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Classes of distribution semigroups

by

P. C. Kunstmann (Karlsruhe), M. Mijatović (Novi Sad)
and S. Pilipović (Novi Sad)

Abstract. We introduce various classes of distribution semigroups distinguished by
their behavior at the origin. We relate them to quasi-distribution semigroups and in-
tegrated semigroups. A class of such semigroups, called strong distribution semigroups,
is characterized through the value at the origin in the sense of Łojasiewicz. It contains
smooth distribution semigroups as a subclass. Moreover, the analysis of the behavior at
the origin involves intrinsic structural results for semigroups. To this purpose, new test
function spaces and distribution semigroups over these spaces are introduced. We give
applications to Schrödinger type equations in the spaces Cb, L∞, and BMO with elliptic
non-densely defined operators.

0. Introduction. After Arendt’s paper [2], n-times integrated semi-
groups as well as distribution semigroups, which were introduced much ear-
lier by Lions [16], have been studied by many authors (see, e.g., [4], [5], [3],
[9], [11]). We refer in particular to the papers of Wang [22] and the first
named author [15] as well as to the references therein.

In this paper we discuss regularity properties of distribution semigroups,
our main interest being in their behavior at the origin. The analysis of once
integrated semigroups as introduced by Kellermann and Hieber [11] can in
a certain sense make the impression that results for this class can be easily
transferred to the case of n-times integrated semigroups with n > 1. In the
language of distributions this would mean that, for distribution semigroups,
the local order n at the origin is of no significant importance. Actually, it
follows from our analysis that the case n = 1 is specific and structurally
simpler.

We introduce several classes of distribution semigroups distinguished by
their behavior at the origin. We start from the properties in Lions’ original
definition [16] and always require the semigroup property on (0,∞) ((d.1) in
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Section 1) as well as the usual non-degeneracy condition ((d.2) in Section 1)
that is needed to define the generator as a closed linear operator. These two
properties are required for a weak distribution semigroup (or weak DS). We
drop Lions’ denseness assumption ((d.3) in Section 1) and we investigate
the condition that prescribes the behavior at the origin ((d.4) in Section 1).
Replacing (d.4) by other conditions we introduce strong distribution semi-
groups and distribution semigroups. It turns out that distribution semigroups
are the same as quasi-distribution semigroups introduced in [22], [15] whereas
strong distribution semigroups are characterized via the value 0 at the origin
for their primitive where the value is understood in the sense of Łojasiewicz.

Concerning the relations between those classes we find that a strong
distribution semigroup is always a distribution semigroup and that a distri-
bution semigroup is always a weak distribution semigroup, but the converse
implications are false in general. For distributions of local order 1, however,
we show that all notions coincide.

Still, there is an open problem whether the class of strong distribution
semigroups is a proper subclass of those quasi-distribution semigroups whose
stationary dense infinitesimal generator A satisfies n(A) ≤ 1. Here n(A) de-
notes the “density” index introduced in [14] (cf. Section 2 for the definition).
In Example 1 we give a quasi-distribution semigroup which has non-densely
defined infinitesimal generator A satisfying n(A) = 2.

A characterization of a semigroup through its value in the sense of Ło-
jasiewicz is given in Theorem 5 and Proposition 3, and we are led to an
intrinsic characterization of some classes of distribution semigroups. This is
accomplished with the analysis of test function spaces with appropriate in-
tegrability conditions at the origin and the corresponding distribution semi-
groups (cf. Proposition 4 and Theorems 6 and 7).

The structural properties of strong distribution semigroups are given by
considering such semigroups on test function spaces consisting of functions
with appropriate integrability properties at the origin. In this way, it is shown
that the class of strong distribution semigroups contains properly the class
of smooth distribution semigroups introduced by Balabane and Emamirad
[6]–[8] whose infinitesimal generators are always densely defined. Roughly
speaking, the relation of strong distribution semigroups to smooth distri-
bution semigroups is very similar to the relation of once integrated semi-
groups to C0-semigroups (cf. Examples 2–4 and Remark 2 in Section 3). We
show in Example 5 that results analogous to those in [8] can be obtained for
Schrödinger type evolution equations in Banach spaces like Cb(Rn), L∞(Rn)
and BMO(Rn). In those spaces the domain of an operator A = iP (D) (where
P is an elliptic differential operator with real coefficients) is not dense. By our
approach we obtain sup-norm estimates for corresponding solutions while in
[8] such estimates were obtained for Lp-norms with 1 < p <∞.
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We can summarize the classification results of this paper as follows:

1. A distribution semigroup G with densely defined infinitesimal generator
A is not “too singular” at the origin: it has the local form

G(·, x) = (tk−1F )(k)(·, x), x ∈ E0,

where k ∈ N, t 7→ F (t, x) is continuous, F (t, x) = 0 for t ≤ 0, x ∈ E0, and
E0 is a dense set in E. Smooth semigroups are included in this class.

Remark 5 shows that dense distribution semigroups cannot be of the
form G(·, x) = (tkF )(k)(·, x) for x ∈ E, where F is continuous on (−∞, a)
(a > 0) and F (t, ·) = 0 for t ≤ 0.

2. In classifying non-dense distribution semigroups, we have DS as well as
strong and smooth DS. Again, the regularity at the origin cannot be higher
than for smooth DS. Introducing strong r-type distribution semigroups at
the end of Section 2, we show that on a dense set E0, G(−r) has the value
zero at the origin in the sense of Łojasiewicz, i.e. it is of the local form
(tk−1−rF )(k), where F (·, x) is continuous and F (t, x) = 0 for t ≤ 0, x ∈ E0.
Here r ∈ {1, . . . , k − 1}. In this way we have a whole scale of semigroups.
Their better description leads to appropriate distribution semigroups for test
function spaces defined on (0,∞).

1. Integrated, distribution and quasi-distribution semigroups.
We denote by E a Banach space with norm ‖ · ‖ and by L(E) = L(E;E) the
space of bounded linear operators from E into E. We refer to [2], [11] and
[4] for the notions of global and local n-times integrated semigroups.

For a linear operator A, its domain, range and null space are denoted
by D(A), R(A) and N(A), respectively. We will always assume that A is a
closed operator.

