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On the structure of Banach spaces with an

unconditional basic sequence

by

Razvan Anisca (Thunder Bay)

Abstract. For a Banach space X with an unconditional basic sequence, one of the
following regular-irregular alternatives holds: either X contains a subspace isomorphic
to ℓ2, or X contains a subspace which has an unconditional finite-dimensional decomposi-
tion, but does not admit such a decomposition with a uniform bound for the dimensions
of the decomposition. This result can be viewed in the context of Gowers’ dichotomy
theorem.

1. Introduction. Following the general constructions of Komorowski
and Tomczak-Jaegermann [9]–[11], [14] of subspaces without an uncondi-
tional basis for a large class of Banach spaces, in this paper we continue
the investigation of properties related to unconditionality in general Banach
spaces.

Our main result provides the following alternative regarding the struc-
ture of Banach spaces with an unconditional basic sequence:

Theorem 1.1. Let X be a Banach space which has an infinite-dimen-

sional subspace Y with an unconditional basis. Then one of the following

holds:

(i) Y contains a subspace isomorphic to ℓ2,
(ii) Y contains a subspace which has an unconditional finite-dimensional

decomposition, but does not admit such a decomposition with a uni-

form bound for the dimensions of the decomposition.

We can also see this result from the point of view of Gowers’ dichotomy
theorem [6]: every infinite-dimensional Banach space has an infinite-dimen-
sional subspace which is either hereditarily indecomposable or has an uncon-
ditional basis. Theorem 1.1 provides some further information in the second
case, in the form of an additional “regular-irregular” alternative.
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The proof is done by working in the same setting as Komorowski and
Tomczak-Jaegermann and using their construction recursively; in the pro-
cess we exhibit, for every n ≥ 2, a subspace Yn which admits an uncondi-
tional decomposition into n-dimensional subspaces and for which n is mini-
mal with such property. These subspaces (which are described in Sections 3
and 4) constitute the main ingredients used in deducing Theorem 1.1 (in
Section 5). Constructions with similar properties were previously obtained
for subspaces of Lp (1 ≤ p < 2) by Borzyszkowski [2], and for subspaces of
ℓ2(X) when X is a non-hilbertian Banach space with finite cotype ([1]).

The constructions of this paper relate also to the problem regarding
the number of non-isomorphic infinite-dimensional subspaces of a Banach
space which is not isomorphic to ℓ2. It was shown recently by Ferenczi and
Rosendal [4] that any hereditarily indecomposable Banach space has a con-
tinuum of mutually non-isomorphic infinite-dimensional subspaces, while for
spaces with an unconditional basic sequence the same is true under certain
assumptions (see [4, Theorem 8 and Corollary 14]). If one tries to relax
those assumptions and requires that the space (with an unconditional basic
sequence) is not ℓ2-saturated, then the family of subspaces {Yn}n provides
a countable family of non-isomorphic subspaces.

2. Notation and preliminaries. We start with a certain amount of
standard notation from the Banach space theory. We refer the reader to [12],
[13] for all notation not explained here.

For C ≥ 1, a basis {ei}i in a Banach space X is called C-unconditional if
for every x =

∑
i aiei ∈ X one has ‖∑i εiaiei‖ ≤ C‖x‖ for all signs εi = ±1.

If {ei}i is an unconditional basis in X then there exists an equivalent norm
on X under which {ei}i is 1-unconditional.

A Banach space is said to have a finite-dimensional decomposition {Zk}k

if every vector x ∈ X has a unique representation x =
∑

k zk such that
zk ∈ Zk and dimZk < ∞ for all k ≥ 1. We refer to such a decomposition
{Zk}k as uniform if supk dim Zk < ∞ and as s-uniform if supk dimZk ≤ s.
A decomposition {Zk}k is called C-unconditional, for some C ≥ 1, if for all
x =

∑
k zk ∈ X as above and all signs εk = ±1, one has ‖∑k εkzk‖ ≤ C‖x‖.

The following definition ([2]) represents a generalization of the classical
notion of local unconditional structure.

Definition 2.1. A Banach space X has local unconditional structure of

order ≤ s if there is C ≥ 1 such that for every finite-dimensional subspace
E ⊂ X there exist a Banach space V and operators u : E → V , w : V → X
such that iE = wu, V has a 1-unconditional s-uniform decomposition and
‖u‖‖w‖ ≤ C. Here iE is the natural embedding iE : E → X. The infimum
of such constants C is denoted by Us(X).
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While it is clear that, for a Banach space X, the property Us(X) < ∞
is weaker than X having an s-uniform decomposition, this notion has the
advantage of passing to complemented subspaces: if P : X → X is a bounded
projection then Us(PX) ≤ ‖P‖Us(X).

The following result, due to Ketonen [8] and Borzyszkowski [2], is our
fundamental criterion for recognizing that a space does not have local un-
conditional structure of order ≤ s. It has the roots in the approach first
introduced by Johnson, Lindenstrauss and Schechtman [7] for investigating
the Kalton–Peck space.

Proposition 2.2. Let Z be a Banach space of cotype r for some r < ∞.

Assume that Z has a C-unconditional k-uniform decomposition {Zi}i for

some k ≥ 2 and C ≥ 1. Suppose also that there exists s ≤ k − 1 such that

Us(Z) < ∞. Then there is a bounded linear operator operator T : Z → Z
such that

(i) T (Zi) ⊂ Zi for i = 1, 2, . . .,
(ii) ‖T|Zi

− θIZi
‖ ≥ 1/(2k2) for each θ ∈ R and i = 1, 2, . . . .

It should be mentioned that more information is known about the oper-
ator T above: in particular, an estimate for ‖T‖ in terms of the parameters
involved (cotype r constant, Us(Z) and C) is obtained by Komorowski and
Tomczak-Jaegermann in [9], [10] (see also [1]); as well, T can be chosen such
that T|Zi

is a non-trivial projection for every i = 1, 2, . . . , as was shown by
Casazza and Kalton [3] (see also [1]).

We now describe the general setting in which Komorowski and Tomczak-
Jaegermann constructed spaces without unconditional basis. This setting
consists of a direct sum of several Banach spaces with unconditional bases
and the construction relies on the behavior of subsequences of these bases
with respect to certain partitions of N. In order to be more precise we need
the following notations. If ∆ = {Am}m and ∆′ = {A′

m}m are two partitions
of N, we say that ∆ ≻ ∆′ if the partition ∆′ is obtained by taking successive
members of ∆: there are 1 = k1 < · · · < km < · · · such that

(1) A′
m =

km+1−1⋃

j=km

Aj for m = 1, 2, . . . .

In such a situation, for m = 1, 2, . . . , we set

K(A′
m, ∆) = {K ⊂ A′

m : |K ∩ Aj | = 1 for km ≤ j < km+1}.

