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Paraconvex functions and paraconvex sets

by

Huynh Van Ngai (Qui Nhon) and Jean-Paul Penot (Pau)

Abstract. We study a class of functions which contains both convex functions and
differentiable functions whose derivatives are locally Lipschitzian or Hölderian. This class
is a subclass of the class of approximately convex functions. It enjoys refined properties.
We also introduce a class of sets whose associated distance functions are of that type.
We discuss the properties of the metric projections on such sets under some assumptions
on the geometry of the Banach spaces in which they are embedded. We describe some
relations between such sets and functions.

1. Introduction. Some classes of sets or functions are so favorable for
smooth and nonsmooth analysis that they have been considered by a number
of authors. This is the case for the class of (locally) p-paraconvex functions
introduced in [56] and studied in [3], [5], [8], [9], [10], [12], [15], [30], [45], [51],
[56]–[69], especially in the case p = 2 in which case the functions are also
called semiconvex as in [32] and the book [11] which stresses their applica-
tions in optimal control and the study of Hamilton–Jacobi equations. This
class contains the class of convex functions and those of class C2 and enjoys
interesting stability properties. In the present paper we study the notion of
p-paraconvexity for sets introduced in [69] (in a global sense and for p = 2),
studied in [15, Section 5] under the name of property (ω) and called sub-
smoothness in [5]. We also introduce a notion of intrinsically p-paraconvex
set. Both notions are given in terms of the distance function to the set. As
in the case of the (more general) classes of approximately convex functions
and sets in the sense of [5], [15], [18], [38], [39], [40] which differs from the
one used in [24], [25], we provide characterizations. It turns out that the
classes of p-paraconvex functions and sets form more structured classes in
which one has a quantitative control of the variations of the subdifferentials
of the functions or of the normal cone to the set at nearby points respec-
tively. For instance, in the class of superreflexive Banach spaces, we show
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that best approximations to p-paraconvex sets exist and we prove the Hölder
continuity of projections, obtaining results somewhat similar to the case of
convex subsets (see [1], [2], [50] and their references). We also present con-
ditions ensuring that a marginal function is p-paraconvex (see Section 4),
thus solving an unsettled problem. We relate the concepts of paraconvexity
for sets and functions through epigraphs and sublevel sets in Section 7. Let
us add that for the class of p-paraconvex functions (resp. sets) the usual no-
tions of subdifferential (resp. normal) coincide; this fact makes these classes
particularly attractive.

The concept of p-paraconvexity around a point we study is a localization
of a notion introduced in [56]; let us note that the version we study is not
global as in [10], [56]–[62], [69]. However, it amounts to p-paraconvexity
in the sense of [56] on some neighborhood of the point. Since it has been
proved in [56] that for p > 2 a p-paraconvex function whose restrictions
to line segments are absolutely continuous is convex, in the following we
restrict our attention to the case p ∈ [1, 2].

Definition 1. Given some p ∈ [1, 2], a function f : X → R∞ :=
R∪{+∞} on a normed vector space X is said to be p-paraconvex around

x ∈ dom f := f−1(R) if there exist c, δ > 0 such that for any x, y ∈ B(x, δ)
and any t ∈ [0, 1],

(1) f(tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y) + ct(1 − t)‖x− y‖p.

The function f is said to be (locally) p-paraconvex on an open subset U
of X if it is finite and p-paraconvex around each point of U. The index of

p-paraconvexity of f around x is the infimum cf of the set of real numbers
c such that there exists some δ > 0 for which relation (1) is satisfied for any
x, y ∈ B(x, δ) and t ∈ [0, 1].

When cf is negative, we have in fact a strong convexity property; the case
cf = 0, p = 1 corresponds to approximate convexity (see [38], [39]). The case
p = 2 is of special interest, in particular in the setting of Euclidean spaces or
Hilbert spaces. As mentioned above, it has been thoroughly studied, at least
in finite dimensions, in Hilbert spaces, and in the locally Lipschitzian case.
Here we get rid of these restrictions. We relate the notion of p-paraconvexity
to the following notion of p-paramonotonicity. For p = 2 it corresponds to a
localized version of a concept introduced by A. Pazy [42] (see also [17], [43]
for related notions).

Definition 2. A multimap (or set-valued map) M : X ⇉ X∗ is said to
be p-paramonotone around x on a subset E of X if there exist some m, δ > 0
such that for any x1, x2 ∈ E ∩B(x, δ), x∗1 ∈M(x1) and x∗2 ∈M(x2),

(2) 〈x∗1 − x∗2, x1 − x2〉 ≥ −m‖x1 − x2‖
p.
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For E = X one simply says that M is p-paramonotone around x. The index

of p-paramonotonicity of M on E around x is the infimum mM of the set
of real numbers m > 0 such that there exists some δ > 0 for which relation
(2) is satisfied for any x1, x2 ∈ E ∩B(x, δ), x∗1 ∈M(x1) and x∗2 ∈M(x2).

Directional versions of the concepts we study can be introduced, but for
brevity we do not consider them here. We also leave apart the generalization
of p-paraconvexity consisting in replacing the term ct(1 − t)‖x− y‖p in (1)
by ct(1− t)α(‖x−y‖) where α : R+ → R+∪{+∞} is a hypermodulus, i.e. a
nondecreasing function such that α(t)/t→ 0 as t→ 0+. The reason for that
choice lies in the Hölder estimates we get for the negative of the distance
function to an arbitrary closed subset of a uniformly smooth Banach space
(Corollary 13) and for the metric projection onto a p-paraconvex subset of
a superreflexive Banach space (Theorem 30); this last topic has been thor-
oughly studied for convex subsets (see [1], [2] for instance). The notion of
p-paraconvex subset is studied in Sections 5 and 6. Although the choice p = 2
is the most important one, the case p 6= 2 may be of interest, for instance
when working in some Lp space, as illustrated by Proposition 24 below.

2. Preliminaries. In the following, X is a Banach space with topologi-
cal dual space X∗ and S(X) denotes the set of lower semicontinuous (l.s.c.)
functions f : X → R∞ := R ∪ {+∞}. The open ball with center x ∈ X and
radius ̺ > 0 is denoted by B(x, ̺), while BX (resp. BX∗) stands for the
closed unit ball of X (resp. X∗) and SX stands for the unit sphere. Given
a subset E of X, the distance function dE associated with E is given by

dE(x) := infe∈E d(x, e). We write (xn)
E
→ x to mean that (xn) → x and

xn ∈ E for each n ∈ N.

Since the functions we consider are not necessarily smooth, we have to
use some generalizations of derivatives. A first possibility is to take a primal
approach by considering directional derivatives. A second approach is a dual
one; it is a one-sided substitute to the derivative called a subdifferential.
Several sets of axioms have been devised for such a concept. The notion of
subdifferential we adopt here is as versatile as possible: a subdifferential on
a Banach space X will just be a correspondence ∂ : F(X)×X ⇉ X∗ which
assigns a subset ∂f(x) of the dual spaceX∗ ofX to any f in a subclass F(X)
of the set S(X) of lower semicontinuous functions on X and any x ∈ X at
which f is finite; we assume it has the following natural property:

(M) If f ∈ F(X) is a Lipschitzian function and if x is a minimizer of f ,
then 0 ∈ ∂f(x).

Of course, usual subdifferentials also satisfy other conditions which turn
them into calculus properties. These include a form of the mean value the-
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orem we describe below. Another property is the nonemptiness of ∂f(x) for
x in a dense subset of X for any Lipschitzian function f on X; then we say
that X is a (Lipschitz) ∂-subdifferentiability space. This property is satisfied
if X is an Asplund space and ∂ is larger than the Fréchet subdifferential

(sometimes called the firm subdifferential) defined by

x∗ ∈ ∂F f(x) ⇔ ∀ε > 0 ∃δ > 0, ∀u ∈ δBX : f(x+u) ≥ f(x)+ 〈x∗, u〉− ε‖u‖.

If X is smooth enough, for instance if X is a Hilbert space, and if p ∈ ]1, 2],
this property is satisfied by the p-proximal subdifferential ∂p; recall that for
p ∈ (1,+∞), the p-proximal subdifferential of a function f on a n.v.s. X at
x ∈ X is given by

x∗ ∈ ∂pf(x) ⇔ ∃c > 0, ̺ > 0, ∀u ∈ ̺BX : f(x+ u) ≥ f(x) + 〈x∗, u〉 − c‖u‖p.

Clearly ∂pf(x) is contained in the Fréchet subdifferential ∂F f(x). Albeit
property (M) is satisfied for ∂p for any p > 1, the practical use of ∂p seems
to be limited to the case p ∈ ]1, 2].

With any subdifferential ∂ is associated a notion of normal cone obtained
by setting, for a subset E of X and e ∈ E,

N(E, e) := R+∂ιE(e),

where ιE is the indicator function of E, given by ιE(x) = 0 if x ∈ E, +∞
otherwise. In the cases ∂ = ∂D, ∂ = ∂C and ∂ = ∂F we get the normal cones

ND(E, e), NC(E, e) and NF (E, e) to E at e ∈ E in the senses of Bouligand,
Clarke and Fréchet respectively, as defined below. Other notions have been
devised by Ioffe [26], [27], Michel–Penot [36], Mordukhovich [37], Treiman
[68] and several other authors.

