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Jordan isomorphisms and maps preserving spectra

of certain operator products

by

Jinchuan Hou (Taiyuan), Chi-Kwong Li (Williamsburg) and
Ngai-Ching Wong (Kaohsiung and Hong Kong)

Abstract. Let A1,A2 be (not necessarily unital or closed) standard operator algebras
on locally convex spaces X1, X2, respectively. For k ≥ 2, consider different products T1∗· · ·

· · · ∗ Tk on elements in Ai, which covers the usual product T1 ∗ · · · ∗ Tk = T1 · · ·Tk and
the Jordan triple product T1 ∗T2 = T2T1T2. Let Φ : A1 → A2 be a (not necessarily linear)
map satisfying σ(Φ(A1) ∗ · · · ∗ Φ(Ak)) = σ(A1 ∗ · · · ∗ Ak) whenever any one of Ai’s has
rank at most one. It is shown that if the range of Φ contains all rank one and rank two
operators then Φ must be a Jordan isomorphism multiplied by a root of unity. Similar
results for self-adjoint operators acting on Hilbert spaces are obtained.

1. Introduction. Spectrum preserving linear maps between Banach al-
gebras have been extensively studied in connection with Kaplansky’s prob-
lem concerning the characterization of invertibility preserving linear maps;
see [14]. A related question is:

Is it true that between semisimple Banach algebras every spectrum

preserving unital surjective linear map is a Jordan homomorphism?

Jafarian and Sourour showed in [13] that the answer is positive for maps
between L(X1) and L(X2), the Banach algebras of bounded linear operators
acting on complex Banach spaces X1, X2, respectively. There are many other
papers concerning this type of linear preservers; for example, see [1–3, 10,
11, 19–21, 23]. We also mention [4, 6, 14] about invertibility preservers and
spectrum compressers between semisimple Banach algebras.
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Recently, there has been growing interest in the problem of characteriz-
ing spectrum preserving maps without the linearity assumption. Of course,
nonlinear spectrum preserving transformations can be almost arbitrary. So,
some mild additional assumptions are needed. In [17], Molnár considered
surjective maps Φ : L(X1) → L(X2) such that Φ(A)Φ(B) and AB always
have the same spectrum, and proved that such a map must be a Jordan iso-
morphism multiplied by ±1. In [12], the authors considered surjective maps
Φ : L(X1) → L(X2) such that Φ(B)Φ(A)Φ(B) and BAB always have the
same spectrum, and proved that such a map must be a Jordan isomorphism
multiplied by a cubic root of unity. In fact, they obtained more general
results concerning Φ : A1 → A2, where A1,A2 are closed unital standard
operator algebras on X1, X2, respectively. Moreover, in addition to the usual
spectrum σ(X), they also characterized preservers of the left spectrum, the
right spectrum, the boundary of the spectrum, the full spectrum, the point
spectrum, the compression spectrum, the approximate point spectrum, and
the surjectivity spectrum of operators, etc.; see [7, 8]. Note that all these dif-
ferent types of spectra reduce to the usual spectrum for finite rank operators.

Instead of considering different types of products separately, the authors
in [5] considered a general product T1 ∗ · · · ∗ Tk on the algebra Mn of n × n

complex matrices, which covers the usual product T1 ∗ · · · ∗ Tk = T1 · · ·Tk

and the Jordan triple product T1 ∗ T2 = T2T1T2. They showed that a map
Φ : Mn → Mn satisfying

(1.1) σ(Φ(A1) ∗ · · · ∗ Φ(Ak)) = σ(A1 ∗ · · · ∗ Ak)

for all A1, . . . , Ak in Mn must be a Jordan isomorphism multiplied by a root
of unity. Their results do not require that Φ is surjective.

The purposes of this paper are manifold. First, we develop new tech-
niques in L(X) including various characterizations of rank one operators
to extend the results in [5, 12, 17] to more general settings. These new
techniques will be useful in other problems on L(X). Second, we refine the
existing results by weakening the spectrum preserving properties. This will
enhance the understanding of the analytic and algebraic properties of spec-
trum preserving maps on standard operator algebras.

Our results unify and generalize many known facts. In particular, two
consequences of our general result (Theorem 3.2) are given below. Here, we
suppose that the range of a map Φ : A1 → A2 between standard operator
algebras contains all continuous rank one and rank two operators.

(a) If σ(Φ(A1)φ(A2))=Φ(A1A2) whenever A1,A2 in A1 satisfy rank(A1A2)
≤ 1, then Φ is a Jordan isomorphism multiplied by ±1.

(b) If σ(Φ(A1)φ(A2)Φ(A1)) = Φ(A1A2A1) whenever A1, A2 in A1 satisfy
rank(A1A2A1) ≤ 1, then Φ is a Jordan isomorphism multiplied by a
complex number µ with µ3 = 1.
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We present a special but typical case of our results in Section 2 and their
most general forms in Section 3, and obtain analogous results for self-adjoint
operators acting on Hilbert spaces in Section 4.

We would like to thank the referee for the kind comments and advice.

