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Iterated function systems with a weak separation condition

by

Ka-Sing Lau (Hong Kong) and
Xiang-Yang Wang (Hong Kong and Guang-Zhou)

Abstract. Nonoverlapping contractive self-similar iterated function systems (IFS)
have been studied in great detail via the open set condition. On the other hand much less
is known about IFS with overlaps. To deal with such systems, a weak separation condition
(WSC) has been introduced recently [LN1]; it is weaker than the open set condition and
it includes many important overlapping cases. This paper has two purposes. First, we
consider the class of self-similar measures generated by such IFS; we give a necessary and
sufficient condition for the self-similar measures to be absolutely continuous with respect
to Hausdorff measures. This extends a result in [LNR]. As most of the known examples of
the WSC involve algebraic integers (e.g., the golden ratio, integral dilation matrices) and
the contraction ratios are equal, our second goal is to give new examples of self-similar
IFS with the WSC and with more arbitrary contraction ratios.

1. Introduction. We call a family {Sj}Nj=1 of contractive maps on Rd
an iterated function system (IFS). It is well known that there exists a unique
nonempty compact subset K ⊂ Rd such that K =

⋃N
j=1 Sj(K). We call K

the invariant set or attractor of the IFS. Furthermore, if we associate with
the IFS a set {pj}Nj=1 of probability weights, then there exists a unique
probability measure µ supported by K and satisfying

µ(A) =
N∑

j=1

pjµ ◦ S−1
j (A)(1.1)

for all Borel sets A ⊂ Rd [Hut]. We call µ the invariant measure of the IFS
with respect to the weights {pj}Nj=1. As is well known the invariant measure
is either continuously singular or absolutely continuous with respect to the
Lebesgue measure on Rd.

In order to obtain sharp results on the invariant measures, it is often
assumed that the maps {Sj}Nj=1 are similitudes. The corresponding K and µ
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in (1.1) are called the self-similar set and self-similar measure respectively.
For the iteration, it is often assumed that the IFS satisfies the open set
condition (OSC), i.e., there exists a nonempty bounded open set O ⊂ Rd
such that

N⋃

j=1

Sj(O) ⊂ O, Si(O) ∩ Sj(O) = ∅ ∀i 6= j.

In this case the Sj(K)’s are “essentially” disjoint. The advantage of this is
that the IFS on the set K can be identified with the shift map (actually the
branches of the inverse of the shift map) on a symbolic space, and many
properties can be derived from there. Without the OSC, the Sj(K)’s have
overlaps. The identification thus fails and it is more difficult to handle the
situation. For example, even the simplest case

S1(x) = rx, S2(x) = rx+ (1− r),
with 1/2 < r < 1 and µr = 1

2µr ◦ S−1
1 + 1

2µr ◦ S−1
2 , is not completely under-

stood. The measure µr is referred to as the Bernoulli convolution because
of its origin from the consideration of the discount sum

∑∞
n=1 r

nXn, where
the Xn’s are i.i.d. Bernoulli random variables [E], [G]. This is the most basic
example for overlapping IFS; the details of this can be found in the excel-
lent survey article by Peres, Solomyak and Schlag [PSS] and the references
therein.

One direction to study the overlapping IFS is to use a density argument
on the parameters of the families of IFS ([PoSi], [S], [PS1,2], [PSiS]). In an-
other direction Lau and Ngai [LN1] introduced a weak separation condition
(WSC) which is weaker than the open set condition and includes many IFS
with overlaps; in particular the above case of Bernoulli convolution with
r = (

√
5 − 1)/2 satisfies that condition. Under that condition the absolute

continuity of the self-similar measures was studied in [LNR], the general
mulitfractal structure was considered in [LN1] and many special cases have
been analyzed in detail in [LN2, 3], [FLN], [HL], [LW]. Note also that Zerner
[Z] gave a few equivalent definitions of the WSC. We will introduce another
equivalent definition which is most convenient for our purpose and it seems
to be adaptable to the nonlinear case.

Throughout the paper we assume that {Sj}Nj=1 is an IFS of contrac-
tive similitudes on Rd with contraction ratios 0 < rj < 1. Let Σ∗ =⋃∞
n=0{1, . . . , N}n be the space of finite sequences (by convention {1, . . . , N}0

= ∅, S∅ is the identity map, r∅ = 1 and p∅ = 1). For J = j1 . . . jn ∈ Σ∗,
let |J | = n denote the length of J , SJ = Sj1 ◦ . . . ◦ Sjn , rJ = rj1 . . . rjn and
pJ = pj1 . . . pjn . For 0 < b < 1, we let

Jb = {J = j1 . . . jn ∈ Σ∗ : rJ ≤ b < rj1...jn−1}.
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Note that SJ may be equal to SJ ′ for some J 6= J ′. We let

Ab = {S : S = SJ , J ∈ Jb}.
In this way we can consider the distinct S’s in Ab and each S has contraction
ratio around b. For S ∈ Ab, we denote by rS the contraction ratio of S.
Note that brmin < rS ≤ b, where rmin = min{rj : j = 1, . . . , N}. Let
pS =

∑{pJ : SJ = S, J ∈ Jb}. It is well known that the self-similar identity
(1.1) can be written as µ =

∑
S∈Ab pSµ ◦ S

−1.

We say that {Sj}Nj=1 satisfies the weak separation condition (WSC) if
there exist γ > 0 and a compact subset D ⊂ Rd, with D◦ 6= ∅ and⋃N
j=1 Sj(D) ⊂ D, such that for any 0 < b < 1 and x ∈ Rd,

#{S ∈ Ab : x ∈ S(D)} ≤ γ.(1.2)

This definition yields a kind of finite covering at any point x by the S(D),
where S ∈ Ab and S(D) has diameter of the same order as b. It generalizes
the open set condition; it has also been used in [LNR] extensively as a major
property derived from the original definition of the WSC. In the following
we will see that they actually coincide through the equivalent conditions of
Zerner [Z]. Our main theorem is

Theorem 1.1. Let {Sj}Nj=1 be contractive similitudes satisfying the
WSC. Let K be the self-similar set and let µ be the self-similar measure
defined by (1.1). Then µ is singular with respect to Hα|K (α = dimHK) if
and only if there exist b > 0 and S ∈ Ab such that rαS < pS.