Conversely, to a notion N of normal cone one can associate a notion
of subdifferential ∂ by setting Ef := {(x, r) ∈ X × R : r ≥ f(x)}, xf :=
(x, f(x)) and

∂f(x) := {x∗ ∈ X∗ : (x∗,−1) ∈ N(Ef , xf )}.

Now let us give the examples of those concepts we will use most. The
(contingent or directional or Dini–Hadamard) normal cone ND(E, x) to a
subset E of X at x ∈ cl(E) is the polar cone of the directional (or Dini–
Hadamard or Bouligand) tangent cone TD(E, x) to E at x, which is the set

of vectors v ∈ X such that there exist sequences (tn) → 0+ and (xn)
E
→ x

for which (t−1
n (xn − x)) → v. Both cones play a crucial role in nonlinear

analysis and optimization.
The Fréchet normal cone (or firm normal cone) to E at x is given by

x∗ ∈ NF (E, x) ⇔ ∀ε > 0 ∃δ > 0, ∀u ∈ E ∩B(x, δ) : 〈x∗, u− x〉 ≤ ε‖u− x‖.

The Clarke normal cone NC(E, x) to a subset E of X at x ∈ cl(E) is the
polar cone of the Clarke tangent cone TC(E, x) to E at x, which is the set
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of vectors v ∈ X such that for any sequence (xn)
E
→ x there exist sequences

(tn) → 0+ and (yn) in E for which (t−1
n (yn − xn)) → v.

The (lower) directional derivative (or contingent derivative or lower Dini–
Hadamard derivative) of f at x is given by

fD(x, v) := lim inf
(t,w)→(0+,v)

f(x+ tw) − f(x)

t
.

The Clarke–Rockafellar derivative or circa-derivative of a function f : X →
R = R ∪ {−∞,+∞} finite at x is given by the following formula:

fC(x, v) := inf
r>0

lim sup
f(y)→f(x)

(t,y)→(0+,x)

inf
w∈B(v,r)

f(y + tw) − f(y)

t
.

Both derivatives are majorized by the dag derivative which is given by

f †(x, v) := lim sup
(t,y)→(0+,x), f(y)→f(x)

f(y + t(v + x− y)) − f(y)

t
.

The interest of such a derivative seems to be limited to questions of gener-
alized convexity and to the fact that the associated subdifferential is large.
Here, the subdifferential associated with some generalized derivative f ′ is
defined by

∂f(x) := {x∗ ∈ X∗ : x∗(·) ≤ f ′(x, ·)}.

For f ′ = fD (resp. f ′ = fC) one recovers the Bouligand or Dini–Hadamard
subdifferential ∂D (resp. Clarke subdifferential ∂C).

Given a subdifferential ∂, following [31], [37], [47], one can associate to
it a corresponding limiting subdifferential ∂ by setting, for a l.s.c. function
f and a point x of its domain,

∂f(x) := w∗- lim sup
(u,f(u))→(x,f(x))

∂f(u),

where the w∗-limsup is the set of weak∗ cluster points of bounded nets
(u∗i )i∈I with u∗i ∈ ∂f(ui), (ui)i∈I → x and (f(ui))i∈I → f(x).

We will make use of mean value inequalities. Under a primal form, such
estimates have been pointed out in [44]. In a dual form, as used here, they
have been devised by Zagrodny for the Clarke subdifferential [71], [72], and
by Loewen [34] for the Fréchet subdifferential. In [49], such a result is put
in a general form including the Ioffe subdifferential [26], [27], the moder-
ate subdifferential [36], and, in Asplund spaces, the Fréchet subdifferential,
the Hadamard subdifferential and the limiting subdifferential. In [4] such a
property is obtained under different assumptions.

Definition 3 (Fuzzy mean value property). A subdifferential ∂ is said
to be valuable on X if for any x ∈ X and y ∈ X \ {x}, any lower semicon-
tinuous function f : X → R∪{+∞} finite at x ∈ X, and any r ∈ R such
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that f(y) ≥ r, there exist u ∈ [x, y) and sequences (un) → u and (u∗n) such
that u∗n ∈ ∂f(un), (f(un)) → f(u), and

(3) lim inf
n

〈u∗n, y − x〉 ≥ r − f(x),

(4) lim inf
n

〈u∗n, x− un〉 ≥
‖x− u‖

‖y − x‖
(r − f(x))

∀x ∈ (x+ R+(y − x)) \ [x, u),

(5) lim
n

‖u∗n‖d(un, [x, y]) = 0.

A simpler version due to Lebourg [33] is as follows. It is satisfied for
∂ := ∂C , the Clarke subdifferential, the moderate subdifferential ∂M of [36],
and if X is Asplund, by the Bouligand, Fréchet and limiting subdifferentials.

Definition 4. A subdifferential ∂ is said to be Lipschitz-valuable on X
if for any x, y ∈ X and any Lipschitzian function f : X → R one can find
w ∈ [x, y] and w∗ ∈ ∂f(w) such that f(y) − f(x) = 〈w∗, y − x〉.

We need some results about subdifferentials of distance functions.

Lemma 5 ([40], [48]). Let E be a nonempty subset of a Banach space X
and let x ∈ E, v ∈ X. Then

dC
E(x, v) = lim sup

t→0+, e
E
→x

1

t
dE(e+ tv).

The next result is close to [7, Lemma 6], [27, Lemma 5], [48, Lemma 1],
[41, Lemma 3.6] and [5, Lemma 3.7], but it contains a crucial additional
information obtained in [40]. Recall that the norm of X is said to satisfy
the Kadec–Klee property if for every x ∈ X, a sequence (xn) converges to x
whenever it weakly converges to x and (‖xn‖) → ‖x‖.

Lemma 6. Suppose that E is a closed nonempty subset of an Asplund

space X, w ∈ X \ E and w∗ ∈ ∂FdE(w). Then ‖w∗‖ = 1 and there exist

sequences (xn), (x∗n) in E and X∗ respectively such that x∗n ∈ ∂FdE(xn) for

each n ∈ N and

(‖xn − w‖) → dE(w), (〈x∗n, w − xn〉) → dE(w), (‖x∗n − w∗‖) → 0.

If moreover X is reflexive and if its norm has the Kadec–Klee property , then

a subsequence of (xn) converges to some best approximation x of w in E and

〈w∗, w − x〉 = ‖x− w‖ = dE(w).

Now consider the limiting normal cone

N(E, a) := lim sup
x

E
→a

N(E, x)
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and the limiting Fréchet normal cone

NF (E, a) := lim sup

x
E
→a

NF (E, x)

obtained from the normal cone (resp. the Fréchet normal cone) by the weak
upper limit process described above.

Corollary 7 ([40]). Let E be a closed nonempty subset of an Asplund

space X and let x∗ ∈ ∂FdE(x) with x ∈ E. Then ‖x∗‖ ≤ 1 and there exist

sequences (xn), (x∗n) in E and X∗ respectively such that (xn) → x, (x∗n) → x∗

weak∗ and x∗n ∈ ∂FdE(xn) for each n ∈ N.

3. Paraconvexity of functions. The following characterization of p-
paraconvexity has been given in [14, Thm. 5.1] in the case where p = 2, X is
finite-dimensional and the function is Lipschitzian; there, only the proximal
subdifferential is used and equivalence with the lower-C2 property in the
sense of [54], [65] is proved. This characterization is extended to the case
where X is a Hilbert space and the function is lower semicontinuous in [5,
Thm. 4.1], using the Clarke–Rockafellar subdifferential. Here we consider the
case of a general Banach space and of an arbitrary valuable subdifferential;
the argument for the implication (d)⇒(a) is different.

Theorem 8. Let p ∈ ]1, 2], let f ∈ F(X) and let x ∈ dom f . Suppose the

subdifferential ∂f of f is contained in ∂†f. Then (a)⇒(b)⇒(c)⇒(d) below.

If moreover ∂ is valuable, all these assertions are equivalent.

(a) f is p-paraconvex around x;
(b) there exist c ∈ R and ̺ > 0 such that for any x ∈ B(x, ̺) ∩ dom f

and v ∈ B(0, ̺),

f †(x, v) ≤ f(x+ v) − f(x) + c‖v‖p;

(c) there exist c ∈ R and ̺ > 0 such that for any x ∈ B(x, ̺), x∗ ∈ ∂f(x)
and v ∈ B(0, ̺),

(6) 〈x∗, v〉 ≤ f(x+ v) − f(x) + c‖v‖p;

(d) ∂f is p-paramonotone around x.

Proof. (a)⇒(b). Given c > cf , let δ > 0 be such that for any y, z ∈
B(x, δ) and t ∈ ]0, 1[,

f((1 − t)y + tz) ≤ (1 − t)f(y) + tf(z) + ct(1 − t)‖y − z‖p.

