Isomorphisms of some reflexive algebras

by

JIANKUI LI (Shanghai) and ZHIDONG PAN (University Center, MI)

Abstract. Suppose \mathcal{L}_1 and \mathcal{L}_2 are subspace lattices on complex separable Banach spaces X and Y, respectively. We prove that under certain lattice-theoretic conditions every isomorphism from alg \mathcal{L}_1 to alg \mathcal{L}_2 is quasi-spatial; in particular, if a subspace lattice \mathcal{L} of a complex separable Banach space X contains a sequence E_i such that $(E_i)_- \neq X$, $E_i \subseteq E_{i+1}$, and $\bigvee_{i=1}^{\infty} E_i = X$ then every automorphism of alg \mathcal{L} is quasi-spatial.

1. Introduction. Let X and Y be separable complex Banach spaces and let B(X, Y) be the set of all bounded linear maps from X into Y. When X = Y, we use B(X) instead of B(X, Y). When X is a Hilbert space, we use H instead of X. For vector spaces \mathcal{U} and \mathcal{V} , we write $L(\mathcal{U}, \mathcal{V})$ for the set of all linear maps from \mathcal{U} to \mathcal{V} . By a subspace lattice on X, we mean a collection \mathcal{L} of closed subspaces of X with 0 and X in \mathcal{L} such that for every family $\{M_r\}$ of elements of \mathcal{L} , both $\bigcap M_r$ and $\bigvee M_r$ belong to \mathcal{L} . If the operations of meet and join distribute over each other for any collections of subspaces in \mathcal{L} , then \mathcal{L} is said to be completely distributive. If $L \in \mathcal{L}$, we denote by L_- the subspace $\bigvee \{M \in \mathcal{L} : L \not\subseteq M\}$ and denote by L_+ the subspace $\bigcap \{M \in \mathcal{L} : M \not\subseteq L\}$. For a subspace lattice \mathcal{L} of X, we use alg \mathcal{L} to denote the algebra of all operators on X that leave members of \mathcal{L} invariant.

For Hilbert spaces, a common practice is to disregard the distinction between a subspace and the orthogonal projection onto it. A Hilbert space subspace lattice \mathcal{L} is called a *commutative subspace lattice* if it consists of mutually commuting projections. If \mathcal{L} is a commutative subspace lattice then alg \mathcal{L} is called a *CSL algebra*.

If \mathcal{L} is a subspace lattice on X, we define $\mathcal{J}_{\mathcal{L}} = \{L \in \mathcal{L} : L \neq 0 \text{ and } L_{-} \neq X\}$. We say $\mathcal{J}_{\mathcal{L}}$ is sequentially dense in X if there exists a sequence $E_i \in \mathcal{J}_{\mathcal{L}}$ such that $E_i \subseteq E_{i+1}$ and $\bigvee_{i=1}^{\infty} E_i = X$. Quasi-spatiality of isomorphisms has been studied in [1, 2, 4, 5]. The main task of [4] is to show that if \mathcal{L} is a commutative subspace lattice on a Hilbert space H such that $\mathcal{J}_{\mathcal{L}}$ is

²⁰⁰⁰ Mathematics Subject Classification: Primary 47B47, 47L35.

Key words and phrases: subspace lattice, isomorphism, reflexive.

This work was completed with the support of NSF of China.

sequentially dense in H then every automorphism on alg \mathcal{L} is quasi-spatial. In this paper, we generalize the above result, with a relatively simpler proof, to non-commutative subspace lattices on Banach spaces; more specifically, we show that if \mathcal{L} is any subspace lattice on a Banach space X such that $\mathcal{J}_{\mathcal{L}}$ is sequentially dense in X then every automorphism on alg \mathcal{L} is quasi-spatial. Our main result, Theorem 2.6, is stated in a slightly more general form; this also makes the presentation of the proof a little clearer.

