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Isomorphisms of some reflexive algebras

by

Jiankui Li (Shanghai) and Zhidong Pan (University Center, MI)

Abstract. Suppose L1 and L2 are subspace lattices on complex separable Banach
spaces X and Y , respectively. We prove that under certain lattice-theoretic conditions
every isomorphism from algL1 to algL2 is quasi-spatial; in particular, if a subspace lattice
L of a complex separable Banach space X contains a sequence Ei such that (Ei)− 6= X,
Ei ⊆ Ei+1, and

W∞
i=1 Ei = X then every automorphism of algL is quasi-spatial.

1. Introduction. Let X and Y be separable complex Banach spaces
and let B(X,Y ) be the set of all bounded linear maps from X into Y . When
X = Y , we use B(X) instead of B(X,Y ). When X is a Hilbert space, we
use H instead of X. For vector spaces U and V, we write L(U ,V) for the
set of all linear maps from U to V. By a subspace lattice on X, we mean a
collection L of closed subspaces of X with 0 and X in L such that for every
family {Mr} of elements of L, both

⋂
Mr and

∨
Mr belong to L. If the

operations of meet and join distribute over each other for any collections
of subspaces in L, then L is said to be completely distributive. If L ∈ L,
we denote by L− the subspace

∨
{M ∈ L : L 6⊆ M} and denote by L+ the

subspace
⋂
{M ∈ L : M 6⊆ L}. For a subspace lattice L of X, we use algL to

denote the algebra of all operators on X that leave members of L invariant.
For Hilbert spaces, a common practice is to disregard the distinction

between a subspace and the orthogonal projection onto it. A Hilbert space
subspace lattice L is called a commutative subspace lattice if it consists of
mutually commuting projections. If L is a commutative subspace lattice
then algL is called a CSL algebra.

If L is a subspace lattice on X, we define JL = {L ∈ L : L 6= 0 and
L− 6= X}. We say JL is sequentially dense in X if there exists a sequence
Ei ∈ JL such that Ei ⊆ Ei+1 and

∨∞
i=1Ei = X. Quasi-spatiality of isomor-

phisms has been studied in [1, 2, 4, 5]. The main task of [4] is to show that
if L is a commutative subspace lattice on a Hilbert space H such that JL is
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sequentially dense in H then every automorphism on algL is quasi-spatial.
In this paper, we generalize the above result, with a relatively simpler proof,
to non-commutative subspace lattices on Banach spaces; more specifically,
we show that if L is any subspace lattice on a Banach space X such that JL
is sequentially dense in X then every automorphism on algL is quasi-spatial.
Our main result, Theorem 2.6, is stated in a slightly more general form; this
also makes the presentation of the proof a little clearer.

2. The main result. For a subspace E of a Banach space X, we define
E⊥ = {f∗ ∈ X∗ : f∗|E = 0}. For any x ∈ X and f∗ ∈ X∗, we use x⊗ f∗ to
denote the rank-one operator satisfying x⊗f∗(u) = f∗(u)x for all u ∈ X. It
follows from [3] that x⊗f∗ ∈ algL if and only if there exists an L ∈ JL such
that x ∈ L and f∗ ∈ (L−)⊥. In the following, we suppose L1 and L2 are
subspace lattices on Banach spaces X and Y , respectively; and algL1 and
algL2 are the corresponding subalgebras of B(X) and B(Y ), respectively.

We will break the proof of the main result into a few lemmas.

Lemma 2.1. Suppose JL2 is sequentially dense in Y , ψ is an isomor-
phism from algL2 to algL1, and E ∈ JL1. Then for any x ∈ E, there exist
K ∈ JL2 , y ∈ K, h∗ ∈ (K−)⊥, and 0 6= g∗ ∈ X∗ such that ψ(y⊗h∗) = x⊗g∗.

Proof. Take any x ∈ E and 0 6= l∗ ∈ (E−)⊥. Then x⊗ l∗ ∈ algL1. Since
ψ is surjective, there exists a B ∈ algL2 such that ψ(B) = x ⊗ l∗. Since
JL2 is sequentially dense in Y , there exist a K ∈ JL2 and w ∈ K such that
y = Bw 6= 0. Choose 0 6= h∗ ∈ (K−)⊥ and set A = ψ(w⊗h∗) and g∗ = A∗l∗.
Then ψ(y⊗h∗) = ψ((Bw)⊗h∗) = ψ(Bw⊗h∗) = ψ(B)ψ(w⊗l∗) = x⊗l∗A =
x⊗ g∗.