The theorem gives a very convenient criterion to check the singularity
of a self-similar measure under the WSC (see §4). In particular for α = d,
the theorem gives a necessary and sufficient condition for the absolute con-
tinuity with respect to the Lebesgue measure. For the WSC, there is no
formula for α = dimHK analogous to the one in the case of the open set
condition [F]. However, for certain classes (e.g., when the S−1

j ’s are integral
self-similar maps), there are algorithms to calculate such α ([HeLR], [NWa]).
In the proof of the theorem, the more difficult part is the sufficiency; it has
been considered in [LNR] for the special case where r1 = . . . = rN and
for the Lebesgue measure. Here we will adopt a similar method with some
modifications.

As an important consequence of the theorem we have

Theorem 1.2. Under the above assumptions, if the self-similar measure
µ is absolutely continuous with respect to Hα|K , then the Radon–Nikodym
derivative of µ is bounded.

We remark that if we do not assume the WSC in Theorem 1.1, then
it is possible that the self-similar measure µ is absolutely continuous and
the condition rαS < pS is satisfied; there are examples among the Bernoulli
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convolutions [PS1]. However the corresponding Radon–Nikodym derivatives
are unbounded [HLW].

To the best of our knowledge, in most existing examples of WSC, the
maps are constructed using the integers or algebraic integers [LNR]; also
in all these cases, they have equal contraction ratios, or exponentially com-
mensurable at the best, i.e., there exists a constant 0 < % < 1 such that
rj = %kj for some kj ∈ N, j = 1, . . . , N . It has been suggested that IFS’s
satisfying the WSC might just be like that. One of our main purposes in this
paper is to disprove this by constructing new examples of the WSC with
more general contraction ratios. For such IFS we also provide a calculation
of the dimension of the self-similar sets.

The organization of the paper is as follows. We begin in §2 with some
explanations of the new definition. We prove the two theorems in §3. In
§4, we give some illustrations of the theorems and study in detail a new
class of IFS with the WSC. The last section is devoted to some remarks; in
particular we discuss the possible extension of the WSC to nonlinear maps.

2. Preliminaries. Throughout the paper we assume that the invariant
set K is in general position, i.e., K is not contained in a hyperplane, which
is needed in the proof of the equivalence of (ii), (iii) and (iv) in Proposition
2.1. We will use L to denote the Lebesgue measure on Rd, E◦ the interior
of E, and |E| the diameter of E. Our first goal is to clarify the definition
of WSC in (1.2) in comparison with the previous considerations in [LN1],
[LNR] and [Z]. For any a > 0 and any bounded subsets U and D in Rd, we
let

Aa,U,D = {S ∈ Aa|U | : S(D) ∩ U 6= ∅}, γa,D = sup
U

#Aa,U,D.

Proposition 2.1. Let {Sj}Nj=1 be contractive similutudes. Then the fol-
lowing are equivalent :

(i) there exist γ ∈ N and a compact subset D ⊂ Rd with D◦ 6= ∅ such
that #{S ∈ Ab : x ∈ S(D)} ≤ γ for any 0 < b < 1 and x ∈ Rd;

(ii) there exist x0 ∈ Rd and γ ∈ N such that for any J ∈ Σ∗, any ball of
radius b contains at most γ points of {S(SJ (x0)) : S ∈ Ab};

(iii) there exist a > 0 and a nonempty bounded subset D ⊂ Rd such that
γa,D <∞;

(iv) for any a > 0 and for any nonempty bounded subset D ⊂ Rd,
γa,D <∞.

Proof. Note that (ii) is a simple variation of the original definition of the
WSC in [LN1]; the equivalence of (ii), (iii), (iv) was proved in [Z].

(i)⇒(iii). We first strengthen statement (i) slightly: there exists γ ′ such
that for any x ∈ Rd,
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#{S ∈ Ab : S(D) ∩Bb(x) 6= ∅} ≤ γ′,
where Bb(x) is the open ball with radius b and centered at x. Indeed, if we
let η = (1 + |D|)b, then S(D) ⊂ Bη(x). By (i), each point in D is covered
by at most γ of the S(D), S ∈ Ab. It follows that

∑
{L(S(D)) : S ∈ Ab, S(D) ∩Bb(x) 6= ∅} ≤ γL(Bη(x)).

Note that (rminb)dL(D) ≤ rdSL(D) = L(S(D)) and L(Bη(x)) = cηd for
some constant c > 0. Since D◦ 6= ∅ , we have L(D) > 0 and by letting
γ′ = γc(1 + |D|)d(rdminL(D))−1, the above inequality implies the claim.

Now to prove (iii), we choose a = 1 and let D be as given in (i). Let U be
any bounded set, and let B be a ball of radius |U | and containing U . Then

{S ∈ A|U | : S(D) ∩ U 6= ∅} ⊂ {S ∈ A|U | : S(D) ∩B 6= ∅}.
By applying the claim for b = |U |, we have γ1,D = supU #A1,U,D ≤ γ′.

(iv)⇒(i). Let D be any fixed compact subset in Rd. Then for any x ∈ Rd
and 0 < b < 1,

#{S ∈ Ab : x ∈ S(D)} ≤ #{S ∈ Ab : S(D) ∩Bb/2(x) 6= ∅}
≤ #A1,Bb/2(x),D ≤ γ1,D <∞.

The last proof actually yields

Corollary 2.2. Condition (i) is equivalent to: For any compact set D,
there exists γ (depending on D) such that #{S ∈ Ab : x ∈ S(D)} ≤ γ for
any 0 < b < 1 and x ∈ Rd.

