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On the supremum of random Dirichlet polynomials

by

Mikhail Lifshits (St. Petersburg) and Michel Weber (Strasbourg)

Abstract. We study the supremum of some random Dirichlet polynomials DN (t) =
∑N
n=2 εndnn

−σ−it, where (εn) is a sequence of independent Rademacher random vari-
ables, the weights (dn) are multiplicative and 0 ≤ σ < 1/2. Particular attention is given
to the polynomials

∑

n∈Eτ
εnn
−σ−it, Eτ = {2 ≤ n ≤ N :P

+(n) ≤ pτ}, P
+(n) being the

largest prime divisor of n. We obtain sharp upper and lower bounds for the supremum
expectation that extend the optimal estimate of Halász–Queffélec,

E sup
t∈R

∣

∣

∣

N
∑

n=2

εnn
−σ−it

∣

∣

∣
≈
N1−σ

logN
.

The proofs are entirely based on methods of stochastic processes, in particular the metric
entropy method.

1. Introduction and main results. Let {dn, n ≥ 1} be a sequence of
real numbers. Let s = σ + it denote a complex number. The study of the
supremum of the Dirichlet polynomials

P (s) =
N∑

n=2

dnn
−s

over lines {s = σ+it : t ∈ R} is naturally related to that of the corresponding
Dirichlet series, via the abscissa of uniform convergence

σu = inf
{
σ :

∞∑

n=2

dnn
−σ−it converges uniformly over t ∈ R

}
,

through the relation

σu = lim sup
N→∞

log supt∈R
|∑Nn=2 dnn−it|
logN

.
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One can refer to Bohr [B], Bohnenblust and Hille [BH], Helson [H], Hardy
and Riesz [HR], Queffélec [Q3] for background and related results. This, of
course, basically justifies investigation of the supremum of Dirichlet polyno-
mials (see for instance Konyagin and Queffélec [KQ]).

The following classical reduction step enables one to replace a Dirichlet
polynomial by some relevant trigonometric polynomial. To recall this reduc-
tion, we introduce the necessary notation. Let 2 = p1 < p2 < · · · be the se-
quence of all primes. If n =

∏τ
j=1 p

aj(n)
j , we write a(n) = {aj(n), 1 ≤ j ≤ τ}.

Let π(N) denote, as usual, the number of prime numbers that are less then
or equal to N . Finally, let T = [0, 1[ = R/Z be the torus. Fix N , put
µ = π(N), and define, for z = (z1, . . . , zµ) ∈ T

µ,

Q(z) =
N∑

n=2

dnn
−σe2iπ〈a(n),z〉

H. Bohr’s famous observation ([Q1–3]) is that

(1.1) sup
t∈R

|P (σ + it)| = sup
z∈Tµ

|Q(z)|.

This indeed follows straightforwardly from Kronecker’s theorem (see [HW,
Theorem 442, p. 382]).
A parallel study is also developed for random Dirichlet polynomials and

random Dirichlet series in the papers of Halász [Ha1-2], Queffélec [Q1–3],
Bayart, Konyagin and Queffélec [BKQ], Kahane [K], Yu [Y1–3], Sun, Tian
and Yu [STY], and Hedenmalm and Saksman [HS]. Such investigations con-
cerning random Dirichlet series (as well as random power series) go back to
earlier works of Hartman [Har], Clarke [C], Dvoretzky and Erdős [DE1–2],
and Dvoretzky and Chojnacki [DC].

Let ε = {εi, i ≥ 1} (here and throughout) be a sequence of indepen-
dent Rademacher random variables (P{εi = ±1} = 1/2) defined on a basic
probability space (Ω,A,P).
Consider the random Dirichlet polynomials

(1.2) D(s) =

N∑

n=2

εndnn
−σ−it.

When dn ≡ 1, some results about the suprema are known. If σ = 0, then
for some absolute constant C, and all integers N ≥ 2,

(1.3) C−1
N

logN
≤ E sup

t∈R

∣∣∣
N∑

n=2

εnn
−it
∣∣∣ ≤ C N

logN
.

This has been proved by Halász (see [Q2–3]). In [Q2–3] (see also [Q1] for a
first result), Queffélec extended Halász’s result to the range of values 0 ≤ σ
< 1/2; he also provided a probabilistic proof of the original one, using Bern-
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stein’s inequality for polynomials, properties of complex Gaussian processes
and the sieve method introduced by Halász. He deduced that for some con-
stant Cσ depending on σ only, and all integers N ≥ 2,

(1.4) C−1σ
N1−σ

logN
≤ E sup

t∈R

∣∣∣
N∑

n=2

εnn
−σ−it

∣∣∣ ≤ Cσ
N1−σ

logN
.

This in fact admits a stronger form

(1.4′) C−1σ ≤ E sup
N≥2
sup
t∈R

|∑Nn=2 εnn−σ−it|
N1−σ(logN)−1

≤ Cσ.

A proof is given at the end of Section 4. We shall hereafter use and simplify
Queffélec’s probabilistic argument, notably reducing the proof of the upper
bound part to the study of suitable real Gaussian processes (which can be
easily reduced to a single one). Further, we will not use Bernstein’s inequal-
ity, in contrast to both previous proofs. A simple metric entropy argument is
indeed sufficient, making the proof entirely based upon stochastic processes
methods.

By developing this approach, we will also study the case when the dn’s
are not constant and random Dirichlet polynomials are supported by other
sets than intervals of integers [2, N ]. In this regard, we consider the following
natural extension. For any integer n > 1, let P+(n) denote the largest prime
divisor of n. Let 1 ≤M < N be two positive integers and define

S(N,M) = {2 ≤ n ≤ N : P+(n) ≤M}.
Since S(N,N) = [2, N ], these sets naturally generalize the notion of interval
of integers. By using the standard notation

Ψ(N,M) := ♯S(N,M),

u = (logN)/logM , we have ([T, Theorem 6, p. 405])

(1.5) Ψ∗(N,M) :=
Ψ(N,M)

N
= ̺(u) +O

(
1

log y

)
,

uniformly for x ≥ y ≥ 2, where ̺(u) is the Dickman function, the unique
continuous function on [0,∞[, having a derivative on ]0,∞[ and such that

̺(v) = 1 (0 ≤ v ≤ 1),
v̺′(v) + ̺(v − 1) = 0 (v > 1).

It is known that ̺(u) is a decreasing positive function and that log ̺(u) ∼
−u log u as u → ∞. In other words, ̺ decreases as fast as the inverse of
the Gamma function. By setting M = Nε in (1.5) we see that Ψ(N,Nε) ∼
N̺(ε−1) for any fixed 0 < ε ≤ 1.
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In view of (1.5), we sometimes refer to Ψ∗ as a Dickman-type function.