2. Results for special operator products BrABs. Let X be a (com-
plex Hausdorff) locally convex (topological linear) space with dual X ′. The
σ(X, X ′) topology is the weakest (Hausdorff) locally convex topology on X

such that each f in X ′ defines a continuous linear functional x 7→ f(x) on X.
Similarly, we can define the σ(X ′, X) topology on X ′. Denote by L(X) the
algebra of all continuous linear operators on X, and by F(X) its subalgebra
of all continuous finite rank operators

∑n
i=1

fi ⊗ xi. Here fi belongs to X ′

and xi belongs to X for each i = 1, . . . , n. The operator f⊗x on X is defined
by sending y to f(y)x.

Recall that a standard operator algebra A on a locally convex space X

is a subalgebra of L(X) containing F(X). We do not, however, assume that
A contains the identity operator IX , or that A is closed in any topology.

The following simple useful lemma was proved in [12]. For the sake of
completeness, we give a short proof. Recall that a rank one idempotent on
X has the form f ⊗ x with f(x) = 1.

Lemma 2.1. Let X be a locally convex space, and let A ∈ L(X). Then

A = 0 if and only if f(Ax) = 0 for all rank one idempotents f ⊗ x on X.

Proof. We need only check the “only if” part. For any f in X ′ and x in
X, if f(x) = α 6= 0 then f

(
1

α
x
)

= 1 implies 0 = f
(
A
(

1

α
x
))

= 1

α
f(Ax). Thus

f(Ax) = 0. If f(x) = 0, then choose a g in X ′ such that g(x) = 1. Let f1 =
g + f and f2 = g− f . We have f1(x) = f2(x) = 1. Thus, by the assumption,
f1(Ax) = f2(Ax) = 0. It follows that f(Ax) = 1

2
(f1 − f2)(Ax) = 0. Hence

A = 0.

Lemma 2.2. Let X be a locally convex space. Let (r, s) be a pair of non-

negative integers such that r + s ≥ 1. For any A, A in L(X), we have

A = A if and only if tr(BrABs) = tr(BrABs)

for every rank one idempotent operator B on X.

Proof. For any rank one idempotent B = f ⊗ x on X, we observe that

tr(BrABs) = tr((f ⊗ x)rA(f ⊗ x)s) = f(Ax)f(x)r+s−1

and

tr(BrABs) = tr((f ⊗ x)rA(f ⊗ x)s) = f(Ax)f(x)r+s−1.

So, f((A − A)x) = 0 whenever f(x) = 1. By Lemma 2.1, A = A.
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Lemma 2.3. Let A be any complex n×n matrix of rank at least k. Then

there is a unitary n × n matrix U such that the leading k × k submatrix

of U∗AU is nonsingular.

Proof. Suppose A = PV where P is positive semidefinite and V is uni-
tary. Let U be unitary such that U∗V U = D is a diagonal unitary matrix.
Then U∗AU = (U∗PU)D, and the sum of the absolute values of the k × k

principal minors of U∗AU is the same as the sum of the k×k principal minors
of U∗PU , which is the kth elementary symmetric function of the eigenval-
ues of P . This is positive because A has rank at least k, and therefore P

has at least k positive eigenvalues, counting multiplicity. Now, applying a
permutation similarity if needed, we see that the leading k×k submatrix of
U∗AU is invertible.

Lemma 2.4. Let X be a locally convex space. Let (r, s) be a pair of non-

negative integers such that r + s ≥ 1. Then a nonzero A in L(X) has rank

one if and only if σ(BrABs) has at most two elements including 0 for all B

in L(X) with rank 2.

Proof. We check the sufficiency only. Suppose A has rank at least 2.
Then there are x1, x2 in X such that {Ax1, Ax2} is linearly independent.
Let P be the projection of X onto [x1, x2, Ax1, Ax2], which is the linear span
of {x1, x2, Ax1, Ax2} of dimension n ≤ 4. Then we can think of A11 := PAP

as an n × n matrix of rank at least two. By Lemma 2.3, there is a unitary
matrix U on [x1, x2, Ax1, Ax2] such that U∗A11U has an invertible 2 × 2
leading submatrix. Thus, we may choose x̃1, x̃2 ∈ [x1, x2, Ax1, Ax2] and a
space decomposition of X into [x̃1, x̃2] and its complement so that A has an
operator matrix form (

A1 ∗

∗ ∗

)
,

where A1 is in upper triangular form with nonzero diagonal entries a1, a2.
Now, use the same space decomposition to construct B so that B has opera-
tor matrix diag(1, b)⊕0, where a1, a2b

r+s are two distinct nonzero numbers.
Then BrABs has two distinct nonzero eigenvalues a1 and a2b

r+s.

The following is our main result. Here, we do not assume the map Φ is
linear, multiplicative or continuous. But these turn out to be parts of the
conclusion. Note also that Φ might not be surjective, and A1,A2 might not
be closed in any topology or contain the identity operators.

