1)EDg
1 1 1
< 4C 91 + g5+ =95 + g4 > bealex, )-
2 2 T

(t,i)€Dg

(6)

We can also verify that w(g{) = w(g5) = w(g5) = w(fa). At the same time
1 1204
ol < 5 i
Ja/M
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CASE 3: f, is a type III functional, i.e. f, = ZsESa refs with r¢ € QT
and ) g 7s = 1. In this case we set gf = reg; fori=1,...,4. All
the desired properties can be readily verified.

SES,

CASE 4: f, is a special functional. Then f, =) s fs. We distinguish
the following subcases:

SuBcaAsk (i): ind f, NJ; ind b} = 0. Set SL = {s € S, :ind f5 < jo} and
S2 =5, \ S.. We can observe that |S}| < jo. Let (t4,44) be such that there
exist 51 € S} and sy € 52 satisfying ran T, q,) Nran fg, # 0 for i = 1,2. We
can assume that such a (t4,17,) exists. We define

D<j0 = {(t,i) e D, : T(t,5) < ‘T(ta,ia)}v D>j0 = {(t,i) e D, : T(t,5) > x(ta;ia)}'
By Remark 5.7 the set {s € S; : 3(t,i) € Dejy, ran fy Nranzy, # 0}
contains at most one element. We assume that all the aforementioned sets are
nonempty and we set {s € Sy : I(t,7) € Dy, ran fsNranz ;) # 0} = {so}-
We have
DCL = D<]’0 U D>j0 U {(ta, Za)}
Set Lo, = {(t,i) € Dxj, : [fa(z(z))l > 1202/, /mj,}. Then L, contains at
most two elements. We set
1 S * *
g1 = B (910 T iy T Z ek(m))a
(ti)€Lq
g =g° fori=23,

601 .
QZ = gio + \/W Z ek(t,i)'
70 (t,i)€D> jo\La

The desired properties of the functionals g¢f, i« = 1,2,..., can be readily
verified.
In addition we record the following stronger inequality:

1
fa(n Z b(t,i)x(t,i)>‘

(7)

7 (tieD.
< 40 a 1 a 1 a a 1 b
< g1+ 591593519 g Z D¢ty ek |-
(tvl)EDa
SUBCASE (ii): There exists ig € {1,...,d} and an interval E such that

r* = Eb; . By the bimonotonicity of the basis of Xy for each (¢,4) we have

a2l < 105, ()

Moreover, by the definition of each A ;) we know that gi = 0 for all
s € S,. Suppose that D, # 0. By the choice of (x(;)) ), if we set
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njo

oo * a _ L
= s _Zek(t,io)7 gi =0 fori=1,3,
t=1

1
a E3
g4 = —5— e
4 m?2 Z E(t,ig)?

10 (1,i)eDi0

we obtain all the desired properties and in addition

(i 5 )

(t,4)EDq

1 1
g4c<g%+2gs+g§+gz) (i 3 Iulen, )
70 (t3)eD,

Note again that the % in front of g¢ is important for this case. Finally,
194 ]loo < 1/m3,

CASE 5: f, is a type II functional. We have the following subcases:

SUBCASE A: ind f, < jo and fo = D cq. asfs where Y o a2 <1 and
(fs)s are special functionals with disjoint sets of indices. By the previous
case each g7 for i = 1,2,3 is a functional in D" with weight and all these
weights are different. Moreover,

1 1204
2w( 1) Mo

lgilloo <

for all s € S,. Hence if we set

= awg; fori=1,2,3, gi=> au}

SESa SESG
we find that ¢ € D’ for i = 1,2,3 and
. 1 11204 602
1gillec < 5 — = < .
ses, Mus V1Mo Mo

Finally, by (7),

< Z btz tz>‘
"o (t,i)€Dg

1 1 1
<4C
( 91+292+293 +94> <nj0

(8)

Z ‘b(tvi) ’ek(t,i)) :

(t,i)EDq
We note that the coefficient % in front of g¢, i = 1,2,3, is crucial for this

subcase.