Fix some positive integer τ ≤ π(N), and recall that p1 < p2 < · · · is the
sequence of primes. Put

Eτ = Eτ (N) = {2 ≤ n ≤ N : P+(n) ≤ pτ}.
Note that for µ = π(N) we have Eµ = {2, . . . , N}.
The Eτ -based Dirichlet polynomials were already considered in [Q3]. One

motivation for considering them, relating to the Rudin–Shapiro problem, will
be explained later.

We begin with a result that contains both the above mentioned estimates
(1.3) and (1.4).

Theorem 1.1.

(a) (Upper bound) Let 0 ≤ σ < 1/2. Then there exists a constant Cσ
such that for any integer N ≥ 2,

E sup
t∈R

∣∣∣
∑

n∈Eτ

εnn
−σ−it

∣∣∣≤





Cσ
N1/2−στ1/2

(logN)1/2
if N1/2 ≤ τ ≤ N ,

Cσ
N3/4−σ

(logN)1/2
if N1/2/logN ≤ τ ≤N1/2,

CσN
1/2−στ1/2 if 1 ≤ τ ≤ N1/2/logN.

(b) (Lower bound) Let 0 ≤ σ < 1/2. Then there exists a constant Cσ
such that for every N ≥ 2,

E sup
t∈R

∣∣∣
∑

n∈Eτ

εnn
−σ−it

∣∣∣ ≥ CσN
1/2−στ1/2

(log τ)1/2
· Ψ∗
(
N

pτ
, pτ/2

)1/2
.

Sharpness of the result. It is instructive to compare the lower and upper
bounds obtained in Theorem 1.1.

Consider three cases, as in the upper bound of the theorem:

Case I: N1/2 ≤ τ ≤ N. Here the Dickman function vanishes from the
lower bound and we have log τ ∼ logN . It follows from the theorem that

C1(σ)
N1/2−στ1/2

(logN)1/2
≤ E sup

t∈R

∣∣∣
∑

n∈Eτ

εnn
−σ−it

∣∣∣ ≤ C2(σ)
N1/2−στ1/2

(logN)1/2
.

Thus our bounds are optimal.

Case II: N1/2/logN ≤ τ ≤ N1/2. Again the Dickman function vanishes
from the lower bound and we have log τ ∼ logN . Thus

C1(σ)
N1/2−στ1/2

(logN)1/2
≤ E sup

t∈R

∣∣∣
∑

n∈Eτ

εnn
−σ−it

∣∣∣ ≤ C2(σ)
N3/4−σ

(logN)1/2
.
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The ratio of the right and left hand sides satisfies

1 ≤ N
1/4

τ1/2
≤ (logN)1/2.

Thus a logarithmic gap appears.

Case III: 1 ≤ τ ≤ N1/2/logN . Assume first that τ ≥ Nε for some fixed
ε > 0, necessarily with ε < 1/2. Then the Dickman function produces in the
lower bound just an extra constant depending on ε. We have

C1(σ, ε)
N1/2−στ1/2

(log τ)1/2
≤ E sup

t∈R

∣∣∣
∑

n∈Eτ

εnn
−σ−it

∣∣∣ ≤ C2(σ)N1/2−στ1/2.

The gap is still of the logarithmic order:

1 ≤ (log τ)1/2 ≤ (logN)1/2.
One should notice that an upper estimate CN1/2−σ(τ log logN)1/2

slightly weaker than our bound in Case III was obtained in [Q3].

It is also worth mentioning that our approach to the lower bounds is very
different from that in the preceding works [Q3], [KQ] based on deterministic
estimates valid for any polynomial (see e.g. lower bound in (1.6) below).
It would be interesting to check whether the optimisation of parameters in
deterministic estimates enables this approach to compete with our lower
bound on the whole range of τ .

Unfortunately, if τ is relatively small, namely log τ ≪ logN , the gap
between the upper and lower bounds in Theorem 1.1 becomes rather sig-
nificant due to the small factor Ψ∗ in the lower bound. Our next result,
although not optimal, shows that the presence of Ψ∗ is crucial.

Theorem 1.2. Let 0 ≤ σ < 1/2. Then there exists a constant Cσ such
that for any integer N ≥ 2 and τ > exp{(log logN)2},
N1/2−στ1/2Ψ∗(N/pτ , pτ/2)

1/2

Cσ(log τ)1/2

≤ E sup
t∈R

∣∣∣
∑

n∈Eτ

εnn
−σ−it

∣∣∣ ≤ CσN1/2−στ1/2Ψ∗(N/p2τ , pτ )1/2.

Estimates of ℓ1-type. The reader familiar with evaluation of Radema-
cher processes may wonder whether the brutal ℓ1-estimates

E sup
t∈R

∣∣∣
∑

n∈Eτ

εnn
−σ−it

∣∣∣ ≤
∑

n∈Eτ

n−σ =: L(N, τ)

are useful at least in some zone of parameters. Indeed, for certain systems
of random variables the ℓ1-estimates prove to give optimal order. However,



46 M. Lifshits and M. Weber

in our context they are not useful. Actually, one can show that

L(N, τ) ≥ cN1−σΨ∗(N, pτ ) ∼ cN1−σ̺
(
logN

log pτ

)
.

This is too much for good upper bounds, as one can see from the following
two examples. The first one handles large τ and the second one deals with
small τ .

1) Let τ ∼ Nh with 1/2 < h ≤ 1. Then we see that
L(N, τ) ≥ c(h)N1−σ,

while the upper bound from Theorem 1.1 yields a better estimate

E sup
t∈R

∣∣∣
∑

n∈Eτ

εnn
−σ−it

∣∣∣ ≤ Cσ
N1/2−στ1/2

(logN)1/2
≈ Cσ

N (1+h)/2−σ

logN
.

The gap between the two upper bounds is at least logarithmic for h = 1 and
polynomial for h < 1.

2) Let τ ∼ exp{(log logN)A} with A ≥ 2. Then we see that

L(N, τ) ≥ cN1−σ̺
(

logN

(log logN)A

)
≥ cN1−σ exp

( −c logN
(log logN)A−1

)
,

while the upper bound from Theorem 1.2 yields a better estimate

E sup
t∈R

∣∣∣
∑

n∈Eτ

εnn
−σ−it

∣∣∣ ≤ CσN1/2−σ exp
( −c logN
(log logN)A−1

)
.

The gap between the two upper bounds is polynomial. One observes that
the ℓ1-estimate becomes even worse when τ decreases and approaches the
critical zone.