Theorem 2.5. Let A1,A2 be standard operator algebras on locally con-

vex spaces X1, X2, respectively. Let (r, s) be a pair of nonnegative integers

such that r + s ≥ 1. Suppose the range of a map Φ : A1 → A2 contains all
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continuous operators of rank one and rank two, and

(2.1) σ(Φ(B)rΦ(A)Φ(B)s) = σ(BrABs)

whenever at least one of A, B in A1 has rank at most one. Then there is a

scalar λ such that λr+s+1 = 1 and one of the following cases holds:

(1) there is a σ(X1, X
′
1)-σ(X2, X

′
2) bicontinuous invertible linear opera-

tor T : X1 → X2 such that

Φ(A) = λTAT−1, ∀A ∈ A1;

(2) there is a σ(X ′
1, X1)-σ(X2, X

′
2) bicontinuous invertible linear opera-

tor S : X ′
1 → X2 such that

Φ(A) = λSA′S−1, ∀A ∈ A1.

Here A′ : X ′
1 → X ′

1 is the dual map of A : X1 → X1.

Proof. It suffices to consider the case when both X1, X2 have dimension
at least 2. We divide the proof into several steps.

Assertion 1. Φ is injective, sends 0 to 0 and sends rank one operators

to rank one operators.

The condition (2.1) implies that

σ(Φ(B)rΦ(f ⊗ x)Φ(B)s) = σ(Br · f ⊗ x · Bs) = {0, f(Br+sx)}

for all B in A1. Since Φ(A1) contains all continuous operators of rank two,
Lemma 2.4 implies that Φ sends each rank one operator f ⊗x to an operator
of rank at most one; the image has rank exactly one, by considering a B in
A1 with f(Br+sx) = 1 in the spectrum equality above.

It follows from Lemma 2.2 that Φ(0) = 0.
Observe that if Φ(f ⊗ x) = g ⊗ y, then

g(Φ(B)r+sy) = f(Br+sx),(2.2)

g(y)r+s−1g(Φ(B)y) = f(x)r+s−1f(Bx), ∀B ∈ A1.(2.3)

Setting B = f ⊗ x, we have

(2.4) g(y)r+s+1 = f(x)r+s+1.

It follows from Lemma 2.1 and (2.3) that Φ is injective.

Assertion 2. Φ(f ⊗ x) is linear in f when x is fixed , and also linear

in x when f is fixed.

Fix x in X. Suppose that for f1, f2 in X ′
1 and a scalar α, there are

g1, g2, g, g′ in X ′
2 and y1, y2, y, y′ in X2 such that

Φ(fi ⊗ x) = gi ⊗ yi for i = 1, 2,

and
Φ((f1 + f2) ⊗ x) = g ⊗ y, Φ(αf1 ⊗ x) = g′ ⊗ y′.
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Then (2.2) ensures that

g′(Φ(B)r+sy′) = αf1(B
r+sx) = αg1(Φ(B)r+sy1), ∀B ∈ A1.

Since the range of Φ contains all continuous operators of rank one, by Lemma
2.1 for example we have

g′ ⊗ y′ = αg1 ⊗ y1, i.e. Φ(αf1 ⊗ x) = αΦ(f1 ⊗ x).

On the other hand, (2.2) also ensures that

g(Φ(B)r+sy) = f1(B
r+sx) + f2(B

r+sx)

= g1(Φ(B)r+sy1) + g2(Φ(B)r+sy2), ∀B ∈ A1.

This leads, by Lemma 2.1 again, to

(2.5) g ⊗ y = g1 ⊗ y1 + g2 ⊗ y2.

In other words,

Φ((f1 + f2) ⊗ x) = Φ(f1 ⊗ x) + Φ(f2 ⊗ x), ∀f1, f2 ∈ X ′, x ∈ X.

As a result, Φ(f ⊗ x) is linear in f when x is fixed. Similarly, Φ(f ⊗ x) is
also linear in x when f is fixed.

By counting ranks, we note that (2.5) ensures either

(2.6) y1 = α1y and y2 = α2y,

or

(2.7) g1 = β1g and g2 = β2g,

for some scalars α1, α2, β1, β2.

From now on, we make the following

Assumption. The first case (2.6) happens for a linearly independent
pair f1, f2 in X ′

1 and x in X1.

Assertion 3. We can define an injective σ(X ′
1, X1)-σ(X ′

2, X2) contin-

uous linear operator S′
x : X ′

1 → X ′
2 such that

Φ(f ⊗ x) = S′
xf ⊗ y, ∀f ∈ X ′

1.

To this end, let f3 ∈ X ′
1 \ {0}, g3 ∈ X ′

2 and y3 ∈ X2 be such that

Φ(f3 ⊗ x) = g3 ⊗ y3.

Suppose y3 were linearly independent of y. By counting ranks in

Φ((fi + f3) ⊗ x) = gi ⊗ yi + g3 ⊗ y3 = αigi ⊗ y + g3 ⊗ y3, i = 1, 2,

we see that g1, g2 are both scalar multiples of g3. Hence Φ(f1⊗x) = g1⊗y1 =
λg2 ⊗ y2 = λΦ(f2 ⊗x) for some scalar λ. This implies Φ((f1 −λf2)⊗x) = 0,
and thus f1 = λf2. This contradiction tells us that y3 also depends on y.
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At this stage, we show that for this fixed x in X1, we have a fixed y in
X2 and a linear operator S′

x : X ′
1 → X ′

2 such that

(2.8) Φ(f ⊗ x) = S′
xf ⊗ y, ∀f ∈ X ′

1.

