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Weakly null sequen
es with upper estimatesbyDaniel Freeman (College Station, TX)Abstra
t. We prove that if (vi) is a seminormalized basi
 sequen
e and X is a Bana
hspa
e su
h that every normalized weakly null sequen
e in X has a subsequen
e that isdominated by (vi), then there exists a uniform 
onstant C ≥ 1 su
h that every normalizedweakly null sequen
e in X has a subsequen
e that is C-dominated by (vi). This extendsa result of Knaust and Odell, who proved this for the 
ases in whi
h (vi) is the standardbasis for ℓp or c0.1. Introdu
tion. In some 
ir
umstan
es, lo
al estimates give rise touniform global estimates. An elementary example of this is that every 
on-tinuous fun
tion on a 
ompa
t metri
 spa
e is uniformly 
ontinuous. Uniformestimates are espe
ially pertinent in fun
tional analysis, as one of the 
orner-stones to the subje
t is the Uniform Boundedness Prin
iple. Be
ause uniformestimates are always desirable, it is important to determine when they o

ur.In this paper, we are 
on
erned with uniform upper estimates of weakly nullsequen
es in a Bana
h spa
e. Before stating pre
isely what we mean by this,we give some histori
al 
ontext.For ea
h 1 < p < ∞, Johnson and Odell [JO℄ have 
onstru
ted a Bana
hspa
e X su
h that every normalized weakly null sequen
e in X has a sub-sequen
e equivalent to the standard basis for ℓp, and yet there is no �xed
C ≥ 1 su
h that every normalized weakly null sequen
e in X has a subse-quen
e C-equivalent to the standard basis for ℓp. A basi
 sequen
e (xi) isequivalent to the unit ve
tor basis for ℓp if it has both a lower and an upper
ℓp estimate. That is, there exist 
onstants C, K ≥ 1 su
h that
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∀(ai) ∈ c00.The examples of Johnson and Odell show that the upper 
onstant C andthe lower 
onstant K 
annot always both be 
hosen uniformly. It is some-what surprising then that Knaust and Odell proved [KO2℄ that the upper2000 Mathemati
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80 D. Freemanestimate 
an always be 
hosen uniformly. Spe
i�
ally, they proved that forevery Bana
h spa
e X, if ea
h normalized weakly null sequen
e in X has asubsequen
e with an upper ℓp estimate, then there exists a 
onstant C ≥ 1su
h that ea
h normalized weakly null sequen
e in X has a subsequen
ewith a C-upper ℓp estimate. They also proved earlier the 
orresponding the-orem for upper c0 estimates [KO1℄. The standard bases for ℓp, 1 < p < ∞,and c0 enjoy many strong properties whi
h Knaust and Odell employ intheir papers. It is natural to ask what are ne
essary and su�
ient propertiesfor a basi
 sequen
e to have in order to guarantee the uniform upper esti-mate. In this paper we show that a
tually all seminormalized basi
 sequen
esgive uniform upper estimates. We make the following de�nition to formalizethis.Definition 1.1. Let V = (vn)∞n=1 be a seminormalized basi
 sequen
e.A Bana
h spa
e X has property SV if every normalized weakly null sequen
e
(xn) in X has a subsequen
e (yn) su
h that for some 
onstant C < ∞,(1) ∥

∥

∥

∞
∑

n=1

αnyn

∥

∥

∥
≤ C for all (αn) ∈ c00 with ∥

∥

∥

∞
∑

n=1

αnvn

∥

∥

∥
≤ 1.