Set ̺ := δ/2, fix x ∈ B(x, ̺)∩dom f and take v ∈ B(0, ̺) and y ∈ B(x, ̺)∩
dom f. Then z := x+ v ∈ B(x, δ) and

f((1 − t)y + t(x+ v)) − f(y)

t
≤ f(x+ v) − f(y) + c(1 − t)‖y − (x+ v)‖p,
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so that, since lim supy→x −f(y) ≤ −f(x),

f †(x, v) ≤ f(x+ v) − f(x) + c‖v‖p.

(b)⇒(c) is an immediate consequence of the inclusion ∂f ⊂ ∂†f and of
the definition of ∂†f .

(c)⇒(d) is proved in [18, Thm. 2] and [5, Thm. 4.5] for the Clarke sub-
differential. The general case is similar: given c ∈ R and ̺ as in (c), for any
x, y ∈ B(x, ̺/2), x∗ ∈ ∂f(x) and y∗ ∈ ∂f(y), taking v := y−x and v′ := −v
we have x, y ∈ dom f and

〈x∗, y − x〉 ≤ f(y) − f(x) + c‖x− y‖p,

〈y∗, x− y〉 ≤ f(x) − f(y) + c‖x− y‖p,

hence 〈x∗ − y∗, x− y〉 ≥ −2c‖x− y‖p.

(d)⇒(a) when ∂ is valuable. Assume ∂f is p-paramonotone around x,
that is, there exist ̺,m > 0 such that for any x, y ∈ B(x, ̺), x∗ ∈ ∂f(x)
and y∗ ∈ ∂f(y),

(7) 〈x∗ − y∗, x− y〉 ≥ −m‖x− y‖p.

Let δ := ̺/2, x, y ∈ B(x, δ), t ∈ ]0, 1[, z := tx + (1 − t)y and r < f(z).
Without loss of generality, to prove (1) we may assume that x 6= y and
f(x), f(y) < +∞. Since ∂ is valuable we can find u ∈ [y, z) and sequences
(un) → u and (u∗n) in X∗ such that u∗n ∈ ∂f(un) for each n and

(8) lim inf
n

〈

u∗n,
x− un

‖x− un‖

〉

>
r − f(y)

‖z − y‖
.

Let s ∈ ]0, 1[ be such that z = x + s(u − x) and set zn = x + s(un − x).
Since (un) → u, one has (zn) → z, and since f is l.s.c. at z, for n larger
than a certain n0 ∈ N one has un, zn ∈ B(x, ̺) and r < f(zn). Moreover
‖zn − x‖ = (1 − tn)‖y − x‖ for some sequence (tn) → t. Using again the
fact that ∂ is valuable, we obtain vn ∈ [x, zn) and sequences (vn,k) → vn

and (v∗n,k) such that vn,k ∈ B(x, ̺) and v∗n,k ∈ ∂f(vn,k) for any n ≥ n0 and
k ∈ N, and

(9) lim inf
k

〈

v∗n,k,
un − vn,k

‖un − vn,k‖

〉

>
r − f(x)

‖zn − x‖
=

r − f(x)

(1 − tn)‖y − x‖
.

From (8) there exists some n1 ≥ n0 such that for n ≥ n1, since x, zn, un are
aligned,

(10)

〈

u∗n,
vn − un

‖vn − un‖

〉

=

〈

u∗n,
x− un

‖x− un‖

〉

>
r − f(y)

‖y − z‖
=
r − f(y)

t‖y − x‖
.

On the other hand, since (vn,k) → vn for each n, by (10) and (9), for each
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n ≥ n1 one can find q(n) such that for k ≥ q(n),
〈

u∗n,
vn,k − un

‖vn,k − un‖

〉

>
r − f(y)

t‖y − x‖
,

〈

v∗n,k,
un − vn,k

‖un − vn,k‖

〉

>
r − f(x)

(1 − tn)‖y − x‖
.

Adding these inequalities and using (7), we get

m‖un − vn,k‖
p−1 ≥

r − f(y)

t‖y − x‖
+

r − f(x)

(1 − tn)‖y − x‖
.

Passing to the limit as k, n→ ∞, we get

mt(1 − t)‖y − x‖p ≥ (1 − t)(r − f(y)) + t(r − f(x)).

Since r is arbitrarily close to f(z), we obtain (1).

Corollary 9. Suppose f ∈ F(X) is finite at x ∈ X and p-paraconvex

around x with p ∈ ]1, 2]. Then, for any subdifferential ∂ such that ∂pf ⊂
∂f ⊂ ∂†f and for x near x, one has ∂f(x) = ∂pf(x) = ∂†f(x); in particular ,
∂F f(x) = ∂Cf(x).

Remark. The proof we have given yields a quantitative approach: the
infimum of the constants c appearing in assertions (b) and (c) is majorized by
cf and the index of p-paramonotonicity of ∂f around x is majorized by 2cf .
On the other hand, the implication (d)⇒(a) shows that cf is majorized by
the index of p-paramonotonicity of ∂f around x. We refer to [73] for such
estimates in the case of uniformly convex functions which may serve as more
precise models.

Corollary 10. Suppose f : U → R is a differentiable function on some

open subset U of X with a locally (p−1)-Hölderian derivative, with p ∈ ]1, 2].
Then f is locally p-paraconvex on U.

Proof. Since f is of class C1, its Clarke subdifferential is just the deriva-
tive Df of f. Moreover, Df is locally p-paramonotone: for every x ∈ U,
there exists some m > 0 and some neighborhood V of x contained in U such
that for x, y ∈ V ,

〈Df(x) −Df(y), x− y〉 ≥ −m‖x− y‖p−1‖x− y‖.

Thus the result follows from the implication (d)⇒(a) of Theorem 8.

4. Paraconvexity of marginal functions. The statements of the fol-
lowing criteria for p-paraconvexity are simpler than the ones in [39] but
they rely on differentiability assumptions. We use the following notation.
Given an arbitrary set S, an open subset X0 of a n.v.s. X, x ∈ X0 and
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g : S ×X0 → R, let f : X0 → R be the marginal function

f(x) := sup
s∈S

g(s, x), x ∈ X0.

We assume f is finite at x, and for x ∈ X0 and ε > 0 we set

S(x, ε) :=

{

{s ∈ S : g(s, x) ≥ f(x) − ε} if f(x) < +∞,

{s ∈ S : g(s, x) ≥ ε−1} if f(x) = +∞,

T (x, ε) := {s ∈ S : g(s, x) ≥ f(x) − ε}.

Theorem 11. If the following conditions are satisfied for some m ≥ 0,
p ∈ ]1, 2], ̺ > 0, then the marginal function f is Lipschitzian and p-
paraconvex on B(x, δ) for some δ ∈ ]0, ̺[:

(C1) for each s ∈ S the function gs := g(s, ·) is Fréchet differentiable on

the ball B(x, ̺);
(C2) for every x ∈ B(x, ̺) one can find γ := γx > 0 with ‖g′s(x)‖ ≤ m

for each s ∈ S(x, γ);
(C3) there exist σ, η > 0 such that ‖g′s(x) − g′s(x

′)‖ ≤ σ‖x − x′‖p−1 for

any x, x′ ∈ B(x, ̺) and s ∈ T (x, η) ∩ T (x′, η).

Proof. Let us apply the characterization of Theorem 8: we want to find
β, σ > 0 such that

(11) ∀x ∈ B(x, β), ∀v ∈ βBX : fC(x, v) ≤ f(x+ v) − f(x) + σ‖v‖p.

Note that f is l.s.c. on B(x, ̺); we will first show that f is Lipschitzian with
constant ℓ := m + ̺p−1σ on some ball B(x, 2δ), where σ, η are as in (C3).
Let ε ∈ ]0, 1[ be such that (ℓ + 2)ε < η and let δ ∈ ]0, ̺/4[ ∩ ]0, ε/4[ be
such that f(w) > f(x) − ε for each w ∈ B(x, 2δ). Given x, y ∈ B(x, 2δ), we
pick γ := γy ∈ ]0, ε[ such that ‖g′s(y)‖ ≤ m for each s ∈ S(y, γ), as in (C2).
Given s ∈ S(y, γ) let h : [0, 1] → R and t ∈ [0, 1] be defined by h(t) :=
g(s, y + t(x− y)) and

t := sup{t ∈ [0, 1] : h(r) ≥ g(s, y) − ℓε ∀r ∈ [0, t]}.

By continuity of gs, for any t ∈ [0, t] and zt := y + t(x− y) we have

h(t) = g(s, zt) ≥ g(s, y) − ℓε ≥ f(y) − γ − ℓε ≥ f(x) − η,

hence s ∈ T (zt, η). In particular, taking t = 0, we see that s ∈ T (y, η),
hence, by (C3), ‖g

′
s(zt)− g′s(y)‖ ≤ σ‖z− y‖p−1. It follows that ‖g′s(zt)‖ ≤ ℓ.