Rudin–Shapiro polynomials. The upper bound in Theorem 1.2 is known
to be related to the Rudin–Shapiro problem for Dirichlet polynomials. Let
us recall first the classical setting. For any trigonometric polynomial we have

(1.6)

∑N−1
n=0 |an|√
N

≤ sup
t∈R

∣∣∣
N−1∑

n=0

ane
int
∣∣∣ ≤

N−1∑

n=0

|an|.

To get the lower bound one applies the inequality between the sup-norm
and L2-norm, the orthogonality of (e

int)n and the Hölder inequality.

Rudin and Shapiro constructed a fairly simple sequence an ∈ {−1,+1}
such that the right order of the lower bound is attained:

sup
t∈R

∣∣∣
N−1∑

n=0

ane
int
∣∣∣ ≤ (2 +

√
2)
√
N + 1 ∼ (2 +

√
2)

∑N−1
n=0 |an|√
N

.
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Consider now Dirichlet polynomials instead of trigonometric ones. It is
known from [KQ] and [Q3] that for any (an),

sup
t∈R

∣∣∣
N−1∑

n=0

ann
it
∣∣∣ ≥ α1

∑N−1
n=0 |an|√
N

exp{β1
√
logN log logN},

and for some (an),

(1.7) sup
t∈R

∣∣∣
N−1∑

n=0

ann
it
∣∣∣ ≤ α2

∑N−1
n=0 |an|√
N

exp{β2
√
logN log logN},

with some universal constants α1,2, β1,2.

Therefore, the lower bound for Dirichlet polynomials is necessarily worse
than in the classical case. Notice also that the construction of example (1.7)
in [Q3] is a probabilistic one; no explicit example of Rudin–Shapiro type is
known for Dirichlet polynomials. It turns out that Theorem 1.2 generates a
new family of random polynomials satisfying (1.7).

Indeed, take any σ ∈ [0, 1/2) and choose τ in the optimal way. Namely,
let

log τ ∼
(
logN

2

)1/2
(log logN)1/2.

Set an = εnn
−σ1{n∈Eτ}. It is easy to see that

∑N
n=0 |an|√
N

=

∑
n∈Eτ
n−σ√
N

≥ cN1/2−σΨ∗(N, pτ ),

while by Theorem 1.2 we have the bound for the average of the left hand
side in (1.7):

E sup
t∈R

∣∣∣
N−1∑

n=0

ann
it
∣∣∣ ≤ CσN1/2−στ1/2Ψ∗

(
N

p2τ
, pτ

)1/2

= CσN
1/2−σ exp

{
1

2

(
logN

2

)1/2
(log logN)1/2 +

1

2
logΨ∗

(
N

p2τ
, pτ

)}
.

Since by the properties of the Dickman function,

logΨ∗
(
N

p2τ
, pτ

)
∼ log ̺

(
log(N/pτ )

log pτ

)
∼ − log(N/pτ )

log pτ
log
log(N/pτ )

log pτ

∼ − logN
log τ

log
logN

log τ
∼ −(2 logN)1/2 (log logN)

1/2

2

= −
(
logN

2

)1/2
(log logN)1/2,
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and by the same arguments

logΨ∗(N, pτ ) ∼ −
(
logN

2

)1/2
(log logN)1/2,

we finally obtain

E sup
t∈R

∣∣∣
N−1∑

n=0

ann
it
∣∣∣ ≤ Cσ
c

∑N
n=0 |an|√
N

exp

{(
logN

2

)1/2
(log logN)1/2

}
,

as required in (1.7).
A particular case of this example with σ = 0 was considered in [Q3]. Our

calculation yields a slightly better constant in the exponent. The question
about the best possible constant raised in [KQ] seems still to be open.

2. Proof of the upper bound in Theorem 1.1. The principle of
the proof of the upper bound is as follows. Once we reduce to the study of
a random polynomial Q on the multidimensional torus by using (1.1), the
proof consists of two different steps based on a decomposition Q = Q1+Q2.
The study of the supremum of the polynomial Q1 is made by using the
metric entropy method.
The supremum of Q2 is handled by using first the contraction principle,

reducing the study to the one of a complex-valued Gaussian process. The
latter task is carried out by applying Slepian’s comparison lemma, and by
a careful study of the L2-metric induced by this process.
Now, we turn to the rigorous proof of the upper bound and introduce

some notation.
We can represent Eτ as the union of disjoint sets

Ej = {2 ≤ n ≤ N : P+(n) = pj}, j = 1, . . . , τ.

For z ∈ T
τ we put

Q(z) =

τ∑

j=1

∑

n∈Ej

εnn
−σe2iπ〈a(n),z〉.

By (1.1) we have

sup
t∈R

∣∣∣
τ∑

j=1

∑

n∈Ej

εnn
−σ−it

∣∣∣ = sup
z∈Tτ

|Q(z)|.

Let 1 ≤ ν < τ be fixed. Write Q = Q1 +Q2 where
Q1(z) =

∑

P+(n)≤pν

εnn
−σe2iπ〈a(n),z〉,

Q2(z) =
∑

pν<P+(n)≤pτ

εnn
−σe2iπ〈a(n),z〉.
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First, we estimate the supremum of Q2. We introduce the random process

Xε(γ) =
∑

ν<j≤τ

αj
∑

n∈Ej

εnn
−σβn/pj , γ ∈ Γ,

where γ = ((αj)ν<j≤τ , (βm)1≤m≤N/2) and Γ = {γ : |αj | ∨ |βm| ≤ 1,
ν < j ≤ τ, 1 ≤ m ≤ N/2}. Writing

Q2(z) =
∑

ν<j≤τ

e2iπzj
∑

n∈Ej

εnn
−σe2iπ{

∑
k 6=j ak(n)zk+[aj(n)−1]zj}

=
∑

ν<j≤τ

e2iπzj
∑

n∈Ej

εnn
−σe2iπ{

∑
k ak(n/pj)zk}

and considering separately the imaginary and real parts of the exponents,
it follows that Q2(z) can be written as the sum of four terms, each being of
the form

η
∑

ν<j≤τ

αj
∑

n∈Ej

εnn
−σβn/pj ,

where η ∈ {1, i,−i,−1}, and

αj =





cos(2πzj),

or

sin(2πzj),

ν < j ≤ τ ;

βm =





cos
(
2π
∑

k

ak(m)zk

)
,

or

sin
(
2π
∑

k

ak(m)zk

)
,

1 ≤ m ≤ N/2.

Therefore, we obtain

sup
z∈Tτ

|Q2(z)| ≤ 4 sup
γ∈Γ
|Xε(γ)|.