The well-known Schwartz spaces of test functions on the real line R are
denoted by D = C∞0 , E = C∞ and S ([19]). Their strong duals are D′, E ′, and
S ′, respectively. By D0 we denote the subspace of D of elements with support
in [0,∞). Further, D′(L(E)) = L(D;L(E)), E ′(L(E)) = L(E ;L(E)) and
S ′(L(E)) = L(S;L(E)) are the spaces of continuous linear functions D →
L(E), E → L(E) and S → L(E), respectively, equipped with the topology
of uniform convergence on bounded subsets of D, E and S, respectively;
D′+(L(E)), E ′+(L(E)) and S ′+(L(E)) are the subspaces ofD′(L(E)), E ′(L(E))
and S ′(L(E)), respectively, consisting of the elements supported in [0,∞)
(for E = C we drop (L(E)) in notation). Note that a distribution F ∈
D′(L(E)) is also a bilinear continuous mapping f : D × E → E.

Let α ∈ C∞0 with
	
R α(x) dx = 1.We will use the following nets of smooth

functions:
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(1) φε(t) =
1
ε
α

(
t

ε

)
, θε(t) =

t�

−∞
φε(s) ds =

t/ε�

−∞
α(s) ds, t ∈ R, ε ∈ (0, 1).

Note that (φε)ε is a delta net and (θε)ε is a net converging to the character-
istic function of [0,∞) in the sense of D′(R).

Recall that a (scalar-valued) distribution f has a value C ∈ C at the
origin in the sense of Łojasiewicz if f(ε·) → C in D′ as ε → 0+. This is
equivalent to any one of the following two assertions:

(a) f(φε)→ C as ε→ 0+ for all φε of the form (1),
(b) there exist k ∈ N and a function F ∈ C(V0) such that f(t) = F (k)(t)

for all t ∈ V0 and F (t)/tk → C/k! as t→ 0,

where the kth derivative is understood in the sense of distributions and
C(V0) = C(V0; C) is the space of continuous complex-valued functions in a
neighborhood V0 of the origin. (For functions that are in addition bounded
we use the notation Cb.)

In this paper, we need the corresponding assertion for vector-valued dis-
tributions f ∈ L(D;L(E)) supported in [0,∞). The proof will be given in
the Appendix.

Theorem A. Let f ∈ L(D;L(E)) with supp f ⊂ [0,∞) and let E0 be a
subset of E. For all φε of the form (1) we have

f(φε, x)→ 0, x ∈ E0 ⊂ E,
if and only if

(∗) (∃F ∈ C(V0 × E;E), suppF (·, x) ⊂ [0,∞), x ∈ E)(∃k ∈ N)

f(t, x) = F (k)(t, x), t ∈ V0, x ∈ E,
‖F (t, x)/tk‖E → 0 as t→ 0, x ∈ E0.

In this case we say that f has the value 0 at the origin on E0. (The kth
derivative is understood in the sense of distributions.)

J.-L. Lions ([16]) introduced the notion of a distribution semigroup, which
we shall call here a distribution semigroup in the sense of Lions or a DS-L
for short: a G ∈ D′+(L(E)) is a DS-L if it has the properties (d.1)–(d.4),
where:

(d.1) G(φ ∗ ψ, ·) = G(φ,G(ψ, ·)), φ, ψ ∈ D0,

where φ ∗ ψ =
	
R φ(· − t)ψ(t) dt is the usual convolution;

(d.2)
⋂
φ∈D0

N(G(φ, ·)) = {0};
(d.3) the linear hull R of

⋃
φ∈D0

R(G(φ, ·)) is dense in E;
(d.4) for all x ∈ R there is a continuous function u : [0,∞)→ E satisfying

u(0) = x and G(φ, x) =
	∞
0 φ(t)u(t) dt for all φ ∈ D.
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Remark 1. (a) Note that property (d.1) reflects the semigroup property
on (0,∞) and (d.2) means a kind of non-degeneracy which is needed to define
the generator A (see below). If (d.1) and (d.2) hold then property (d.3) is
related to denseness of the domain of A.

(b) Clearly, (d.4) implies

(2) G(φθε, x)→ G(φ, x) as ε→ 0+, for all φ ∈ D, x ∈ R,
for every (θε)ε of the form (1).

In this paper we are interested in dropping the assumption (d.3) and in
replacing the assumption (d.4) which expresses a regularity condition at the
origin. To this end we introduce

Definition 1. Let G ∈ D′+(L(E)). If (d.1) and (d.2) hold then G is called
a distribution semigroup on (0,∞). If (d.1), (d.2) and (d.4) hold then G is
called a representable distribution semigroup. If G is a distribution semigroup
on (0,∞) then it is called a strong distribution semigroup if the following
property (d.5)s holds:

(d.5)s There is a dense subspace E0 of E such that R ⊂ E0 and

G(φθε, x)→ G(φ, x) as ε→ 0+, for all φ ∈ D, x ∈ E0

and for every (θε)ε of the form (1).

Remark 2. Any DS-L is a strong distribution semigroup. Indeed, by
Remark 1(b) we know that (d.5)s holds with E0 = R, which is dense in E
by (d.3).

Now assume that G is a distribution semigroup on (0,∞). The following
construction goes back to the paper of Lions [16] (we also refer to [15]):

Let T ∈ E ′+, i.e., T is a scalar-valued distribution with compact support
in [0,∞). Define the operator G(T ) in E by

(3) x ∈ D(G(T )), y = G(T )x ⇔ ∀φ ∈ D0 : G(T ∗ φ, x) = G(φ, y).
We also write G(T, x) for G(T )x. By (d.2) we find that y1 = G(T )x and
y2 = G(T )x imply y1 = y2 (because G(ϕ, y1 − y2) = 0 for every ϕ ∈ D0),
hence G(T ) is a well-defined single-valued operator. Linearity and closedness
of G(T ) : D(G(T ))→ E are obvious. By (d.1), the definition is consistent for
T ∈ D0. Properties of the operators G(T ) are collected in the next proposition
(cf. [15, Lemma 3.6] and its proof).

Proposition 1. Let G ∈ D′+(L(E)) be a distribution semigroup on
(0,∞) and let T, S ∈ E ′+. Then:

(a) G(δ) = IdE .
(b) G(φ) commutes with G(T ) for all φ ∈ D0.
(c) G(S)G(T ) ⊂ G(S ∗ T ) with D(G(S)G(T )) = D(G(S ∗ T )) ∩D(G(T )).
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(d) G(S) + G(T ) ⊂ G(S + T ).
(e) R ⊂ D(G(T )).

In particular, if G is a distribution semigroup on (0,∞), then we can
define the generator A := G(−δ′) of G; it is a closed linear operator in E.

We are also interested in the following case. Let ψ ∈ D and ψ+ := ψ1[0,∞).
Then ψ+ ∈ E ′+ and, by (3), the operator G(ψ+, ·) with domain D(G(ψ+)) is
given by

x ∈ D(G(ψ+)), y = G(ψ+, x) ⇔ ∀φ ∈ D0 : G(φ,G(ψ+, x)) = G(φ ∗ ψ+, y).