It follows from (2.2) that S′
x is injective and σ(X ′

1, X1)-σ(X ′
2, X2) continu-

ous.

Assertion 4. For any x̂ in X1, there is a ŷ in X2 and an injective

σ(X ′
1, X1)-σ(X ′

2, X2) continuous linear operator S′
x̂ such that

Φ(f ⊗ x̂) = S′
x̂f ⊗ ŷ, ∀f ∈ X ′

1.

It suffices to consider those x̂ linearly independent of x. Assume that for
any linearly independent pair f1, f2 in X ′

1, there are ĝ1, ĝ2 in X ′
2 and y1, y2

in X2 such that

Φ(f1 ⊗ x̂) = ĝ1 ⊗ y1 and Φ(f2 ⊗ x̂) = ĝ2 ⊗ y2.

Claim. y1, y2 are linearly dependent.

If not, by counting ranks in

Φ((f1 + f2) ⊗ x̂) = ĝ1 ⊗ y1 + ĝ2 ⊗ y2,

we see that ĝ1, ĝ2 are linearly dependent. Suppose also

Φ(f1 ⊗ x) = g1 ⊗ y and Φ(f2 ⊗ x) = g2 ⊗ y.

Here, gi = S′
xfi for i = 1, 2.

If y, y1 are linearly dependent, then as y2 is linearly independent of y1,
we see that y, y2 are linearly independent. By counting ranks in

Φ(f2 ⊗ (x + x̂)) = g2 ⊗ y + ĝ2 ⊗ y2,

we see that g2, ĝ2 are linearly dependent. Since ĝ1, ĝ2 are linearly dependent,
so are ĝ1, g2. Note that f1⊗ x̂, f2⊗x are linearly independent. Write y1 = αy

and ĝ1 = βg2 for some nonzero scalars α, β. Then

Φ(f1 ⊗ x̂) = ĝ1 ⊗ y1 = αβg2 ⊗ y = αβΦ(f2 ⊗ x).

By (2.2),
f1(B

r+sx̂) = αβf2(B
r+sx), ∀B ∈ A1.

By Lemma 2.1, f1 ⊗ x̂ = αβf2 ⊗ x, a contradiction. Hence y, y1 are linearly
independent, and similarly for y, y2. Counting ranks again, we see that gi, ĝi

are linearly dependent for i = 1, 2. This forces g1, g2 to be linearly dependent.
It follows from the injectivity of Φ that f1, f2 are linearly dependent, a
contradiction.

At this point, we can define an injective linear map S′
x̂ : X ′

1 → X ′
2 such

that
Φ(f ⊗ x̂) = S′

x̂f ⊗ ŷ, ∀f ∈ X ′
1.

Here ŷ is a fixed element in X2.



38 J. C. Hou et al.

Assertion 5. S′
xf, S′

x̂
f are linearly dependent for all f in X ′

1.

Suppose not, and there is an f in X ′
1 such that g = S′

xf, ĝ = S′
x̂f are

linearly independent. By definition,

Φ(f ⊗ x) = g ⊗ y and Φ(f ⊗ x̂) = ĝ ⊗ ŷ.

Counting ranks in

Φ(f ⊗ (x + x̂)) = g ⊗ y + ĝ ⊗ ŷ,

we see that y, ŷ are linearly dependent. Choose f1, f2 in X ′
1 such that

f1(x) = f1(x̂) = f2(x) = 1 and f2(x̂) = 0.

By (2.4),

|g1(y)| = 1 and ĝ2(ŷ) = 0.

Here g1 = S′
xf1 and ĝ2 = S′

x̂
f2. Now, (2.1) gives

σ((f1 ⊗ x)r(f2 ⊗ x̂)(f1 ⊗ x)s) = σ((g1 ⊗ y)r(ĝ2 ⊗ ŷ)(g1 ⊗ y)s).

Since ŷ linearly depends on y, we have ĝ2(y) = 0, and thus

1 = f1(x)r+s−1f1(x̂)f2(x) = g1(y)r+s−1g1(ŷ)ĝ2(y) = 0,

a contradiction.

Now, we can write

Φ(f ⊗ x̂) = S′
xf ⊗ ŷ.

Assertion 6. ŷ is independent of f .

Suppose for any other f̄ in X ′
1, which is linearly independent of f , we

have Φ(f̄ ⊗ x̂) = S′
xf̄ ⊗ ȳ for some ȳ in X2. By counting ranks in

Φ((f + f̄) ⊗ x̂) = S′
xf ⊗ ŷ + S′

xf̄ ⊗ ȳ,

we see that ŷ and ȳ are linearly dependent, as S′
xf and S′

xf̄ are independent.
Therefore, Φ(f̄ ⊗ x̂) = αS′

xf̄ ⊗ ŷ for some scalar α. On the other hand,
Φ((f− f̄)⊗x̂) = βS′

x(f− f̄)⊗ ŷ for another scalar β. This gives βS′
x(f− f̄) =

S′
xf−αS′

xf̄ , and hence α = β = 1 due to the linear independence of f and f̄ .
Thus, we can obtain an injective σ(X ′

1, X1)-σ(X ′
2, X2) continuous linear

map S′ : X ′
1 → X ′

2 such that S′ = S′
x for all x in X1. It then also follows

that there is an injective σ(X1, X
′
1)-σ(X2, X

′
2) continuous linear map T :

X1 → X2 such that

Φ(f ⊗ x) = S′f ⊗ Tx, ∀f ∈ X ′
1, x ∈ X1.