By the contraction principle ([K, pp. 16–17])

E sup
z∈Tτ

|Q2(z)| ≤ 4
√
π/2E sup

γ∈Γ
|X(γ)|,

where {X(γ), γ ∈ Γ} is the same process as Xε(γ) except that the Rade-
macher random variables εn are replaced by independent N (0, 1) random
variables µn:

X(γ) =
∑

ν<j≤τ

αj
∑

n∈Ej

µnn
−σβn/pj .

The problem now reduces to estimating the supremum of the real-valued
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Gaussian process X. To this end, we examine the L2-norm of its increments:

‖Xγ −Xγ′‖22 =
∑

ν<j≤τ

∑

n∈Ej

n−2σ[αjβn/pj − α′jβ′n/pj ]
2

≤ 2
∑

ν<j≤τ

∑

n∈Ej

n−2σ[(αj − α′j)2 + (βn/pj − β′n/pj )
2],

where we have used the identity αjβn/pj − α′jβ′n/pj = (αj − α
′
j)βn/pj +

(βn/pj − β′n/pj )α
′
j .

The “α” part is easily controlled as follows:
∑

ν<j≤τ

∑

n∈Ej

n−2σ(αj − α′j)2 ≤
∑

ν<j≤τ

(αj − α′j)2p−2σj
∑

m≤N/pj

m−2σ(2.1)

≤ Cσ
∑

ν<j≤τ

(αj − α′j)2
(
N1−2σ

pj

)
.

For the “β” part, we have

∑

ν<j≤τ

∑

n∈Ej

(βn/pj−β′n/pj )
2

n2σ
≤
∑

m≤N/pν

(βm−β′m)2
( ∑

ν<j≤τ
mpj≤N

1

(mpj)2σ

)
(2.2)

=:
∑

m≤N/pν

K2m(βm − β′m)2.

Now we estimate the coefficients Km. Consider two cases.

1) m ≤ N/pτ . Then mpj ≤ mpτ ≤ N for all j ≤ τ and, by using the
standard estimate (see [HW, Theorem 8, p. 10])

(2.3) pj ∼ j log j,
we have

K2m =
∑

ν<j≤τ

(mpj)
−2σ ≤ m−2σ

∑

j≤τ

p−2σj

≤ Cm−2σ
∑

j≤τ

(j log j)−2σ = Cσm
−2στ1−2σ(log τ)−2σ

≤ Cσm−2σ
τ

p2στ
.

Thus
∑

m≤N/pτ

Km ≤ Cσ
τ1/2

pστ

∑

m≤N/pτ

m−σ ≤ Cσ
(
N

pτ

)1−σ
τ1/2

pστ

=
CσN

1−στ1/2

pτ
≤ CσN

1−σ

τ1/2 log τ
.
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2) N/pν ≥ m > N/pτ . Then take a unique k ∈ (ν, τ ] such that N/pk <
m ≤ N/pk−1. We have

K2m =
∑

ν<j≤k−1

(mpj)
−2σ ≤ m−2σ

∑

j≤k−1

p−2σj

≤ Cσm−2σ
∑

j≤k

(j log j)−2σ ≤ Cσm−2σ
k1−2σ

(log k)2σ

≤ Cσm−2σ
k

p2σk
≤ Cσm−2σ

k

(N/m)2σ

= Cσ
k

N2σ
.

Since k log k ≤ Cpk ≤ CN/m, we have

k ≤ C N
m

(
log

(
N

m

))−1
.

We arrive at Km ≤ CσN−σ(N/m)1/2(log(N/m))−1/2. It follows that
∑

m≤N/pν

Km ≤ CσN−σ
∑

m≤N/pν

(N/m)1/2(log(N/m))−1/2

≤ CσN1−σ
1/pν\
0

u−1/2(log(1/u))−1/2 du

≤ CσN1−σp−1/2ν (log pν)
−1/2 ≤ CσN

1−σ

ν1/2 log ν
.

Now define a second Gaussian process by putting, for all γ ∈ Γ ,

Y (γ) =
∑

ν<j≤τ

(
N1−2σ

pj

)1/2
αjξ
′
j +

∑

m≤N/pν

Kmβmξ
′′
m =: Y

′
γ + Y

′′
γ ,

where ξ′i, ξ
′′
j are independent N (0, 1) random variables. It follows from (2.1)

and (2.2) that for some suitable constant Cσ, one has the comparison rela-
tions: for all γ, γ′ ∈ Γ ,

‖Xγ −Xγ′‖2 ≤ Cσ‖Yγ − Yγ′‖2.
By virtue of the Slepian comparison lemma (see [L, Theorem 4, p. 190]),
since X0 = Y0 = 0, we have

E sup
γ∈Γ
|Xγ | ≤ 2E sup

γ∈Γ
Xγ ≤ 2CσE sup

γ∈Γ
Yγ ≤ 2CσE sup

γ∈Γ
|Yγ |.

It remains to evaluate the supremum of Y . First of all,

E sup
γ∈Γ
|Y ′(γ)| ≤ N1/2−σ

∑

ν<j≤τ

p
−1/2
j .
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By (2.3), we have

∑

ν<j≤τ

p
−1/2
j ≤

∑

1<j≤τ

p
−1/2
j ≤ Cτ1/2

(log τ)1/2
,

thus

(2.4) E sup
γ∈Γ
|Y ′(γ)| ≤ CN1/2−σ τ1/2

(log τ)1/2
.

To control the supremum of Y ′′, we use our estimates for the sums of Km
to obtain

E sup
γ∈Γ
|Y ′′(γ)| ≤

∑

m≤N/pν

Km(2.5)

≤ Cσ
(
N1−σ

ν1/2 log ν
+
N1−σ

τ1/2 log τ

)
≤ CσN

1−σ

ν1/2 log ν
.