We consider the following condition:

(d.5) G(ψ, x) = G(ψ+, x) for all ψ ∈ D, x ∈ E.
Definition 2. If G is a distribution semigroup on (0,∞) then it is called

a distribution semigroup if (d.5) holds.

We shall show in Theorem 3 below that (d.1), (d.2) and (d.5)s together
imply (d.5), i.e., any strong distribution semigroup is a distribution semi-
group. Clearly, (d.5) implies G ∈ D′+(L(E)) if this is not assumed from the
beginning.

A quasi-distribution semigroup ([22]) or pre-distribution semigroup ([15])
(we shall call it QDS for short) on a Banach space E is defined as an element
G ∈ D′(L(E)) satisfying

(Q.D.1) G(φ ∗0 ψ, ·) = G(φ,G(ψ, ·)), φ, ψ ∈ D,

where φ ∗0 ψ(t) =
	t
0 φ(t− u)ψ(u) du for t ∈ R, and such that

(Q.D.2) (d.2) holds.

Remark 3. Conditions (Q.D.1) and (Q.D.2) imply that G ∈ D′+(L(E)).
Indeed, for every ψ ∈ D(R) with suppψ ⊂ (−∞, 0) and any φ ∈ D0 we have
φ ∗0 ψ = φ ∗ ψ+ = 0. Hence by (Q.D.1), for any x ∈ E,

G(φ)G(ψ)x = G(φ ∗0 ψ)x = 0.

Since φ ∈ D0 was arbitrary, we obtain G(ψ) = 0 by (Q.D.2). (We refer here
also to [22, Remark 3.4], where (Q.D.1) is not assumed, without arguments.)
In a certain sense (Q.D.1) is related to the semigroup property on [0,∞),
not just on (0,∞) as (d.1).

Remark 4. It was shown by an example at the end of Section 3 in [15]
that there exists an element of D′+(L(E)) satisfying conditions (d.1), (d.2),
(d.4) but not (Q.D.1). Hence, in general, a representable DS is not a QDS.
In particular, a distribution semigroup on (0,∞) is, in general, not a QDS.
Moreover, the same example shows that a representable DS is not a strong
DS, in general. It was shown by Wang [22] and the first named author [13],
[15] that a QDS is a representable DS.
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Let G ∈ D′+(L(E)). Then G is called of finite order n ∈ N, resp.,
of local finite order n, if there exists a strongly continuous function S ∈
C([0,∞);L(E)) with S(0) = 0, resp., S ∈ C([0, a);L(E)) with a > 0 and
S(0) = 0 (so we can put S(t, ·) = 0 for t ≤ 0), such that

(4) G = S(n) in R (resp., G = S(n) in (−∞, a)).
If G is of finite order, then we add this to the name of the corresponding
distribution semigroup (for example, weak DS of finite order).

2. Characterizations of distribution semigroups. In this section
we study further relations between the classes of distribution semigroups
defined in the previous section. The following serves as a preparation for the
next proposition.

Proposition 2. Let G ∈ D′+(L(E)) be a distribution semigroup on
(0,∞).

(a) For all x ∈ R there is a continuous function u : [0,∞) → E such
that u(0) = x and

G(φ, x) =
∞�

0

φ(t)u(t) dt, φ ∈ D0,

i.e., the property in (d.4) holds for all φ ∈ D0.
(b) Let A be the generator of G. Let ψ ∈ D and ψ+ := 1[0,∞)ψ. Then

AG(ψ+) ⊂ G(−(ψ′)+)− ψ(0) IdE ,

D(AG(ψ+)) = D(G(−(ψ′)+)) ∩D(G(ψ+)),

G(ψ+)A ⊂ G(−(ψ′)+)− ψ(0) IdE ,

D(G(ψ+)A) = D(G(−(ψ′)+)) ∩D(A).

Proof. (a) Let φ, ψ ∈ D0, z ∈ E and x = G(ψ, z). Condition (d.1) and
the continuity of G on D imply

G(φ,G(ψ, z)) = G(φ ∗ ψ, z) = G
(∞�

0

φ(t)τtψ dt, z
)

=
∞�

0

φ(t)G(τtψ, z) dt,

where τtψ(s) := ψ(s− t). Hence,
u(t, ·) := G(τtψ, ·), t ≥ 0,

defines u ∈ C([0,∞), E) with the desired properties.
(b) Proposition 1 implies

AG(ψ+) = G(−δ′)G(ψ+) ⊂ G(−δ′ ∗ ψ+) = G(−(ψ′)+ − ψ(0)δ)
= G(−(ψ′)+)− ψ(0) IdE .
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Clearly, D(AG(ψ+)) = D(G(−(ψ′)+)) ∩D(G(ψ+)). The second part is simi-
lar.

Theorem 1. Let G ∈ D′+(L(E)). Then G is a distribution semigroup if
and only if it is a quasi-distribution semigroup. In particular , a distribution
semigroup is a representable distribution semigroup.

Proof. Let G ∈ D′+(L(E)) be a distribtion semigroup on (0,∞). If (d.5)
holds then Proposition 2(b) implies that G ∈ D′+(L(E;D(A))) is a funda-
mental solution for the operator

PA = δ′ ⊗ I − δ ⊗A ∈ D′+(L(D(A);E))

(cf. [15] for this notion). This is equivalent to G being a QDS ([15], [22]).
On the other hand, if G is a QDS and ψ ∈ D then for φ ∈ D we have

ψ ∗0 φ = ψ+ ∗ φ, and (Q.D.1) yields

G(ψ+ ∗ φ) = G(ψ ∗0 φ) = G(φ)G(ψ),

from which (d.5) follows. By Remark 4 we know that a QDS satisfies (d.4).

Hence we obtain the following diagram:

DS on (0,∞) 6⇒⇐ representable DS 6⇒⇐ DS ⇔ QDS.

In order to investigate how strong distribution semigroups fit into the pic-
ture we recall the relation between local integrated semigroups and quasi-
distribution semigroups.

Theorem 2 ([13], [22], [15]). Let G be a QDS. For every a > 0 there is
n ∈ N and a local n-times integrated non-degenerate semigroup (S(t))t∈[0,a)

such that G = S(n) on (−a, a). Conversely , if a > 0, n ∈ N, and (S(t))t∈[0,a)

is a local n-times integrated non-degenerate semigroup on [0, a), then the nth
distributional derivative S(n) coincides on (−a, a) with a QDS G.