X has property UV if C may be 
hosen uniformly. We say that (yn) hasa C-upper V-estimate (or that V C-dominates (yn)) if (1) holds for C, andthat (yn) has an upper V-estimate (or that V dominates (yn)) if (1) holdsfor some C.Using these de�nitions, we 
an formulate the main theorem of our paper:Theorem 1.2. A Bana
h spa
e has property SV if and only if it hasproperty UV .
SV and UV are isomorphi
 properties of V , so it is su�
ient to prove The-orem 1.2 for only normalized bimonotone basi
 sequen
es. This is be
ause ev-ery seminormalized basi
 sequen
e is equivalent to a normalized bimonotonebasi
 sequen
e. Indeed, if 0 < A ≤ ‖vi‖ ≤ B for all i ∈ N, then we 
an de�nea new norm ||| · ||| on [vi] by |||x||| = B−1 supn<m ‖P[n,m]x‖ ∨ supi∈N |v∗i (x)|for all x ∈ [vi], where P[n,m] denotes the proje
tion of [vi] onto the spanof {vn, . . . , vm}. The norm ||| · ||| is equivalent to ‖ · ‖ on [vi] and (vi) isnormalized and bimonotone in the new norm.In Se
tion 2 we present the ne
essary de�nitions and reformulate ourmain results. We break up the main proof into two parts whi
h we give inSe
tions 3 and 4. In Se
tion 5 we give some illustrative examples whi
h showin parti
ular that our result is a genuine extension of [KO2℄ and not just a
orollary.For a Bana
h spa
e X we use the notation BX to mean the 
losed unitball of X and SX to mean the unit sphere of X. If F ⊂ X we denote by [F ]



Weakly null sequen
es with upper estimates 81the 
losed linear span of F in X. If N is a sequen
e in N, we denote by [N ]ωthe set of all in�nite subsequen
es of N .This paper forms a portion of the author's do
toral dissertation, whi
his being prepared at Texas A&M University under the dire
tion of ThomasS
hlumpre
ht. The author thanks Dr. S
hlumpre
ht for his invaluable helpand guidan
e.2. Main results. Here we introdu
e the main de�nitions and theoremsof the paper. Many of our theorems and lemmas are dire
t generalizationsof 
orresponding results in [KO2℄. We spe
ify when we are able to follow thesame outline as a proof in [KO2℄, and also when we are able to follow a proofexa
tly.Definition 2.1. Let X be a Bana
h spa
e and V = (vn)∞n=1 be a nor-malized bimonotone basi
 sequen
e. With the ex
eption of (ii), the followingde�nitions are adapted from [KO2℄.(i) A sequen
e (xn) in X is 
alled a uV-sequen
e if ‖xn‖ ≤ 1 for all
n ∈ N, (xn) 
onverges weakly to 0, and

sup
‖
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∞
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∥

∥

∞
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∥

∥
< ∞.

(xn) is 
alled a C-uV-sequen
e if
sup

‖
∑

∞

n=1
αnvn‖≤1

∥

∥

∥

∞
∑

n=1

αnxn

∥

∥

∥
< C.(ii) A sequen
e (xn) in X is 
alled a hereditary uV-sequen
e if everysubsequen
e of (xn) is a uV-sequen
e, and is 
alled a hereditary

C-uV-sequen
e if every subsequen
e of (xn) is a C-uV-sequen
e.(iii) A sequen
e (xn) in X is 
alled an M -bad uV-sequen
e for a 
onstant
M < ∞ if every subsequen
e of (xn) is a uV-sequen
e, and nosubsequen
e of (xn) is an M -uV-sequen
e.(iv) An array (xn

i )∞i,n=1 in X is 
alled a bad uV-array if ea
h sequen
e
(xn

i )∞i=1 is an Mn-bad uV-sequen
e for some 
onstants Mn with
Mn → ∞.(v) (yk

i )∞i,k=1 is 
alled a subarray of (xn
i )∞i,n=1 if there is a subsequen
e

(nk) of N su
h that every sequen
e (yk
i )∞i=1 is a subsequen
e of

(xnk

i )∞i=1.(vi) A bad uV-array (xn
i )∞i,n=1 is said to satisfy the V-array pro
edureif there exists a subarray (yn

i ) of (xn
i ) and there exists (an) ⊆ R

+with an ≤ 2−n, for all n ∈ N, su
h that the weakly null sequen
e
(yi) with yi :=

∑∞
n=1 anyn

i has no uV-subsequen
e.