Now, we turn to the supremum of Q1. To this end, we introduce the
auxiliary Gaussian process

Υ (z) =
∑

P+(n)≤pν

n−σ{ϑn cos 2π〈a(n), z〉+ ϑ′n sin 2π〈a(n), z〉}, z ∈ T
ν ,

where ϑi, ϑ
′
j are independent N (0, 1) random variables. By symmetrization

(see e.g. Lemma 2.3, p. 269 in [PSW]),

E sup
z∈Tν

|Q1(z)| ≤
√
8πE sup

z∈Tν

|Υ (z)|,

so that we are again led to evaluating the supremum of a real-valued Gaus-
sian process. For z, z′ ∈ T

ν put ‖Υ (z) − Υ (z)‖2 =: d(z, z′), and observe
that

(2.6) d(z, z′)2 = 4
∑

n :P+(n)≤pν

1

n2σ
sin2(π〈a(n), z − z′〉)

≤ 4π2
∑

n :P+(n)≤pν

1

n2σ
|〈a(n), z − z′〉|2

≤ 4π2
∑

n :P+(n)≤pν

n−2σ
[ ν∑

j=1

aj(n)|zj − z′j |
]2

= 4π2
∑

n :P+(n)≤pν

ν∑

j1,j2=1

aj1(n)aj2(n)|zj1 − z′j1 | |zj2 − z′j2 |n−2σ
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= 4π2
ν∑

j1,j2=1

∑

n :P+(n)≤pν

aj1(n)aj2(n)|zj1 − z′j1 | |zj2 − z′j2 |n−2σ

≤ 4π2
ν∑

j1,j2=1

|zj1 − z′j1 | |zj2 − z′j2 |
∞∑

b1,b2=1

b1b2
∑

n≤N, aj1 (n)=b1, aj2 (n)=b2

n−2σ

≤ 4π2
ν∑

j1,j2=1

|zj1−z′j1 | |zj2−z′j2 |
∞∑

b1,b2=1

b1b2p
−2b1σ
j1

p−2b2σj2

∑

k≤Np
−b1
j1
p
−b2
j2

P+(k)≤pν

k−2σ

≤ CσN1−2σ
ν∑

j1,j2=1

|zj1−z′j1 | |zj2−z′j2 |
∞∑

b1,b2=1

b1b2p
−2b1σ
j1

p−2b2σj2
[p−b1j1 p

−b2
j2
]1−2σ

= CσN
1−2σ

ν∑

j1,j2=1

|zj1 − z′j1 | |zj2 − z′j2 |
∞∑

b1,b2=1

b1b2p
−b1
j1
p−b2j2

= CσN
1−2σ
{ ν∑

j=1

|zj − z′j |
∞∑

b=1

bp−bj

}2
.

Thus,

(2.7) d(z, z′) ≤ CσN1/2−σ
{ ν∑

j=1

|zj − z′j |
∞∑

b=1

bp−bj

}
.

Remark. In the middle of the long calculation, we did not use the fact
that the variable k satisfies P+(k) ≤ pν . Actually, this observation permits
introducing an extra factor connected with the Dickman function, something
like ̺(logN/log ν). This is helpful once ν is very small with respect to N
(see the upper bound in Theorem 1.2).

Now we explore the entropy properties of the metric space (Tν , d). To
do this, take ε ∈ (0, 1) and cover T

ν by rectangular cells so that if z and z′

belong to the same cell, then

(2.8) |zj − z′j | ≤
{
ε/log log ν, 1 ≤ j ≤ ν1/2,
ε, ν1/2 < j ≤ ν.

Thus, every cell is a product of two cubes of different size and dimension.
The necessary number of cells, M(ε), is bounded as follows:

M(ε) ≤
(
log log ν

ε

)[ν1/2]
ε−(ν−[ν

1/2]) = (1/ε)ν(log log ν)[ν
1/2].

Let us now estimate the distance d(z, z′) for z, z′ satisfying (2.8). By (2.7)
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we have

d(z, z′) ≤ CσN1/2−σ{d1 + d2 + d3},
where

d1 =
ν∑

j=1

|zj − z′j |
∞∑

b=2

bp−bj ,

d2 =
∑

ν1/2<j≤ν

|zj − z′j |p−1j ,

d3 =
∑

j≤ν1/2

|zj − z′j |p−1j .

For any j ≥ 1 we have

(2.9)

∞∑

b=2

bp−bj =

∞∑

b=2

b

(
2

pj

)b
2−b ≤

(
2

pj

)2 ∞∑

b=2

b2−b = Cp−2j .

Hence,

d1 ≤
( ν∑

j=1

Cp−2j

)
max
j≤ν
|zj − z′j | ≤ Cε.

Similarly,

d2 ≤
( ∑

ν1/2<j≤ν

p−1j

)
max

ν1/2<j≤ν
|zj − z′j | ≤ C

( ∑

ν1/2<j≤ν

(j log j)−1
)
ε

≤ C
ν\
ν1/2

du

u log u
ε = C

(
log log ν − log

(
log ν

2

))
ε = C(log 2) ε.

Finally,

d3 ≤
( ν∑

j=1

p−1j

)
max
j≤ν1/2

|zj − z′j | ≤ C
( ν∑

j=1

(j log j)−1
) ε

log log ν
≤ Cε.

By summing up the three estimates, we have d(z, z′) ≤ CσN1/2−σε, which
enables the estimation of the metric entropy.

Let N (Tν , d, u) be the minimal number of balls of radius u that cover
the space (Tν , d). We have

logN (Tν , d, CσN1/2−σε) ≤ logM(ε) ≤ ν|log ε|+ ν1/2 · log log log ν.
Observe also that

(2.10) ‖Υ (z)‖2 ≤ CσN1/2−σ, z ∈ T
ν .

Hence, D := diam(Tν , d) ≤ CσN1/2−σ, and by the classical Dudley entropy
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theorem (see [L, Theorem 1, p. 179]), for any fixed z ∈ T
ν ,

E sup
z′∈Tν

|Υ (z′)− Υ (z)| ≤ Cσ
D\
0

[logN (Tν , d, u)]1/2 du

≤ Cσ
CσN

1/2−σ\
0

[logN (Tν , d, u)]1/2 du

= CσN
1/2−σ

1\
0

[logN (Tν , d, CσN1/2−σε)]1/2 dε

≤ CσN1/2−σ
1\
0

[ν|log ε|+ log log log ν · ν1/2]1/2dε

≤ CσN1/2−σν1/2.
Using again (2.10), we have

(2.11) E sup
z′∈Tν

|Υ (z′)| ≤ CσN1/2−σν1/2.

The final stage of the proof provides the optimal choice of the parameter
ν balancing the quantities (2.4), (2.5), and (2.11). As the theorem’s claim
suggests, we consider three cases.

Case 1: N1/2 ≤ τ ≤ N. Obviously, this case contains the results of
Halász and Queffélec. In this case we choose

ν =
τ

logN
,

thus balancing (2.4) and (2.11). We obtain from both terms the bound
CσN

1/2−στ1/2/(logN)1/2, while the term (2.5) is negligible. The correctness
condition ν ≤ τ is obvious.
Case 2: N1/2(logN)−1 ≤ τ ≤ N1/2. In this case we choose

ν = N1/2(logN)−1,

thus balancing (2.5) and (2.11). We obtain from both terms the bound
CσN

3/4−σ/(logN)1/2, while the term (2.4) is negligible. The correctness
condition ν ≤ τ is obvious for the range under consideration.
Case 3: 1 ≤ τ ≤ N1/2(logN)−1. Here we just set ν = τ . This means

that we do not need the splitting of the polynomial in two parts. Formally,
the quantities (2.4) and (2.5) are not necessary and we obtain the bound
CσN

1/2−στ1/2 directly from (2.11).