The mean value theorem yields some z ∈ [y, y + t(x− y)] such that

(12) h(0) − h(t) = tg′s(z)(x− y).

Thus h(0) − h(t) ≤ 4tℓδ < ℓε. If t < 1, then by continuity, we have h(t) =
g(s, y) − ℓε = h(0) − ℓε, a contradiction. Therefore t = 1 and (12) yields

(13) g(s, y) − g(s, x) = g′s(z)(x− y) ≤ ℓ‖x− y‖.
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Since s is arbitrary in S(y, γ), we get

f(y) − f(x) ≤ sup
s∈S(y,γ)

g(s, y) − g(s, x) ≤ ℓ‖x− y‖

and f is Lipschitzian with constant ℓ on B(x, 2δ).

Now let us estimate fC(x, u) for (x, u) ∈ B(x, δ) × SX . Since f is Lip-
schitzian, we can pick a sequence ((xn, tn)) → (x, 0+) such that fC(x, u) =
limn t

−1
n (f(xn + tnu)− f(xn)). Set yn := xn + tnu, γn := min(t2n, γyn

, ε) and
choose sn ∈ S(xn + tnu, γn). Taking n ≥ k, with k large enough, we may
suppose that xn ∈ B(x, δ) and xn + tnu ∈ B(x, δ). Using relation (13), we
obtain

gsn
(x) ≥ gsn

(yn) − ℓ‖x− yn‖ ≥ f(yn) − γn − ℓtn,

hence, as f is l.s.c. at x, lim infn gsn
(x) ≥ f(x) or (gsn

(x)) → f(x).

Moreover, using again (13), for every w ∈ B(x, δ) and n ≥ k we have

gsn
(w) ≥ gsn

(yn) − ℓ‖w − yn‖ ≥ f(yn) − γn − 2ℓδ(14)

≥ f(x) − 2ε− ℓε ≥ f(x) − η,

so that sn ∈ T (w, η).

Taking t ∈ ]0, δ], from the mean value theorem we get some rn, r
′
n ∈ [0, 1]

such that

1

t
(g(sn, x+ tu) − g(sn, x)) = g′sn

(x+ rntu)(u),

1

tn
(g(sn, xn + tnu) − g(sn, xn)) = g′sn

(xn + r′ntnu)(u).

Choosing w = x + rntu and then w = xn + r′ntnu in (14), we find that
sn ∈ T (x+ rntu, η) ∩ T (xn + r′ntnu, η), so that we may apply (C3). Thus

1

tn
(g(sn, xn + tnu) − g(sn, xn)) −

1

t
(g(sn, x+ tu) − g(sn, x))

≤ ‖g′sn
(xn + r′ntnu) − g′sn

(x+ rntu)‖ ≤ σ‖xn − x+ r′ntnu− rntu‖
p−1.

From these inequalities, the choice of sn and the fact that (g(sn, x)) → f(x),
we deduce that

lim
n

1

tn
(f(xn + tnu) − f(xn)) ≤ lim inf

n

1

tn
(g(sn, xn + tnu) − g(sn, xn) + t2n)

≤ lim inf
n

[

1

t
(g(sn, x+ tu) − g(sn, x)) + σ‖xn − x+ r′ntnu− rntu‖

p−1

]

≤
1

t
(f(x+ tu) − f(x)) + σtp−1‖u‖p−1.

Therefore, for any v ∈ δBX , setting v = tu with t ∈ ]0, δ] and u ∈ SX , we
get (11).



12 H. V. Ngai and J.-P. Penot

The following immediate consequence partially generalizes [14, Thm. 5.1]
which is set in finite-dimensional spaces and for suprema of functions of
class C2.

Corollary 12. Suppose S is a compact topological space, and g : S×X
→ R is continuous with a partial derivative with respect to x ∈ B(x, ̺) which

is jointly continuous and Lipschitz with respect to x, uniformly with respect

to s ∈ S. Then the marginal function f is Lipschitzian and 2-paraconvex on

B(x, δ) for some δ > 0.

Another consequence will be used later on.

Corollary 13. Suppose X is a uniformly smooth Banach space with

modulus of smoothness ̺X satisfying for some k > 0 and p > 1 the estimate

̺X(t) ≤ ktp for t ≥ 0. Then, for any nonempty closed subset E of X, the

function −dE is p-paraconvex on X \E.

Proof. Let j be the derivative of the norm on X \ {0}. Let us first prove
that, given s > r > 0, there exists some c > 0 such that

(15) ‖j(x) − j(y)‖ ≤ c‖x− y‖p−1 ∀x, y ∈ sBX \ rBX .

By [6, Prop. A.5] we have, for any x, y ∈ sBX \ rBX ,

‖j(x) − j(y)‖ ≤ k2p

∥

∥

∥

∥

x

‖x‖
−

y

‖y‖

∥

∥

∥

∥

p−1

≤ k2pr2−2p‖ ‖y‖x− ‖x‖y‖p−1

≤ k2pr2−2p(‖y‖ ‖x− y‖ + ‖y‖ | ‖x‖ − ‖y‖ |)p−1

≤ k22p−1r2−2psp−1‖x− y‖p−1.

Given x ∈ X\E, let η = ̺ = r = dE(x)/2 and set S := E, g(e, x) = −‖x−e‖
for x ∈ B(x, ̺) and e ∈ E. Then f(x) = −dE(x) for x ∈ B(x, ̺), and
for e ∈ T (x, η), i.e. for e ∈ E satisfying ‖x − e‖ ≤ dE(x) + η, we have
r ≤ ‖x− e‖ ≤ 3r. Thus (15) shows that condition (C3) is satisfied. Since the
norm is differentiable on B(x, ̺) with derivative j bounded by 1, conditions
(C1) and (C2) are also satisfied.

5. Paraconvexity of sets. We observe that using the notion of p-
paraconvexity for the indicator function ιE of a subset E of X would lead
to convexity of E and not to a relaxed form of convexity. Therefore, we
rather use the distance function dE . In the following, x is a point of E and
p ∈ ]1, 2].

Definition 14. A subset E of X is said to be p-paraconvex around x if
its associated distance function dE is p-paraconvex around x.

This notion is different from the one studied in [35]. Clearly, a p-para-
convex set is approximately convex in the sense of [38].
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Example. The set E := {(r, s) ∈ R
2 : s ≥ |r| − r2} is p-paraconvex but

nonconvex. This example is a special instance of Proposition 25 below.

It is not obvious to decide whether the preceding definition depends
on the choice of the norm in an equivalence class; by contrast, the variant
presented in the next section will not depend on the choice of the norm
inducing the topology.

The following result is an easy consequence of [18] when ∂ = ∂C . How-
ever, since we use here an arbitrary subdifferential contained in the Clarke
subdifferential, we have to use Theorem 8 with the distance function.

Theorem 15. Let ∂ be a subdifferential on the family of Lipschitz

functions such that ∂f ⊂ ∂Cf for any Lipschitz function f on X. Then

(a)⇒(b)⇒(c)⇔(c′)⇒(d) below. If moreover ∂ is Lipschitz-valuable on X,
all these assertions are equivalent.

(a) E is p-paraconvex around x in the sense that dE is p-paraconvex

around x;
(b) there exist c, ̺ > 0 such that for any x ∈ B(x, ̺) and v ∈ B(0, ̺),

(16) dC
E(x, v) ≤ dE(x+ v) − dE(x) + c‖v‖p;

(c) there exist c, ̺ > 0 such that for any x ∈ B(x, ̺), x∗ ∈ ∂dE(x) and

(u, t) ∈ SX×]0, ̺),

(17) 〈x∗, u〉 ≤
dE(x+ tu) − dE(x)

t
+ ctp−1;

(c′) there exist c, ̺ > 0 such that for any x ∈ B(x, ̺), x∗ ∈ ∂dE(x) and

v ∈ ̺BX ,

(18) 〈x∗, v〉 ≤ dE(x+ v) − dE(x) + c‖v‖p;

(d) ∂dE is p-paramonotone around x.

The following corollary is a consequence of Corollary 9.

Corollary 16. If E is p-paraconvex around x for some p > 1, then, for

any subdifferential ∂ such that ∂pf ⊂ ∂f ⊂ ∂Cf for any Lipschitz function f,
one has ∂pdE(x) = ∂FdE(x) = ∂dE(x) = ∂CdE(x) for x close to x.

6. Intrinsic p-paraconvexity. As in the case of approximate convexity
([40]), the terminology of the definition we now adopt is justified by the fact
that the notion we introduce is obtained by restricting the requirement on
the distance function to the subset E. Thus, this new notion is more general
than the preceding one. We will show later that the two notions do not
coincide.

Definition 17. Given p ∈ [1,+∞), a subset E of X is said to be in-

trinsically p-paraconvex around x ∈ E if there exist c, ̺ > 0 such that for
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any x1, x2 ∈ E ∩B(x, ̺) and t ∈ [0, 1],

(19) dE((1 − t)x1 + tx2) ≤ ct(1 − t)‖x1 − x2‖
p.