SUBCASE B: ind f, > jo and fo = Y cg. asfs where > o a2 <1, (z})s
are special functionals with disjoint sets of indices and incomparable to the
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functionals (bf)L ;. Then either D, = () in which case we set gif = 0 for
i=1,...,4,0or D, = E,. If D, # 0 we set L\ = {t € D! \fa( =
602/,/mj, }. We know that |Li| < 5-720%my, for all i = 1,...,d. We set

L, = Uz Liu

1 602
9i=92=0, g5=35 Z ez(ti)’ 9i = A Z ez(f,i)'
2 (t,4)ELq Vo kE€Do\Lq

We can see that g§ € D’ and ||g§ |« < 602/,/mj,, and supp g¢ C D, for all
t=1,...,4. Finally,

( Z btz tz)'
O (t,4)€Dq
a a 1 a a 1
<4C| g7 +gg+§gg + 94 o Z ‘b(t,i)’eka,z‘) )

10 (t.4)eDq

SUBCASE C: f, is of the form f, = Zsesa asfs and for every s € S,
there exists is € {1,...,d} such that f; = Eb; . We set gf = g§ = 0,
95 = ses, @sgs and g§ = > ¢ gi. Then g3 € D' as the g5 are of the form

*

sf and have disjoint supports. The following inequality holds:

ol X o)

1 1
g4c<g%+2gs+g§+gz) (o X eole, )

10 (ti)eD,

We can also observe that ||g§|cc < 1/m?0.

SUBCASE D: f, = fs, + fs, + fs; where (fs,)?_; are as in Definition
10.3. We have D, = Dy, U Dy, U Dy, and for every (¢,i) € Dy, ranz ;) N
ran fs, # () if and only if (¢,i) € Dy, for i = 1,2,3. Thus if we set g = 347,
95 = 3(95% + 95"), 9§ = 3(95" + ¢5%) and g = gi' + g3* + g3* we obtain
gt € D' for i = 1,2,3 and ||¢gf| < 1204/,/mj,, and suppg? C D, for
1 =1,2,3,4. In addition, it can be readily verified that

Z ’b(tvi)‘ek(t,i)>'

1 a a a a 1
fa<nA E , b(tn’)%n’))‘ < 4C(g1+95+95+94) <n
7 (ti)€Da 90 (t,)eDq

The induction is complete. m
An immediate consequence of Proposition 10.1 is

PROPOSITION 10.3. Let Y be an infinite-dimensional closed subspace of
Xgt. Then Y™ contains an isomorphic copy of {a.
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Proof. By repeated application of Proposition 7.1 one can construct for
each i € N a 6-dependent sequence (3, fi),, such that y? € Y for all n,i € N
and f! € Y* with the additional property that the functionals f = Don fi
are incomparable. By Proposition 10.1 the sequence (f%); C Y* is equivalent
to the standard ¢5 basis. m

The above proposition implies that no subspace of Xy is quotient HI.
More precisely, we have

THEOREM 10.1. Every closed infinite-dimensional subspace of X4 has
ly as a quotient space.

At this point we would like to illustrate the differences in behavior be-
tween quotients of Xy by an arbitrary subspace Y and those by block sub-
spaces. In particular, one can show that for every w*-closed subspace Z of
X4 with infinite codimension the quotient X4 /Z is HI. The proof requires
the next two lemmas.

LEMMA 10.1. Let Z be a w*-closed subspace of X4t and'Y a closed sub-
space of Xgp such that Z C'Y and Y/Z is infinite-dimensional. Then for
all € > 0 and m,k € N there exists a 2-0% average x in {e; : i > m) with
dist(z,Y) < € and f € Bx,,), such that dist(f, Z1) < e and f(z) > 1,
where we have set Z+ = {f € (Xg)« : f(2) =0 for all z € Z}.

LEMMA 10.2. Let Y and Z be as in the previous lemma. Then for every
j € N and every e > 0 there exists a (6, 7) exact pair (y, f) with dist(y,Y) < e
and dist(f, Z*) < e.

We omit the proofs as they are identical to those of Lemmas 2.19 and

2.20 in [AAT]. The above yields

PROPOSITION 10.4. Let Z be an infinite-dimensional w*-closed subspace
of X4¢ of infinite codimension. Then X /Z is HI.