We also recall the definition of the “density index” n(A) for a closed linear
operator A in E (cf. [14]):

n(A) := inf{k ∈ N0 : ∀m ≥ k : D(Am) = D(Ak)}.
The operator A is called stationary dense if n(A) <∞. Any QDS has a sta-
tionary dense generator A and all indices n(A) ∈ N0 actually occur (cf. [14]).

Theorem 3. If G is a strong distribution semigroup then it is a distri-
bution semigroup with stationary dense infinitesimal generator A satisfying
n(A) ≤ 1.

Proof. Assume (d.5)s. Let ψ ∈ D and x ∈ E0. Let φeε be a net of the
form (1) and θε be a net of the form (1) constructed with an α ≥ 0 and with
the additional property suppα ⊂ [1, 2]. Fix ε̃ < 1. Since ψ+θε → ψ+ in L1,

ψ+θε ∗ φeε → ψ+ ∗ φeε as ε→ 0, in D.
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Since ψ+θε = ψθε, (d.1) and (d.5)s imply

G(φeε ∗ ψ+, x) = lim
ε→0
G(ψ+θε ∗ φeε, x) = lim

ε→0
G(ψ+θε,G(φeε, x))

= lim
ε→0
G(ψθε,G(φeε, x)) = G(ψ ∗ φeε, x).

Letting ε̃→ 0, we obtain

limeε→0
G(φeε ∗ ψ+, x) = G(ψ, x).

For η ∈ D0 the continuity of G(η, ·) and (d.1) yield

G(η,G(ψ, x)) = limeε→0
G(η,G(φeε ∗ψ+, x)) = limeε→0

G(η ∗φeε ∗ψ+, x) = G(η∗ψ+, x).

Hence G(ψ, x) = G(ψ+, x) for all x ∈ E0. Now (d.5) holds on E since E0 = E
and G(ψ+, ·) is a closed operator.

Moreover, (d.5)s implies R ⊃ D(A). This is a consequence of Lemma 1
below. Now, R ⊃ D(A) implies that A is stationary dense with n(A) ≤ 1
(cf. [14]).

In the proof we used the following lemma ([13, Lemma 2.31]), which we
prove here for convenience.

Lemma 1. Let G be a distribution semigroup with generator A and let
k ∈ N. For any a > 0 we have

D(Ak) = span{G(ψ)y : y ∈ E, ψ ∈ D, suppψ ⊂ [−a, a],
∀j ∈ {0, . . . , k − 2} : ψ(j)(0) = 0}.

Proof. Let Y denote the set on the right hand side and fix a > 0. If y ∈ E
and ψ ∈ D with suppψ ⊂ [−a, a] and ψ(j)(0) = 0 for j = 0, . . . , k − 2, then
Proposition 2(b) and (d.5) imply G(ψ)y ∈ D(A) and AG(ψ)y = G(−ψ′)y −
ψ(0)y, which equals G(−ψ′)y ∈ D(A) in case k ≥ 2. Iterating this argument
yields G(ψ)y ∈ D(Ak), and the inclusion Y ⊂ D(Ak) is proved.

To prove D(Ak) ⊂ Y we first observe that Proposition 2(b) and (d.5)
imply by induction on m ∈ N that for any m ∈ N, x ∈ D(Am), and ψ ∈ D,

(5) G(ψ)Amx = G((−1)mψ(m))x−
m−1∑
j=0

(−1)jψ(j)(0)Am−1−jx.

For x∈D(Ak) we choose ψ∈D with suppψ⊂ [−a, a] such that ψ(k−1)(0)=1
and ψ(j)(0) = 0 for all j ∈ {0, . . . , k − 2} ∪ {k, . . . , 2k − 2}. Then (5) yields
x = G((−1)kψ(k))x− G(ψ)Akx ∈ Y .

By Theorem 3 we have obtained the following picture:

QDS ⇔ DS ⇐6⇒ strong DS,

since there are quasi-distribution semigroups whose generators A have
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n(A) ≥ 2 (cf. also the examples given below). A distribution semigroup
whose generator satisfies n(A) = 0 is a DS-L, hence a strong distribution
semigroup. However, we have the following

Open Problem. If G is a distribution semigroup and n(A) = 1, is it
true that G is a strong distribution semigroup?

The next theorem can be viewed as a partial answer: observe that combi-
nation with Theorem 3 shows that local order 1 of a distribution semigroup
on (0,∞) implies n(A) ≤ 1 for its generator A. The theorem also shows that
the case of local order 1 is simpler than the general case.

Theorem 4. Let G ∈ D′+(L(E)).

(a) If G is of local order n = 1 with corresponding S as in (4) on (−∞, a)
for some a > 0, then (d.5)s holds for G with E0 = E.

(b) If G is of local order n = 1 then the following are equivalent :

(i) G is a representable DS ;
(ii) G is a strong DS ;
(iii) there exists a > 0 such that (S(t))t∈[0,a) is a once local integrated

non-degenerate semigroup.

Proof. (a) Let x ∈ E, G = S′ in (−∞, a) and ψ ∈ D((−a, a)). Assuming
that suppα ⊂ (−∞, a), we have

G(ψθε, x) = 〈S′(u, x), (ψθε)(u)〉

= −〈S(u, x), ψ′(u)θε(u)〉 −
∞�

0

S(u, x)ψ(u)
1
ε
α

(
u

ε

)
du.

By Lebesgue’s theorem,
∞�

0

S(u, x)ψ(u)
1
ε
α

(
u

ε

)
du =

∞�

0

S(εu, x)ψ(εu)α(u) du→ 0 as ε→ 0.

This implies G(ψθε, x)→ G(ψ, x) as ε→ 0. Thus we have (d.5)s.
(b) follows from (a) and Theorems 1–3.

We now characterize strong distribution semigroups via the value 0 at
the origin in the sense of Łojasiewicz for their primitive. To this end we
define the primitive G(−1) of a distribution G ∈ D′+(L(E)) by (G(−1))′ = G,
suppG(−1) ⊂ [0,∞), i.e.,

(6) 〈G−1(t, ·), ϕ(t)〉 =
〈
G(t, ·), η(t)

∞�

t

ϕ(s) ds
〉
, ϕ ∈ D,

where η is a smooth function that equals 1 on [0,∞) and 0 on (−∞,−a], for
some a > 0.
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Theorem 5. Let G ∈ D′+(L(E)). Then:

(a) Condition (d.5)s implies that G(−1) has the value 0 at the origin in
the sense of Łojasiewicz on the set E0.