It is intrinsically p-paraconvex if it is intrinsically p-paraconvex around each
of its points.

Note that there is no loss of generality in assuming that E is closed. Also
note that this definition does not depend on the choice of the norm among
the ones inducing the same topology.

Characterizations can be given as follows. When one of the assertions
(c)–(d) below holds, we say that E is ∂-intrinsically p-paraconvex around x.

Theorem 18. Let E be a nonempty closed subset of X and let ∂ be a

subdifferential such that ∂f ⊂ ∂Cf for any Lipschitz function f on X. Then

(a)⇒(b)⇒(c)⇔(d)⇐(e), and when X is a ∂-subdifferentiability space, also

(e)⇒(a), where

(a) E is intrinsically p-paraconvex around x;
(b) there exist c, δ > 0 such that for any x, x′ ∈ E ∩B(x, δ),

(20) dC
E(x, x′ − x) ≤ c‖x− x′‖p;

(c) there exist c, δ > 0 such that for any x, x′ ∈ E ∩ B(x, δ) and x∗ ∈
∂dE(x),

(21) 〈x∗, x′ − x〉 ≤ c‖x− x′‖p;

(d) ∂dE(·) is p-paramonotone around x on E: there exist c, δ > 0 such

that for any x1, x2 ∈ E ∩B(x, δ), x∗1 ∈ ∂dE(x1) and x∗2 ∈ ∂dE(x2),

(22) 〈x∗1 − x∗2, x1 − x2〉 ≥ −c‖x1 − x2‖
p;

(e) there exist c, ̺ > 0 such that for any w ∈ B(x, ̺), x ∈ E ∩ B(x, ̺)
and w∗ ∈ ∂dE(w),

(23) dE(w) + 〈w∗, x− w〉 ≤ c‖x− w‖p.

Proof. (a)⇒(b). Let ̺ > 0 be as in Definition 17 and let x, x′ ∈ E ∩
B(x, ̺). By Lemma 5, we have

dC
E(x, x′ − x) ≤ lim sup

t→0+, e
E
→x

1

t
dE(e+ t(x′ − x)).

Now, since for t ∈ ]0, 1[, dE(e+ t(x′ − x)) ≤ dE(e+ t(x′ − e)) + t‖e− x‖ ≤
ct(1 − t)‖x′ − e‖p + t‖e− x‖, we get

dC
E(x, x′ − x) ≤ c‖x′ − x‖p.

(b)⇒(c) is a consequence of the inclusion ∂dE(x) ⊂ ∂CdE(x) and of the
definition of ∂CdE(x). When ∂ = ∂C , the reverse implication follows from
the relation dC

E(x, u) = sup{〈x∗, u〉 : x∗ ∈ ∂CdE(x)}.
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(c)⇒(d). Let c, δ > 0 be as in (c) and let x1, x2 ∈ E ∩ B(x, δ), x∗1 ∈
∂dE(x1) and x∗2 ∈ ∂dE(x2). Taking x = x1, x

∗ = x∗1, x
′ = x2 and adding

inequality (21) to the corresponding one obtained by choosing x = x2,
x∗ = x∗2, x

′ = x1 we get (22) with 2c in place of c.
(d)⇒(c) is obtained by taking x1 = x, x∗1 = x∗, x2 = x′, x∗2 = 0 in (d),

using the fact that x2 is a minimizer of dE , so that 0 ∈ ∂dE(x2).
(e)⇒(c) is obvious (take w = x′ ∈ E).
(e)⇒(a) when X is a ∂-subdifferentiability space. Given c, ̺ > 0 as

in (e), let x1, x2 ∈ E∩B(x, ̺), t ∈ [0, 1], and w := (1− t)x1 + tx2. Since X is
a ∂-subdifferentiability space, there exist sequences (wn) → w and (w∗

n) such
that w∗

n ∈ ∂dE(wn) for each n ∈ N. Then, as ∂dE(wn) ⊂ ∂CdE(wn) ⊂ BX∗ ,
we have (〈w∗

n, w − wn〉) → 0. Since by convexity w ∈ B(x, ̺), we have
wn ∈ B(x, ̺) for n large enough, it follows that

(1 − t)dE(wn) + (1 − t)〈w∗
n, x1 − wn〉 ≤ (1 − t)c‖x1 − wn‖

p,

tdE(wn) + t〈w∗
n, x2 − wn〉 ≤ tc‖x2 − wn‖

p.

Adding these relations, we get

dE(wn) + 〈w∗
n, w − wn〉 ≤ (1 − t)c‖x1 − wn‖

p + tc‖x2 − wn‖
p,

and, passing to the limit,

dE(w) ≤ c(1− t)tp‖x1−x2‖
p + ct(1− t)p‖x2−x1‖

p ≤ 2ct(1− t)‖x1−x2‖
p.

Now let us give specializations to some specific subdifferentials and nor-
mal cones. We start with the Fréchet normal cone.

Corollary 19. For the Fréchet subdifferential ∂F , assertion (c) of the

preceding theorem is equivalent to the following :

(f) there exist c, δ > 0 such that for any x, x′ ∈ E ∩ B(x, δ) and x∗ ∈
NF (E, x),

(24) 〈x∗, x′ − x〉 ≤ c‖x∗‖ ‖x− x′‖p.

If (c) holds with ∂ = ∂C , then NC(E, x) = NF (E, x) for all x ∈ E∩B(x, δ).
If X is an Asplund space then all the assertions of Theorem 18 are

equivalent to (f).

Proof. The relation ∂FdE(x) = NF (E, x) ∩ BX∗ for each x ∈ E yields
equivalence of (c) and (f) by a homogeneity argument which does not require
any assumption on X. Moreover, (c) shows that ∂CdE(x) = ∂FdE(x) for
each x ∈ E ∩ B(x, δ) and that ∂FdE(x) is weak∗ closed. Therefore, by [13,
Prop. 2.4.2], denoting by co∗(S) the weak∗ closed convex hull of a subset S
of X∗, we get

NC(E, x) = co∗(R+∂
CdE(x)) = co∗(R+∂

FdE(x)) = NF (E, x)

since NF (E, x) is convex and weak∗ closed by (f).
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(c)⇒(e) when X is an Asplund space. Let c, δ > 0 be as in (c). Let
̺ := δ/2, w ∈ B(x, ̺) \ E (note that (23) coincides with (21) if w ∈ E),
x ∈ E ∩ B(x, ̺) and w∗ ∈ ∂FdE(w). By Lemma 6 we can find sequences
(xn) in E and (x∗n) in X∗ such that x∗n ∈ ∂FdE(xn) for each n ∈ N and

(25) (‖xn − w‖) → dE(w), (〈x∗n, w − xn〉) → dE(w), (‖x∗n − w∗‖) → 0.

Since dE(w) ≤ ‖x−w‖ < ̺ and ‖x−w‖ > 0, we may suppose that ‖xn−w‖ ≤
̺, ‖xn − w‖ ≤ 2‖x − w‖ for each n ∈ N; then xn ∈ B(x, 2̺) ⊂ B(x, δ) and
‖x− xn‖ ≤ ‖x−w‖ + ‖w − xn‖ ≤ 3‖x−w‖. Now, for n large enough, (25)
implies the first inequality below, while (c) ensures the third:

dE(w) + 〈w∗, x− w〉

≤ lim sup
n

(〈x∗n, w − xn〉 + (〈x∗n, x− w〉 + ‖x∗n − w∗‖ ‖x− w‖))

≤ lim sup
n

(〈x∗n, x− xn〉 + ‖x∗n − w∗‖ ‖x− w‖)

≤ lim sup
n

(c‖x− xn‖
p + ‖x∗n − w∗‖ ‖x− w‖).

Passing to the limit, and using the estimate ‖x−xn‖ ≤ 3‖x−w‖ obtained
above, we get

dE(w) + 〈w∗, x− w〉 ≤ c(3p + 1)‖x− w‖p.

Finally, since X is Asplund, it is a ∂F -subdifferentiability space, so that
(e) ensures that E is intrinsically p-paraconvex by Theorem 18.

The case of the limiting subdifferential can easily be derived from the
preceding corollary.

Corollary 20. Suppose that E is a closed subset of an Asplund space

X and let ∂ be the limiting Fréchet subdifferential ∂F . Then all the assertions

of Theorem 18 are equivalent.

Proof. In view of Corollary 7, the passages from the assertions using ∂F

to those involving ∂F result from a passage to the weak∗ limit for a bounded
net; the reverse implications are obvious.

Now let us turn to the Clarke subdifferential. It would be interesting to
know whether one can get rid of the assumption of the last assertion of the
next corollary that X is an Asplund space.

Corollary 21. For a closed subset E of a Banach space X and ∂ = ∂C ,
we have (e)⇒(a)⇒(b)⇔(c)⇔(d) in Theorem 18. If moreover X is an As-

plund space, all these assertions are equivalent.