In view of this we see that the choice of D in the definition of weak
separation condition in (1.1) is quite flexible. We assume D to be compact,
D◦ 6= ∅ and

⋃N
j=1 Sj(D) ⊂ D because this implies that the invariant set K

is contained in D.
An important consequence of the WSC is

Proposition 2.3. Suppose {Sj}Nj=1 satisfies the WSC and let α =
dimHK. Then 0 < Hα(K) < ∞ and there exists a constant C1 > 0 such
that for any 0 < b < 1,

#Ab ≤ C1b
−α.(2.1)

Proof. That 0 < Hα(K) < ∞ is proved in [Z]. For (2.1), we adopt
a similar proof as in the last proposition. Note that for any 0 < b < 1,
K =

⋃{S(K) : S ∈ Ab}. By the definition of the WSC, we know that
K ⊂ D and each x ∈ K is covered by at most γ of the S(K) with S ∈ Ab.
Hence ∑

S∈Ab
Hα(S(K)) ≤ γHα(K).
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For each S ∈ Ab, it is clear that rminb ≤ rS; hence (rminb)αHα(K) ≤
rαSHα(K) = Hα(S(K)). It follows that

(rminb)αHα(K)#Ab ≤ γHα(K)

and by making use of 0 < Hα(K) <∞, the assertion follows.

Proposition 2.4. Suppose {Sj}Nj=1 satisfies the WSC. Then for any fi-
nite subset Λ ⊂ Σ∗, the family {SJ : J ∈ Λ} also satisfies the WSC.

Proof. We will first prove the proposition for the family {S12, S1, S2, . . .
. . . , SN}. For convenience, we write S0 = S12. Let J ′b and A′b be defined
with respect to the index set {0, 1, . . . , N}.

Let J = j1 . . . jk ∈ J ′b . Then rj1...jk ≤ b < rj1...jk−1 . If jk 6= 0, then it is
trivial that J ∈ Jb; if jk = 0, then by noting that r0 = r1r2, the inequality

rj1...jk−1r1r2 ≤ b < rj1...jk−1

implies that either

rj1...jk−1r1r2 ≤ b < rj1...jk−1r1 or rj1...jk−1r1 ≤ b < rj1...jk−1 ,

i.e., either S ∈ Ab or S = S̃ ◦ S2 with S̃ ∈ Ab. Thus

A′b ⊂ Ab ∪ Ab ◦ S2.

It follows that for any x ∈ D,

#{S ∈ A′b : x ∈ S(D)} ≤ #{S ∈ Ab : x ∈ S(D)}
+ #{S ∈ Ab : x ∈ S ◦ S2(D)} ≤ 2γ

(note that S2(D) ⊂ D). Hence the proposition is true for Λ = {12, 1, 2, . . .
. . . , N}. By repeating this argument, we see that it is also true for Λ =⋃n
k=1{1, . . . , N}k. The general statement follows by observing the trivial fact

that if an IFS satisfies the WSC, then so does any subfamily of the IFS.

3. The theorems. We need to introduce more notations. Let Σ∗ be the
space of finite indices as defined earlier and letΣ = {1, . . . , N}N. For J ∈ Σ∗,
let CJ be the cylinder set in Σ and for Λ ⊂ Σ∗, let CΛ =

⋃{CJ : J ∈ Λ}; for
J ∈ Σ∗, let [J ] = {J ′ ∈ Σ∗ : SJ = SJ ′}. Let P be the product probability
measure on Σ induced by the weights {pj}Nj=1. For Λ ⊂ Jb, we will use the
abbreviated notation P (Λ) to denote P (CΛ). Let π be the projection of Σ
to Rd defined by

π(J) =
∞⋂

n=1

Sj1...jn(K), J = j1j2 . . .

Then π(CJ) = SJ(K). Note that µ = P ◦ π−1. Hence if S = SJ , then

µ(S(K)) = P (π−1S(K)) ≥ P ({CJ ′ : SJ ′ = S}) =
∑

J ′∈[J ]

pJ ′ .



Iterated function systems 255

Lemma 3.1. For Λ ⊂ Jb, let

Λ̃ =
{
J ∈ Λ :

∑

J ′∈[J ]∩Λ
pJ ′ >

bα

4C1

}
,

where C1 is as in Proposition 2.3. Then P (Λ) > 1/2 implies that P (Λ̃) >
1/4.

Proof. By Proposition 2.3, we have #Ab ≤ C1b
−α. It follows that

P (Λ \ Λ̃) =
∑
{pJ : J ∈ Λ \ Λ̃} =

∑

[J ]

∑

J ′∈[J ]

{pJ ′ : J ′ ∈ Λ \ Λ̃}

≤ #Ab ·
bα

4C1
≤ 1

4

and P (Λ̃) = P (Λ)− P (Λ \ Λ̃) > 1/2− 1/4 = 1/4.

Proof of Theorem 1.1. To prove the necessity, we suppose that µ is sin-
gular with respect to Hα|K . Then there exists K0 ⊂ K such that µ(K0) = 1
but Hα(K0) = 0. Thus for any ε > 0, there exists a δ-cover {Ui} of K0 such
that

∑
i |Ui|α < ε. Let bi = |Ui|; then Ui ⊂ Bbi(xi) := Bi, where xi is any

fixed element in Ui. Note that

µ(Bi) =
∑
{pSµ ◦ S−1(Bi) : S ∈ Abi , S(K) ∩Bi 6= ∅}

≤
∑
{pS : S ∈ Abi , S(K) ∩Bi 6= ∅}.

If the necessity is not true, then pS ≤ rαS ≤ bα for all S ∈ Ab and all b > 0.
Hence the above inequality and Proposition 2.1(iv) imply that µ(Bi) ≤ Cbαi
and

1 = µ(K0) ≤
∑

i

µ(Bi) ≤ C
∑

i

bαi < Cε.

Since C is independent of ε, the right side can be arbitrarily small, which is
a contradiction.

For the sufficiency, the proof follows the same technique of [LNR], where
all the contraction ratios are equal and the singularity is with respect to the
Lebesgue measure. For completeness we include a modified proof here. Our
aim is to choose, for any ε > 0, a subset E ⊂ K such that µ(E) ≥ 1/2 and
Hα(E) < ε. Without loss of generality we assume that b = 1 and p1 > rα1 .
Otherwise, we can replace {Sj}Nj=1 with Ab and rearrange the indices such
that S is the first map in Ab and satisfies pS > rαS .