Assertion 7. S′ = λT ′−1
for some scalar λ with λr+s+1 = 1. Here

T ′ : X ′
2 → X ′

1 is the dual map of T .

We check first that S′ has dense range. Suppose that S′X ′
1 is not σ(X ′

2,X2)
dense in X ′

2. Then there is a nonzero y in X2 such that S′f(y) = 0. Since



Maps preserving spectra of operator products 39

the range of Φ contains all continuous rank one operators on X2, there is a
B in A1 with B 6= 0 and Φ(B)X2 is spanned by y. Now by (2.3), we have

f(x)r+s−1f(Bx) = S′f(Tx)r+s−1S′f(Φ(B)Tx) = 0, ∀f ∈ X ′
1, ∀x ∈ X1.

By Lemma 2.1, we have B = 0. This conflict tells us that S′ does have dense
range in X ′

2. Similarly, we see that T has dense range in X2. In particular,
its dual map T ′ : X ′

2 → X ′
1 is injective.

Applying (2.4), we have

(S′f(Tx))r+s+1 = (f(x))r+s+1, ∀f ∈ X ′
1, x ∈ X1.

By a connectedness argument, we can derive the existence of a scalar λ with
λr+s+1 = 1 such that

S′f(Tx) = λf(x), ∀f ∈ X ′
1, x ∈ X1.

It then follows that
T ′S′f = λf, ∀f ∈ X ′

1.

Since T ′ is now known to be bijective, S′ = λT ′−1.

At this point, we have shown that

Φ(A) = λTAT−1, ∀A ∈ F(X1).

In general, for any A in A1, f in X ′
1 and x in X1 with f(x) = 1, by putting

B = f ⊗ x in (2.1) we have

f(Ax) = λr+s(T−1)′f(Φ(A)Tx) = λ−1f(T−1Φ(A)Tx).

By Lemma 2.1, we have

Φ(A) = λTAT−1, ∀A ∈ A1.

Finally, if the second case (2.7) happens for all pairs f1, f2 in X ′
1 and

for all x in X1, then following a similar, and slightly easier, pattern we will
arrive at the other possible conclusions.

Recall that the Mackey topology of a locally convex space X is the (locally
convex) topology τ(X, X ′) of uniform convergence on σ(X ′, X) compact
convex subsets of X ′. A locally convex space X is called a Mackey space if
its topology coincides with τ(X, X ′). Hilbert spaces, Banach spaces, Fréchet
spaces, infrabarrelled spaces, bornological spaces, and Montel spaces are all
Mackey spaces.

On the other hand, the strong topology of the dual space X ′ of X is the
topology β(X ′, X) of uniform convergence on bounded subsets of X. Equip
X ′ with β(X ′, X) to get the strong dual X ′

β of X. The strong dual X ′′
ββ of X ′

β

is called the strong bidual of X, and X is semireflexive if KXX = X ′′
ββ, where

KX is the canonical embedding of X into X ′′
ββ. If, in addition, the topology

of X agrees with the strong topology then X is reflexive. The Mackey–
Arens theorem implies that X is semireflexive if and only if β(X ′, X) =
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τ(X ′, X) (see, e.g., [22, Corollary 18.2]). Semireflexive metrizable locally
convex spaces are reflexive (see, e.g., [22, Corollary 18.4]). Reflexive locally
convex spaces are Mackey spaces.

Recall also that a locally convex space X is barrelled if every σ(X ′, X)
bounded set in X ′ is equicontinuous, and thus relatively σ(X ′, X) compact
by the Alaoglu–Bourbaki theorem (see, e.g., [22, Theorem 16.13]). In other
words, X is barrelled if and only if its topology agrees with β(X, X ′), where
we observe (X ′, σ(X ′, X))′ = X. Banach and Fréchet spaces are barrelled,
and barrelled spaces are Mackey.

Theorem 2.6. In the conclusion of Theorem 2.5, the continuity of T

and S can be assumed in the Mackey topology.

(1) Assume Case (1) of Theorem 2.5 occurs. If X1, X2 are Banach or

Fréchet spaces, then T is a linear homeomorphism in the metric

topology.

(2) Assume Case (2) occurs. If X1 (resp. X2) is barrelled (in particular ,
Banach or Fréchet), then X2 (resp. X1) is semireflexive and X1 =
(X ′

2)β (resp. X2 = (X ′
1)β). In particular , if both X1, X2 are Banach

or Fréchet spaces then they are reflexive and dual to each other.