Proof. Let Q : X4 — X4 /Z be the quotient map. Let Y7,Y> be two
subspaces of X, such that Z is a subspace of Y1 MY, and is of infinite
codimension in each Y;. Let € > 0 and choose a sequence (e)y of positive
numbers such that ), €, < €/2. Then, by Lemmas 10.2 and 7.2, there exists
a 6-dependent sequence (zg, fx)x such that

diSt(.I'Qk,l, Yl) < diSt(xgk,YQ) < diSt(fk, ZJ‘) < €,

€k €k
2/|QII° 2lQII°
for all k£ € N, and in addition (xog_1 — o)k is weakly null. Choose a convex
combination u = AjTag, —1 —Wag, + - -+ AnTok,—1 — Wak, With k1 < -+ < ky,
with [lullx,, < €/2[|Q]. Set w1 = Y77 Niwop,—1, w2 = Y1 Aok, and
w; = Q(w;) for i = 1,2. By the choice of w;, we obtain ||, — wa|| < €/2.
Set f =), 2} € Gy and observe that dist(f, Z1) < €/2 so we may choose
x* € Z+ such that ||f — x*|| < /2. Moreover, @ + @ > x* (@ + Ws) >
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f(wy +w2) —€/2 =1—¢/2. This shows that there exist y; € Y7 and y, € Y3

such that |Q(y1) — Qua)ll < el Q(y1) + Q(y)]l, which implies that X,/Z
is HI. =

We now show that the second dual of every infinite-dimensional closed
subspace of X4 contains an isomorphic copy of f2(2*).

PROPOSITION 10.5. LetY be a block subspace of X4¢. Then Y™ contains
an isomorphic copy of £2(2%).

Proof. By recursive application of Lemma 7.1 we construct a special tree
T = (wy, ft, jt)teo<w in Y with the additional property that for every n € N
if we order the set {t € 2<% : |t| = n} lexicographically as (t;)2", then
wy, < wy whenever t; <1 ¢/ and [t;| = |t}| = n. We know by Proposition
7.2 that for each b € 2 the sequence (wy|,)n is nontrivial weakly Cauchy.
We set

wy = li7rlnwb|n, wy = Z fojn, b E2%,
n

where the limits are taken with respect to the w* topology in Y** and Y*
respectively. We claim that the family (w;*)yeoo generates fo(c). Let F' =
{b1,...,bq} be a finite subset of 2* and ay, ..., aq scalars with 2?21 a? = 1.
Notice that for by # by € 2% we have w;*(wy,) = 0 as limy, wy, (wy,,) = 0
while w;fl*(w;;l) = 1, by the choice of the special tree. Therefore, by choosing
no € N such that the functionals wzi|>n0 = Z;’O:noﬂ Jo;|n are mutually

incomparable we see that || Z?Zl AWy, g || <1 and

d d d d
H Zaiwz‘;‘ > (Zaiw;:‘) (Zaiwg‘i|n>no) = Za?.
i=1 i=1 i=1 i=1

Now as in the proof of Proposition 10.1 we can construct for each ¢ €
{1,...,d} a sequence (z;,), of successive averages of (wy,,)n so that by

Proposition 10.2, for every n € N,

d
H Zaizz
i=1 g

As for each i = 1,...,d the sequence (z},), w*-converges again to w;* we
T

deduce that
d
| 3 auui;
i=1

. < 14400.

< 14400. =

11. Properties of the predual (X, ).. In this section we study the
structure of (X4)«. We show that this space is HI and that every bounded
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linear operator T": (Xg)« — (Xgt)« is of the form A 4 .S where S is strictly
singular. We start with

DEFINITION 11.1. Let k£ € N and z* be a finitely supported vector in
(X4t)«. We say that 2* is an M-ck vector if:

e There exist 27 < --- < a} € (e}, : n € N) with * = a7 +--- + 3.

o |[zf|| >1/M for each i =1,... k.

o ls* < 1.

The following lemma is an application of Ramsey’s theorem. For a de-
tailed exposition we refer to [ATO].

LEMMA 11.1. Let Z be a block subspace of (X4)« and k € N. There
exists a block sequence (2}))n, C Z such that for every iy < --- < iy the sum
Zi otz s a 2—015 vector.

We also make use of

LEMMA 11.2. Let f € (e}, : n € N) with ||f|| <1 and € > 0. Then there
exists g € Ggr with ||f — gl < € and rang C ran f.