If ∆i = {Ai,m}m is a sequence of partitions (i = 1, 2, . . .) with ∆1 ≻
. . . ≻ ∆i ≻ . . . , we let, for m = 1, 2, . . . and i = 2, 3, . . . ,

Ki,m = K(Ai,m, ∆i−1).
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Let Y be a Banach space with a 1-unconditional basis {el}l and suppose
that Y does not contain a subspace isomorphic to ℓ2. Let N be a positive
integer. It was proved in [9] (see also [14]), using spreading models and
Krivine’s theorem, that one can always find a 1-unconditional decomposition
F1⊕· · ·⊕FN ⊂ Y with some special properties. Namely, for each i = 1, . . . , N
the space Fi has a normalized 1-unconditional basis {fi,l}l and there exist
partitions ∆1 ≻ · · · ≻ ∆N of N, ∆i = {Ai,m}m, such that for i = 1, . . . , N−1
and m = 1, 2, . . . and for all scalars {ak}k we have

(2)
∥∥∥

∑

k∈Ai,m

akfi+1,k

∥∥∥ ≤ 4
∥∥∥

∑

k∈Ai,m

akfi,k

∥∥∥

and one of the following conditions is satisfied:

(I) for every i = 1, . . . , N−1 and m = 1, 2, . . . and every set K ∈ Ki+1,m

there exists a sequence {βk}k∈K of scalars such that

(3)
∥∥∥
∑

k∈K

βk(f1,k + · · · + fi,k)
∥∥∥ = 1,

∥∥∥
∑

k∈K

βkfi+1,k

∥∥∥ ≥ 2m.

(II) for every i = 1, . . . , N−1 and m = 1, 2, . . . and every set K ∈ Ki+1,m

there exists a sequence {βk}k∈K of scalars such that

(4)
∥∥∥
∑

k∈K

βkfi+1,k

∥∥∥ = 1,
∥∥∥
∑

k∈K

βkfi,k

∥∥∥ ≥ 2m.

Remark 2.3. The subspaces F1, . . . , FN ⊂ Y are supported on disjoint
subsets of the unconditional basis {el}l of Y . Furthermore, for each i =
1, . . . , N , the basis {fi,l}l is obtained by taking suitable disjoint blocks of
{el}l, except for the situation when the vectors {el}l span the space ℓp (for
some 1 ≤ p < ∞, p 6= 2), in which case the construction is a consequence of
the fact that Y ≃ (

∑
n ⊕ℓn

2 )ℓp
. Then F1 ⊕ · · · ⊕ FN = (F1 ⊕ · · · ⊕ FN )ℓp

.

For our constructions we use the same setting and thus we have to split
the argument into two parts, according to which one of the alternatives (I)
or (II) holds true. In Section 3 we treat case (I), while in Section 4, which
follows the same line of argument, we deal with case (II).

3. Recursive construction in case (I). Let Y be a Banach space
with a 1-unconditional basis. Suppose that Y does not contain a subspace
isomorphic to ℓ2 and that it has finite cotype. For the remainder of the
section we will assume that for every N ≥ 1 we can find 1-unconditional
decompositions F1 ⊕ · · · ⊕ FN ⊂ Y satisfying the conditions (2) and (3).

Let n ≥ 2. Our main goal in this section is to construct a subspace
Yn ⊂ Y which admits a 1-unconditional decomposition Yn = span{Zk}k≥1

with dim Zk = n for all k ≥ 1 and, at the same time, Un−1(Yn) = ∞.
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More precisely, given an arbitrary function g : N → R with g(l) ≤ l for
all l ∈ N and with g(l) → ∞ as l → ∞, each of the n-dimensional spaces Zk

(k ≥ 1) will be constructed inside (any) 1-unconditional decomposition as
above F1 ⊕ · · · ⊕ FNn

⊂ Y , for some Nn ∈ N, such that the following hold:

(a) Nn ≤ 3n.

(b) Each Zk (k ≥ 1) is spanned by seminormalized vectors b
(k)
1 , . . . , b

(k)
n

with

1 ≤ ‖b(k)
i ‖ < Nn for every i = 1, . . . , n.

Also, for all scalars α1, . . . , αn we have

(5) max(|α1|, . . . , |αn|) ≤ ‖α1b
(k)
1 + · · · + αnb(k)

n ‖ < Nn(|α1| + · · · + |αn|).

In addition, the vectors b
(k)
1 , . . . , b

(k)
n ∈ F1 ⊕ · · · ⊕ FNn

are supported
on the corresponding f1,k, . . . , fNn,k for all k ≥ 1, with coefficients in [0, 1].
They are defined based on the position of the indices k with respect to the
partition ∆Nn

= {ANn,l}l≥1, in the sense that their distributions depend on
g(l) whenever k ∈ ANn,l.

(c) Let T : Yn → Yn be a bounded linear operator such that T (Zk) ⊂ Zk,

T|Zk
= [a

(k)
ij ]1≤i,j≤n with respect to the basis of Zk for all k ≥ 1. Then for

every l ≥ 1 there exists k ∈ ANn,l such that

max({|a(k)
ij | : i 6= j} ∪ {|a(k)

11 − a
(k)
ii | : 2 ≤ i ≤ n})

≤ 3C(Nn)‖T‖ · 2−g(l)/(3·4Nn),

where C(N) := 1 + 4 + 42 + · · · + 4N−2.

(d) Let N ≥ 1 and suppose that (F1⊕· · ·⊕FNn
)⊕(FNn+1⊕· · ·⊕FNn+N )

⊂ Y is an unconditional decomposition of the type considered in this section.

For every k ≥ 1, let b
(k)
1 , . . . , b

(k)
n ∈ F1 ⊕ · · · ⊕ FNn

be the same vectors as
above. For every l ≥ 1 and k ∈ ANn,l consider the perturbations

b̃
(k)
1 = b

(k)
1 + 2−g(l)p

(k)
1 , . . . , b̃(k)

n = b(k)
n + 2−g(l)p(k)

n ,

where p
(k)
1 , . . . , p

(k)
n ∈ FNn+1 ⊕ · · · ⊕ FNn+N are vectors supported on the

corresponding fNn+1,k, . . . , fNn+N,k, with coefficients in [0, 1].

Let T : span{b̃(k)
1 , . . . , b̃

(k)
n }k≥1 → F1 ⊕ · · · ⊕ FNn

be a bounded linear
operator such that

(6) T b̃
(k)
j =

n∑

i=1

a
(k)
ij b

(k)
i

for every j = 1, . . . , n and k ≥ 1. Then for every l ≥ 1 there exists k ∈ ANn,l

such that
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(7) max({|a(k)
ij | : i 6= j} ∪ {|a(k)

11 − a
(k)
ii | : 2 ≤ i ≤ n})
≤ 3C(Nn + N)‖T‖ · 2−g(l)/(3·4Nn).

(e) Similarly, let (F1 ⊕ · · · ⊕ FN ) ⊕ (FN+1 ⊕ · · · ⊕ FN+Nn
) ⊂ Y be a 1-

unconditional decomposition and, for every k ≥ 1, let b
(k)
1 , . . . , b

(k)
n ∈ FN+1⊕

· · · ⊕ FN+Nn
be the vectors discussed in (b) and (c), except that this time

they are supported on fN+1,k, . . . , fN+Nn,k. For every k ≥ 1 let

b̃
(k)
1 = p

(k)
1 + b

(k)
1 , . . . , b̃(k)

n = p(k)
n + b(k)

n ,

where now p
(k)
1 , . . . , p

(k)
n ∈ F1 ⊕ · · · ⊕ FN are vectors supported on the cor-

responding f1,k, . . . , fN,k, with coefficients in [0, 1].