The proof of the upper bound is complete.
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3. Proof of the lower bound in Theorem 1.1. Let d = {dn, n ≥ 1}
be a sequence of reals. Recall that by (1.1) we have

sup
t∈R

∣∣∣
τ∑

j=1

∑

n∈Ej

dnεnn
−σ−it

∣∣∣ = sup
z∈Tτ

|Q(z)|,

where

Q(z) =
τ∑

j=1

∑

n∈Ej

dnεnn
−σe2iπ〈a(n),z〉.

Consider the subset Z of Tτ defined by
Z = {z = {zj , 1 ≤ j ≤ τ} : zj = 0 if j ≤ τ/2,

and zj ∈ {0, 1/2} if j ∈ (τ/2, τ ]}.
Observe that the imaginary part of Q vanishes on Z, since for any z ∈ Z
and any n,

e2iπ〈a(n),z〉 = cos(2π〈a(n), z〉) = (−1)2〈a(n),z〉.
Hence, Q takes the following simple form on Z:

Q(z) =
∑

τ/2<j≤τ

∑

n∈Ej

dnεnn
−σ(−1)2〈a(n),z〉.

This is no longer a trigonometric polynomial, but simply a finite rank
Rademacher process.

For j ∈ (τ/2, τ ] define
Lj = {n = pj ñ : ñ ≤ N/pj and P+(ñ) ≤ pτ/2}.

Since Ej ⊃ Lj , j = 1, . . . , τ, the sets Lj are pairwise disjoint. For z ∈ Z put

Q′(z) =
∑

τ/2<j≤τ

∑

n∈Lj

dnεnn
−σ(−1)2〈a(n),z〉.

We now recall a useful fact.

Lemma 3.1. Let X = {Xz, z ∈ Z} and Y = {Yz, z ∈ Z} be two finite
sets of random variables defined on a common probability space. Assume

that X and Y are independent and that the random variables Yz are all
centered. Then

E sup
z∈Z
|Xz + Yz| ≥ E sup

z∈Z
|Xz|.

Proof. Let F be the σ-field generated by Y . Then
E sup
z∈Z
|Xz + Yz| = E[E(sup

z∈Z
|Xz + Yz| | F)] ≥ E[sup

z∈Z
|E(Xz + Yz | F)|]

= E(sup
z∈Z
|Xz + EYz|) = E sup

z∈Z
|Xz|.
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Clearly, since {Q(z)−Q′(z), z ∈ Z} and {Q′(z), z ∈ Z} are independent,
E sup
z∈Z
|Q(z)| ≥ E sup

z∈Z
|Q′(z)|.

We now proceed to a direct estimation of Q′(z) by proving

Proposition 3.2. There exists a universal constant c such that for any
system of coefficients (dn),

c
∑

τ/2<j≤τ

∣∣∣
∑

n∈Lj

d2n

∣∣∣
1/2

≤ E sup
z∈Z
|Q′(z)| ≤

∑

τ/2<j≤τ

∣∣∣
∑

n∈Lj

d2n

∣∣∣
1/2

.

Proof. For any n ∈ Lj , we have 2〈a(n), z〉 = 2zj , so that
∑

n∈Lj

dnεn(−1)2〈a(n),z〉 = (−1)2zj
∑

n∈Lj

dnεn(ω).

Thus

Q′(z) =
∑

τ/2<j≤τ

(−1)2zj
∑

n∈Lj

dnεn(ω).

Let ω ∈ Ω. We can select zj = zj(ω) = 0 or 1/2, τ/2 < j ≤ τ , according to
the + or − sign of the sum ∑n∈Lj dnεn(ω)n−σ. This implies that

sup
z∈Z
|Q′(z)| =

∑

τ/2<j≤τ

∣∣∣
∑

n∈Lj

dnεn

∣∣∣.

Consequently, by the Khinchin inequalities for Rademacher sums [KS],

E sup
z∈Z
|Q′(z)| =

∑

τ/2<j≤τ

E

∣∣∣
∑

n∈Lj

dnεn

∣∣∣ ≥ c
∑

τ/2<j≤τ

(
E

∣∣∣
∑

n∈Lj

dnεn

∣∣∣
2)1/2

= c
∑

τ/2<j≤τ

( ∑

n∈Lj

d2n

)1/2
.

The upper bound immediately follows from the Cauchy–Schwarz inequal-
ity.

Corollary 3.3. If (dn) is a multiplicative system, we have

E sup
z∈Z
|Q′(z)| ≥ c

∑

τ/2<j≤τ

dpj

( ∑

ñ≤N/pj
P+(ñ)≤pτ/2

d2ñ

)1/2
.

Now we can finish the proof of Theorem 1.1.
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Proof of the lower bound in Theorem 1.1. If dn ≡ n−σ, the above corol-
lary yields

E sup
z∈Tτ

∣∣∣
τ∑

j=1

∑

n∈Ej

εnn
−σe2iπ〈a(n),z〉

∣∣∣ ≥ E sup
z∈Z
|Q′(z)|

≥ C
Nσ

∑

τ/2<j≤τ

#{m ≤ N/pj : P+(m) ≤ pτ/2}1/2

=
C

Nσ

∑

τ/2<j≤τ

Ψ(N/pj , pτ/2)
1/2.

Since

Ψ

(
N

pj
, pτ/2

)
≥ Ψ
(
N

pτ
, pτ/2

)
=
N

pτ
Ψ∗
(
N

pτ
, pτ/2

)

≥ cN

τ log τ
Ψ∗
(
N

pτ
, pτ/2

)
,

we obtain

E sup
z∈Tτ

∣∣∣
τ∑

j=1

∑

n∈Ej

εnn
−σe2iπ〈a(n),z〉

∣∣∣ ≥ c
Nσ
τ

2

[
cN

τ log τ
Ψ∗
(
N

pτ
, pτ/2

)]1/2

= cN1/2−σ
(
τ

log τ

)1/2
Ψ∗
(
N

pτ
, pτ/2

)1/2
,

as asserted.

4. Proof of Theorem 1.2. We need to prove the upper bound, since
the lower bound was obtained in Theorem 1.1. Moreover, we are only going
to show how the calculations concerning the upper bound of Theorem 1.1
should be corrected in order to get an extra Dickman-type factor.