(b) Let E0 denote the set of all x ∈ E such that there exist n ∈ N,
a > 0, and Fx ∈ C((−a, a);E) with Fx(t) = 0 for t ≤ 0 such that
G(·, x) = F

(n)
x on (−a, a) and ‖Fx(t)‖ = o(tn−1) as t → 0. If E0 is

dense in E, then G satisfies (d.5)s.

Corollary 1. In particular , G ∈ D′+(L(E)) satisfies (d.5)s if and only
if G(−1) has the value 0 at the origin on a dense set E0 ⊂ E. Thus a G ∈
D′+(L(E)) is a strong distribution semigroup if and only if it is a distribution
semigroup on (0,∞) and G(−1) has the value 0 at the origin on a dense set
E0 ⊂ E.

Proof of Theorem 5. (a) Let (d.5)s hold. Let θε be of the form (1) and
let x ∈ E0. We have G(θεψ, x)→ G(ψ, x) for all ψ ∈ D, and this implies

(7) G((1− θε)ψ, x)→ 0, ψ ∈ D.

Since the intersection of the supports of G and 1 − θε is contained in a
compact set, (7) implies that, for every θε of the form (1) and η as in (6),

G(η(t)(1− θε), x)→ 0.

We have

η(t)(1− θε(s)) = η(t)
(
1−

s/ε�

−∞
α(r) dr

)
= η(t)

( ∞�
s/ε

α(r) dr
)

= η(t)
∞�

s

ε−1α(u/ε) du.

From the definition of φε, this implies G(−1)(φε, x) = G(η(t)(1− θε), x)→ 0
as ε→ 0. By the definition given after Theorem A, we have G(−1)(0, x) = 0
on E0 in the sense of Łojasiewicz.

(b) Assume n ≥ 2, since the case n = 1 is studied in Theorem 4. By
assumption, we have

G(−1)(·, x) = S(n−1)(·, x) on (−a, a), x ∈ E0,

so that

S(t, x) = tn−1g(t, x), and g(t, x)→ 0 as t→ 0+.

Let ψ ∈ D((−a, a)) and x ∈ E0 (and suppα ⊂ (−a, a)). We have
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G(ψθε, x) = 〈S(n)(u, x), (ψθε)(u)〉

= (−1)n
( n∑
j=1

(
n

j

)∞�
0

S(u, x)ψ(n−j)(u)
1
εj
α(j−1)

(
u

ε

)
du

+
∞�

0

S(u, x)ψ(n)(u)θε(u) du
)
.

Lebesgue’s theorem implies that
n∑
j=1

(
n

j

)∞�
0

|εn−jun−1g(εu, x)ψ(n−j)(εu)α(j−1)(u)| du→ 0 as ε→ 0.

Thus (d.5)s follows from

G(ψθε, x)→ (−1)n
∞�

0

S(u, x)ψ(n)(u) du = (−1)n〈S(·, x), ψ(n)〉 = G(ψ, x).

Remark 5. Note that a dense distribution semigroup cannot be of the
form

G(·, x) = (tkF )(k)(·, x), x ∈ D(A),

where F is continuous on (−a, a) (a > 0) and supported in [0, a). Let us
show this. Assume that the above representation holds with F (0, x) = 0 for
x ∈ D(A). Then the corresponding k-times integrated semigroup (S(t, ·))t≥0

satisfies

S(t, x) = (tk/k!)x+
t�

0

S(u,Ax) du, x ∈ D(A), t ≥ 0.

Since
	t
0 S(u,Ax) du = O(tk+1) as t → 0 (O is Landau’s symbol) it follows

that
F (t, x) = S(t, x)/tk = x/k! +O(t),

which implies
x = k!F (0, x) = 0, x ∈ D(A).

This is a contradiction since G 6= 0, and thus D(A) 6= {0}.
There exist QDS with arbitrary n(A) ∈ N0 (cf. [14]), hence in particular

with n(A) > 1. We mention that by Theorem 4.1 of [11] the ([n/2] + 2)th
distributional derivative of an [n/2]+2-times integrated semigroup which cor-
responds to i∆ gives a QDS on Cb(Rn). One can easily show that n(i∆) > 1.

Here, we will give an example based on the theory of distribution cosine
functions [12].

Example 1. Let A1 = d/dx have a maximal domain in L1(R). Then A1

is the generator of a C0-group of translations (T (t))t∈R. Thus A∗1 and −A∗1
generate once integrated semigroups on L∞(R), and (A∗1)

2 generates a once
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integrated cosine function on L∞(R). This is proved in [3, Example 3.15.5].
Moreover, in this example it is shown that A = (A∗1)

2 is not densely defined
since D(A) ⊂ W 1,∞(R), which is not dense in L∞(R). Thus, n(A) 6= 0.
By [12], if A generates a k-times integrated cosine function, then n(A) ≤
[(k + 1)/2]. It follows that n(A) = 1. This implies that the operator

A =
(

0 I

A 0

)
generates a twice integrated semigroup on L∞(R) × L∞(R) and n(A) = 2.
Thus A generates a QDS which is not a strong DS.

Now we will use our previous results to obtain a scale of strong distribu-
tion semigroups with respect to their behavior at the origin. First, we adapt
the notation. Denote

θ−rε (t) =
t�

0

(t− u)r−1

(r − 1)!
θε(u) du, t ∈ R, r ∈ N,

and introduce the following condition:

(d.5)sr G(φ(t)θ−rε (t), x)→ G
(
tr

r!
φ(t), x

)
ε→ 0+, φ ∈ D, x ∈ E0,

where E0 is a dense subspace of E containing R. If (d.1), (d.2) and (d.5)sr
hold for G, then we call it a strong r-type DS.

Define G(−r) = (G(−r+1))′, suppG(−r+1) ⊂ [0,∞), r = 2, 3, . . . . With the
same proof as for strong DS we have:

Proposition 3. Let r ∈ {1, . . . , k − 1} and G be a strong r-type DS.
Then G(−r−1) has the value 0 at the origin in the sense of Łojasiewicz on a
dense set E0, i.e. it is of the local form (tk−1−rF )(t, ·)(k), t ∈ (−a, a), where
F is continuous and F (0, x) = 0 for x ∈ E0.

This can be seen by inspection of the proofs in this section. We omit the
details.

Our Example 1 gives G = (tF )′′′, where F has prescribed properties.