Proof. It is well-known that σ(X, X ′)-σ(Y, Y ′) continuous linear opera-
tors between X and Y are exactly τ(X, X ′)-τ(Y, Y ′) continuous linear op-
erators. Moreover, if A is a continuous linear operator from a locally convex
space X into another Y then A is σ(X, X ′)-σ(Y, Y ′) continuous, and its dual
map A′ : Y ′ → X ′ is β(Y ′, Y )-β(X ′, X) continuous (see, e.g., [22, Propo-
sition 17.14]). Thus T and S in Theorem 2.5 are both continuous in the
Mackey topologies. Rather than noting that Banach and Fréchet spaces are
Mackey, we can also prove (1) directly by using the closed graph theorem.

For (2), we note that a locally convex space X is semireflexive if and only
if (X, σ(X, X ′)) is quasi-complete, i.e. all bounded Cauchy nets converges
(see, e.g., [22, Theorem 18.2]). Now, S : (X ′

1, σ(X ′
1, X1)) → (X2, σ(X2, X

′
2))

is a linear homeomorphism. If X1 is barrelled, then (X ′
1, σ(X ′

1, X1)) is quasi-
complete, and thus X2 is semireflexive. As S′ induces a linear homeomor-
phism from (X ′

2, β(X ′
2, X2)) onto (X1, β(X1, X

′
1)), we see that (X ′

2)β = X1.

On the other hand, the range Φ(A1) is again a standard operator algebra
on X2. The inverse map Φ−1 : Φ(A1) → A1 satisfies a condition similar to
(2.1), and clearly the range of Φ−1 contains F2(X1). Hence, one can conclude
Case 2 again. In case X2 is barrelled, we can conclude that X1 is semireflexive
and (X ′

1)β = X2 in a similar manner.

We remark that the barrelledness condition in Theorem 2.6(2) is sharp,
as it is known that a Mackey space X has a quasi-complete dual space
(X ′, σ(X ′, X)) if and only if X is barrelled (see, e.g., [15, 23.6(4)]).
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One reason why we are interested in such a generality of Theorem 2.5 is
that the whole theory depends on the dual pairs 〈X1, X

′
1〉, 〈X2, X

′
2〉 rather

than the particular topologies of the underlying spaces X1, X2. The following
example provides another reason. We think this is a very important case we
should not forget.

Example 2.7. Let X be a Banach space. Consider the map Φ : L(X) →
L(X ′) defined by

Φ(A) = A′, ∀A ∈ L(X).

Here A′ : X ′ → X ′ is the dual map of A. Note that the range of Φ might
not contain all norm continuous rank one operators on X ′. However, if we
equip X ′ with the σ(X ′, X) topology, then the range of Φ does contain all
σ(X ′, X) continuous finite rank operators. Thus we can apply Theorem 2.5.
Note also that X need not be reflexive. Anyway, we have

(X ′, σ(X ′, X))′β = X.

Remark 2.8. We do not have r = s in general, even if Case (2) in
Theorem 2.5 holds. Indeed, we always have

σ(AB) ∪ {0} = σ(BA) ∪ {0},

and thus

σ(BrABs) ∪ {0} = σ(ABr+s) ∪ {0} = σ(BsABr) ∪ {0}

= σ(B′rA′B′s) ∪ {0} = σ(Φ(B)rΦ(A)Φ(B)s) ∪ {0}

for all A, B in A1. We can drop 0 from the above equalities, since Φ sends
invertible elements to invertible elements.

3. Applications to generalized operator products

Definition 3.1. Fix a positive integer k ≥ 2 and a finite sequence
(i1, . . . , im) such that {i1, . . . , im} = {1, . . . , k} and there is an ip not equal
to iq for all other q. Define a product for operators T1, . . . , Tk by

T1 ∗ · · · ∗ Tk = Ti1 · · ·Tim .

Clearly, this general product covers the usual product T1 ∗ · · · ∗ Tk =
T1 · · ·Tk and the Jordan triple product T1 ∗ T2 = T2T1T2.

Theorem 3.2. Let Ai be a standard operator algebra on a complex

locally convex space Xi for i = 1, 2. Consider the product of operators

T1 ∗ · · · ∗ Tk defined in Definition 3.1. Suppose a map Φ : A1 → A2

satisfies

σ(Φ(A1) ∗ · · · ∗ Φ(Ak)) = σ(A1 ∗ · · · ∗ Ak)(3.1)
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whenever any one of A1, . . . , Ak in A1 has rank at most one. Suppose also

that the range of Φ contains all continuous linear operators on X2 of rank

one and rank two. Then there exists a scalar λ such that λm = 1 and one of

the following cases holds.

(1) There exists an invertible operator T in L(X1, X2) such that

Φ(A) = λTAT−1 for all A ∈ A1.

(2) There exists an invertible operator S in L(X ′
1, X2) such that

Φ(A) = λSA′S−1 for all A ∈ A1.

In this case, we have equality of the ordered indices

(ip+1, . . . , im, i1, . . . , ip−1) = (ip−1, . . . , i1, im, . . . , ip+1).

The continuity of T and S above can also be assumed in the Mackey topolo-

gies.

Suppose further that X1 and X2 are Banach or Fréchet spaces. Then T

and S are continuous in the metric topologies. If the second case happens,
then both X1 and X2 are reflexive and dual to each other.