Step 1. Some remarks on a semi-asymptotic formula for the Dickman
function. We discuss the so called semi-asymptotic formula (see [BT])

(4.1) Ψ(ax, y) = aα(x,y)Ψ(x, y)(1 +O(1/u))

where u = min{log x, y}/log y and

α(x, y) =
log(1 + y/logx)

log y
= 1− log log x

log y
+
log(1 + log x/y)

log y

= 1− log log x
log y

+O

(
log x

y log y

)
.

Since in our zone y > log x, we have

O

(
log x

y

)
= O(1) = o(log log x).
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Therefore α ≤ 1 for x large enough. We also see that α→ 1 as x→∞, hence
α ≥ 2/3 for all x large enough. In what follows, we assume that 2/3 ≤ α ≤ 1.

Step 2: Main estimate and adjustment of the previous proof. We still
use the notation Ψ∗(x, y) = x−1Ψ(x, y) but skip y everywhere since y = pν .
In other words, we write Ψ(x) := Ψ(x, pν) and Ψ

∗(x) := Ψ∗(x, pν).

Let b∗ = 1 for b = 1 and b∗ = 2b/3 for b = 2, 3, . . . . We will prove that
for all b1, b2 ≥ 1, j1, j2 ≤ ν,

(4.2) Ψ

(
N

pb1j1p
b2
j2

)
≤ C N

p
b∗1
j1
p
b∗2
j2

Ψ∗
(
N

p2ν

)
.

Once (4.2) is proved, the calculation in (2.6) is updated as follows. Let
Dj = |zj − z′j |. Then

d(z, z′)2 ≤ C
∑

j1,j2≤ν

Dj1Dj2

∞∑

b1,b2=1

b1b2p
−2b1σ
j1

p−2b2σj2
Ψ

(
N

pb1j1p
b2
j2

)(
N

pb1j1p
b2
j2

)−2σ

= CN−2σ
∑

j1,j2≤ν

Dj1Dj2

∞∑

b1,b2=1

b1b2Ψ

(
N

pb1j1p
b2
j2

)

≤ CN1−2σΨ∗
(
N

p2ν

) ∑

j1,j2≤ν

Dj1Dj2

∞∑

b1,b2=1

b1b2p
−b∗1
j1
p
−b∗2
j2

= CN1−2σΨ∗
(
N

p2ν

){∑

j≤ν

Dj

∞∑

b=1

bp−b
∗

j

}2
.

Now everything continues as in the proof of Theorem 1.1 but with an extra
factor Ψ∗(N/p2ν). The minor change (corresponding to (2.9)) is that

∞∑

b=2

bp−b
∗

j =

∞∑

b=2

b

(
2

pj

)b∗
2−b

∗ ≤
(
2

pj

)4/3 ∞∑

b=2

b2−b
∗

=
C

p
4/3
j

,

hence still

d1 ≤
ν∑

j=1

C

p
4/3
j

max
j
Dj ≤ Cε.

Step 3: The proof of inequality (4.2). We consider three cases:

1. b1, b2 ≥ 2. By applying (4.1) with x = N/pb1j1p
b2
j2
and a = pb1j1p

b2
j2
, we

get

Ψ(N) = (pb1j1p
b2
j2
)αΨ

(
N

pb1j1p
b2
j2

)
(1 +O(1/u)).
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Once u is large enough and α ≥ 2/3 we have

Ψ

(
N

pb1j1p
b2
j2

)
≤ CΨ(N)(pb1j1p

b2
j2
)−2/3.

Similarly, we pass from Ψ(N) to Ψ(N/p2ν). By using α ≤ 1, we have

Ψ(N) = [p2ν ]
αΨ

(
N

p2ν

)
(1 +O(1/u)) ≤ Cp2νΨ

(
N

p2ν

)
= CNΨ∗

(
N

p2ν

)
.

By combining the two estimates we get

Ψ

(
N

pb1j1p
b2
j2

)
≤ C(pb1j1p

b2
j2
)−2/3NΨ∗

(
N

p2ν

)
,

as required.

2. b1 = b2 = 1. By applying (4.1) with x = N/pj1pj2 and a = p
2
ν/pj1pj2 ,

we get, using α ≤ 1,

Ψ

(
N

pj1pj2

)
≤ C
(
p2ν
pj1pj2

)α
Ψ

(
N

p2ν

)
≤ C p2ν
pj1pj2

Ψ

(
N

p2ν

)
(4.3)

= C
N

pj1pj2
Ψ∗
(
N

p2ν

)
,

as required.

3. b1 = 1, b2 ≥ 2. By applying (4.1) with x = N/pj1pb2j2 and a = p
b2
j2
, we

get, using α ≥ 2/3,

Ψ

(
N

pj1

)
=

(
pb2j2

)α
Ψ

(
N

pj1p
b2
j2

)
(1 +O(1/u)),

hence

Ψ

(
N

pj1p
b2
j2

)
≤ Cp−2b2/3j2

Ψ

(
N

pj1

)
= Cp

−b∗2
j2
Ψ

(
N

pj1

)
.

Yet, letting pj2 = 1 in (4.3), we have

Ψ

(
N

pj1

)
≤ C N
pj1
Ψ∗
(
N

p2ν

)
,

and we are done. Therefore, the proof of (4.2) is complete.

We finish the section by giving a proof of (1.4′). Only the upper bound
needs a proof. Fix some large integer M . Let {gn, n ≥ 1} be a sequence
of independent N (0, 1) distributed random variables. By the contraction
principle, there is an absolute constant C such that

E sup
N≤M

sup
t∈R

|∑Nn=2 εnn−σ−it|
N1−σ(logN)−1

≤ C E sup
N≤M

sup
t∈R

|∑Nn=2 gnn−σ−it|
N1−σ(logN)−1

.
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We now need the following inequality (see [W1, p. 451]), which is a simple
consequence of the Borell–Sudakov–Tsirelson inequality: if G1, . . . , GN are
Gaussian random vectors with values in a separable Banach space (B, ‖ · ‖),
then

E sup
1≤k≤N

‖Gk‖ ≤ C{ sup
1≤k≤N

E‖Gk‖+ E sup
1≤k≤N

σk|ζk|}

where σk = supf∈B∗, ‖f‖≤1(E〈f,Gk〉2)1/2, k = 1, . . . , N , {ζk, 1 ≤ k ≤ N} is
a sequence of independent N (0, 1) distributed random variables, and C is a
universal constant.