Let q ∈ N be such that

4C1Hα(K)
(
rα1
p1

)q
< ε,
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where C1 is as in Lemma 3.1. Let Λ1 = {1, . . . , N} and Λ̃1 = {j ∈ Λ1 : pj >
1/(4C1)}. Lemma 3.1 implies that P (Λ̃1) ≥ 1/4.

Let η = rq1. We extend the index j ∈ Λ̃1 to j1 . . . 1 ∈ Jη, and denote this
set by Λ∗1, i.e.,

Λ∗1 = {j1n ∈ Jη : j ∈ Λ̃1}
(the construction of Λ∗1 and Λ∗k in the following makes use of the sufficient
condition rα1 < p1 and is the key step in the proof). Note that for j1n ∈ Jη,
we have rjrn1 ≤ η = rq1 < rjr

n−1
1 . It follows that n ≤ q. Also

P (Λ∗1) ≥ P (Λ1)pq1 ≥ 1
4p
q
1

and for J ∈ Λ∗1 , pJ > 1
4C1

pq1 > (rαq1 /ε)Hα(K). If we let E1 =
⋃{SJ (K) :

J ∈ Λ∗1}, then

Hα(E1) ≤ rαq1 Hα(K) ·#{SJ : J ∈ Λ∗1} ≤ ε
∑

J∈Λ∗1

pJ ≤ εP (Λ∗1).(3.1)

Suppose that for 1 ≤ i ≤ k − 1 we have chosen Λ∗i ⊂ Jηi , and Ei =⋃{SJ (K) : J ∈ Λ∗i } such that

(i) CΛ∗i ∩ CΛ∗j = ∅ for j < i;

(ii) P (Λ∗i ) ≥ 1
4p
q
1;

(iii) Hα(Ei) ≤ εP (Λ∗i ).

If
∑k−1

i=1 P (Λ∗i ) ≥ 1/2, we stop the construction. Otherwise
∑k−1

i=1 P (Λ∗i ) <
1/2; we let J |n denote the first n coordinates of J and define

Λk =
{
J ∈ Jηk−1 : J |i 6∈

k−1⋃

j=1

Λ∗j , i ≤ |J |
}
,

Λ̃k =
{
J ∈ Λk :

∑

J ′∈[J ]∩Λk
pJ ′ >

ηα(k−1)

4C1

}
,

Λ∗k = {J1n ∈ Jηk : J ∈ Λ̃k}, Ek =
⋃
{SJ(K) : J ∈ Λ∗k}.

We need to show that these sets satisfy (i)–(iii). In fact CΛ∗i ∩ CΛ∗k = ∅ for
1 ≤ i < k follows from the choice of Λk. For J1n ∈ Λ∗k, a similar argument
to the one above shows that n ≤ q. Hence (ii) is a direct consequence of
P (Λk) > 1/2, P (Λ̃k) > 1/4 and the construction of Λ∗k (see the proof for the
case k = 1). The proof of (iii) is similar to (3.1).

In view of (ii), the process must stop at some finite step, say at k. Let
E =

⋃k
i=1Ei. We have

π(CΛ∗i ) =
⋃

J∈Λ∗i

SJ(K) = Ei.
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This implies that π(
⋃k
i=1CΛ∗i ) = E and it follows that

µ(E) = P (π−1E) ≥ P
( k⋃

i=1

CΛ∗i

)
=

k∑

i=1

P (CΛ∗i ) ≥
1
2
.

On the other hand, (iii) implies that

Hα(E) ≤
k∑

i=1

Hα(Ei) ≤ ε
k∑

i=1

P
(
CΛ∗i

)
< ε.

The singularity of µ is proved.

Proof of Theorem 1.2. Let ν = Hα|K and let f be the Radon–Nikodym
derivative of µ with respect to ν. Suppose f is unbounded. Then a density
theorem [M, §2.14] implies that for any M, c > 0, there exist x ∈ K and
b > 0 such that

ν({t ∈ K : f(t) > M} ∩Bcb(x)) > ν(Bcb(x))/2.

Hence

µ(Bcb(x)) =
�

Bcb(x)

f(t) dν(t) ≥Mν({t ∈ K : f(t) > M} ∩Bcb(x))

> Mν(Bcb(x))/2.

Let c = |K| in the above inequality. Note that x ∈ K =
⋃{S(K) : S ∈ Ab},

and hence there exists S ∈ Ab such that x ∈ S(K). That |S(K)| = rS · |K| ≤
bc implies that S(K) ⊂ Bcb(x). It follows that

µ(Bcb(x)) > Mν(S(K))/2 ≥ (rminb)αMν(K)/2.(3.2)

On the other hand,

µ(Bcb(x)) =
∑
{pSµ ◦ S−1(Bcb(x)) : S ∈ Ab, S(K) ∩Bcb(x) 6= ∅}

≤
∑
{pS : S ∈ Ab, S(K) ∩Bcb(x) 6= ∅}.

By Proposition 2.1(iv), there are at most γ terms in the last summation. We
choose M such that rαminMν(K)/2 > γ. Then (3.2) and the above inequality
imply that there exists S ∈ Ab such that pS > bα > rαS . Now we consider
the family of maps Ab. Proposition 2.4 implies that it satisfies the WSC.
The measure µ can be expressed as

µ =
∑

S∈Ab
pSµ ◦ S−1,

i.e., µ is a self-similar measure with respect to Ab. It follows from Theorem
1.1 that µ is singular with respect to ν, a contradiction.

We remark that in Theorem 1.1, the assumption that {Sj}Nj=1 satis-
fies the WSC is essential. For the Bernoulli convolution as defined in §1
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(with weights p, 1− p instead), Peres and Solomyak [PS1] proved that if p ∈
[1/3, 2/3], then µ is absolutely continuous for almost all r ∈ [pp(1−p)1−p, 1].
Note that (1/3)1/3(2/3)2/3 ≈ 0.5291 < 2/3. Hence if we take r and p such
that 22/3/3 ≤ r < p = 2/3, we see that there are µr absolutely continu-
ous with respect to the Lebesgue measure. Theorem 1.1 does not apply to
these µr.