Proof. The implications follow from the choice ∂ = ∂C in Theorem 18
since any Banach space is a ∂C-subdifferentiability space. When X is an As-
plund space the equivalences can be deduced from the preceding corollary:
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since ∂CdE(x) = co∗(∂FdE(x)) one has the equivalence (eF )⇔(eF )⇔(eC)

(where (eC), (eF ), (eF ) are (e) for ∂ = ∂C , ∂F , ∂F respectively), hence
(cC)⇒(cF )⇒(eF )⇒(eC)⇒(a).

The preceding local property can be related to a global one as defined
and studied in [10], [15], [19], [20], [22] in the case p = 2, X being a Hilbert
space.

Definition 22. Given a subset E of X, p ∈ ]1, 2] and a continuous
function ϕ : E ×E → R+, the subset E of X is said to be ϕ-p-convex if for
any x, y ∈ E and x∗ ∈ NF (E, x),

(26) 〈x∗, y − x〉 ≤ ϕ(x, y)‖x∗‖ ‖x− y‖p.

In this definition the choice of the Fréchet normal cone is natural since
if the above condition holds for some other cone N(E, x) contained in
NC(E, x) then N(E, x) ⊂ NF (E, x). The following result clarifies the links
between ϕ-p-convexity and p-paraconvexity.

Proposition 23. Let p ∈ ]1, 2], E a subset of a Banach space X, and

ϕ : E × E → R+ a continuous function such that E is ϕ-p-convex. Then

E is ∂F -intrinsically p-paraconvex around each point of E in the sense that

assertion (c) of Theorem 18 is satisfied with ∂ = ∂F .

Conversely , if E is ∂F -intrinsically p-paraconvex around each point of E,
then E is ϕ-p-convex for some continuous function ϕ : E × E → R+.

Proof. The first assertion is immediate: given c > ϕ(x, x) for some x ∈ E,
relation (21) is satisfied whenever δ > 0 is small enough. Let us prove the
converse by first showing that there exist an open neighborhood V of the
diagonal of E ×E and a continuous function ψ : V → R+ such that for any
(x, y) ∈ V and x∗ ∈ NF (E, x),

(27) 〈x∗, y − x〉 ≤ ψ(x, y)‖x∗‖ ‖x− y‖p.

Given (x, y) ∈ E × E, let

ωp(x, y) = sup

{〈

x∗,
y − x

‖x− y‖p

〉

: x∗ ∈ NF (E, x) ∩BX∗

}

.

Assertion (c) of Theorem 18 shows that for any e ∈ E there exist c, ̺ > 0
such that ωp(x, y) ≤ c for any x, y ∈ B(e, ̺). Clearly, the infimum cp(e)
of such constants c defines an upper semicontinuous function on E. Since
E is a metric space, there exists a continuous function ψp : E → R such
that cp(e) + 1 ≤ ψp(e) for every e ∈ E. Then, by definition of cp, for each
e ∈ E one can find ̺(e) > 0 such that ωp(x, y) ≤ cp(e) + 1 ≤ ψp(e) for all
x, y ∈ B(e, ̺(e)). Since E is paracompact, we can find a locally finite open
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covering (Ve)e∈E of E such that Ve ⊂ B(e, ̺(e)) for every e ∈ E. Set

V :=
⋃

e∈E

Ve × Ve, ψ(x, y) :=
∑

e∈E

λe(x, y)ψp(e),

where (λe)e∈E is a continuous partition of unity subordinated to the covering
(Ve × Ve)e∈E of V. Then ψ is continuous and for every (x, y) ∈ V one has

ωp(x, y) =
∑

e∈E

λe(x, y)ωp(x, y) ≤
∑

e∈E

λe(x, y)ψp(e) = ψ(x, y),

so that inequality (27) holds.

Let U be a closed neighborhood of the diagonal of E × E contained in
V and let ϕ be given by

ϕ(x, y) = (1 − t(x, y))ψ(x, y) + t(x, y)
1

‖x− y‖p−1

where

t(x, y) :=
d((x, y), U)

d((x, y), (E × E) \ V ) + d((x, y), U)
.

Then ϕ is a continuous function on E×E. For (x, y) ∈ U and x∗ ∈ N(E, x),
〈

x∗,
y − x

‖x− y‖p

〉

≤ ‖x∗‖ψ(x, y) = ‖x∗‖ϕ(x, y).

For (x, y) ∈ (E × E) \ V and x∗ ∈ N(E, x),
〈

x∗,
y − x

‖x− y‖p

〉

≤ ‖x∗‖
1

‖x− y‖p−1
= ‖x∗‖ϕ(x, y).

For (x, y) ∈ V \ U, x∗ ∈ N(E, x),
〈

x∗,
y − x

‖x− y‖p

〉

≤ min

(

‖x∗‖
1

‖x− y‖p−1
, ‖x∗‖ψ(x, y)

)

≤ ‖x∗‖ϕ(x, y).

Therefore (26) is satisfied.

The following statement can be considered as an illustration of the use
of a global property as in the preceding definition.

Proposition 24. Let p ≥ q ∈ [1,∞), let (S,S, µ) be a measure space

with a finite measure, let c ∈ L∞(S,R) and let F : S ⇉ R
n be a measurable

multifunction such that

∀s ∈ S, ∀x, y ∈ F (s), ∀t ∈ [0, 1] : dF (s)((1−t)x+ty) ≤ c(s)t(1−t)‖x−y‖p/q.

Then the set E of measurable selections of F (·) which are in Lp(S,R
n)

considered as a subset of X := Lq(S,R
n) is such that

(28) ∀u, v ∈ E, ∀t ∈ [0, 1] : dX((1 − t)u+ tv, E) ≤ ‖c‖∞t(1 − t)‖u− v‖p/q
p .
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Proof. Let u, v ∈ E, and for t ∈ [0, 1], let w := (1 − t)u + tv. Then, by
[55, Thm. 14.60], we can interchange minimization and integration to get

dX(w,E)q := inf
z∈E

\
S

‖w(s) − z(s)‖q µ(ds) =
\
S

inf
e∈F (s)

‖w(s) − e‖q µ(ds)

≤
\
S

c(s)qtq(1 − t)q‖u(s) − v(s)‖p µ(ds)

≤ ‖c‖q
∞t

q(1 − t)q‖u− v‖p
p.

Inequality (28) follows.

7. Links between p-paraconvex sets and functions. Some links be-
tween geometrical properties and analytical properties are contained in the
next statements. In the present section we suppose p > 1. Unless otherwise
specified, we endow the product space X := W × R of a n.v.s. W with R

with a product norm, i.e. a norm such that the projections and the injections
w 7→ (w, 0) and r 7→ (0, r) are nonexpansive. Then for each (w, r) ∈ W × R

we have

max(‖w‖, |r|) ≤ ‖(w, r)‖ ≤ ‖w‖ + |r|.

Proposition 25. Let W be a normed vector space and let f : W → R∞

be a l.s.c. function which is p-paraconvex around w ∈ W. Then for any r ≥
f(w) the epigraph E of f is intrinsically p-paraconvex around x := (w, r).

Proof. Let c, ̺ > 0 be such that

f((1 − t)w1 + tw2) ≤ (1 − t)f(w1) + tf(w2) + ct(1 − t)‖w1 − w2‖
p

for any w1, w2 ∈ B(w, ̺), t ∈ [0, 1]. Let xi := (wi, ri) (i = 1, 2) be elements
of the epigraph E of f in B(x, ̺) and let t ∈ [0, 1], w := (1− t)w1 + tw2, r :=
(1−t)r1+tr2 and x := (w, r). Then, as w1, w2 ∈ B(w, ̺) and (w, f(w)) ∈ E,
one has dE(x) = 0 if f(w) ≤ r and dE(x) ≤ ‖(w, r)− (w, f(w))‖ ≤ f(w)− r
if f(w) > r, so that

dE(x) ≤ max(0, f(w) − r)

≤ max(0, (1 − t)(f(w1) − r1) + t(f(w2) − r2) + ct(1 − t)‖w1 − w2‖
p)

≤ ct(1 − t)‖w1 − w2‖
p ≤ ct(1 − t)‖x1 − x2‖

p.

Thus E is intrinsically p-paraconvex around x.

Let us complete the preceding result with the following one.

Proposition 26. Let f : W → R be a function which is Lipschitzian

with constant ℓ > 0 on some ball B(w, ̺). Suppose X := W × R is endowed

with the norm given by ‖(w, r)‖ = ℓ‖w‖+ |r|. If f is p-paraconvex around w,
then, for any r ≥ f(w), the epigraph E of f is p-paraconvex around x :=
(w, r).
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Proof. We may suppose r = f(w) since otherwise x is in the interior
of E. By [23], [26] one can find ̺′ ∈ ]0, ̺[ such that

dE(w, r) = (f(w) − r)+

for (w, r) ∈ B(x, ̺′) with x := (w, f(w)), X being endowed with the norm
described in the statement; here, for t ∈ R, t+ stands for max(t, 0). Let c > 0
and δ ∈ ]0, ̺′[ be such that

f((1 − t)w1 + tw2) ≤ (1 − t)f(w1) + tf(w2) + ct(1 − t)‖w1 − w2‖
p

for any w1, w2 ∈ B(w, δ), t ∈ [0, 1]. Let xi := (wi, ri) ∈ B(x, δ) for i = 1, 2
and let w := (1 − t)w1 + tw2, r := (1 − t)r1 + tr2 and x := (w, r). Then we
have w1, w2 ∈ B(w, δ) and

f(w) − r ≤ (1 − t)(f(w1) − r1)+ + t(f(w2) − r2)+ + ct(1 − t)‖w1 − w2‖
p,

hence

dE(x) ≤ (1 − t)dE(x1) + tdE(x2) + cℓ−pt(1 − t)‖x1 − x2‖
p.