As before, let T : span{b̃(k)
1 , . . . , b̃

(k)
n }k≥1 → FN+1 ⊕ · · · ⊕ FN+Nn

be a
bounded linear operator satisfying (6). Then for every l ≥ 1 there exist
k ∈ AN+Nn,l such that (7) holds. Moreover, a similar statement is true

when we consider the vectors b̃
(k)
1 , . . . , b̃

(k)
n (k ≥ 1) to be at the same time

perturbations to the left and right of b
(k)
1 , . . . , b

(k)
n (thus their definition is a

combination of the ones above).

For every n ≥ 2 the space Yn which satisfies (a)–(c) above will have a
1-unconditional decomposition into n-dimensional subspaces {Zk}k≥1; this
follows from Remark 2.3, since each Zk ⊂ F1 ⊕ · · · ⊕ FNn

is supported on
the corresponding f1,k, . . . , fNn,k for all k ≥ 1. On the other hand, we get
Un−1(Yn) = ∞. Otherwise take T : Yn → Yn as in Proposition 2.2 and

on each Zk, with k ≥ 1, write T|Zk
in the matrix form with respect to the

basis {b(k)
1 , . . . , b

(k)
n } as T|Zk

= [a
(k)
ij ]1≤i,j≤n. It is easy to see that (5) and

Proposition 2.2(ii) imply

max({|a(k)
ij | : i 6= j} ∪ {|a(k)

11 − a
(k)
ii | : 2 ≤ i ≤ n})

≥ 1

Nnn2
‖T|Zk

− a
(k)
11 IZk

‖ ≥ 1

2Nnn4

for all k ≥ 1. Combining this with (c) we get, for every l ≥ 1,

‖T‖ ≥ 1

6Nnn4C(Nn)
· 2g(l)/(3·4Nn),

which is a contradiction since g(l) → ∞ as l → ∞.

For the actual recursive construction, at the initial step n = 2 we start
with N2 = 4. Let g : N → R be an arbitrary function such that g(l) ≤ l
for all l ∈ N, and let F1 ⊕ · · · ⊕ F4 ⊂ Y be a decomposition satisfying (2)

and (3). For k = 1, 2, . . . the vectors b
(k)
1 , b

(k)
2 ∈ F1 ⊕ · · · ⊕F4 will be defined
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similarly to [9] (see also [14]). That is, for k ∈ A4,l and l = 1, 2, . . . put

(8)
b
(k)
1 = f1,k + +2−g(l)/3f3,k + 2−2g(l)/3f4,k,

b
(k)
2 = f2,k + + 2−2g(l)/3f4,k.

It is clear that such vectors satisfy the requirement (b). They were
designed to satisfy (c) and this is one of the main points of the argu-
ments from [9], [14]. As a consequence of the same line of argument we
will now show that the more general statements (d) and (e) are true as
well.

We start with (d), so let (F1 ⊕· · ·⊕F4)⊕ (F5 ⊕· · ·⊕FN+4) be a decom-
position of the type considered in this section. For each l ≥ 1 and k ∈ A4,l,

define b
(k)
1 and b

(k)
2 as in (8) and then consider

b̃
(k)
1 = b

(k)
1 + 2−g(l)p

(k)
1 , b̃

(k)
2 = b

(k)
2 + 2−g(l)p

(k)
2 ,

where p
(k)
1 and p

(k)
2 are vectors supported on the corresponding f5,k, . . . ,

fN+4,k, whose coefficients belong to [0, 1].

Let T : span{b̃(k)
1 , b̃

(k)
2 }k≥1 → F1 ⊕ · · · ⊕F4 be a bounded linear operator

such that for every k ≥ 1,

(9) T b̃
(k)
1 = akb

(k)
1 + ckb

(k)
2 , T b̃

(k)
2 = bkb

(k)
1 + dkb

(k)
2 .

In order to verify (7) fix an arbitrary l ≥ 1. If we let Mi = {m : Ai,m ⊂ A4,l}
for i = 1, 2, 3, then minMi ≥ l ≥ g(l) since ∆1 ≻ · · · ≻ ∆4.

We start by picking a set B ⊂ A4,l such that |B ∩ A1,m| = 1 for all
m ∈ M1; in other words, B ∩ A2,m ∈ K2,m for all m ∈ M2.

According to (3), for every m ∈ M2, there exist scalars {αk}k∈B∩A2,m

such that ‖∑k∈B∩A2,m
αkf1,k‖ = 1 and ‖∑k∈B∩A2,m

αkf2,k‖ ≥ 2m. Since

{f1,k}k and {f2,k}k are normalized, continuity yields scalars {βk}k∈B∩A2,m

such that ‖∑k∈B∩A2,m
βkf1,k‖ = 1 and ‖∑k∈B∩A2,m

βkf2,k‖ = 2g(l)/3.

Using the particular form of the vectors {p(k)
1 }k, property (2) of the

partitions ∆1, . . . , ∆N+4 and unconditionality we get

(10)
∥∥∥

∑

k∈B∩A2,m

βkb̃
(k)
1

∥∥∥

≤
∥∥∥

∑

k∈B∩A2,m

βkf1,k

∥∥∥ + 2−g(l)/3
∥∥∥

∑

k∈B∩A2,m

βkf3,k

∥∥∥

+ 2−2g(l)/3
∥∥∥

∑

k∈B∩A2,m

βkf4,k

∥∥∥ + 2−g(l)
∥∥∥

∑

k∈B∩A2,m

βkp
(k)
1

∥∥∥
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≤ 1 + (4 · 2−g(l)/3 + 42 · 2−2g(l)/3)
∥∥∥

∑

k∈B∩A2,m

βkf2,k

∥∥∥

+ 2−g(l)
N+4∑

i=5

∥∥∥
∑

k∈B∩A2,m

βkfi,k

∥∥∥

≤ 1 + [4 · 2−g(l)/3 + 42 · 2−2g(l)/3

+ 2−g(l)(43 + · · · + 4N+2)]
∥∥∥

∑

k∈B∩A2,m

βkf2,k

∥∥∥

≤ 1 + 4 + 42 + · · · + 4N+2 = C(N + 4).

On the other hand,
∥∥∥T

( ∑

k∈B∩A2,m

βkb̃
(k)
1

)∥∥∥ =
∥∥∥

∑

k∈B∩A2,m

βk(akb
(k)
1 + ckb

(k)
2 )

∥∥∥

≥
∥∥∥

∑

k∈B∩A2,m

βkckf2,k

∥∥∥

≥ min
k∈B∩A2,m

|ck|
∥∥∥

∑

k∈B∩A2,m

βkf2,k

∥∥∥

≥ 2g(l)/3 min
k∈B∩A2,m

|ck|

and thus for every m ∈ M2 there exists k ∈ B ∩ A2,m such that

(11) |ck| ≤ C(N + 4)‖T‖ · 2−g(l)/3.