THEOREM 11.1. The space (X4t)« is HI.

Proof. Let Z and U be block subspaces of (X4). and let € > 0. We shall
show that there exist gz € Z and hy € U such that

lg + hll < ellg = All-

To do so we will construct a 6-dependent sequence (wy, fx)r such that
dist(Z, fox—1) < €2x—1 and dist(U, far) < €a, where ¢, > 0 and ), e, < 1/2.
Let j1 € £21. There exist 2 ; < --- < 2], inZsuchthat 2] = 2]+ - -+27,,
is a 2-¢y" vector. Since [[2],]| > 1/2 we can choose 21, € By, for i =
1,...,nq such that zi‘z(z“) > 1/2 and ran z; ; = ran 21 We set

1

z21=— 210+ -+ 210)
ni

and observe that z{(2z;) > 1 and ranz; = ranz}. By Lemma 11.2 there
exists g1 € Gy such that ran g; C ran 2y and

2m; 1
|27 — a1l < min{ :Zjl €1,21(21) — 2}.

Observe that g1(221) > 1 and dist(g1, Z) < MJ - €.

nj
Proceeding similarly we construct a double sequence (2z;, g;); such that
each 2z; is a 2-£" average and (n;); is strictly increasing. By passing to a
subsequence we may assume that (2z;); is ji-separated and thus if we set
L 1 i1

2myj,
w, = —— g 2z, = E ;s
! Ty ' h 2mj1 gi

i=1 =1
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then (w1, f1) is a (6,71) exact pair and dist(f1,Z) < €. In an analogous
manner, we inductively construct a 6-dependent sequence (wy, fi)r such that
dist(Z, for—1) < €gr—1 and dist(U, for,) < €2x. The sequence (wop_1 — wak )
is weakly null and thus we can choose a finite convex combination

Uny = A1 (Wapy -1 — Wag, )+ + Ang (Wak, —1 — Wk, )

with ||, || < (2 + €)/2€e. Set
no no
f= okt fang 9= fok1, h= fo,
i=1 i=1

We observe that dist(Z, g) < 1/2 and dist(U,h) < 1/2. Hence, there exist

9z, hy in Z,U respectively such that ||g — gz|| < 1/2 and |h — hy|| < 1/2.

Observe that ||gz + hy|| < 2 and ||gz — hyl| > ||lg — h|| — 1. Moreover,
g—nh)(u 2 2

= >-+1.
[[mo | [un|| €

Thus ||gz — hu|| > 2/€ and the proof is complete. u

11.1. The space of operators on (X4¢)«. We now show that every bounded
linear operator 1" : (X4¢)x — (X4¢)« is of the form AI + W, with W a weakly
compact operator. We begin by showing that each T": (Xg)s« — (Xg¢)« is
of the form Al + S with S strictly singular and then we prove that every
strictly singular operator on this space is weakly compact. The techniques
involved are quite similar to the ones used in [ATO]. For the results stated
without proof we refer the interested reader to Paragraph IV.2 in [ATO].
We start with the following general lemma:

LEMMA 11.3. Let X be an HI space with a basis (ep)n, and T : X — X
a bounded linear operator on X. Suppose that T is not of the form A + S
with S strictly singular. Then there exist ng € N and § > 0 such that
dist(T'(2), (z)) > d]|z|| for every z € (e, : n > ng).

LEMMA 11.4. Let T : (X41)« — (X4t)« be a bounded linear operator with
|T|| = 1. Suppose that (Te})y, is a block sequence. If T' is not of the form
M + S then for every k € N and any block subspace Z of (X4¢)« there exist
2* € Z with ||2*|| < 1 and z € X4 which is a (2/5)-£5 average such that

2*(z) =0, (Tz")(z)>1, ranzCranz*UranTz".

Proof. Since T is not of the form AI + 5 with S strictly singular, Lemma
11.3 shows that there exist 6 > 0 and ng € N such that dist(7'(f), (f)) >
|| f|| for every f € (e} : m > ng). Let Z be a block subspace of (X4)« and
k € N. By Lemma 11.1 there exists a block sequence (2]); in Z such that
for any iy < --- <y the element 2} +---+2] isa 2—0’8 vector. In addition
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we suppose that ran zj > ng. Furthermore, our assumptions yield
dist(T27, (z])) > 0|z || > 6/2
for all ¢, and since the basis of Xy is boundedly complete and bimonotone,
for every ¢ there exists z; € Xy such that
lzill =1,  2(zi)) =0, (T%)(zi)>1, ranz Cranz UranTz;.