Furthermore, it was proved in [HLW] that if {Sj}Nj=1 satisfies rS < pS for
some S and is absolutely continuous with respect to the Lebesgue measure
(note that {Sj}Nj=1 cannot satisfy the WSC in view of Theorem 1.1), then the
Radon–Nikodym derivative is unbounded. In particular the above example
of µr has unbounded derivatives.

It is also interesting to know that if the self-similar measure µ is ab-
solutely continuous with respect to Hα|K , then the two measures must be
equivalent, regardless of whether {Sj}Nj=1 satisfy the WSC or not ([HLW],
[MSi]).

It is well known that if the IFS satisfies the OSC then the Hausdorff
dimension of K satisfies

∑N
j=1 r

α
j = 1. The set of probability weights pj = rαj

is called the natural weight of the IFS and the corresponding self-similar
measure is CHα|K with the constant C = 1/Hα(K). By using Theorem 1.1,
we can prove the following.

Corollary 3.2. Suppose {Sj}Nj=1 satisfies the OSC and K is the self-
similar set. Then the self-similar measure µ in (1.1) is absolutely continuous
with respect to Hα|K (α = dimHK) if and only if the weights pj are rαj ,
j = 1, . . . , N .

Proof. To prove the sufficiency, we observe that the OSC implies that
SJ 6= SJ ′ for any distinct J, J ′ ∈ Jb. Hence for each S ∈ Jb, S = SJ for a
unique J . The assumption pj = rαj implies that pS = pJ = rαJ = rαS for all
S ∈ Ab, b > 0. Theorem 1.1 implies that µ is absolutely continuous with
respect to Hα|K .

For the necessity, if µ is absolutely continuous with respect toHα|K , then
Theorem 1.1 implies that pj ≤ rαj , j = 1, . . . , N . It follows from

∑N
j=1 pj =∑N

j=1 r
α
j = 1 that pj = rαj for all j = 1, . . . , N .

We can also apply the theorem to the dilation equation in wavelet theory
[DL].

Corollary 3.3. Consider the dilation equation

f(x) =
N∑

j=0

cjf(2x− j), x ∈ R,(3.3)

with cj ≥ 0 and
∑

j c2j =
∑

j c2j+1 = 1. Then (3.3) has a bounded solution.
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Proof. We reformulate the equation as follows: Let Sj(x) = 1
2(x+j), pj =

cj/2, j = 0, 1, . . . , N . Then {pj}Nj=0 satisfies
∑

j p2j =
∑

j p2j+1 = 1/2. Let

µ be the corresponding self-similar measure defined by µ =
∑N

j=0 pjµ ◦S−1
j .

It is clear that if µ is absolutely continuous with respect to the Lebesgue
measure, then the Radon–Nikodym derivative is the solution of (3.3).

It is easy to see that {Sj}Nj=1 satisfies the WSC [LNR]. To prove the
absolute continuity, we iterate the self-similar identity for µ n times to get

µ =
N ′∑

j=0

wjµ ◦ T−1
j ,

where Tj(x) = 2−n(x+ j), j = 0, 1, . . . , N ′ and N ′ = (2n − 1)N . It follows
that {wj}N ′j=0 satisfies the summing rule

∑

j

w2nj =
∑

j

w2nj+1 = . . . =
∑

j

w2nj+2n−1 = 2−n

(wj = 0 for j 6= 0, 1, . . . , N ′), which implies that wj ≤ 2−n for all j =
0, 1, . . . , N ′. Theorem 1.1 implies that the above µ is absolutely continuous
with respect to the Lebesgue measure, and Theorem 1.2 implies that the
derivative f must be bounded.

It is interesting to see whether the f in the above corollary will be con-
tinuous. The reader can refer to [Wa] for more detail. We further remark
that Corollary 3.3 still holds if we replace the scale “2” by any 2 ≤ q ∈ N
and modify the summing rule in an obvious way.

4. Examples. In this section, we will use some examples to demonstrate
the two theorems in the last section. We also give a new class of IFS with
more arbitrary contraction ratios and which satisfy the WSC.

Example 4.1. Let r = (
√

5− 1)/2 be the golden ratio and let S1(x) =
rx, S2(x) = rx+1−r. Then the IFS satisfies the WSC [LN1]. For 0 < p < 1,
let µr,p be the self-similar measure defined by the weights p and 1− p. Then
µr,p is singular with respect to the Lebesgue measure.

Proof. We consider three cases:

(i) p < 1− r or p > r. Then Theorem 1.1 implies that µr,p is singular.
(ii) 1 − r < p < r. Note that S122(x) = S211(x) = r3x + r2, and the

corresponding weight satisfies p(1− p)2 + p2(1− p) = p(1− p) > r3. Again
Theorem 1.1 implies that µr,p is singular.

(iii) p = 1− r. Note that S21211(x) = S21122(x) = S12222(x) = r5x+ r4 +
r2 ∈ Ar5 with weight p3(1 − p)2 + p2(1 − p)3 + p(1 − p)4 = 2r6 > r5; by
symmetry, the same is true for p = r. Hence µp,r is singular for p = r, 1−r.
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For p = 1/2, µr,1/2 is the well known singular case of a Bernoulli convo-
lution [E]. The example is also true for r−1 being a Pisot number; it is well
known for p = 1/2, and for 0 < p < 1 it has been proved in [LNR] using a
Fourier transform argument.

Example 4.2. For 0 < r < 1, let

S1(x) = rx, S2(x) = rx+ r, S3(x) = rx+ 1.

This family satisfies the WSC [LNR] and α = dimHK = − log
(3+

√
5

2

)
/log r

[NWa]. It is interesting to observe that for any weights {pj}3j=1, the self-
similar measure is singular with respect to Hα|K .

Proof. We consider three cases:

(i) If p1 > rα = (3−
√

5)/2, then Theorem 1.1 implies that µ is singular
with respect to Hα|K .