3. Generalization of smooth distribution semigroups. In this sec-
tion we present generalizations of the classes of smooth distribution semi-
groups introduced in [6]–[8]. Recall ([6], [8]) that the underlying test function
space for smooth distribution semigroups is the space F0, the completion of
D((0,∞)) under the sequence of seminorms

qj(ψ) = ‖tjψ(j)‖L1((0,∞)), j ∈ N0.

A smooth distribution semigroup on a Banach space E is a continuous linear
mapping G : F0 → L(E) satisfying
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(d.1-smooth) ∀φ, ψ ∈ F0 : G(φ ∗ ψ, ·) = G(φ,G(ψ, ·)),
(d.4-smooth) there is a dense subspace D ⊂ E such that, for all x ∈ D,

there is a function u ∈ C([0,∞);E) satisfying u(0) = x and
G(φ, x) =

	∞
0 φ(t)u(t) dt for φ ∈ F0.

It has been shown (cf., e.g., [8, p. 369]) that these conditions imply (d.2)
and (d.3). Hence any smooth distribution semigroup is a DS-L. In particular,
smooth distribution semigroups are strong distribution semigroups. It is also
shown there that G(φε)x → x as ε → 0 for any x ∈ E, where (φε) is as in
(1) and the underlying α belongs to D((0,∞)). This means that smooth
distribution semigroups have, in strong operator topology, the value IdE at
0+ in the sense of Łojasiewicz.

Again, we are interested in dropping the density assumption (d.4-smooth).
But this assumption is used to show (d.2) which we need for the definition of
the generator. Hence we put (d.2-smooth) := (d.2) and define

Definition 3. If (d.1-smooth) and (d.2-smooth) hold for G ∈ F ′0(L(E))
we call G a distribution semigroup on F0.

Remark 6. We remark that ψ+ ∈ F0 for every ψ ∈ D, and that φ ∗ψ =
φ∗0ψ for φ, ψ ∈ F0. Thus one can see directly via (d.5) that every distribution
semigroup on F0 can be extended to D to become a distribution semigroup.
Moreover, we see from Lemma 1 that the generator A of a distribution
semigroup on F0 satisfies n(A) ≤ 1.

Our next result characterizes distribution semigroups on F0 in terms of
integrated semigroups. Specializing to densely defined operators A we recover
the characterization of smooth distribution semigroups that was given in [5,
Thm. 4.4] (notice that our proof is different).

Theorem 6. Let A be closed linear operator in E. Then A generates
a distribution semigroup G on F0 if and only if A generates a distribution
semigroup and there are n ∈ N and C > 0 such that G = S(n) for an n-times
integrated semigroup (S(t))t≥0 satisfying , for some C > 0,

‖S(t)‖ ≤ Ctn, t ≥ 0.

Proof. Let G be a distribution semigroup with generator A. We first
suppose that G = S(n) for an n-times integrated semigroup (S(t)) satisfying
‖S(t)‖ ≤ Ctn for t ≥ 0. For φ ∈ D0 and x ∈ E we then have

‖G(φ)x‖ =
∥∥∥(−1)n

∞�

0

φ(n)(t)S(t)x dt
∥∥∥ ≤ ∞�

0

|tnφ(n)(t)| ‖t−nS(t)x‖ dt

≤ Cqn(φ)‖x‖.

Hence G is a distribution semigroup on F0.
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Conversely, let G be a distribution semigroup on F0. We choose k ∈ N0

and K > 0 such that ‖G(φ)‖L(E) ≤ K
∑k

j=0 qj(ϕ) for φ ∈ F0. By continuity
we extend G to Fk0 , the closure of F0 for the norm ‖ · ‖k :=

∑k
j=0 qj . We

denote the extension by G̃ and let n := k + 1. By [15, Sect. 4] we know
that G = S(n) for S(t) = G̃(Int ), t ≥ 0, where Int (s) := (t−s)n−1

(n−1)! 1[0,t](s) for
s, t ≥ 0 (observe that t 7→ Int is continuous for ‖ · ‖k). Now we estimate, for
j = 0, . . . , k and t > 0,

qj(Int ) =
t�

0

sj
∣∣∣∣( d

ds

)j (t− s)n−1

(n− 1)!

∣∣∣∣ ds =
t�

0

sj
(t− s)n−1−j

(n− 1− j)!
ds

= tn
1�

0

σj(1− σ)n−1−j

(n− 1− j)!
dσ = cn,jt

n,

which yields ‖S(t)‖ ≤ Ctn for C := K
∑k

j=0 cn,j .

If we combine this theorem with Theorem 5 and Corollary 1, we obtain

Corollary 2. Let G be a distribution semigroup on F0. Then

(d.5)glob G(θεψ)x→ G(ψ)x for all ψ ∈ D, x ∈ E,
where θε is given in (1). In particular , G is a strong distribution semigroup.

We give a number of examples.

Example 2. If G is a smooth distribution semigroup in E then the dual
operators G∗(·) in E∗ form a distribution semigroup on F0.

Example 3. Let T : (0,∞) → L(E) be a strongly continuous function
satisfying T (s)T (t) = T (t + s), s, t > 0 and

⋂
t>0N(T (t)) = {0}. If we

let T (0) := I, then (T (t))t≥0 is a semigroup which is strongly continuous
on (0,∞), but not necessarily a C0-semigroup. Notice also that we do not
require

⋃
t>0R(T (t)) to be dense in E. Assume that

‖T (t)‖ ≤Mt−α, t > 0, for some M > 0, α ∈ (0, 1).

Then the formula G(ψ, x) :=
	∞
0 ψ(t)T (t)x dt defines a DS in E. Letting

S(t)x :=
	t
0 T (s)x ds we obtain a norm continuous function S satisfying

‖S(t)‖ ≤Mt1−α/(1− α), t > 0.

In particular, ‖S(t)‖ = o(1) as t→ 0. Since G = S′ in the distribution sense,
G satisfies (d.5)glob by Theorem 5. But, in general, G is not a distribution
semigroup on F0 (cf. Theorem 6). In this example ‖R(λ,A)‖ ≤ Mλα−1 for
λ > 0, and this implies n(A) ≤ 1 directly by an argument similar to [14,
Lemma 1.5].

For the sake of completeness, we construct a family of operators (T (t))t>0

which satisfies the above conditions. Take β > 1 and E = l2× l2, whose ele-
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ments will be denoted as sequences of pairs (xn, yn), and define the
operator A as a diagonal operator, mapping the nth pair (xn, yn) to (−nxn+
nβyn,−nyn). Then the semigroup operators T (t) map (xn, yn) to (e−ntxn +
tnβe−ntyn, e

−ntxn). An easy calculation shows that ‖T (t)‖ = O(t1−β) as
t→ 0 and that this is optimal. Hence one gets an example for β = 1 + α.