Let B′ ⊂ B be the collection of such indices k as above. Then, for every
m ∈ M3, we get B′ ∩ A3,m ∈ K3,m and thus by (3) there exist scalars
{βk}k∈B′∩A3,m

such that
∥∥∥

∑

k∈B′∩A3,m

βk(f1,k + f2,k)
∥∥∥ = 1,

∥∥∥
∑

k∈B′∩A3,m

βkf3,k

∥∥∥ = 22g(l)/3.

In much the same way as before,

(12)
∥∥∥

∑

k∈B′∩A3,m

βkb̃
(k)
2

∥∥∥

≤
∥∥∥

∑

k∈B′∩A3,m

βkf2,k

∥∥∥ + 2−2g(l)/3
∥∥∥

∑

k∈B′∩A3,m

βkf4,k

∥∥∥ + 2−g(l)
∥∥∥

∑

k∈B′∩A3,m

βkp
(k)
2

∥∥∥

≤ 1 + [4 · 2−2g(l)/3 + 2−g(l)(42 + · · · + 4N+1)]
∥∥∥

∑

k∈B′∩A3,m

βkf3,k

∥∥∥ ≤ C(N + 4)
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while ∥∥∥T
( ∑

k∈B′∩A3,m

βkb̃
(k)
2

)∥∥∥ =
∥∥∥

∑

k∈B′∩A3,m

βk(bkb
(k)
1 + dkb

(k)
2 )

∥∥∥

≥ 2−g(l)/3
∥∥∥

∑

k∈B′∩A3,m

βkbkf3,k

∥∥∥

≥ 2g(l)/3 min
k∈B′∩A3,m

|bk|.

For every m ∈ M3 we can take some k ∈ B′ ∩ A3,m such that

(13) |bk| ≤ C(N + 4)‖T‖ · 2−g(l)/3

and then define B′′ ⊂ B′ ⊂ B to be the set of such indices k.
Again we can argue that B′′ ∈ K4,l and therefore we can pick scalars

{βk}k∈B′′ satisfying
∥∥∥

∑

k∈B′′

βk(f1,k + f2,k + f3,k)
∥∥∥ = 1,

∥∥∥
∑

k∈B′′

βkf4,k

∥∥∥ = 2g(l).

It is not hard to see that

(14)
∥∥∥

∑

k∈B′′

βk (̃b
(k)
1 − b̃

(k)
2 )

∥∥∥ ≤ C(N + 4)

and∥∥∥T
( ∑

k∈B′′

βk (̃b
(k)
1 − b̃

(k)
2 )

)∥∥∥ ≥ 2−2g(l)/3
∥∥∥

∑

k∈B′′

βk((ak − bk) + (ck − dk))f4,k

∥∥∥

≥ 2g(l)/3 min
k∈B′′

|(ak − bk) + (ck − dk)|.

For k ∈ B′′ such that |(ak −bk)+(ck −dk)| ≤ C(N +4)‖T‖ ·2−g(l)/3 we find,
taking into account (11) and (13), that |ak − dk| ≤ 3C(N + 4)‖T‖ · 2−g(l)/3,
which shows that (d) is satisfied for the initial step of induction (with a
slightly better estimate than (7)).

In order to check (e), let (F1 ⊕ · · · ⊕ FN ) ⊕ (FN+1 ⊕ · · · ⊕ FN+4) be an
unconditional decomposition which satisfies (2) and (3) for i = 1, . . . , N +3.
Let g : N → R be a function such that g(l) ≤ l for all l ∈ N.

For l ≥ 1 and k ∈ AN+4,l define the vectors b
(k)
1 , b

(k)
2 ∈ FN+1⊕· · ·⊕FN+4

as in (8), except that this time they are supported on fN+1,k, . . . , fN+4,k,
and let

b̃
(k)
1 = p

(k)
1 + b

(k)
1 , b̃

(k)
2 = p

(k)
2 + b

(k)
2 ,

where p
(k)
1 and p

(k)
1 are vectors supported on the corresponding f1,k, . . . , fN,k

with coefficients in [0, 1].

Let T : span{b̃(k)
1 , b̃

(k)
2 }k≥1 → FN+1 ⊕ · · · ⊕ FN+4 be a bounded operator

satisfying (9) for every k ≥ 1. The fact that for each l ≥ 1 there exists
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k ∈ AN+4,l such that (7) is satisfied follows in the same way as in (d). The
analysis is now done inside FN+1 ⊕ · · · ⊕ FN+4. To see how the estimates
corresponding to (10), (12) and (14) are obtained, pick a set B ⊂ AN+4,l

which intersects all the appropriate members of the partition ∆N+1 and for
every suitable m ≥ 1 take scalars {βk}k∈B∩AN+2,m

such that
∥∥∥

∑

k∈B∩AN+2,m

βk(f1,k + · · ·+fN+1,k)
∥∥∥ = 1,

∥∥∥
∑

k∈B∩AN+2,m

βkfN+2,k

∥∥∥ = 2g(l)/3.

Then the unconditionality implies
∥∥∥

∑

k∈B∩AN+2,m

βkb̃
(k)
1

∥∥∥

≤
∥∥∥

∑

k∈B∩AN+2,m

βkp
(k)
1

∥∥∥ +
∥∥∥

∑

k∈B∩AN+2,m

βkfN+1,k

∥∥∥

+ 2−g(t)/3
∥∥∥

∑

k∈B∩AN+2,m

βkfN+3,k

∥∥∥ + 2−2g(t)/3
∥∥∥

∑

k∈B∩AN+2,m

βkfN+4,k

∥∥∥

≤
N∑

i=1

∥∥∥
∑

k∈B∩AN+2,m

βkfi,k

∥∥∥ + 1

+ (4 · 2−g(t)/3 + 42 · 2−2g(t)/3)
∥∥∥

∑

k∈B∩AN+2,m

βkfN+2,k

∥∥∥

≤ N + 21 ≤ C(N + 4),

thus the estimate corresponding to (10). We can deal with (12) and (14) in a
similar way and then (e) will follow (again with a slightly better estimate).

For the last statement of (e) when we have to consider, for M, L ∈ N,

vectors b̃
(k)
1 , b̃

(k)
2 ∈ (F1 ⊕ · · · ⊕ FM )⊕ (FM+1 ⊕ · · · ⊕ FM+4)⊕ (FM+5 ⊕ · · · ⊕

FM+L+4) which are at the same time perturbations to the left and right

of b
(k)
1 , b

(k)
2 ∈ FM+1 ⊕ · · · ⊕ FM+4 (k ≥ 1), the estimates are obtained by

combining the ones above; as a result we get k ∈ AM+4,l with

max{|ak − dk|, |bk|, |ck|} ≤ 3(C(M + 4) + C(L + 4))‖T‖ · 2−g(l)/3

≤ 3C(M + L + 4)‖T‖ · 2−g(l)/3.