Remark 2.2. Let K be as in Lemma 2.1. From the proof of Lemma 2.1,
one can see that, for any L ∈ JL2 with K ⊆ L, there exist y1 ∈ L,
h∗1 ∈ (L−)⊥, and 0 6= g∗1 ∈ X∗ such that ψ(y1 ⊗ h∗1) = x⊗ g∗1.

Lemma 2.3. Suppose Ei ∈ JL1 with Ei ⊆ Ei+1,
∨∞

i=1Ei = X, and
Ki ∈ JL2 with Ki ⊆ Ki+1 and

∨∞
i=1Ki = Y . If φ is an isomorphism from

algL1 to algL2, then there exist Kni ∈ JL2 with Kni ⊆ Kni+1 ,
∨∞

i=1Kni =
Y , and injective Ti ∈ L(Ei, Y ) with ran(Ti) ⊆ Kni such that φ(A)Tix =
TiAx for every x ∈ Ei and A ∈ algL1.

Proof. For any 0 6= f∗i ∈ ((Ei)−)⊥, there exist Emi and xi ∈ Emi such
that f∗i (xi) = 1. By Lemma 2.1, there exist yi ∈ Kni ∈ JL2 , h

∗
i ∈ ((Kni)−)⊥,

and 0 6= g∗i ∈ X∗ such that φ−1(yi ⊗ h∗i ) = xi ⊗ g∗i . Since Ei ⊆ Ei+1 and∨∞
i=1Ei = X, there exist Epi and ui ∈ Epi such that g∗i (ui) = 1. Define

Ti ∈ L(Ei, Y ) by

(2.1) Tix = φ(x⊗ f∗i )yi, ∀x ∈ Ei
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and define Si ∈ L(Kni , X) by

(2.2) Siy = φ−1(y ⊗ h∗i )ui, ∀y ∈ Kni .

It is clear from the definition of Ti that ran(Ti) ⊆ Kni .
For any x ∈ Ei,

SiTix = φ−1(Tix⊗ h∗i )ui = φ−1((φ(x⊗ f∗i )yi)⊗ h∗i )ui(2.3)
= (x⊗ f∗i )φ−1(yi ⊗ h∗i )ui = (x⊗ f∗i )(xi ⊗ g∗i )ui

= (x⊗ f∗i )xi = x.

In particular, Ti and Si|Vi are injective, where Vi = ran(Ti). Furthermore,

(2.4) φ(A)Tix = φ(A)φ(x⊗ f∗i )yi = φ(Ax⊗ f∗i )yi = TiAx,

∀x ∈ Ei, A ∈ algL1.

Similar to (2.1) and (2.2), we can construct Ti+1 and Si+1; by Remark 2.2
we can assume Kni ⊆ Kni+1 .

For any Banach space X, f∗ ∈ X∗ and E ⊆ X, define

[E ⊗ f∗]X = {x⊗ f∗ : x ∈ E}.
Lemma 2.4. Suppose Ei ∈ JL1 with Ei ⊆ Ei+1,

∨∞
i=1Ei = X, and

Ki ∈ JL2 with Ki ⊆ Ki+1,
∨∞

i=1Ki = Y . If φ is an isomorphism from
algL1 to algL2, then for each a∗i ∈ ((Ei)−)⊥, there is a b∗i ∈ Y ∗ such that
φ([Ei ⊗ a∗i ]X) ⊆ [Y ⊗ b∗i ]Y .

Proof. Let Ti be as in Lemma 2.3. Then by (2.4) we have

(2.5) φ(A)Tix = TiAx, ∀x ∈ Ei, A ∈ algL1.

It follows that BTix = Tiφ
−1(B)x for x ∈ Ei and B ∈ algL2. This implies

that whenever B is a rank-one operator, φ−1(B) is also a rank-one operator,
since

∨∞
i=1Ei = X and Ti is injective. By the symmetry of X and Y , φ also

maps rank-one operators to rank-one operators.
For each fixed m, fix 0 6= x1 ∈ Em and 0 6= a∗m ∈ ((Em)−)⊥ and suppose

φ(x1 ⊗ a∗m) = y1 ⊗ b∗m for some y1 ∈ Y and b∗m ∈ Y ∗. We will show

φ([Em ⊗ a∗m]X) ⊆ [Y ⊗ b∗m]Y .