2. The main result. For a subspace E of a Banach space X, we define $E^{\perp} = \{f^* \in X^* : f^*|_E = 0\}$. For any $x \in X$ and $f^* \in X^*$, we use $x \otimes f^*$ to denote the rank-one operator satisfying $x \otimes f^*(u) = f^*(u)x$ for all $u \in X$. It follows from [3] that $x \otimes f^* \in \text{alg } \mathcal{L}$ if and only if there exists an $L \in \mathcal{J}_{\mathcal{L}}$ such that $x \in L$ and $f^* \in (L_-)^{\perp}$. In the following, we suppose \mathcal{L}_1 and \mathcal{L}_2 are subspace lattices on Banach spaces X and Y, respectively; and $\text{alg } \mathcal{L}_1$ and $\text{alg } \mathcal{L}_2$ are the corresponding subalgebras of B(X) and B(Y), respectively.

We will break the proof of the main result into a few lemmas.

LEMMA 2.1. Suppose $\mathcal{J}_{\mathcal{L}_2}$ is sequentially dense in Y, ψ is an isomorphism from $\operatorname{alg} \mathcal{L}_2$ to $\operatorname{alg} \mathcal{L}_1$, and $E \in \mathcal{J}_{\mathcal{L}_1}$. Then for any $x \in E$, there exist $K \in \mathcal{J}_{\mathcal{L}_2}, y \in K, h^* \in (K_-)^{\perp}$, and $0 \neq g^* \in X^*$ such that $\psi(y \otimes h^*) = x \otimes g^*$.

Proof. Take any $x \in E$ and $0 \neq l^* \in (E_-)^{\perp}$. Then $x \otimes l^* \in \operatorname{alg} \mathcal{L}_1$. Since ψ is surjective, there exists a $B \in \operatorname{alg} \mathcal{L}_2$ such that $\psi(B) = x \otimes l^*$. Since $\mathcal{J}_{\mathcal{L}_2}$ is sequentially dense in Y, there exist a $K \in \mathcal{J}_{\mathcal{L}_2}$ and $w \in K$ such that $y = Bw \neq 0$. Choose $0 \neq h^* \in (K_-)^{\perp}$ and set $A = \psi(w \otimes h^*)$ and $g^* = A^*l^*$. Then $\psi(y \otimes h^*) = \psi((Bw) \otimes h^*) = \psi(Bw \otimes h^*) = \psi(B)\psi(w \otimes l^*) = x \otimes l^*A = x \otimes g^*$.

REMARK 2.2. Let K be as in Lemma 2.1. From the proof of Lemma 2.1, one can see that, for any $L \in \mathcal{J}_{\mathcal{L}_2}$ with $K \subseteq L$, there exist $y_1 \in L$, $h_1^* \in (L_-)^{\perp}$, and $0 \neq g_1^* \in X^*$ such that $\psi(y_1 \otimes h_1^*) = x \otimes g_1^*$.

LEMMA 2.3. Suppose $E_i \in \mathcal{J}_{\mathcal{L}_1}$ with $E_i \subseteq E_{i+1}$, $\bigvee_{i=1}^{\infty} E_i = X$, and $K_i \in \mathcal{J}_{\mathcal{L}_2}$ with $K_i \subseteq K_{i+1}$ and $\bigvee_{i=1}^{\infty} K_i = Y$. If ϕ is an isomorphism from $\operatorname{alg} \mathcal{L}_1$ to $\operatorname{alg} \mathcal{L}_2$, then there exist $K_{n_i} \in \mathcal{J}_{\mathcal{L}_2}$ with $K_{n_i} \subseteq K_{n_{i+1}}$, $\bigvee_{i=1}^{\infty} K_{n_i} = Y$, and injective $T_i \in L(E_i, Y)$ with $\operatorname{ran}(T_i) \subseteq K_{n_i}$ such that $\phi(A)T_i x = T_i Ax$ for every $x \in E_i$ and $A \in \operatorname{alg} \mathcal{L}_1$.