Inductively, assume that we have constructed the required vectors for
some n ≥ 2. Let g : N → R be a function such that g(l) ≤ l for l ∈ N. For
the next step of the construction we will work inside (any) unconditional
decomposition (F1 ⊕ · · · ⊕ FNn

) ⊕ (FNn+1 ⊕ · · · ⊕ FNn+4) ⊕ (FNn+5 ⊕ · · · ⊕
F2Nn+4) ⊂ Y that satisfies (2) and (3). Thus Nn+1 = 2Nn + 4.
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For k = 1, 2, . . . let u
(k)
1 , . . . , u

(k)
n ∈ FNn+5 ⊕ · · · ⊕ FNn+1 be vectors

obtained at the previous inductive step corresponding to the function g (we
changed the notation for such vectors to avoid the possible confusion with
the new vectors that are to be constructed). Thus they are defined based
on the position of k with respect to the partition {ANn+1,l}l≥1 and their
distributions depend on the corresponding value of g(l).

For an arbitrary l ≥ 1 let

M1,l = {s : ANn+4,s ⊂ ANn+1,l}, M2,l = {s : ANn,s ⊂ ANn+1,l}.
For s = 1, 2, . . . and k ∈ ANn+4,s, let xk, yk ∈ FNn+1⊕· · ·⊕FNn+4 be vectors
obtained at the inductive step n = 2 (similarly to (8)), defined using the
function g̃ : N → R, g̃(s) := g(l)/4Nn+1 for every s ∈ M1,l and every l ≥ 1.
Notice that if l is such that s ∈ M1,l then

g̃(s) ≤ g(l) ≤ l ≤ s.

Finally, for s = 1, 2, . . . and k ∈ ANn,s, let v
(k)
1 , . . . , v

(k)
n ∈ F1 ⊕ · · · ⊕ FNn

be vectors obtained at the previous inductive step, corresponding to the

function ˜̃g : N → R, ˜̃g(s) := g(l)/4Nn+2 whenever s ∈ M2,l (with l ≥ 1). If l
is such that s ∈ M2,l then again

˜̃g(s) ≤ g(l) ≤ l ≤ s.

Now, for l = 1, 2, . . . and k ∈ ANn+1,l define the following vectors inside
(F1 ⊕ · · · ⊕ FNn

) ⊕ (FNn+1 ⊕ · · · ⊕ FNn+4) ⊕ (FNn+5 ⊕ · · · ⊕ FNn+1):

b
(k)
1 = v

(k)
1 + 2−g(l)/4Nn+2

xk,

b
(k)
2 = v

(k)
2 + + 2−g(l)/4Nn+1

u
(k)
1 ,

...

b
(k)
n = v

(k)
n + + 2−g(l)/4Nn+1

u
(k)
n−1,

b
(k)
n+1 = yk + 2−g(l)/4Nn+1

u
(k)
n .

Let us now check that conditions (b)–(e) are satisfied.

By definition, it is clear that for every k = 1, 2, . . . the vectors b
(k)
1 , . . . ,

b
(k)
n+1 are supported on f1,k, . . . , fNn+1,k. If α1, . . . , αn+1 are scalars then by

the unconditionality and previous inductive steps

‖α1b
(k)
1 + · · · + αn+1b

(k)
n+1‖

≥ max{‖α1v
(k)
1 + · · · + αnv(k)

n ‖, ‖α1 · 2−g(l)/4Nn+2
xk + αn+1yk‖}

≥ max{|α1|, . . . , |αn|, |αn+1|}.
Regarding (c) and (d) (and also (e)), at every step of the induction

we will actually prove the following slightly more general statements: for
every l ≥ 1 and every set Bl ⊂ ANn,l (respectively Bl ⊂ ANn+N,l) such
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that Bl ∩ A1,m 6= ∅ whenever A1,m ⊂ ANn,l (respectively Bl ∩ AN+1,m 6= ∅
whenever AN+1,m ⊂ ANn+N,l) there exists k ∈ Bl such that the estimates of
(c) and (d) (respectively (e)) are satisfied. For the first step of the induction
these statements are valid as can be seen from the previous arguments.

We start with (c), so let Zk = span{b(k)
1 , . . . , b

(k)
n+1} for k ≥ 1, and let

T : span{Zk}k≥1 → span{Zk}k≥1 be a bounded linear operator such that

T (Zk) ⊂ Zk, T|Zk
= [a

(k)
ij ]1≤i,j≤n+1 with respect to the basis of Zk for

k = 1, 2, . . . .
Fix an arbitrary l ≥ 1 and take Bl ⊂ ANn+1,l such that Bl ∩ A1,m 6= ∅

whenever A1,m ⊂ ANn+1,l.
It is easy to see that we can apply the inductive hypothesis (d) for

the vectors v
(k)
1 , . . . , v

(k)
n ∈ F1 ⊕ · · · ⊕ FNn

(with k ≥ 1) and the operator

PF1⊕···⊕FNn
T
| span{b

(k)
1 ,...,b

(k)
n }k≥1

: span{b(k)
1 , . . . , b

(k)
n }k≥1 → F1 ⊕ · · · ⊕ FNn

.

Thus for every s ∈ M2,l there is ks ∈ Bl ∩ ANn,s such that

(15) max({|a(ks)
ij | : i 6= j, i, j ∈ {1, . . . , n}} ∪ {|a(ks)

11 − a
(ks)
ii | : 2 ≤ i ≤ n})

≤ 3C(Nn+1)‖T‖ · 2−˜̃g(s)/(3·4Nn) = 3C(Nn+1)‖T‖ · 2−g(l)/(3·42Nn+2)

≤ 3C(Nn+1)‖T‖ · 2−g(l)/(3·4Nn+1).

Let B′
l ⊂ Bl be the collection of all such indices k as above. It is clear that

B′
l ∩ANn+1,m 6= ∅ whenever ANn+1,m ⊂ ANn+1,l. We will now invoke (e) for

the initial inductive step, applied to the perturbations (both to the left and
right) of the vectors xk, yk ∈ FNn+1⊕· · ·⊕FNn+4 (with k = 1, 2, . . .) and the

operator PFNn+1⊕···⊕FNn+4
T
| span{b

(k)
1 ,b

(k)
n+1}k≥1

: span{b(k)
1 , b

(k)
n+1}k≥1 → FNn+1

⊕ · · · ⊕ FNn+4. Then we deduce that for every s ∈ M1,l there exists ks ∈
B′

l ∩ ANn+4,s such that, taking into account (11), (13),

(16) max{|a(ks)
1,n+1|, |a

(ks)
n+1,1|, |a

(ks)
11 − a

(ks)
n+1,n+1|}

≤ 3C(Nn+1)‖T‖ · 2−g̃(s)/3 · 2g(l)/4Nn+2

≤ 3C(Nn+1)‖T‖ · 2−g(l)/(3·4Nn+1) · 2g(l)/4Nn+2

≤ 3C(Nn+1)‖T‖ · 2−g(l)/(3·4Nn+2).