(ii) If
√

5 − 2 ≤ p1 ≤ (3−
√

5)/2, we notice that S21 = S13 := S ∈ Ab,
where b = r2, and pS = p2p1 + p1p3 = p1(1− p1) > bα. The same reasoning
as above shows that µ is singular.

(iii) If p1 <
√

5 − 2, then p2 + p3 = 1 − p1 > 3 −
√

5 = 2rα. It follows
that either p2 > rα or p3 > rα. Once again Theorem 1.1 implies that µ is
singular.

Example 4.3. Let S1(x) = r1x, S2(x) = r2x+1−r2, with 0 < r1, r2 < 1
and r1 + r2 < 1. It is clear that {S1, S2} satisfies the OSC. Consider the
family {Sj}3j=1, where S3 = S12. It is obvious that the two IFS have the same
invariant set K; Proposition 2.4 implies that {Sj}3j=1 satisfies the WSC.

We claim that the self-similar measure µ associated with the {Sj}3j=1 is
absolutely continuous with respect to Hα|K (α = dimHK) if and only if
p1 = rα1 , p2 = rα2 and p3 = 0.

Proof. The sufficiency is clear. To prove the necessity, we conclude from
Theorem 1.1 that p1 ≤ rα1 and p2 ≤ rα2 . By applying the self-similar identity
µ =

∑3
j=1 pjµ ◦ S−1

j to S1(K), we get

µ = p1

( 3∑

j=1

pjµ ◦ S−1
j ◦ S−1

1

)
+ p2µ ◦ S−1

2 + p3µ ◦ S−1
3 .

Noting that S−1
j ◦ S−1

1 = S−1
1j and S3 = S12, we have

µ = p2
1µ ◦ S−1

11 + (p1p2 + p3)µ ◦ S−1
3 + p1p3µ ◦ S−1

13 + p2µ ◦ S−1
2 .

Proposition 2.4 implies that {S11, S3, S13, S2} satisfies the WSC; the abso-
lute continuity of µ and Theorem 1.1 hence imply that

p1p2 + p3 ≤ (r1r2)α.
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On the other hand, we recall that S1, S2 satisfies the OSC and rα1 + rα2 = 1.
Hence

p1p2 + p3 = p1p2 + 1− p1 − p2 = (1− p1)(1− p2)

≥ (1− rα1 )(1− rα2 ) = (r1r2)α.

This implies that p1 = rα1 , p2 = rα2 , p3 = 0.

So far all the known nontrivial examples of IFS {Sj}Nj=1 with the WSC
have the following property: there exists a constant r such that rj = rkj for
j = 1, . . . , N , where kj ∈ N and rj is the contraction ratio of Sj . Example
4.3 is not of this kind as long as log r1/ log r2 is irrational, but it is more or
less a consequence of the OSC. In the rest of this section, we will give a new
class of examples of IFS with quite arbitrary contraction ratios.

Proposition 4.4. Let

S1(x) = %x, S2(x) = rx+ %(1− r), S3(x) = rx+ 1− r,(4.1)

with 0 < % < 1, 0 < r < 1 and % + 2r − r% ≤ 1. Then {Sj}3j=1 satisfies the
WSC.

For convenience, we will denote by rj the contraction ratio of Sj , i.e.,
r1 = %, r2 = r3 = r. We will prove the proposition after a series of lemmas.
First it is straightforward to check

Lemma 4.5. Let {Sj}3j=1 be as in Proposition 4.4. Then

(i) 0 = S1(0) < S2(0) < S1(1) < S2(1) ≤ S3(0) < S3(1) = 1.
(ii) S13k = S2k1 for any k ∈ N.

It follows from (ii) that the IFS will not satisfy the OSC.

0 %(1− r)q
%
q r + %(1− r)q

1− r
q 1

�
�	

?

A
A
AU

S1
S2 S3

Fig. 4.1. The IFS in Proposition 4.4

Let Σ∗ =
⋃∞
n=0{1, 2, 3}n. By convention we let {1, 2, 3}0 := ∅, j0 = ∅,

∅J = J∅; S∅ = identity map, r∅ = 1. Let

Σ′ = {J ∈ Σ∗ : no segment of J is 21}.
Then {SJ : J ∈ Σ∗} = {SJ : J ∈ Σ′}. This follows from Lemma 4.5(ii) by
replacing the segments 2k1 in the index J with 13k. Let

J ′b = Σ′ ∩ Jb, J ′′b = {J21 ∈ Jb : J ∈ Σ′}.



262 K. S. Lau and X. Y. Wang

Recall that Ab = {S : S = SJ , J ∈ Jb}, which means the set of distinct
SJ , J ∈ Jb. Let A′b and A′′b be defined similarly with respect to J ′b and J ′′b .

Lemma 4.6. With the above notations:

(i) if % ≥ r, then Ab = A′b;
(ii) if % < r, then Ab = A′b ∪ A′′b .

Proof. The relation of Ab and A′b is obtained from replacing segments
of 21 in the index with 13.

Let J = J2k1 where the last entry of J is not 2. We replace all the 21
in J by 13 and obtain J ′ = J̃13k, J̃ ∈ Σ′. By Lemma 4.5(ii), SJ = SJ ′ , and
hence rJ = rJ ′ . In case (i), J ∈ Jb implies J ′ ∈ J ′b because for % ≥ r (i.e.,
r1 > r2),

rJ ≤ b < rJ2k ⇒ rJ ′ ≤ b < rJ̃13k−1.

In case (ii), we note that rJ̃13k−1 ≤ b may happen so that J ′ 6∈ J ′b . In this
case we keep the last pair of 21 unchanged and only replace the preceding
21 with 13. This is the set J ′′b .

We consider the lexicographic order ≺ on Σ∗; for the subsets of Σ∗, we
will use the induced order. For a subset A ⊂ Σ∗ and J ∈ A we say that
J∗ ∈ A is (right) adjacent to J in A if J ≺ J∗ and there is no J̃ ∈ A such
that J ≺ J̃ ≺ J∗. In the following we will identify the adjacent elements in
J ′b and J ′′b separately. Let xJ = SJ (0) and yJ = SJ(1).