Proof. For any $0 \neq f_i^* \in ((E_i)_-)^{\perp}$, there exist E_{m_i} and $x_i \in E_{m_i}$ such that $f_i^*(x_i) = 1$. By Lemma 2.1, there exist $y_i \in K_{n_i} \in \mathcal{J}_{\mathcal{L}_2}$, $h_i^* \in ((K_{n_i})_-)^{\perp}$, and $0 \neq g_i^* \in X^*$ such that $\phi^{-1}(y_i \otimes h_i^*) = x_i \otimes g_i^*$. Since $E_i \subseteq E_{i+1}$ and $\bigvee_{i=1}^{\infty} E_i = X$, there exist E_{p_i} and $u_i \in E_{p_i}$ such that $g_i^*(u_i) = 1$. Define $T_i \in L(E_i, Y)$ by

(2.1)
$$T_i x = \phi(x \otimes f_i^*) y_i, \quad \forall x \in E_i$$

and define $S_i \in L(K_{n_i}, X)$ by

(2.2)
$$S_i y = \phi^{-1} (y \otimes h_i^*) u_i, \quad \forall y \in K_{n_i}$$

It is clear from the definition of T_i that $ran(T_i) \subseteq K_{n_i}$. For any $x \in E_i$,

(2.3)
$$S_i T_i x = \phi^{-1} (T_i x \otimes h_i^*) u_i = \phi^{-1} ((\phi(x \otimes f_i^*) y_i) \otimes h_i^*) u_i$$
$$= (x \otimes f_i^*) \phi^{-1} (y_i \otimes h_i^*) u_i = (x \otimes f_i^*) (x_i \otimes g_i^*) u_i$$
$$= (x \otimes f_i^*) x_i = x.$$

In particular, T_i and $S_i|_{V_i}$ are injective, where $V_i = \operatorname{ran}(T_i)$. Furthermore,

(2.4)
$$\phi(A)T_i x = \phi(A)\phi(x \otimes f_i^*)y_i = \phi(Ax \otimes f_i^*)y_i = T_iAx,$$
$$\forall x \in E_i, A \in \text{alg }\mathcal{L}_1.$$

Similar to (2.1) and (2.2), we can construct T_{i+1} and S_{i+1} ; by Remark 2.2 we can assume $K_{n_i} \subseteq K_{n_{i+1}}$.

For any Banach space $X, f^* \in X^*$ and $E \subseteq X$, define

$$[E \otimes f^*]_X = \{x \otimes f^* : x \in E\}.$$

LEMMA 2.4. Suppose $E_i \in \mathcal{J}_{\mathcal{L}_1}$ with $E_i \subseteq E_{i+1}, \bigvee_{i=1}^{\infty} E_i = X$, and $K_i \in \mathcal{J}_{\mathcal{L}_2}$ with $K_i \subseteq K_{i+1}, \bigvee_{i=1}^{\infty} K_i = Y$. If ϕ is an isomorphism from $\operatorname{alg} \mathcal{L}_1$ to $\operatorname{alg} \mathcal{L}_2$, then for each $a_i^* \in ((E_i)_-)^{\perp}$, there is a $b_i^* \in Y^*$ such that $\phi([E_i \otimes a_i^*]_X) \subseteq [Y \otimes b_i^*]_Y$.

Proof. Let T_i be as in Lemma 2.3. Then by (2.4) we have

(2.5)
$$\phi(A)T_i x = T_i A x, \quad \forall x \in E_i, A \in \operatorname{alg} \mathcal{L}_1.$$

It follows that $BT_i x = T_i \phi^{-1}(B) x$ for $x \in E_i$ and $B \in \operatorname{alg} \mathcal{L}_2$. This implies that whenever B is a rank-one operator, $\phi^{-1}(B)$ is also a rank-one operator, since $\bigvee_{i=1}^{\infty} E_i = X$ and T_i is injective. By the symmetry of X and Y, ϕ also maps rank-one operators to rank-one operators.

For each fixed m, fix $0 \neq x_1 \in E_m$ and $0 \neq a_m^* \in ((E_m)_-)^{\perp}$ and suppose $\phi(x_1 \otimes a_m^*) = y_1 \otimes b_m^*$ for some $y_1 \in Y$ and $b_m^* \in Y^*$. We will show

$$\phi([E_m \otimes a_m^*]_X) \subseteq [Y \otimes b_m^*]_Y.$$

Take any $x_2 \in E_m$ such that $\{x_1, x_2\}$ is linearly independent. Suppose $\phi(x_2 \otimes a_m^*) = y_2 \otimes c_m^*$ for some $y_2 \in Y$ and $c_m^* \in Y^*$. We only need to show $\{b_m^*, c_m^*\}$ is linearly dependent.