Proof. Let ip be a fixed index differing from all other indices iq as in
Definition 3.1. We consider only a special class of products A1 ∗ · · · ∗ Ak in
which Aip = A and all other Aiq = B such that one of A, B is of rank zero
or one. The condition (3.1) now reduces to the condition (2.1) in Theorem
2.5. Applying Theorems 2.5 and 2.6, we have the desired forms of Φ.

Finally, assume Φ(A) = λSA′S−1 as in Case (2). It follows from an
argument similar to the one in Remark 2.8 that

σ(AipAip+1
· · ·AimAi1 · · ·Aip−1

) = σ(AipAip−1
· · ·Ai1Aim · · ·Aip+1

),

whenever A1, . . . , Ak ∈ A1 and Aip = f ⊗ x has rank one. This amounts to

f(Aip+1
· · ·AimAi1 · · ·Aip−1

x) = f(Aip−1
· · ·Ai1Aim · · ·Aip+1

x)

for all f in X ′
1 and x in X1. Therefore,

Aip+1
· · ·AimAi1 · · ·Aip−1

= Aip−1
· · ·Ai1Aim · · ·Aip+1

.

Suppose ip+1 6= ip−1. Then we can choose two linearly independent vectors
x1, x2 in X1 and an f in X ′

1 such that f(x1) = f(x2) = 1. Set Aip+1
= f⊗x1,

Aip−1
= f ⊗ x2 and all other Ak to be the two-dimensional projection of X1

onto the linear span [x1, x2]. In this way, we shall arrive a contradiction

x1 = Aip+1
· · ·AimAi1 · · ·Aip−1

x1 = Aip−1
· · ·Ai1Aim · · ·Aip+1

x1 = x2.

Therefore, ip+1 = ip−1. Inductively, we will have the equalities of other
indices.
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Remark 3.3. (a) As mentioned in [5] the assumption that there exists
an ip such that iq 6= ip for all other iq in Definition 3.1 is necessary for the
conclusion of Theorem 3.2. For example, if A ∗ B = AABB, then one can
pick an involution A0 different from I, and consider Φ such that Φ(A0) = I,
Φ(I) = A0 and Φ(A) = A for all other A. Then Φ is surjective such that
Φ(A) ∗ Φ(B) and A ∗B always have the same spectrum, but Φ is not of the
form (1) or (2) in Theorem 3.2.

(b) The assumption that the range of Φ contains all rank two continuous
linear operators is necessary for the infinite-dimensional case even if we
assume that Φ is linear and preserves rank one idempotents. For example,
let H be an infinite-dimensional complex Hilbert space and V an isometry
on H that is not unitary. Let Φ : L(H) → L(H) be a linear map defined by
Φ(A) = V AV ∗ for every A. Then

Φ(A1) ∗ · · · ∗ Φ(Ak) = V A1V
∗ ∗ · · · ∗ V AkV

∗ = V (A1 ∗ · · · ∗ Ak)V
∗

and

σ(Φ(A1) ∗ · · · ∗ Φ(Ak)) ∪ {0} = σ(V (A1 ∗ · · · ∗ Ak)V
∗) ∪ {0}

= σ((A1 ∗ · · · ∗ Ak)V
∗V ) ∪ {0} = σ(A1 ∗ · · · ∗ Ak) ∪ {0}.

As a result, σ(Φ(A1) ∗ · · · ∗Φ(Ak)) = σ(A1 ∗ · · · ∗Ak) whenever A1 ∗ · · · ∗Ak

is not invertible. In particular, the equality holds whenever A1 ∗ · · · ∗Ak has
finite rank.

Note that, however, Theorems 2.5 and 3.2 indeed apply if we think of Φ

as a map from L(H) onto L(K) with K = V H.

(c) If Case (1) in Theorem 3.2 holds, then clearly equation (3.1) holds
for any operators A1, . . . , Ak in A1. In fact, if the conclusion (1) holds, then
A1 ∗ · · ·∗Ak and Φ(A1)∗ · · ·∗Φ(Ak) will always have the same left spectrum,
the right spectrum, the boundary of the spectrum, the full spectrum, the
point spectrum, the compression spectrum, the approximate point spectrum
and the surjectivity spectrum, etc.

(d) Assume Case (2) in Theorem 3.2 holds. In the finite-dimensional case,
equation (3.1) will also hold for any matrices A1, . . . , Ak. In the infinite-
dimensional case, one may consider different types of spectra and the same
conclusion holds in some occasions, but not always; see [12]. For example, let
X be a reflexive infinite-dimensional complex Banach space on which there
exists a left invertible operator A0 that is not invertible. Thus, σl(A0) 6=
σl(A

′
0), where σl(T ) denotes the left spectrum. Let Φ : L(X) → L(X) be

a surjective map. Then Φ satisfies σl(Φ(B)Φ(A)Φ(B)) = σl(BAB) for all
A, B in L(X) if and only if there exists an invertible T in L(X) such that
Φ(A) = µTAT−1 for all A, where µ is a cubic root of unity. In fact, Φ satisfies
equation (3.1). So, by Theorem 3.2 with A1 ∗ A2 = A2A1A2, Φ has either
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the form (1) Φ(A) = µTAT−1 for all A or the form (2) Φ(A) = µSA∗S−1 for
all A, where µ3 = 1. However, (2) cannot occur in this situation; otherwise,
σl(A0) = σl(Φ(I)Φ(A0)Φ(I)) = σl(A

′
0).