Let us give a kind of converse to the preceding propositions.

Theorem 27. Let W be a Banach space and let f : W → R be a function

which is locally Lipschitzian around w ∈W and such that the epigraph E of f
is an intrinsically p-paraconvex subset of X := W×R around x := (w, f(w)).
Then f is p-paraconvex around w.

Proof in the case W is an Asplund space. In view of the characterization
of p-paraconvexity of a function given in Theorem 8, it suffices to prove that
∂F f is p-paramonotone around w. Let ℓ be the Lipschitz constant of f on
some ball B(x, ̺0). By Corollary 19 there exist c > 0 and ̺ ∈ ]0, ̺0[ such
that for any x1, x2 ∈ E ∩B(x, ̺) and any x∗1 ∈ NF (E, x1), x

∗
2 ∈ NF (E, x2),

〈x∗1 − x∗2, x1 − x2〉 ≥ −c‖x1 − x2‖
p.

Let ̺′ := ̺/(ℓ+ 1). Then, for w1, w2 ∈ B(w, ̺′), w∗
i ∈ ∂F f(wi) for i = 1, 2,

setting xi := (wi, f(wi)), x
∗
i := (w∗

i ,−1), one has xi ∈ B(x, ̺) and x∗i ∈
NF (E, xi), hence

〈w∗
1 − w∗

2, w1 − w2〉 = 〈x∗1 − x∗2, x1 − x2〉 ≥ −c‖x1 − x2‖
p

≥ −c(ℓ+ 1)p‖w1 − w2‖
p.

Thus f is p-paraconvex around w.

The proof in the general case relies on the following lemma extracted
from the proof of [48, Prop. 10 c]; it is close to previous results of that kind
due to F. H. Clarke [13] and to A. D. Ioffe [27] in the case x = (w, f(w)).

Lemma 28. Let f : W → R be Lipschitzian with constant ℓ on a ball

B(w, ̺) of W. Then for σ ∈ ]0, ̺[ small enough and for any w ∈ B(w, σ)
and any w∗ ∈ ∂Cf(w) one has (w∗,−1) ∈ ∂CdE(x), where E is the epigraph
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of f and x := (w, f(w)), X := W × R being endowed with the norm given

by ‖(w, r)‖ = ℓ‖w‖ + |r|.

Proof of the theorem in the general case. Since intrinsic p-paraconvexity
is preserved when using an equivalent norm, we may use the norm described
in the lemma and take ̺, σ > 0 as there. We use the implication (a)⇒(c) of
Corollary 21: there exist c > 0, γ ∈ ]0, σ[ such that for any x, x′ ∈ E∩B(x, γ)
and x∗ ∈ ∂CdE(x),

(29) 〈x∗, x′ − x〉 ≤ c‖x− x′‖p.

Let δ := γ/4ℓ. Now, by the preceding lemma, for w ∈ B(w, δ), u ∈ δBW ,
w′ := w + u ∈ B(w, 2δ) and w∗ ∈ ∂Cf(w) we have x := (w, f(w)) ∈
E ∩B(x, γ), x′ := (w′, f(w′)) ∈ E ∩B(x, σ) and (w∗,−1) ∈ ∂CdE(x). Then,
by (29),

〈w∗, u〉 − (f(w′) − f(w)) ≤ c(ℓ‖w′ − w‖ + |f(w′) − f(w)|)p ≤ c2pℓp‖u‖p.

Thus, for any ε > 0, there exists δ > 0 such that for w ∈ B(w, δ), any
w∗ ∈ ∂Cf(w) and u ∈ B(0, δ) one has f(w+u)−f(w) ≥ 〈w∗, u〉−c2pℓp‖u‖p,
so that f is p-paraconvex around w by Theorem 8.

Finally, let us turn to sublevel sets.

Proposition 29. Let X be an Asplund space and let f : X → R∞.

Suppose f is continuous and p-paraconvex around x ∈ S := {x ∈ X : f(x)
≤ 0} and there exist b, r > 0 such that ‖x∗‖ ≥ b for all x ∈ (X \S)∩B(x, r)
and x∗ ∈ ∂F f(x). Then S is intrinsically p-paraconvex around x.

Proof. Without loss of generality we may suppose f takes the value +∞
on X \ U, where U := B(x, r). Then, by [74], [16], [29], [46, Thm. 9.1],
[41, Thm. 3.2] and several other contributions, we have f+(x) ≥ bdS(x) for
x ∈ U for f+ := max(f, 0). Let ε > 0 be given. Using Theorem 8, we can
find c > 0 and δ ∈ ]0, r[ such that

〈x∗, x′ − x〉 ≤ f(x′) − f(x) + c‖x′ − x‖p

for any x, x′ ∈ B(x, δ) and x∗ ∈ ∂F f(x). Given x, x′ ∈ S ∩B(x, δ) and x∗ ∈
∂FdS(x), using [41, Cor. 4.1] we can find sequences (λn), (xn), (x∗n) in [0, 1],
X, X∗ respectively such that (xn) → x, (λnx

∗
n) → x∗ and x∗n ∈ ∂F f(xn) for

each n ∈ N. Suppose first x∗ 6= 0. Then f(x) = 0 since f is continuous at x
and x cannot belong to the interior of S. For n so large that xn ∈ B(x, δ),
and for x′ ∈ S ∩B(x, δ), we have

〈x∗n, x
′ − xn〉 ≤ f(x′) − f(xn) + c‖x′ − xn‖

p.

Thus

〈x∗, x′ − x〉 = lim
n
〈λnx

∗
n, x

′ − xn〉

≤ lim sup
n

λn(f(x′) − f(xn) + c‖x′ − xn‖
p) ≤ c‖x′ − x‖p
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since f(x′) ≤ 0, λn ∈ [0, 1] and (f(xn)) → 0. When x∗ = 0, the inequality
〈x∗, x′ − x〉 ≤ c‖x′ − x‖p is obvious. Thus, assertion (c) of Corollary 19 is
satisfied for E := S and S is intrinsically p-paraconvex around x.

8. A counter-example. Because the concepts of paraconvexity and
intrinsic paraconvexity seem to be so close, one may wonder whether they
coincide. The following counter-example shows that this is not the case.

Given p = 3/2, let E be the hypograph of the function f : r 7→ |r|p from
R to R:

E := {(r, s) ∈ R
2 : s ≤ |r|p}.

Let us endow R
2 with the Euclidean norm and show that E is intrinsically

paraconvex around (0, 0), but not paraconvex around (0, 0). Since E is the
image under the isometry (r, s) 7→ (r,−s) of the epigraph of the function −f
whose derivative is (p−1)-Hölderian, it is intrinsically p-paraconvex around
(0, 0). Let (r, s) ∈ R

2 be close to (0, 0), with r ≥ 0, s > rp. In order to
compute d2

E(r, s) we have to minimize the function x 7→ (x− r)2 +(xp −s)2.
The necessary condition is

(30) x− r + pxp−1(xp − s) = 0.

Let y := x1/2. The preceding equation is equivalent to

(31) 2y2 − 2r + 3y(y3 − s) = 0.

Fixing s, this equation defines y := x1/2 as an implicit function of r;
moreover, y(0) = y0, where y0 > 0 is the unique solution of the equa-
tion 3y3 + 2y − 3s = 0. The implicit function theorem asserts that y′(0) is
determined by the relation

y′(0)[4y0 + 12y3
0 − 3s] = 2

obtained by differentiating (31). Thus, since x′(0) = 2y′(0)y0 and 3s =
3y3

0 + 2y0 by (31),

x′(0) =
4

2 + 9x(0)
.

Therefore, for some function r 7→ q(r) with limit x′(0) as r → 0+, we have

d2
E(r, s) = (x0 + q(r)r − r)2 + ((x0 + q(r)r)3/2 − s)2

= x2
0 + 2x0(q(r) − 1)r + (q(r) − 1)2r2

+ (x0 + q(r)r)3 − 2s(x0 + q(r)r)3/2 + s2

= (x2
0 + x3

0 − 2sx
3/2
0 + s2) + 2x0(q(r) − 1)r

+ 3x2
0q(r)r − 3sx

1/2
0 q(r)r + o(r)
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and since, by (30), 3sx
1/2
0 = 3x2

0 + 2x0, taking limits as r → 0, we get

r−1(d2
E(r, s) − d2

E(0, s)) → 2x0(x
′(0) − 1) + 3x2

0x
′(0) − 3sx

1/2
0 x′(0)

= −2x0.