The fact that an extra constant 2g(l)/4Nn+2
appears in these estimates is due

to the specific form of the vectors involved and it follows easily from the ar-
guments corresponding to the initial inductive step n = 2; more specifically,
this extra constant will have no influence on the estimates from above that
appear there, it will only be a part of the estimates from below.

Finally, let B′′
l ⊂ B′

l (⊂ Bl) be the set of all indices k for which (16) is

satisfied. Applying the inductive hypothesis (e) to the vectors u
(k)
1 , . . . , u

(k)
n ∈
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FNn+5⊕· · ·⊕FNn+1 (with k ≥ 1) and PFNn+5⊕···⊕FNn+1
T
| span{b

(k)
2 ,...,b

(k)
n+1}k≥1

:

span{b(k)
2 , . . . , b

(k)
n+1}k≥1 → FNn+5 ⊕ · · · ⊕ FNn+1 we get k ∈ B′′

l such that

max{|a(k)
ij | : i 6= j, i, j ∈ {2, . . . , n + 1}}

≤ 3C(Nn+1)‖T‖ · 2−g(l)/(3·4Nn) · 2g(l)/4Nn+1 ≤ 3C(Nn+1)‖T‖ · 2−g(l)/(3·4Nn+1).

Combining this with (15) and (16) we get the conclusion of (c).

In order to prove (d) and (e) we can apply the same arguments as before

for the perturbation vectors b̃
(k)
1 , . . . , b̃

(k)
n+1 ∈ F1 ⊕ · · · ⊕ FNn+1+N , instead

of b
(k)
1 , . . . , b

(k)
n+1, for k ≥ 1. The computations will be completely similar to

(15), (16), the only difference being the replacement of the constant C(Nn+1)
with C(Nn+1 + N) due to the nature of the vectors considered.

4. Recursive construction in case (II). Let Y be a Banach space
with a 1-unconditional basis. Suppose that Y does not contain a subspace
isomorphic to ℓ2 and that it has finite cotype.

As in Section 3, for every n ≥ 2 we will construct a subspace Yn ⊂ Y
with the property that Un−1(Y ) = ∞, this time inside (any) decomposition
F1 ⊕ · · · ⊕ FNn

⊂ Y , for some Nn ∈ N, which satisfies the conditions (2)
and (4). The space Yn will have a 1-unconditional decomposition into n-
dimensional subspaces {Zk}k≥1, where for every k ≥ 1 the space Zk is

spanned by vectors b
(k)
1 , . . . , b

(k)
n with the following properties:

(a) Nn ≤ 3n.

(b) The vectors b
(k)
1 , . . . , b

(k)
n ∈ F1⊕· · ·⊕FNn

are supported on the corre-
sponding f1,k, . . . , fNn,k for all k ≥ 1, with coefficients in [0, 1]. In addition,
for all scalars α1, . . . , αn,

1

2
max(|α1|, . . . , |αn|) ≤ ‖α1b

(k)
1 + · · · + αnb(k)

n ‖ < Nn(|α1| + · · · + |αn|).

(c) Let T : Yn → Yn be a bounded linear operator such that T (Zk) ⊂ Zk,

T|Zk
= [a

(k)
ij ]1≤i,j≤n with respect to the basis of Zk for all k ≥ 1. Then for

every l ≥ 1 there is k ∈ ANn,l such that

max({|a(k)
ij | : i 6= j} ∪ {|a(k)

11 − a
(k)
ii | : 2 ≤ i ≤ n}) ≤ 3C(Nn)‖T‖ · 2−l/2

where, as before, C(N) := 1 + 4 + 42 + · · · + 4N−2.

(d) Let N ≥ 1 and suppose that (F1 ⊕ · · · ⊕ FNn
) ⊕ (FNn+1 ⊕ · · · ⊕

FNn+N ) ⊂ Y is a decomposition of the type considered in this section. Let

b
(k)
1 , . . . , b

(k)
n ∈ F1 ⊕· · ·⊕FNn

be the same vectors as above, for every k ≥ 1,
and consider the perturbations

(17) b̃
(k)
1 = b

(k)
1 + p

(k)
1 , . . . , b̃(k)

n = b(k)
n + p(k)

n ,
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where p
(k)
1 , . . . , p

(k)
n ∈ FNn+1 ⊕ · · · ⊕ FNn+N are vectors supported on the

corresponding fNn+1,k, . . . , fNn+N,k with coefficients in [0, 1].

If T : span{b̃(k)
1 , . . . , b̃

(k)
n }k≥1 → F1 ⊕ · · · ⊕ FNn

is a bounded linear
operator satisfying (6) then for every l ≥ 1 there is k ∈ ANn,l such that

(18) max({|a(k)
ij | : i 6= j} ∪ {|a(k)

11 − a
(k)
ii | : 2 ≤ i ≤ n})

≤ 3C(Nn + N)‖T‖ · 2−l/2.

(e) Similarly to (d), let (F1⊕· · ·⊕FN )⊕(FN+1⊕· · ·⊕FN+Nn
) ⊂ Y and,

for k ≥ 1, let b
(k)
1 , . . . , b

(k)
n ∈ FN+1 ⊕ · · · ⊕ FN+Nn

be the vectors discussed
in (b), except that this time they are supported on fN+1,k, . . . , fN+Nn,k.

For every r ≥ 1 and k ∈ AN+1,r let

(19) b̃
(k)
1 = 2−rp

(k)
1 + b

(k)
1 , . . . , b̃(k)

n = 2−rp(k)
n + b(k)

n ,

where now p
(k)
1 , . . . , p

(k)
n ∈ F1 ⊕ · · · ⊕ FN are vectors supported on the cor-

responding f1,k, . . . , fN,k with coefficients in [0, 1].

Then for any bounded linear operator T : span{b̃(k)
1 , . . . , b̃

(k)
n }k≥1 →

FN+1 ⊕ · · · ⊕ FN+Nn
which satisfies (6) and for every l ≥ 1 there exists

k ∈ AN+Nn,l such that (18) holds. In addition, if we consider the vectors

b̃
(k)
1 , . . . , b̃

(k)
n (k ≥ 1) to be at the same time perturbations to the left and

right of b
(k)
1 , . . . , b

(k)
n (and therefore a combination of (17) and (19)), we

obtain a similar result.

For the first step of the induction, n = 2, we put N2 = 4 and we follow
the construction from [9], [14]. For every k ∈ A2,s ∩ A3,t, with s = 1, 2, . . .
and t = 1, 2, . . ., define

(20)
b
(k)
1 = 2−t/2f2,k + f3,k + f4,k,

b
(k)
2 =2−s/2f1,k + f3,k.

We will only discuss the proof of (e), since (c) and (d) follow in a similar
manner (actually, (c) is a particular case of (e)). Thus let (F1 ⊕ · · · ⊕ FN )
⊕ (FN+1 ⊕ · · · ⊕ FN+Nn

) ⊂ Y be a suitable decomposition, of the type con-

sidered in this section. Having defined, for all k ≥ 1, the vectors b
(k)
1 , b

(k)
2 ∈

FN+1 ⊕· · ·⊕FN+4 similarly to (20), we let, for every r ≥ 1 and k ∈ AN+1,r,

b̃
(k)
1 = 2−rp

(k)
1 + b

(k)
1 , b̃

(k)
2 = 2−rp

(k)
2 + b

(k)
2 ,

with p
(k)
1 , p

(k)
2 ∈ F1 ⊕ · · · ⊕ FN as in (e).