4. Results on self-adjoint operators. Let H be a complex Hilbert
space and S(H) be the real linear space of all self-adjoint operators in L(H).
Note that S(H) is a Jordan ring. In this section we solve the problems
discussed in Sections 2 and 3 for maps on S(H). Our results refine those
in [5] under the assumption that the range of Φ contains all self-adjoint
operators of rank one and rank two.

It suffices to consider the case when both X1, X2 have dimension at
least 2. We begin with an observation.

Lemma 4.1. Let T1 ∗ · · · ∗ Tk = Ti1 · · ·Tip · · ·Tim be a general product

on S(H) defined as in Definition 3.1. Then there exists a positive integer n

with

m = 2n − 1, ip = n, and ik = i2n−k for all k = 1, . . . , n.

Proof. Since the products are all self-adjoint, we have

Ti1 · · ·Tip · · ·Tim = Tim · · ·Tip · · ·Ti1 .

If i1 6= im, we put Ti1 = P , Tim = Q, and all other Tij = IH , the identity
operator on H. Here P, Q are any pair of projections on H. Then we get

PQP · · ·Q = QPQ · · ·P.

This cannot happen when, e.g., P = e1×e1 and Q = 1√
2
(e1 +e2)× (e1 +e2).

Here e1, e2 are two orthogonal elements of norm one, and the operator e× e

is defined by x 7→ 〈x, e〉e. This contradiction shows that i1 = im. Induc-
tively, we have ik = im−k+1 for k = 1, . . . , m. Since ip is distinct from
any other index, we must have m = 2n − 1 and ip = n for some positive
integer n.

Theorem 4.2. Let S(Hi) be the set of all self-adjoint operators on a

complex Hilbert space Hi for i = 1, 2. Consider the product T1 ∗ · · · ∗ Tk

defined in Definition 3.1. Suppose Φ : S(H1) → S(H2) satisfies

σ(Φ(A1) ∗ · · · ∗ Φ(Ak)) = σ(A1 ∗ · · · ∗ Ak),(4.1)

whenever any one of A1, . . . , Ak in S(H1) has rank at most one. Suppose

also that the range of Φ contains all rank one and rank two self-adjoint

operators on H2. Then there exist a scalar ξ in {−1, 1} with ξm = 1 and a

linear or conjugate linear surjective isometry U : H1 → H2 such that

Φ(A) = ξUAU∗, ∀A ∈ S(H1).
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To prove our result, it is important to characterize rank one operators in
terms of the general products of self-adjoint operators. We have the following
lemmas.

Lemma 4.3. Let (r,s) be a pair of nonnegative integers such that r+s≥1.

Let H be a complex Hilbert space, and let 0 6= A ∈ S(H). Then the following

statements are equivalent.

(a) A has rank one.

(b) For any B in S(H), the spectrum σ(BrABs) contains at most one

nonzero element.

(c) There does not exist B in S(H) of rank two such that σ(BrABs)
contains two distinct nonzero elements.

Proof. The implications (a)⇒(b)⇒(c) are clear. The proof of (c)⇒(a) is
similar to that of Lemma 2.4.

Proof of Theorem 4.2. Observing that Lemmas 2.1 and 2.2 in Section 2
hold when we consider only rank one self-adjoint idempotents x×x in L(H),
where x×x(y) := 〈y, x〉x and ‖x‖ = 1. Together with Lemma 4.3, Assertion 1
in the proof of Theorem 2.5 is valid. In other words, Φ is injective, sends
0 to 0 and sends rank one self-adjoint operators to rank one self-adjoint
operators. More precisely, for all x in H1 there is a u in H2, unique up to a
complex modulus one multiple, such that

Φ(x × x) = ξ u × u,

where ξ ∈ {−1, 1}. Write u = Tx. It follows from the spectrum equality
that ‖Tx‖ = ‖x‖ and ξm = 1. As in (2.3), we have

〈Bx, x〉 = ξ〈Φ(B)Tx, Tx〉, ∀B ∈ S(H1), x ∈ H1.(4.2)

By a connectedness argument, we see that the choice of ξ = ±1 is uniform
for all x in H1.

Putting B = y × y in (4.2), we see that

|〈x, y〉| = |〈Tx, Ty〉|, ∀x, y ∈ H1.

By Wigner’s theorem (cf. [9]; see also [16, 18]), we can assume T is either
a linear or a conjugate linear isometry from H1 into H2. If the range of T

were not dense in H2 then we can choose a self-adjoint operator B on H1

such that B 6= 0, Φ(B) has rank one and Φ(B)Tx = 0 for all x in H1. But
then (4.2) leads to the contradiction that B = 0. Consequently, T is a linear
or a conjugate linear isometry from H1 onto H2. Finally, (4.2) gives

φ(B) = ξTBT ∗, ∀B ∈ S(H1).
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