Thus, given a ∈ ]0, 2x0[, for r > 0 small enough, we have

(32) d2
E(r, s) − d2

E(0, s) ≤ −ar.

On the other hand, if dE is p-paraconvex, one can find c, δ > 0 such that
for ‖(r, s)‖ ≤ δ,

dE(0, s) ≤
1

2
d(r, s) +

1

2
d(−r, s) +

1

4
c(2r)p.

Now, since E is invariant under the symmetry (r, s) 7→ (−r, s), we have
dE(r, s) ≥ dE(0, s)− 2p−2crp and for r sufficiently small the right hand side
of this inequality is positive, so that

d2
E(r, s) ≥ (dE(0, s) − 2p−2crp)2,

d2
E(r, s) − d2

E(0, s) ≥ −2p−1crpdE(0, s) + 22p−4c2r2p,

a contradiction with (32) when ‖(r, s)‖ is sufficiently small.

9. Paraconvex sets and projections. The following result shows
that, in the context of superreflexive spaces, p-paraconvexity of a distance
function is equivalent to its continuous differentiability with a Hölderian
derivative. It is reminiscent of [14, Thm. 4.8] which is set in a Hilbert space.
There, p = 2 and a Lipschitz property is given instead of a Hölderian prop-
erty. Moreover, here U is not a uniform enlargement of E; it may be small
(or large) and far from E.

Theorem 30. Let X be a superreflexive Banach space, let E be a closed

subset of X and let U be an open subset of X. The following assertions

relative to some choice of p ∈ ]1, 2] and of an equivalent norm on X are

equivalent :

(a) Each w ∈ U has a unique metric projection PE(w) in E and the

mapping w 7→ PE(w) is locally Hölderian on U \E.

(b) dE(·) is differentiable with a locally Hölderian derivative on U \E.

(c) For each w ∈ U \ E, dE(·) is p-paraconvex around w for some p ∈
]1, 2].

Proof. (a)⇒(b). As in [40, Thm. 21], for any w ∈ U \ E, we can show
that dE is differentiable and

d′E(w) = j(w − PE(w)),

where j := (‖ · ‖)′. Let us prove that d′E(.) is locally (p − 1)-Hölderian on
U \E, taking on X an equivalent norm of type p, i.e. such that its modulus
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of smoothness ̺X satisfies (for some k > 0) ̺X(t) ≤ ktp for t ∈ R+, which
is possible by [6, Thm. A.6]. Then by (15), for any s > r > 0 there exists
some c > 0 such that

‖j(x) − j(y)‖ ≤ c‖x− y‖p−1 ∀x, y ∈ sBX \ rBX .

Let w ∈ U \E be given. By assumption, there exist γ ∈ ]0, 1] and ℓ, δ > 0
such that

‖PE(u) − PE(w)‖ ≤ ℓ‖u− w‖γ ∀u,w ∈ B(w, δ).

By the above relations, using the fact that for w close enough to w the
number ‖w − PE(w)‖ lies in some interval [r, s] with s > r > 0, there exist
c, ̺ > 0 such that for all u,w ∈ B(w, ̺),

‖d′E(u) − d′E(w)‖ = ‖j(u− PE(u)) − j(w − PE(w))‖

≤ c‖(u− PE(u)) − (w − PE(w))‖p−1

≤ c(‖u− w‖ + ‖PE(u) − PE(w)‖)p−1

≤ c(‖u− w‖ + ℓ‖u− w‖γ)p−1

≤ c(2̺1−γ + ℓ)p−1‖u− w‖γ(p−1).

(b)⇒(c) is a consequence of Corollary 10.

(c)⇒(b). Since X is superreflexive, it can be endowed with an equivalent
uniformly smooth norm with a modulus of smoothness ̺X satisfying for
some k > 0 and p > 1 the estimate ̺X(t) ≤ ktp for t ≥ 0. By Corollary
13, the function −dE is p-paraconvex. Thus, with the assumption of (c),
∂F (−dE)(w) 6= ∅ and ∂FdE(w) 6= ∅ at any w ∈ U \ E. Therefore, dE(·) is
Fréchet differentiable on U \E.

Let us prove that d′E(·) is locally Hölderian on U \ E. Let x ∈ U \ E
and assume that dE(·) is p-paraconvex around x. By the p-paraconvexity of
dE(·) and −dE(·), by virtue of Theorem 8, there exist c, δ > 0 such that for
all u,w ∈ B(x, δ), v ∈ δBX ,

−〈d′E(u), v〉 ≤ −dE(u+ v) + dE(u) + c‖v‖p,

〈d′E(w), v〉 ≤ dE(w + v) − dE(w) + c‖v‖p.

Thus, for any u,w ∈ B(x, δ), for all v ∈ B(0, δ), we have

〈d′E(w) − d′E(u), v〉 ≤ 2‖u− w‖ + 2c‖v‖p.

Hence

‖d′E(u) − d′E(w)‖ ≤
2‖u− w‖

t
+ 2ctp−1

for all t ∈ ]0, δ[. Taking t = 2−1/pδ1−1/p‖u− w‖1/p ∈ ]0, δ[, we obtain
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‖d′E(u) − d′E(w)‖ ≤ (21+1/pδ(1−p)/p + 21/pδ(p−1)2/pc)‖u− w‖(p−1)/p

∀u,w ∈ B(x, δ).

(b)⇒(a). By a result of Pisier (see [6, Thm. A.6], [52], [53]) there exists
an equivalent norm on X and c > 0, q ≥ 2 such that

δX(t) := inf

{

1 −
1

2
‖x+ y‖ : x, y ∈ BX , ‖x− y‖ ≥ t

}

≥ ctq ∀t ∈ [0, 2].

Moreover, by [21, Prop. 5.2, p. 159] we may assume ‖ · ‖ is differentiable on
X \ {0}. Now, by [70, Thm. 1], given s > r > 0, one can find some b > 0
such that for any x, y ∈ sBX \ rBX ,

〈J(x) − J(y), x− y〉 ≥ bδX(‖x− y‖/2s),

where J(·) :=
(

1
2‖ · ‖

2
)′

= ‖ · ‖j(·). It follows that for such x, y,

(33) ‖J(x) − J(y)‖ ≥ 2−qs−qbc‖x− y‖q−1.

By [40], the metric projection mapping PE(·) is single-valued and contin-
uous on U \ E. Furthermore, d′E(w) = j(w − PE(w)) for all w ∈ U \ E,

hence
(

1
2d

2
E

)′
(w) = J(w − PE(w)). Let us prove that w 7→ PE(w) is locally

Hölderian on U \ E. Since d′E is locally Hölderian,
(

1
2d

2
E

)′
is also locally

Hölderian as

‖(d2
E)′(x) − (d2

E)′(y)‖ ≤ 2dE(x)‖d′E(x) − d′E(y)‖ + 2‖d′E(y)‖ ‖x− y‖.

Given x ∈ U \ E, assumption (b) yields some γ ∈ ]0, 1] and a, δ > 0 such
that

‖J(u− PE(u)) − J(w − PE(w))‖ ≤ a‖u− w‖γ ∀u,w ∈ B(x, δ).

Then inequality (33) yields

‖(u− PE(u)) − (w − PE(w))‖q−1 ≤ 2qsqb−1c−1a‖u− w‖γ ,

hence

‖PE(u) − PE(w)‖

≤ ‖u− w‖ + 2q/(q−1)sq/(q−1)b1/(1−q)c1/(1−q)a1/(q−1)‖u− w‖γ/(q−1).

This shows that the metric projection PE(·) is locally Hölderian around x.
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Linéaire 10 (1993), 289–312.

[4] D. Aussel, J.-N. Corvellec and M. Lassonde, Mean value property and subdifferential

criteria for lower semicontinuous functions, Trans. Amer. Math. Soc. 347 (1995),
4147–4161.

[5] D. Aussel, A. Daniilidis and L. Thibault, Subsmooth sets: functional characteriza-

tions and related concepts, ibid. 357 (2005), 1275–1301.

[6] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis,
Amer. Math. Soc. Colloq. Publ. 48, Providence, 2000.

[7] J. M. Borwein and J. R. Giles, The proximal normal formula in Banach space,
Trans. Amer. Math. Soc. 302 (1987), 371–381.

[8] M. L. Bougeard, Morse theory for some lower-C2 functions in finite dimension,
Math. Program. Ser. A 41 (1988), 141–159.

[9] M. Bougeard, J.-P. Penot and A. Pommellet, Towards minimal assumptions for the

infimal convolution regularization, J. Approx. Theory 64 (1991), 245–270.

[10] A. Canino, On p-convex sets and geodesics, J. Differential Equations 75 (1988),
118–157.

[11] P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton–Jacobi Equations

and Optimal Control, Birkhäuser, Basel, 2004.
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