Take a bounded linear operator T : span{b̃(k)
1 , b̃

(k)
2 }k≥1 → FN+1 ⊕ · · · ⊕

FN+4 which satisfies (9).
As in Section 3, start with a fixed l ≥ 1 and put Mi = {m : AN+i,m ⊂

AN+4,l} for i = 1, 2, 3. Let B ⊂ AN+4,l be such that |B ∩AN+1,r| = 1 for all
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r ∈ M1. Thus, for every s ∈ M2, we have B ∩ AN+2,s ∈ KN+2,s and by (4)
we can find scalars {βk}k∈B∩AN+2,s

such that
∥∥∥

∑

k∈B∩AN+2,s

βkfN+1,k

∥∥∥ ≥ 2s,
∥∥∥

∑

k∈B∩AN+2,s

βkfN+2,k

∥∥∥ = 1.

Since {fN+2,k}k is 1-unconditional we get

|βk| ≤ 1 for all k ∈ B ∩ AN+2,s.

Now pick the corresponding t = ts ∈ M3 for which B ∩AN+2,s ⊂ AN+2,s ⊂
AN+3,t; also, by the initial choice of B, for every k ∈ B ∩ AN+2,s there is a
unique r = rk ∈ M1 such that k ∈ AN+1,rk

. Then
∥∥∥

∑

k∈B∩AN+2,s

βkb̃
(k)
1

∥∥∥

≤
∥∥∥

∑

k∈B∩AN+2,s

2−rkβkp
(k)
1

∥∥∥ + 2−t/2
∥∥∥

∑

k∈B∩AN+2,s

βkfN+2,k

∥∥∥

+
∥∥∥

∑

k∈B∩AN+2,s

βkfN+3,k

∥∥∥ +
∥∥∥

∑

k∈B∩AN+2,s

βkfN+4,k

∥∥∥

≤ N
∑

k∈B∩AN+2,s

2−rk |βk| + (1 + 4 + 42)
∥∥∥

∑

k∈B∩AN+2,s

βkfN+2,k

∥∥∥

≤ N + 21 ≤ C(N + 4).

If we put this together with
∥∥∥T

( ∑

k∈B∩AN+2,s

βkb̃
(k)
1

)∥∥∥

≥
∥∥∥

∑

k∈B∩AN+2,s

ck2
−s/2βkfN+1,k

∥∥∥ ≥ 2−s/22s min
k∈B∩AN+2,s

|ck|,

we obtain a set B′ ⊂ B such that B′ ∩ AN+3,t ∈ K3,t for all t ∈ M3 and

|ck| ≤ C(N + 4)‖T‖ · 2−l/2

for all k ∈ B′ (here we used minM2 ≥ l).

Now for every t ∈ M3 pick scalars {βk}k∈B′∩AN+3,t
such that

∥∥∥
∑

k∈B′∩AN+3,t

βkfN+2,k

∥∥∥ ≥ 2t,
∥∥∥

∑

k∈B′∩AN+3,t

βkfN+3,k

∥∥∥ = 1.

Working with the series
∑

k∈B′∩AN+3,t
βkb̃

(k)
2 we can argue as before and get

a set B′′ ⊂ B′ ⊂ B with the property that B′′ ∩ AN+4,l ∈ K4,l and

|bk| ≤ C(N + 4)‖T‖ · 2−l/2 for all k ∈ B′′.
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Finally, let {βk}k∈B′′∩AN+4,l
be scalars for which

∥∥∥
∑

k∈B′′∩AN+3,l

βkfN+3,k

∥∥∥ ≥ 2l,
∥∥∥

∑

k∈B′′∩AN+4,l

βkfN+4,k

∥∥∥ = 1.

Using the series
∑

k∈B′′∩AN+4,l
βk (̃b

(k)
1 − b̃

(k)
2 ) we can find k ∈ B′′ ⊂ AN+4,l

such that

|ak − bk + ck − dk| ≤ C(N + 4)‖T‖ · 2−l,

which combined with the previous estimates gives the conclusion of (e).
Assume now that we have managed to construct the desired vectors for

some step n ≥ 2 in our induction. In order to check the step n + 1, we let
Nn+1 = 2Nn + 4 and we start with (any) 1-unconditional decomposition
(F1 ⊕ · · · ⊕ FNn

) ⊕ (FNn+1 ⊕ · · · ⊕ FNn+4) ⊕ (FNn+5 ⊕ · · · ⊕ F2Nn+4) ⊂ Y .

Similarly to Section 3, for k ≥ 1 let v
(k)
1 , . . . , v

(k)
n ∈ F1 ⊕ · · · ⊕ FNn

be
vectors obtained at the previous inductive step, renamed in order to simplify
the notation. For k ≥ 1 consider the vectors xk, yk ∈ FNn+1 ⊕ · · · ⊕ FNn+4

obtained at the inductive step n = 2, defined similarly to (20). Again, for all

k ≥ 1 let u
(k)
1 , . . . , u

(k)
n be vectors obtained at the previous step, this time

constructed inside FNn+5 ⊕ · · · ⊕ F2Nn+4.
Now, for every k ∈ ANn+1,r∩ANn+5,r′ with r = 1, 2, . . . and r′ = 1, 2, . . . ,

define inside (F1⊕· · ·⊕FNn
)⊕(FNn+1⊕· · ·⊕FNn+4)⊕(FNn+5⊕· · ·⊕FNn+1):

(21)

b
(k)
1 = 2−rv

(k)
1 + xk,

b
(k)
2 = 2−rv

(k)
2 + +u

(k)
1 ,

...
b
(k)
n = 2−rv

(k)
n + +u

(k)
n−1,

b
(k)
n+1 = 2−r′yk +u

(k)
n ,

and then let Yn+1 = span{b(k)
1 , . . . , b

(k)
n+1}k≥1.

As in Section 3, at each step of the induction we are proving the following
more precise statement for (c) and (d) (and (e)): for every l ≥ 1 and every set
Bl ⊂ ANn,l (respectively Bl ⊂ ANn+N,l) such that Bl ∩ A1,m 6= ∅ whenever
A1,m ⊂ ANn,l (respectively Bl ∩ AN+1,m 6= ∅ whenever AN+1,m ⊂ ANn+N,l)
there exists k ∈ Bl such that the estimates of (c) and (d) (respectively (18))
are satisfied.

Let T : Yn+1 → Yn+1 be a bounded linear operator as in (c), that is, it

satisfies T (span{b(k)
1 , . . . , b

(k)
n+1})⊂span{b(k)

1 , . . . , b
(k)
n+1} and T

|span{b
(k)
1 ,...,b

(k)
n+1}

= [a
(k)
ij ]1≤i,j≤n+1 for all k ≥ 1.