As (Te}), has been assumed to be a block sequence, we can choose i; <
-+« < ij such that (ran z, Uran Tz} )?:1 is a block sequence. It is clear that
the vectors

1/2 2 ¥ X X
i= 52i1+"'+52ik and 2" =2z +-+ 2
satisfy the conclusion of the lemma. u

PROPOSITION 11.1. Let T : (X4:)« — (X4¢)« be a bounded linear opera-
tor. Then T is of the form A + S with S a strictly singular operator.

Proof. Tt is enough to consider an operator T such that ||T'|| = 1. Suppose
that T is not of the desired form and choose ng € N and § > 0 such that

dist(T(f), (f)) = 8|f| for every f € {ef :n > ng).

Using the previous lemma and the fact that e} 2 0 we can construct a
double sequence (zg, 2j), such that:

2p(z) = 0 and (T'%;)(z,) > 1 for all k € N.
ran z; C ranz; UranTz}.

(ran 2 UranT'%;), is a block sequence.
Each z, is a (2/0)-£§ average.

Furthermore, by Lemma 11.2 we can assume, up to a sufficiently small per-
turbation, that 2z € G4 for all k£ € N. Let now j1 € £21. We can assume by
passing to subsequences if necessary that (zp)g is ji-separated. Thus if we
set

n; n;
2mj1 i1 1 i1 .
w1 = ] § 2k fl = Iy § Rl
[ — M =

we deduce that the pair (wy, f1) has the following properties:

P1. [wi]ly < 300 -2/6.
P2. fi is of type I and w(f1) = my;,.
P3. ran f; C ranw; UranTwy and fi(w;) = 0.

P4. If ¢ € Gy is of type I with w(¢) = m; < mj, then |p(w)] < \/7% 2

Proceeding similarly we construct a double sequence (wj, f;); such that the
corresponding properties P1-P4 are satisfied for all ¢ € N and moreover
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(fi)i is a special sequence. A slight adaptation of the proof of Proposition
7.2 would also yield (w;); weakly null. Thus, pick a convex combination

Uk = /\1wi1 + -+ )\kowiko

such that ||ug,| < 1/2 and compute

2

HT(izk():fl)H > T(ng f)ugy)  T(fi + -+ fir) () .
=1

= >
[ [k | [k |

and at the same time since sz:ol fi € Gg and ||T|| = 1 we have

[r(35)] <1

which is clearly a contradiction. =

We now show that every strictly singular operator S : (Xg)s« — (Xg¢)«
is in addition weakly compact. We start with

PROPOSITION 11.2. Let T': (Xgt)« — (X4¢)« be a strictly singular oper-
ator. Then T™ : Xgt — Xg 15 also strictly singular.

Proof. By Proposition 9.2, T* = Al + W where W is strictly singular
and weakly compact. To show that T™ is strictly singular we only need to
prove that A = 0. Consider W* : Xg, — Xg,. Then W* =T — Afx;t. The
operator W* restricted to (X4« is weakly compact. It is easily seen that
every nonstrictly singular weakly compact operator must be an isomorphism
on a reflexive subspace, and as (X4 )« does not contain a reflexive subspace,
we conclude that W* restricted to (X4:)« must be strictly singular. However,
since T™* restricted to (X4 )« is equal to T" we see that W* —T** : (X4). —
(X4¢)« is strictly singular. Therefore, A = 0 and thus T is strictly singular. =

The above yields

THEOREM 11.2. Let T : (Xgt)« — (X4¢)« be a bounded linear operator.
Then T = X + W where W is a strictly singular and weakly compact oper-
ator.

Proof. Proposition 11.1 yields A € R and S : (Xg)« — (Xg4¢)s strictly
singular such that T = Al 4+ S. By Proposition 11.2, S* is strictly singular
and thus weakly compact. Thus, S is also weakly compact.
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