Example 4. Let A be a Hille–Yosida operator in E, i.e.

sup
λ>0, n∈N

‖λnR(λ,A)n‖ <∞.

By [2], A generates a once integrated semigroup (S(t))t≥0 satisfying ‖S(t)‖
≤Mt for t ≥ 0. Hence G := S′ is a distribution semigroup on F0, in partic-
ular, G satisfies (d.5)glob.

Remark 7. Let G be a distribution semigroup in E with generator A
and assume that n(A) = 1. Define F := D(A) [= R]. Then F is a closed
subspace of E which is invariant under each operator G(ψ, ·), ψ ∈ D, and
letting H(ψ, ·) := G(ψ, ·)|F we obtain a dense DS H in F with generator
B (which is the part of A in F , i.e. x ∈ D(B) and Bx = y if and only
if x ∈ D(A) ∩ F , Ax = y and y ∈ F ). Suppose now that H is a smooth
distribution semigroup. We show that G satisfies G(−1)(φε)x→ 0 for x ∈ E.

Choosing λ0 ∈ %(A) we have the representation G = (λ0−A)H(λ0−A)−1.
We take λ0 = 0 without loss of generality. We have G′ − AG = δ ⊗ IdE and
obtain by integration G −AG(−1) = I ⊗ IdE , i.e.

G(−1)(φε, x) = A−1G(φε, x)− I(φε)A−1x = H(φε)A−1x−A−1x.

By smoothness of H we have H(φε)A−1x→ A−1x, and the claim is proved.

In fact, Example 4 is related to this remark: If n(A) = 1 in Example 4,
then the operator B defined above generates a C0-semigroup in F .

Again, we summarize in a picture:

DS on F0
6⇐
⇒ DS with (d.5)glob ⇒ strong DS.

Open Problem. Let G be a distribution semigroup on (0,∞). Does
(d.5)s imply (d.5)glob?

This seems unlikely to hold, but we do not have a counterexample.
The next result for non-densely defined infinitesimal generators is an

extension of Theorem 4 in [7].

Proposition 4. Let G be a DS on F0 of the form G = S(k), where S
is continuous and supported by [0,∞), and let A be the infinitesimal gener-
ator of G. Then for any x ∈ D(Ak), G(·, x) is a continuous function on R
supported by [0,∞) satisfying

(8) ‖G(t, x)‖ ≤ (‖x‖+ ‖Akx‖)(1 + tk), t ∈ R.
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Proof. It is well known that for x ∈ D(Ak),

dk

dtk
S(t, x) = S(t, Akx) +

tk−1

(k − 1)!
Ak−1x+ · · ·+ x, t ∈ R.

This implies that, for x ∈ D(Ak),

G(φ, x) = 〈S(k)(t, x), φ(t)〉, φ ∈ F0,

where t 7→ S(k)(·, x) = G(·, x) is a continuous bounded function with the
value zero at the origin.

The proof of (8) is the same as the proof of Theorem 4 in [7]. In fact,
we have to observe that A generates a stationary dense DS with n(A) ≤ 1,
hence D(Ak+2) is dense in D(Ak). In this way, using Lemmas 1–4 of [7] we
have the same proof as in that paper.

Example 5 (Schrödinger type evolution equations in Cb(Rn), L∞(Rn),
and BMO(Rn)). Recall that BMO(Rn) is the space of functions of bounded
mean oscillation (modulo constants) (cf. [21]); it is the dual of H1(Rn).
Consider

∂U/∂t = iP (D)U, t > 0, x ∈ Rn,

where P (ξ) is a real-valued elliptic polynomial on Rn, homogeneous of degree
2m (with m ∈ N), i.e., in the usual multi-index notation,

P (ξ) =
∑
|α|=2m

aαξ
α, ξ ∈ Rn,

with aα ∈ R. Here we set D := (−i∂/∂x1, . . . ,−i∂/∂xn), and by ellipticity
we mean P (ξ) ≥ δ|ξ|2m for some δ > 0 and all ξ ∈ Rn.

Problems of this type have been studied in [6] and, more generally, in
[8] within the framework of smooth distribution (semi)groups. We recall the
fact (proved in [20]) that

ξ 7→
1�

0

(1− s)keisP (ξ) ds ∈ FL1(Rn)

if k > n/2 (F denotes Fourier transform). Arguing as in [7, p. 27] (we have
N = 1 in our case), we see that the operator A := iP (D) generates a smooth
distribution semigroup G of order k, given by

G(φ)f = F−1
(
ξ 7→

∞�

0

φ(t)eitP (ξ) dt
)
∗ f,

on any homogeneous Banach space E on Rn (homogeneous in the sense of
[10]), hence in particular on L1(Rn) and on the Hardy space H1(Rn) (de-
fined, e.g., in terms of atoms, cf. [21]). Recalling Example 2 we obtain a DS
satisfying (d.5)glob in L∞(Rn) and BMO(Rn) whose generator is not densely
defined. Since the DS is given by convolution it is clear that we also have
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a DS satisfying (d.5)glob on every translation invariant closed subspace of
L∞(Rn) or BMO(Rn), e.g. on Cb(Rn), BUC(Rn) (the bounded uniformly
continuous functions), or VMO(Rn) (the functions of vanishing mean oscil-
lation, cf. [21]). Observe that the generator is densely defined in those spaces
if and only if the translation group is strongly continuous. Since the same
arguments apply to −P (D) we have in fact not only a semigroup but a group.

We may even adapt arguments from Section 5 in [8] to study the equation
for the operator iP (D)+V (x) in place of iP (D), where V is a suitable poten-
tial. To this end we recall some estimates from [8]. By Remark 1 in [8] we have

‖eitP (D)‖L1→L∞ ≤ Ct−n/2m, t > 0.

For simplicity we restrict ourselves to the case 2m > n. Then integration
leads to the bound

‖(λ− iP (D))−1‖L1→L∞ ≤ C ′|Reλ|n/2m−1, Reλ 6= 0.

This means that, for V ∈ L1(Rn) and c ≥ 0 sufficiently large,

‖V (λ− iP (D))−1‖L1→L1 ≤ 1/2, |Reλ| > c.

As usual, we thus can write, for |Reλ| > c,

(λ− iP (D)− V )−1 = (λ− iP (D))−1
∞∑
k=0

(V (λ− iP (D))−1)k,

which means that {|Reλ| > c} ⊂ %(iP (D) + V ) in L1(Rn). Moreover, this
representation of the resolvent shows that

‖(λ− iP (D)− V )−1‖L1→L1 ≤ 2‖(λ− iP (D))−1‖L1→L1 for |Reλ| > c.