Lemma 4.7. Assume that J∗ is adjacent to J in J ′b .
(i) If J = J ′1, then J∗ = J ′2l for some l ≥ 1, and xJ < xJ∗ < yJ < yJ∗ .
(ii) If J = J ′2, then J∗ = J ′3 and xJ < yJ ≤ xJ∗ < yJ∗ .

(iii) If J = J ′13k, k ≥ 1, then J∗ = J ′2l for some l ≥ k, and xJ ≤ xJ∗ <
yJ < yJ∗ .

(iv) If J = J ′23k, k ≥ 1, then J∗ = J ′31l for some l ≥ 1, and xJ < yJ ≤
xJ∗ < yJ∗ .

Proof. We only prove (i); the other cases can be proved similarly. First
we note that J ′1J 6∈ J ′b for any J 6= ∅, i.e., we cannot add any more indices
to J ′1 to be in J ′b . That J ∈ J ′b implies that

rJ ′r1 ≤ b < rJ ′ .

By the lexicographic order in J ′b , and since the adjacent element J∗ ∈ J ′b
cannot contain segment 21, the only choice is that J∗ = J ′2l with

rJ ′r
l
2 ≤ b < rJ ′r

l−1
2 .
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For the last part of the statement, we make use of Lemma 4.5 to get

xJ = SJ ′1(0) = SJ ′(0) < SJ ′2l(0) = xJ∗ ,

xJ∗ = SJ ′2l(0) = SJ ′2l1(0) = SJ ′13l(0) < SJ ′13l(1) = SJ ′1(1) = yJ ,

yJ = SJ ′13l(1) = SJ ′2l1(1) < SJ ′2l(1) = yJ∗ .

Similarly, for the set J ′′b , we have

Lemma 4.8. Assume that % < r and J∗ is adjacent to J in J ′′b .

(i) If J = J ′121, then either (a) J∗ = J ′1221 or (b) J∗ = J ′221.
(ii) If J = J ′221, then either (a) J∗ = J ′231 or (b) J∗ = J ′321.

(iii) If J = J ′13k21, k ≥ 1, then either (a) J∗ = J ′13k221 or (b) J∗ =
J ′2k+11.

(iv) If J = J ′23k21, k ≥ 1, then either (a) J∗ = J ′23k221 or (b) J∗ =
J ′31l21 for some l ≥ 0.

Furthermore, in case (a), we have |J | < |J∗| and xJ < xJ∗ < yJ = yJ∗ ;
in case (b), we have xJ < yJ < xJ∗ < yJ∗ .

Proof. We only prove (i). It is straightforward to check that if J =
J ′121 ∈ J ′′b , then J ′1J21 6∈ J ′′b , where J ∈ Σ′ contains coordinate 1. For
% < r (i.e., r1 < r2), the assumption J = J ′121 ∈ J ′′b implies that rJ ′1r2r1 ≤
b < rJ ′1r2. If

rJ ′1r
2
2r1 ≤ b < rJ ′1r

2
2,

then the adjacent index is J∗ = J ′1221; otherwise,

rJ ′r
2
2r1 ≤ b < rJ ′r

2
2,

and J∗ = J ′221. The proof for the rest of the statement is similar to the
corresponding part of Lemma 4.7.

Proof of Proposition 4.4. Let D = [0, 1]. Then
⋃3
j=1 Sj(D) ⊂ D. We

consider two cases:

(i) If % ≥ r, then by Lemma 4.6, Ab = A′b = {SJ : J ∈ J ′b}. We rearrange
J ′b = {Ji : i = 1, 2, . . . , nb} so that Ji ≺ Ji+1 and claim that

SJi(D) ∩ SJi+k(D) = ∅ for all i and k ≥ 3.

To see this, we consider Ji = J1, J2, J13k, J23k, k ≥ 1 as in Lemma 4.7.
For each case, we can use the last assertion of Lemma 4.7 to check that
yJi < xJi+3 and the claim follows. The claim also implies that SJi(D) ∩
SJi−k(D) = ∅ for all i and k ≥ 3. Hence we conclude that

#{S ∈ Ab : x ∈ S(D)} ≤ 5 for any x ∈ Rd,
i.e., {Sj}3j=1 satisfies the WSC with D = [0, 1] and γ = 5.

(ii) If % < r, then by Lemma 4.6, Ab = {SJ : J ∈ J ′b ∪ J ′′b }. By what we
have just proved, #{SJ : x ∈ SJ (D), J ∈ J ′b} ≤ 5 for each x ∈ D.
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On J ′′b , we let M > 0 be such that rM2 < r1 and we claim that

SJi(D) ∩ SJi+k(D) = ∅ for any i and for k ≥M.

If this were not true, then part (b) in the last assertion of Lemma 4.8 cannot
hold. Hence only part (a) holds; we have yJi = yJi+1 = . . . = yJi+M , and the
expression for J∗ implies that

rJi+M ≤ rJirM2 < br1.

This contradicts the fact that Ji+M ∈ J ′′b and proves the claim. It follows
that

#{S : x ∈ S(D), S ∈ A′′b} ≤ 2M − 1 for any x ∈ Rd.
Combining this with the above statement for J ∈ J ′b , we see that each
x ∈ Rd is covered by at most γ = 2(M + 2) of the S(D), S ∈ Ab. This
proves that {Sj}3j=1 satisfies the WSC.

Proposition 4.9. Let {Sj}3j=1 be the IFS in Proposition 4.4. Then the
Hausdorff dimension α of the invariant set K is given by

%α + 2rα − (%r)α = 1.(4.2)

Moreover , the self-similar measure defined by this IFS is singular with re-
spect to Hα|K .

Remark. For the case α = 1, K = [0, 1]; it is interesting to note that
all the singular measures induced by this IFS are singular with respect to
the Lebesgue measure.

Proof. The proof makes use of an idea in [H]. Let K be the invariant set
of the IFS. Then K =

⋃3
j=1 Sj(K). By applying the set identity to S1(K)

and S2(K) and noting that S13 = S21, we have

K =
( 2⋃

i,j=1

Sij(K)
)
∪ S23(K) ∪ S3(K).