Applying (2.5) with $A = x_1 \otimes a_m^*$ and $A = x_2 \otimes a_m^*$, respectively, we obtain

(2.6)
$$b_m^*(T_i x)y_1 = a_m^*(x)T_i x_1, \quad \forall x \in E_i,$$

and

(2.7)
$$c_m^*(T_i x)y_2 = a_m^*(x)T_i x_2, \quad \forall x \in E_i,$$

Since $E_i \subseteq E_{i+1}$ and $\bigvee_{i=1}^{\infty} E_i = X$, there exist E_i and $x \in E_i$ such that $a_m^*(x) \neq 0$. Since T_i is injective and $\{x_1, x_2\}$ is linearly independent, $\{T_i x_1, T_i x_2\}$ is linearly independent; so $\{y_1, y_2\}$ is linearly independent, by (2.6) and (2.7).

Since ϕ maps rank-one operators to rank-one operators, $\phi((x_1+x_2)\otimes a_m^*)$ is a rank-one operator. Thus, $y_1 \otimes b_m^* + y_2 \otimes c_m^* = \phi((x_1 + x_2) \otimes a_m^*)$ is a rank-one operator. Since $\{y_1, y_2\}$ is linearly independent, $\{b_m^*, c_m^*\}$ is linearly dependent.

For a subspace S of $L(\mathcal{U}, \mathcal{V})$, define $\operatorname{ref}_{a}(S) = \{T \in L(\mathcal{U}, \mathcal{V}) : Tx \in Sx, \forall x \in \mathcal{U}\}$. We say S is algebraically reflexive if $\operatorname{ref}_{a}(S) = S$. It is well known and not hard to show that every one-dimensional subspace of $L(\mathcal{U}, \mathcal{V})$ is algebraically reflexive.

LEMMA 2.5. Assuming the same hypotheses and notations as in Lemma 2.3, by rescaling T_i we can have $T_{i+1}|_{E_i} = T_i$ for i = 1, 2, ...

Proof. Fix any $a_i^* \in ((E_i)_-)^{\perp}$ and $v \in Y$, and define $D \in L(E_i, Y)$ by $Dx = \phi(x \otimes a_i^*)v$ for $x \in E_i$. If D is not the zero operator then D is injective; indeed, by Lemma 2.4, there exists $b_i \in Y^*$ such that $\phi(x \otimes a_i^*) = \lambda_x \otimes b_i^*$ for all $x \in E_i$. Since ϕ maps rank-one operators to rank-one operators, $\lambda_x \neq 0$ for all $0 \neq x \in E_i$. If D is not the zero operator then $b_i^*(v) \neq 0$, so D is injective; in particular, the operators T_i defined by (2.1) are injective (which we already knew). By the symmetry of X and Y, the operators S_i defined by (2.2) are also injective.

Suppose T_i , S_i , T_{i+1} , and S_{i+1} have been constructed as in Lemma 2.3. Then $S_{i+1}T_{i+1}x = x$ for all $x \in E_{i+1}$; in particular, $S_{i+1}T_{i+1}x = x$ for all $x \in E_i$. Let $V_i = \operatorname{ran}(T_i)$ and note that $V_i \subseteq K_{n_i} \subseteq K_{n_{i+1}}$. Consider $S_i|_{V_i}, S_{i+1}|_{V_i} \in L(V_i, X)$. Since the one-dimensional subspace generated by the transformation $S_i|_{V_i}$ is algebraically reflexive in $L(V_i, X)$ and

$$S_{i+1}T_i x = \phi^{-1}(T_i x \otimes h_{i+1}^*)u_{i+1} = \phi^{-1}((\phi(x \otimes f_i^*)y_i) \otimes h_{i+1}^*)u_{i+1}$$

= $(x \otimes f_i^*)\phi^{-1}(y_i \otimes h_{i+1}^*)u_{i+1} = (x \otimes f_i^*)t_{i+1}$
= $f_i^*(t_{i+1})x = f_i^*(t_{i+1})S_iT_i x, \quad \forall x \in E_i,$

where $t_{i+1} = \phi^{-1}(y_i \otimes h_{i+1}^*)u_{i+1}$, it follows that $S_{i+1}|_{V_i} = c_i S_i|_{V_i}$ for some scalar c_i . Since S_{i+1} is injective, $c_i \neq 0$.