Take any x2 ∈ Em such that {x1, x2} is linearly independent. Suppose
φ(x2 ⊗ a∗m) = y2 ⊗ c∗m for some y2 ∈ Y and c∗m ∈ Y ∗. We only need to
show {b∗m, c∗m} is linearly dependent.

Applying (2.5) with A = x1 ⊗ a∗m and A = x2 ⊗ a∗m, respectively, we
obtain

(2.6) b∗m(Tix)y1 = a∗m(x)Tix1, ∀x ∈ Ei,

and

(2.7) c∗m(Tix)y2 = a∗m(x)Tix2, ∀x ∈ Ei,
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Since Ei ⊆ Ei+1 and
∨∞

i=1Ei = X, there exist Ei and x ∈ Ei such that
a∗m(x) 6= 0. Since Ti is injective and {x1, x2} is linearly independent,
{Tix1, Tix2} is linearly independent; so {y1, y2} is linearly independent,
by (2.6) and (2.7).

Since φ maps rank-one operators to rank-one operators, φ((x1+x2)⊗a∗m)
is a rank-one operator. Thus, y1 ⊗ b∗m + y2 ⊗ c∗m = φ((x1 + x2) ⊗ a∗m) is a
rank-one operator. Since {y1, y2} is linearly independent, {b∗m, c∗m} is linearly
dependent.

For a subspace S of L(U ,V), define refa(S) = {T ∈ L(U ,V) :
Tx ∈ Sx, ∀x ∈ U}. We say S is algebraically reflexive if refa(S) = S.
It is well known and not hard to show that every one-dimensional subspace
of L(U ,V) is algebraically reflexive.

Lemma 2.5. Assuming the same hypotheses and notations as in Lem-
ma 2.3, by rescaling Ti we can have Ti+1|Ei = Ti for i = 1, 2, . . . .

Proof. Fix any a∗i ∈ ((Ei)−)⊥ and v ∈ Y , and define D ∈ L(Ei, Y ) by
Dx = φ(x⊗a∗i )v for x ∈ Ei. If D is not the zero operator then D is injective;
indeed, by Lemma 2.4, there exists bi ∈ Y ∗ such that φ(x⊗a∗i ) = λx⊗b∗i for
all x ∈ Ei. Since φ maps rank-one operators to rank-one operators, λx 6= 0
for all 0 6= x ∈ Ei. If D is not the zero operator then b∗i (v) 6= 0, so D is
injective; in particular, the operators Ti defined by (2.1) are injective (which
we already knew). By the symmetry of X and Y , the operators Si defined
by (2.2) are also injective.

Suppose Ti, Si, Ti+1, and Si+1 have been constructed as in Lemma 2.3.
Then Si+1Ti+1x = x for all x ∈ Ei+1; in particular, Si+1Ti+1x = x for
all x ∈ Ei. Let Vi = ran(Ti) and note that Vi ⊆ Kni ⊆ Kni+1 . Consider
Si|Vi , Si+1|Vi ∈ L(Vi, X). Since the one-dimensional subspace generated by
the transformation Si|Vi is algebraically reflexive in L(Vi, X) and

Si+1Tix = φ−1(Tix⊗ h∗i+1)ui+1 = φ−1((φ(x⊗ f∗i )yi)⊗ h∗i+1)ui+1

= (x⊗ f∗i )φ−1(yi ⊗ h∗i+1)ui+1 = (x⊗ f∗i )ti+1

= f∗i (ti+1)x = f∗i (ti+1)SiTix, ∀x ∈ Ei,

where ti+1 = φ−1(yi ⊗ h∗i+1)ui+1, it follows that Si+1|Vi = ciSi|Vi for some
scalar ci. Since Si+1 is injective, ci 6= 0.

Replacing Si+1 by (1/ci)Si+1 and Ti+1 by ciTi+1 and still calling them
Si+1 and Ti+1, respectively, we have Si+1|Vi = Si|Vi , and for any x ∈ Ei,
Si+1Tix = SiTix = x = Si+1Ti+1x. It follows that Ti+1x = Tix for all
x ∈ Ei.