Applying this inequality gives

E sup
N≤M

sup
t∈R

|∑Nn=2 gnn−σ−it|
N1−σ(logN)−1

≤ C sup
N≤M

E sup
t∈R

|∑Nn=2 gnn−σ−it|
N1−σ(logN)−1

+ C E sup
N≤M

|ζNσN |

≤ Cσ + C E sup
N≤M

|ζNσN |,

where

σN ≤ C
supt∈R

‖∑Nn=2 gnn−σ−it‖2
N1−σ(logN)−1

≤ C (
∑N
n=2 n

−2σ)1/2

N1−σ(logN)−1

≤ Cσ
N1/2−σ

N1−σ(logN)−1
= Cσ

logN

N1/2
.

It is obvious that E supN≤M (|ζN |logN)/N1/2 is bounded uniformly in M
by some absolute constant. So there exists a constant Cσ, depending on σ
only, such that for any M ,

E sup
N≤M

sup
t∈R

|∑Nn=2 gnn−σ−it|
N1−σ(logN)−1

≤ Cσ.

The claimed result follows immediately.

Note to conclude that the same argument applies to our upper bounds
results with minor modifications (by introducing suitable blocks).

5. Other results. In this section we test our technique on some other
sets of coefficients.

Let {dn, n ≥ 1} be a sequence of multiplicative weights: dnm = dndm
whenever n,m are coprime. Set

(5.1) Bm =
∑

2≤n≤m

d2n.
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By choosing τ = µ := π(N) in the lower bound of Proposition 3.2, we get

E sup
z∈Tµ

∣∣∣
N∑

n=2

dnεnn
−σe2iπ〈a(n),z〉

∣∣∣

≥ E sup
z∈Z
|Q′(z)| ≥ CN−σ

∑

µ/2<j≤µ

dpj

( ∑

ñ≤N/pj
P+(ñ)≤pµ/2

d2ñ

)1/2
.

Note that for large N in the case τ = µ the sets Lj reduce to {n = pj ñ :
ñ ≤ N/pj}. Indeed, if ñ ≤ N/pj and if there is an s ≥ µ/2 such that ps | ñ,
then this implies that

N ≥ pjps ≥ p2µ/2 ∼ (µ logµ)2/4 ∼ N2/4,
which is impossible for large N . Thus necessarily P+(ñ) ≤ pµ/2. Hence

E sup
z∈Tµ

∣∣∣
N∑

n=2

dnεnn
−σe2iπ〈a(n),z〉

∣∣∣ ≥ CN−σ
∑

µ/2<j≤µ

dpj

( ∑

ñ≤N/pj

d2ñ

)1/2

= CN−σ
∑

µ/2<j≤µ

dpjB
1/2
N/pj
.

We have obtained

Proposition 3.4. There exists a universal constant C and N0 such that
for any 0 ≤ σ < 1/2, any integer N ≥ N0 and any multiplicative sequence
of weights (dn),

E sup
t∈R

∣∣∣
N∑

n=2

εndnn
−σ−it

∣∣∣ ≥ CN−σ
∑

µ/2<j≤µ

dpjB
1/2
N/pj
,

where Bm is defined in (5.1).

Apply this to the case dn = d(n), where d(n) = ♯{d : d |n} is the divi-
sor function. Although these weights are very irregular, their sums behave
regularly, in particular,

N∑

n=1

(d(n))2 ∼ N
π2
(logN)3

as N tends to infinity. The last estimate immediately provides Bm ∼
(m/π2) log3m, hence (noticing that dpj = 2 and µ ∼ N/logN)

∑

µ/2<j≤µ

dpjB
1/2
N/pj
∼
∑

µ/2<j≤µ

(2N/pjπ
2)1/2
(
log
N

pj

)3/2

=
2N1/2

π

∑

µ/2<j≤µ

1

p
1/2
j

(
log
N

pj

)3/2
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∼ 2N
1/2

π

∑

µ/2<j≤µ

(log N
j log j )

3/2

(j log j)1/2
≈ N1/2

∑

µ/2<j≤µ

1

(j log j)1/2

≈ N1/2 µ1/2

(logµ)1/2
∼ N

logN
.

Now, let {Pk : k ∈ K} be a finite set of mutually coprime numbers.
Consider the set of integers

E =
{
n : n =

∏

k∈K

Pαkk , αk ∈ {0, 1}
}

and the associated Dirichlet polynomial

DE(t) =
∑

n∈E

εnn
−σ−it =

N∑

n=2

εnχE(n)n
−σ−it,

where N =
∏
k∈K Pk. We prove the following.

Proposition 3.5. There exists a universal constant C such that , for
any σ ≥ 0 and any {Pk : k ∈ K},

E sup
t∈R

|DE(t)| ≥ C
∏

k∈K

(1 + P−2σk )1/2 sup
G⊆K

∑
j∈G P

−σ
j∏

k∈G(1 + P
−2σ
k )1/2

.

Proof. By (1.1) we have

sup
t∈R

|DE(t)| = sup
z∈Tµ

|Q(z)|,

where µ = |K| and

Q(z) =
N∑

n=2

χE(n)εnn
−σe2iπ〈a(n),z〉.

Let A ⊂ K and B = K \ A. We assume that both A and B are nonempty
sets. For j ∈ B, define

Bj = {n ∈ E : αk = 0 if k ∈ B, k 6= j, and αj = 1}
and Z ⊂ T

µ by

Z = {z = {zk, 1 ≤ k ≤ 2r} : zk = 0 if k ∈ A, and zk ∈ {0, 1/2} if k ∈ B}.
For j ∈ B, n ∈ Bj and z ∈ Z, we have 2〈a(n), z〉 = 2

∑
k∈K αkzk = 2zj =

±1, so that similarly to our previous lower bound,

sup
z∈Z
|Q(z)| ≥

∑

j∈B

∣∣∣
∑

n∈Bj

εnn
−σ
∣∣∣
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almost surely. Hence

E sup
z∈Z
|Q(z)| ≥ C

∑

j∈B

(
E

∣∣∣
∑

n∈Bj

εnn
−2σ
∣∣∣
2)1/2

= C
∑

j∈B

P−σj

( ∑

(αk)k∈A∈{0,1}A

∏

k∈A

P−2σαkk

)1/2

= C
∏

k∈A

(1 + P−2σk )1/2
{∑

j∈B

P−σj

}
.

Therefore

E sup
t∈R

|DE(t)| ≥ C sup
A⊆K,A6=K

∏

k∈A

(1 + P−2σk )1/2
{ ∑

j∈Ac

P−σj

}

= C
∏

k∈K

(1 + P−2σk )1/2 sup
A⊆K,A6=K

∑
j∈Ac P

−σ
j∏

k∈Ac

(1 + P−2σk )1/2
.
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des produits d’Euler , Canad. J. Math. 32 (1980), 531–558.
[Q2] —, Sur une estimation probabiliste liée à l’inégalité de Bohr , in: Harmonic Anal-
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