Inductively,

K =
( ⋃

|J |=n+2

SJ(K)
)
∪
( n⋃

i=0

⋃

|J |=i
SJ23(K)

)
∪ S3(K),

where J ∈ ⋃∞n=0{1, 2}n. Letting n→∞, we have

K = K0 ∪
( ∞⋃

i=0

⋃

|J |=i
SJ23(K)

)
∪ S3(K),(4.3)

where K0 =
⋂∞
n=1

⋃{SJ(K) : J ∈ {1, 2}n
}

.
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We claim that the sets in the family

B =
{
SJ23(K) : J ∈

∞⋃

n=0

{1, 2}n
}
∪ {S3(K)}

are pairwise disjoint except possibly for only one point, i.e., for any A,B ∈ B,
A ∩B contains at most one point.

To see this, first we note that max{S1(1), S2(1)} ≤ S3(0), and hence
if A or B is S3(K), then the claim holds. Secondly, it is easy to prove by
induction that

Sj1...jn23(1) ≤ S22(1) (≤ S23(0)), j1, . . . , jn ∈ {1, 2}, n ≥ 1.(4.4)

It follows that the claim holds if A or B is S23(K). Now we need only prove
the claim for the subfamily

B1 =
{
SJ23(K) : J ∈

∞⋃

n=1

{1, 2}n
}
.

Let J1, J2 ∈
⋃∞
n=1{1, 2}n, J1 6= J2. Without loss of generality, we assume

that |J1| ≤ |J2|. Then there are two possible cases:

(a) J2 = J1J
′ for some |J ′| ≥ 1;

(b) J1 = J∗iJ ′1 and J2 = J∗jJ ′2 for some J∗, J ′1, J
′
2 ∈

⋃∞
n=0{1, 2}n and

i 6= j.

In case (a), by making use of (4.4), we have

SJ223(1) = SJ1J ′23(1) ≤ SJ122(1) ≤ SJ123(0).

It follows that SJ223(K) ∩ SJ123(K) contains at most one point.
In case (b), let D = [0, 1−r]. We note that S23(K) ⊂ D,

⋃2
j=1 Sj(D) ⊂ D

and S1(D) ∩ S2(D) = {%(1− r)}. Hence

SJ123(K) ∩ SJ223(K) ⊂ SJ1(D) ∩ SJ2(D) ⊂ SJ∗i(D) ∩ SJ∗j(D)

= {SJ∗(%(1− r))}.
This yields the claim.

Now we will prove that Hα(K0) = 0, where α = dimHK. We observe
that K0 is the invariant set of S1, S2. The family satisfies the OSC as %+r <
%+ 2r − r% ≤ 1. Hence dimHK0 = α1, where

%α1 + rα1 = 1.

On the other hand, the disjointness of the sets in (4.3) (except K0) implies

Hα(K) ≥
(
rα +

∞∑

i=0

∑
{rαJ23 : J ∈ {1, 2}i}

)
Hα(K).(4.5)
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Since 0 < Hα(K) <∞ (Proposition 2.3), we can reduce the above inequality
to 1 ≥ rα + r2α∑∞

i=0(%α + rα)i (note that r1 = %, r2 = r3 = r), so that

%α + 2rα − (%r)α ≤ 1.(4.6)

Hence %α + rα < 1 and comparing it with the equation for α1, we see that
α1 < α. This implies that Hα(K0) = 0. It follows that (4.5) is an equality
and so is (4.6).

The last assertion follows from a similar argument to that in Examples
4.1 and 4.2. Let µ be the self-similar measure corresponding to the weights
{pj}3j=1. We consider three cases:

(i) If p1 > %α, then Theorem 1.1 implies that µ is singular.
(ii) If 1−2rα ≤ p1 ≤ %α, then we iterate the identity µ =

∑3
j=1 pjµ◦S−1

j

to get µ =
∑3

i,j=1 pijµ ◦S−1
ij . Let S = S13 = S21. Then we have rS = r% and

pS = p13 + p21 = p1(1 − p1) > rαS . Proposition 2.4 and Theorem 1.1 imply
that µ is singular.

(iii) If p1 < 1 − 2rα, then p2 + p3 = 1 − p1 > 2rα. Hence p2 > rα or
p3 > rα, and µ is singular.

5. Remarks. In both of the main theorems, the results depend a priori
on the Hausdorff dimension α of the invariant set K. Unlike the OSC, there
is no explicit formula for dimHK under the WSC. In [HeLR], He et al.
consider IFS of the form Sj(x) = A−1(x + dj), where A is an integral self-
similar matrix and is expanding (i.e., all eigenvalues have modulus > 1)
and dj ∈ Zd. By using a graph-directed system, they gave an algorithm
to calculate the dimension of K or the dimension of the boundary of K if
K◦ 6= ∅. There are also other approaches to the problem [DV], [NWa]. In all
these cases, the maps are assumed to have the same matrices. There is no
complete solution for the IFS with the WSC yet. We also remark that for
the above similitudes Sj(x) = A−1(x+ dj), the absolute continuity of µ can
be reduced to finding the eigenvalue of a “transition” matrix constructed
from the weights {pi}Nj=1 [LNR].

An interesting question is whether the WSC can be extended to a self-
conformal family {Sj}Nj=1 (i.e., the derivative S ′j(x) is a self-similar matrix
for x in a suitable domain). Our definition of WSC can be applied directly
to such maps. The main problem is whether there are sufficiently many non-
trivial examples (other than the affine maps and those that satisfy the OSC).
We have found such an example by modifying the one in Proposition 4.4:

S1(x) = %x, S2(x) = ax2 + rx+ %(1− %a− r),
S3 = %ax2 + rx+ (1− %a− r),

where 0 < %, r < 1, a > 0, 2a+r < 1 and %+2r−%r+(1+%+%2)a ≤ 1. The
proof is similar to Proposition 4.4 but a little more complicated. We can
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also prove that Theorems 1.1 and 1.2 hold for IFS of self-conformal maps
with WSC. The details will appear elsewhere.
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