We say φ is quasi-spatial if there exists an injective linear transformation
T ∈ L(D(T ), Y ), where D(T ) is the domain of T such that D(T ) is dense
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in X and invariant under algL1, the range of T is dense in Y , and

(2.8) φ(A)Tx = TAx, ∀x ∈ D(T ), A ∈ algL1.

Theorem 2.6. Suppose JL1 is sequentially dense in X and JL2 is se-
quentially dense in Y . Then every isomorphism φ from algL1 to algL2 is
quasi-spatial ; in particular , φ preserves ranks of operators.

Proof. By the assumptions, there exist Ei ∈ JL1 with Ei ⊆ Ei+1,∨∞
i=1Ei = X, and Ki ∈ JL2 with Ki ⊆ Ki+1,

∨∞
i=1Ki = Y . Now we

can construct Ti as in Lemma 2.3, with modifications as in Lemma 2.5.
Let E =

⋃∞
i=1Ei, the non-closed union of Ei, so E is dense in X. Clearly,

E is invariant under algL1, and if x ∈ E then x ∈ Ei for some i. Define
Tx = Tix. By the agreement among Ti, it follows that T is a well-defined,
injective, linear transformation on E; moreover, φ(A)Tx = TAx for all
x ∈ E and A ∈ algL1. Let ran(T ) be the range of T and K =

⋃∞
i=1Ki.

Clearly K is dense in Y and ran(T ) ⊆ K; we will show ran(T ) = K. Take
any y ∈ K. There exists Kni such that y ∈ Kni . By (2.2) of Lemma 2.3,
Siy = φ−1(y ⊗ h∗i )ui ∈ Epi ∈ E. By (2.1) of Lemma 2.3,

TSiy = TpiSiy = φ(φ−1(y ⊗ h∗i )ui ⊗ f∗pi
)ypi = (y ⊗ h∗i )φ(ui ⊗ f∗pi

)ypi

= h∗i (φ(ui ⊗ f∗pi
)ypi)y = µiy,

where µi = h∗i (φ(ui ⊗ f∗pi
)ypi). Since Tpi and Si are injective, µi 6= 0. Now

T (µi
−1Siy) = y, so ran(T ) = K.

Rank-preserving follows from (2.8) directly.

The following corollary is the main result of [4]. A special case of the
corollary was proved earlier in [1] with an additional hypothesis of subspace
lattices being completely distributive.

Corollary 2.7 ([4, Theorem 17]). Suppose L1 and L2 are commutative
subspace lattices on a Hilbert space H and JL1 is sequentially dense in H.
Then every isomorphism from algL1 to algL2 is quasi-spatial.

Proof. By [4, Theorem C], we can assume L1 = L2. Now the conclusion
follows from Theorem 2.6.

Remark: The hypotheses in [4, Theorem 17] are stated differently from
Corollary 2.7, but it is easy to check that they are equivalent.

Theorem 2.8. If L1 is a subspace lattice with X− 6= X and L2 is
a subspace lattice with Y− 6= Y , then every isomorphism from algL1 to
algL2 is spatially implemented and every bounded isomorphism from algL1

to algL2 is spatially implemented by a bounded operator.

Proof. Suppose φ is an isomorphism from algL1 to algL2. Take Ei = X
and Ki = Y , then the hypotheses of Theorem 2.6 are satisfied. Let Ti

be defined by (2.1) and Si be defined by (2.2) in Lemma 2.3. By (2.3),
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Si ∈ L(Y,X) is surjective. By the first paragraph of the proof of Lemma 2.5,
Si is injective, so Si has an inverse. Now the equality SiTix = x for all
x ∈ Ei (= X) implies Ti is invertible with T−1

i = Si. Finally, (2.5) of
Lemma 2.4 implies φ is spatially implemented. If φ is bounded, then so are
Ti and Si.

Corollary 2.9. If L is a subspace lattice on a Hilbert space H with
0+ 6= 0, then every automorphism of algL is spatial.

Proof. Suppose L satisfies 0+ 6= 0 and φ is an automorphism of algL.
Let L⊥ = {I −L : L ∈ L}, where I is the identity operator on H. Then L⊥
satisfies H− 6= H.

Define φ∗(A∗) = (φ(A))∗ for A∗ ∈ algL⊥. Then φ∗ is an automorphism
of algL⊥. By Theorem 2.8, we have φ∗(A∗) = (φ(A))∗ = TA∗T−1 for some
T ∈ B(H). So φ is spatial.
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