As mentioned above, fix l ≥ 1 and start with a set Bl ⊂ ANn+1,l such that
Bl ∩ A1,m 6= ∅ whenever A1,m ⊂ ANn+1,l. Put M1,l = {s : ANn,s ⊂ ANn+1,l}
and M2,l = {s : ANn+4,s ⊂ ANn+1,l}.
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We follow the same steps as in Section 3. The inductive hypothesis (d)

applied to the vectors v
(k)
1 , . . . , v

(k)
n ∈ F1 ⊕ · · · ⊕ FNn

(with k = 1, 2, . . .)

and the operator PF1⊕···⊕FNn
T
|span{b

(k)
1 ,...,b

(k)
n }k≥1

: span{b(k)
1 , . . . , b

(k)
n }k≥1 →

F1 ⊕ · · · ⊕ FNn
implies the existence of indices ks ∈ Bl ∩ ANn,s, for all

s ∈ M1,l, such that

max({|a(ks)
ij | : i 6= j, i, j ∈ {1, . . . , n}} ∪ {|a(ks)

11 − a
(ks)
ii | : 2 ≤ i ≤ n})

≤ 3C(Nn+1)‖T‖ · 2−s/22rs .

Here rs is the unique index with the property ANn,s ⊂ ANn+1,rs
. The extra

constant 2rs in the estimate is a consequence of the definition (21) and this
fact can be easily checked, first for the initial step of the induction and then
for every step afterwards.

Without loss of generality we can assume that s ≥ 4rs for all s ∈ M1,l;
this follows once we ensure that each member of the partition ∆Nn+1 is ob-
tained by taking at least five successive members from the previous partition
∆Nn

, which is allowed in the arguments from [14]. Since on the other hand
we must have rs ≥ l, we can conclude that for every s ∈ M1,l,

max({|a(ks)
ij | : i 6= j, i, j ∈ {1, . . . , n}} ∪ {|a(ks)

11 − a
(ks)
ii | : 2 ≤ i ≤ n})

≤ 3C(Nn+1)‖T‖ · 2−rs ≤ 3C(Nn+1)‖T‖ · 2−l.

Denote by B′
l ⊂ B the set formed by such indices ks. Using now (e)

for the initial inductive step, for the vectors xk, yk ∈ FNn+1 ⊕ · · · ⊕ FNn+4

(with k = 1, 2, . . .) and the operator PFNn+1⊕···⊕FNn+4
T
|span{b

(k)
1 ,b

(k)
n+1}k≥1

:

span{b(k)
1 , b

(k)
n+1}k≥1 → FNn+1 ⊕ · · ·⊕FNn+4, we find that for every s ∈ M2,l

there is ks ∈ B′
l ∩ ANn+4,s such that

max{|a(ks)
1,n+1|, |a

(ks)
n+1,1|, |a

(ks)
11 − a

(ks)
n+1,n+1|}

≤ 3C(Nn+1)‖T‖ · 2−s/22r′s

≤ 3C(Nn+1)‖T‖ · 2−r′s ≤ 3C(Nn+1)‖T‖ · 2−l.

As before, for every s ∈ M2,l, r′s denotes the unique index such that
ANn+4,s ⊂ ANn+5,rs

; in addition, we assumed without loss of generality
that in such a case we have s ≥ 4r′s.

Let B′′
l ⊂ B′

l be the collection of all such indices ks as above. We would

like now to apply the inductive hypothesis (e) to the vectors u
(k)
1 , . . . , u

(k)
n ∈

FNn+5 ⊕ · · · ⊕ FNn+1 (k ≥ 1). Notice that for every k ∈ ANn+5,r′ (with r′ =

1, 2, . . .) the vectors b
(k)
2 , . . . , b

(k)
n+1 are suitable perturbations of u

(k)
1 , . . . , u

(k)
n ,

of the type considered in (19); this is a consequence of (21) and the fact that
whenever k ∈ ANn+1,r ∩ ANn+5,r′ we must necessarily have r ≥ r′.
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Thus (e) applied to the operator PFNn+5⊕···⊕FNn+1
T
|span{b

(k)
2 ,...,b

(k)
n+1}k≥1

:

span{b(k)
2 , . . . , b

(k)
n+1}k≥1 → FNn+5 ⊕ · · · ⊕ FNn+1 yields k ∈ B′′

l such that

max{|a(k)
ij | : i 6= j, i, j ∈ {2, . . . , n + 1}} ≤ 3C(Nn+1)‖T‖ · 2−l/2.

This gives the conclusion of (c) for such k ∈ ANn+1,l.
For the statements (d) and (e), it is not hard to see that by following

the same line of argument as before one can obtain the desired conclusions.

5. Proof of main result. We will now present the proof of Theo-
rem 1.1.

Let Y ⊂ X be a subspace with an unconditional basis and assume that it
does not contain a subspace isomorphic to ℓ2. By renorming if necessary, we
may assume that Y has a 1-unconditional basis {ei}i. Consider an arbitrary
partition of the basis {ei}i into infinite subsets {ei}i∈I1 , {ei}i∈I2 , . . . .

In the case that there is k0 ≥ 1 such that E0 := span{ei}i∈Ik0
has finite

cotype, we can proceed with the construction from Sections 3 and 4 and
obtain, for every n ≥ 2, a subspace Yn ⊂ E0 which admits a 1-unconditional
n-uniform decomposition and, at the same time, Un−1(Yn) = ∞. In fact,
by partitioning Ik0 one more time, we can ensure that each of the spaces
{Yn}n≥2 is supported on disjoint elements of {ei}i∈Ik0

. Thus we can define
Z =

∑
n≥2 ⊕Yn ⊂ E0 and obtain a space with a 1-unconditional finite-

dimensional decomposition (as in the case of each Yn, this is a consequence
of Remark 2.3). As well, for every n ≥ 2, Yn is 1-complemented in Z and
therefore we must have Un−1(Z) = ∞.

Suppose now that Ek := span{ei}i∈Ik
does not have finite cotype, for

k = 1, 2, . . . , which is equivalent to the fact that each of these spaces con-
tains ℓn

∞’s uniformly. For every k ≥ 1, let Fk ⊂ Ek be a subspace such
that dim Fk = k and d(Fk, l

k
∞) ≤ 2, where d stands for the Banach–Mazur

distance. Since, by a classical result of Figiel and Johnson [5] from local
theory, a random [k/2]-dimensional subspace of ℓk

∞ has the Gordon–Lewis
constant of maximal order, for every k ≥ 1 there exists a [k/2]-dimensional
subspace Zk of Fk satisfying GL(Zk) ≥ c

√
k, with c an absolute constant.

By [2, Proposition 1.3], for n = 1, 2, . . . we have
√

nUn(Zk) ≥ GL(Zk) ≥ c
√

k for all k ≥ 1.

If we now let Z =
∑

k≥1 ⊕Zk ⊂ Y , then clearly Z has a 1-unconditional
finite-dimensional decomposition. On the other hand, for every k ≥ 1, Zk is
1-complemented in Z, while supk Un(Zk) = ∞ for n = 1, 2, . . . . This shows
that Un(Z) = ∞ for all n ≥ 1.
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