Replacing S_{i+1} by $(1/c_i)S_{i+1}$ and T_{i+1} by c_iT_{i+1} and still calling them S_{i+1} and T_{i+1} , respectively, we have $S_{i+1}|_{V_i} = S_i|_{V_i}$, and for any $x \in E_i$, $S_{i+1}T_ix = S_iT_ix = x = S_{i+1}T_{i+1}x$. It follows that $T_{i+1}x = T_ix$ for all $x \in E_i$.

We say ϕ is quasi-spatial if there exists an injective linear transformation $T \in L(D(T), Y)$, where D(T) is the domain of T such that D(T) is dense

in X and invariant under $\operatorname{alg} \mathcal{L}_1$, the range of T is dense in Y, and

(2.8)
$$\phi(A)Tx = TAx, \quad \forall x \in D(T), A \in \operatorname{alg} \mathcal{L}_1.$$

THEOREM 2.6. Suppose $\mathcal{J}_{\mathcal{L}_1}$ is sequentially dense in X and $\mathcal{J}_{\mathcal{L}_2}$ is sequentially dense in Y. Then every isomorphism ϕ from $\operatorname{alg} \mathcal{L}_1$ to $\operatorname{alg} \mathcal{L}_2$ is quasi-spatial; in particular, ϕ preserves ranks of operators.

Proof. By the assumptions, there exist $E_i \in \mathcal{J}_{\mathcal{L}_1}$ with $E_i \subseteq E_{i+1}$, $\bigvee_{i=1}^{\infty} E_i = X$, and $K_i \in \mathcal{J}_{\mathcal{L}_2}$ with $K_i \subseteq K_{i+1}$, $\bigvee_{i=1}^{\infty} K_i = Y$. Now we can construct T_i as in Lemma 2.3, with modifications as in Lemma 2.5. Let $E = \bigcup_{i=1}^{\infty} E_i$, the non-closed union of E_i , so E is dense in X. Clearly, E is invariant under alg \mathcal{L}_1 , and if $x \in E$ then $x \in E_i$ for some i. Define $Tx = T_i x$. By the agreement among T_i , it follows that T is a well-defined, injective, linear transformation on E; moreover, $\phi(A)Tx = TAx$ for all $x \in E$ and $A \in \text{alg } \mathcal{L}_1$. Let $\operatorname{ran}(T)$ be the range of T and $K = \bigcup_{i=1}^{\infty} K_i$. Clearly K is dense in Y and $\operatorname{ran}(T) \subseteq K$; we will show $\operatorname{ran}(T) = K$. Take any $y \in K$. There exists K_{n_i} such that $y \in K_{n_i}$. By (2.2) of Lemma 2.3, $S_i y = \phi^{-1}(y \otimes h_i^*)u_i \in E_{p_i} \in E$. By (2.1) of Lemma 2.3,

$$TS_i y = T_{p_i} S_i y = \phi(\phi^{-1}(y \otimes h_i^*) u_i \otimes f_{p_i}^*) y_{p_i} = (y \otimes h_i^*) \phi(u_i \otimes f_{p_i}^*) y_{p_i}$$
$$= h_i^* (\phi(u_i \otimes f_{p_i}^*) y_{p_i}) y = \mu_i y,$$

where $\mu_i = h_i^*(\phi(u_i \otimes f_{p_i}^*)y_{p_i})$. Since T_{p_i} and S_i are injective, $\mu_i \neq 0$. Now $T(\mu_i^{-1}S_iy) = y$, so ran(T) = K.

Rank-preserving follows from (2.8) directly.

The following corollary is the main result of [4]. A special case of the corollary was proved earlier in [1] with an additional hypothesis of subspace lattices being completely distributive.