By [8, Propositions 1, 2], we now infer that iP (D) + V generates a smooth
distribution group in L1(Rn) of order k + 2 (recall k > n/2) and some ex-
ponential growth δ ≥ 0 (where δ depends on c). By Example 2 the operator
iP (D) + V generates a DS satisfying (d.5)glob in L∞(Rn).

Thus we can apply (8) in Proposition 4 to these operators.

4. Distribution semigroups on Fα. In this section we define further
test function spaces Fα, α ∈ (0, 1], generalizing the case α = 0 we studied
in the previous section. For α ∈ (0, 1] the space Fα is the completion of
D((0,∞)) under the sequence of seminorms

pα,j(ψ) = ‖tj(ψ(t)/tα)(j)‖L1((0,∞)), j ∈ N0.

An equivalent sequence of seminorms is given by

qα,j(ψ) = ‖tj−αψ(j)‖L1((0,∞)), j ∈ N0.

If ψ ∈ Fα has a bounded support, then ψ ∈ Fβ for all 0 ≤ β < α. The space
D((0,∞)) is dense in each Fα. Topological properties are not important for
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our analysis and therefore not discussed. Consider the condition

(d.1-α) ∀φ, ψ ∈ Fα : G(φ ∗ ψ, ·) = G(φ,G(ψ, ·)).

Definition 4. If α ∈ (0, 1] and (d.1-α) and (d.2) hold for G ∈ F ′α(L(E)),
then we call G a distribution semigroup on Fα.

Remark 8. We remark that, for α ∈ (0, 1), we have ψ+ ∈ Fα for every
ψ ∈ D. As in Remark 6 we thus see that, for α ∈ (0, 1), every distribution
semigroup on Fα can be extended to D to become a distribution semigroup
and that its generator A satisfies n(A) ≤ 1.

It is not clear whether the assertions of this remark hold in case α = 1.
However, we have the following. Suppose that G ∈ D′+(L(E)) is such that its
restriction to (0,∞) can be extended to a distribution semigroup on F1 with
generator A. Since F1 includes all functions ψ+ with ψ ∈ D and ψ(0) = 0,
Lemma 1 shows that n(A) ≤ 2.

We can characterize distribution semigroups on Fα by modifying the
proof of Theorem 6.

Theorem 7. Let A be a closed linear operator in E and α ∈ (0, 1). Then
A generates a distribution semigroup G on Fα if and only if A generates a
distribution semigroup and there are n ∈ N and C > 0 such that G = S(n)

for an n-times integrated semigroup (S(t))t≥0 satisfying , for some C > 0,

(9) ‖S(t)‖ ≤ Ctn−α, t ≥ 0.

Proof. We only indicate the modifications in the proof of Theorem 6. If
G = S(n) is a distribution semigroup and (9) holds then

‖G(ϕ)x‖ =
∥∥∥(−1)n

∞�

0

ϕ(n)(t)S(t)x dt
∥∥∥ ≤ ∞�

0

|tn−αϕ(n)(t)| ‖tα−nS(t)x‖ dt

≤ Cqα,n(ϕ)‖x‖
for all ϕ ∈ D0 and x ∈ E. If, on the other hand, G is a distribution semigroup
on Fα with generator A then

qα,j(Int ) =
t�

0

sj−α
∣∣∣∣( d

ds

)j (t− s)n−1

(n− 1)!

∣∣∣∣ ds =
t�

0

sj−α
(t− s)n−1−j

(n− 1− j)!
ds

= tn−α
1�

0

σj−α(1− σ)n−1−j

(n− 1− j)!
dσ = cn,α,jt

n−α,

which yields (9).

The second part of the proof may be applied to the case α = 1 if we as-
sume in addition that G extends to a distribution semigroup. We can combine
Theorem 7 with Theorem 5 and Corollary 1 to obtain
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Corollary 3. Let α ∈ (0, 1) and let G be a distribution semigroup
on Fα. Then G satisfies condition (d.5)glob. In particular , G is a strong
distribution semigroup.

For an example of a distribution semigroup on Fα for α ∈ (0, 1) and with
n = 1 we refer to Example 3.

Remark 9. It is not clear whether the assertion of Corollary 3 holds for
distribution semigroups on F1 that extend to distribution semigroups, since
Theorem 5 would need ‖S(t)x‖ = o(tn−1) for x in a dense subset, and the
variant of Theorem 7 for α = 1 only yields ‖S(t)‖ = O(tn−1) as t→ 0+.

Open Problem. Let G be a distribution semigroup on F1 that extends
to a distribution semigroup. Is G a strong distribution semigroup?

We consider this more likely to be false.

Appendix

Proof of Theorem A. We will prove that both conditions of Theorem A
are in fact equivalent to:

(∀x ∈ E0)(∃Fx ∈ C(Vx,0;E), suppFx ⊂ [0,∞))(∃kx ∈ N)(∗∗)
f(t, x) = F (kx)

x (t) for t ∈ Vx,0 and ‖Fx(t)/tkx‖E → 0 as t→ 0.

It is easy to see that (∗∗) implies f(φε, x) → 0 as ε → 0, for every x ∈ E0.
The proof of the converse (for fixed x) is the same as in the classical theory
(see for example [1, Section 3.5]).

We will prove that (∗∗)⇒(∗).We know that in some neighborhood of the
origin,
(∗∗∗) f(t, x) = Φ(k)(t, x), t ∈ V0, x ∈ E,
where Φ ∈ C(V0 × E;E) with suppΦ(·, x) ⊂ [0,∞) for x ∈ E.

Now by integration over [0, t] of Fx in (∗∗) or Φ in (∗∗∗), for every fixed
x ∈ E0, k − kx times (for k − kx > 0) or kx − k times (for kx − k > 0), and
by using the uniquenesss of the representation of f in the form (∗∗∗), one
finds that (∗∗)⇒(∗). Actually, for k > kx this is clear while for k < kx we
will show it explicitly.

So assume kx = k + 1. Then
t�

0

Φ(s, x) ds = tkF̃x(t), t ∈ V0,x, F̃x(0) = 0.

Since tF̃x(t) has a derivative in V0,x (equal to 0 at t = 0), we see that the
equality

Φ(t, x) = ktk−1F̃x(t) + tk−1 d

dt
(tF̃x(t)), t ∈ V0,x,

shows that we can take kx = k.
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If kx− k > 1, then we can use the same argument kx− k times to obtain
the assertion.
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