COROLLARY 2.7 ([4, Theorem 17]). Suppose \mathcal{L}_1 and \mathcal{L}_2 are commutative subspace lattices on a Hilbert space H and $\mathcal{J}_{\mathcal{L}_1}$ is sequentially dense in H. Then every isomorphism from $\operatorname{alg} \mathcal{L}_1$ to $\operatorname{alg} \mathcal{L}_2$ is quasi-spatial.

Proof. By [4, Theorem C], we can assume $\mathcal{L}_1 = \mathcal{L}_2$. Now the conclusion follows from Theorem 2.6.

Remark: The hypotheses in [4, Theorem 17] are stated differently from Corollary 2.7, but it is easy to check that they are equivalent.

THEOREM 2.8. If \mathcal{L}_1 is a subspace lattice with $X_- \neq X$ and \mathcal{L}_2 is a subspace lattice with $Y_- \neq Y$, then every isomorphism from $\operatorname{alg} \mathcal{L}_1$ to $\operatorname{alg} \mathcal{L}_2$ is spatially implemented and every bounded isomorphism from $\operatorname{alg} \mathcal{L}_1$ to $\operatorname{alg} \mathcal{L}_2$ is spatially implemented by a bounded operator.

Proof. Suppose ϕ is an isomorphism from $\operatorname{alg} \mathcal{L}_1$ to $\operatorname{alg} \mathcal{L}_2$. Take $E_i = X$ and $K_i = Y$, then the hypotheses of Theorem 2.6 are satisfied. Let T_i be defined by (2.1) and S_i be defined by (2.2) in Lemma 2.3. By (2.3),

 $S_i \in L(Y, X)$ is surjective. By the first paragraph of the proof of Lemma 2.5, S_i is injective, so S_i has an inverse. Now the equality $S_iT_ix = x$ for all $x \in E_i \ (= X)$ implies T_i is invertible with $T_i^{-1} = S_i$. Finally, (2.5) of Lemma 2.4 implies ϕ is spatially implemented. If ϕ is bounded, then so are T_i and S_i .

COROLLARY 2.9. If \mathcal{L} is a subspace lattice on a Hilbert space H with $0_+ \neq 0$, then every automorphism of alg \mathcal{L} is spatial.

Proof. Suppose \mathcal{L} satisfies $0_+ \neq 0$ and ϕ is an automorphism of $\operatorname{alg} \mathcal{L}$. Let $\mathcal{L}^{\perp} = \{I - L : L \in \mathcal{L}\}$, where I is the identity operator on H. Then \mathcal{L}^{\perp} satisfies $H_- \neq H$.

Define $\phi^*(A^*) = (\phi(A))^*$ for $A^* \in \operatorname{alg} \mathcal{L}^{\perp}$. Then ϕ^* is an automorphism of $\operatorname{alg} \mathcal{L}^{\perp}$. By Theorem 2.8, we have $\phi^*(A^*) = (\phi(A))^* = TA^*T^{-1}$ for some $T \in B(H)$. So ϕ is spatial.

References

- F. Gilfeather and R. L. Moore, *Isomorphisms of certain CSL algebras*, J. Funct. Anal. 67 (1986), 264–291.
- J. Li and O. Panaia, Algebraic isomorphisms and *J*-subspace lattices, Proc. Amer. Math. Soc. 133 (2005), 2577–2587.
- [3] W. E. Longstaff, Strongly reflexive lattices, J. London Math. Soc. 11 (1975), 491–498.
- R. L. Moore, Isomorphisms for CSL algebras, Indiana Univ. Math. J. 52 (2003), 687–702.
- [5] O. Panaia, Algebraic isomorphisms and finite distributive subspace lattices, J. London Math. Soc. 59 (1999), 1033–1048.

Department of Mathematics	Department of Mathematics
East China University of Science and Technology	Saginaw Valley State University
Shanghai 200237, P.R. China	University Center, MI 48710, U.S.A.
E-mail: jiankuili@yahoo.com	E-mail: pan@svsu.edu

Received February 22, 2007 Revised version February 25, 2008 (6111)

100