82 D. Freeman(vii) X satis�es the V-array pro
edure if every bad uV-array in X sat-is�es the V-array pro
edure. X satis�es the V-array pro
edure fornormalized bad uV-arrays if every normalized bad uV-array in Xsatis�es the V-array pro
edure.Note. A subarray of a bad uV-array is a bad uV-array. Also, a bad uV-array satis�es the V-array pro
edure if and only if it has a subarray whi
hsatis�es the V-array pro
edure.Our Theorem 1.2 is now an easy 
orollary of the theorem below.Theorem 2.2. Every Bana
h spa
e satis�es the V-array pro
edure fornormalized bad uV-arrays.Theorem 2.2 implies Theorem 1.2 be
ause if a Bana
h spa
e X has prop-erty SV and not UV then there exists a normalized bad uV-array, and the
V-array pro
edure gives a weakly null sequen
e in BX whi
h has no uV-subsequen
e. The sequen
e must be seminormalized, so we 
ould pass to abasi
 subsequen
e on whi
h the norm of ea
h element is essentially 
onstant,and then renormalize. This would give a normalized weakly null sequen
ewith no uV-subsequen
e, 
ontradi
ting X being UV .The proof for Theorem 2.2 will be given �rst for the following spe
ial
ase.Proposition 2.3. Let K be a 
ountable 
ompa
t metri
 spa
e. Then
C(K) satis�es the V-array pro
edure.The 
ase of a general Bana
h spa
e redu
es to this spe
ial 
ase by thefollowing proposition.Proposition 2.4. Let (xn

i )∞i,n=1 be a normalized bad uV-array in a Ba-na
h spa
e X. Then there exists a subarray (yn
i ) of (xn

i ) and a 
ountable
w∗-
ompa
t subset K of BY ∗ , where Y := [yn

i ]∞i,n=1, su
h that (yn
i |K) is a baduV-array in C(K).Theorem 2.2 is an easy 
onsequen
e of Propositions 2.3 and 2.4. Note thatProposition 2.4 is only proved for normalized bad uV-arrays. This makes theproof a little less te
hni
al.Before we prove anything about subarrays though, we need to �rst 
on-sider just a single weakly null sequen
e. One of the many ni
e propertiesenjoyed by the standard basis for ℓp, whi
h we denote by (ei), is that (ei)is 1-spreading. This is the property that every subsequen
e of (ei) is 1-equivalent to (ei). Spreading is of parti
ular importan
e be
ause it impliesthe following two properties whi
h are impli
itly used in [KO2℄:(i) If (ei) C-dominates a sequen
e (xi) then (ei) C-dominates everysubsequen
e of (xi).



Weakly null sequen
es with upper estimates 83(ii) If (ei) does not C-dominate a sequen
e (xi) then no subsequen
e of
(ei) C-dominates (xi).Throughout the paper, we will be passing to subsequen
es and subarrays,so properties (i) and (ii) would be very useful for us. In our paper we have toget by without property (ii). On the other hand, for a given sequen
e thatdoes not have property (i), we may use the following two results, whi
h areboth easy 
onsequen
es of Ramsey's theorem (
f. [O℄), and will be needed insubsequent se
tions.Lemma 2.5. Let V = (vi)

∞
i=1 be a normalized bimonotone basi
 sequen
e.If (xi)

∞
i=1 is a sequen
e in the unit ball of some Bana
h spa
e X su
h thatevery subsequen
e of (xi)

∞
i=1 has a further subsequen
e whi
h is dominatedby V , then there exists a 
onstant 1 ≤ C < ∞ and a subsequen
e (yi)

∞
i=1 of

(xi)
∞
i=1 so that every subsequen
e of (yi)

∞
i=1 is C-dominated by V .Proof. Let An = {(mk)

∞
k=1 ∈ [N]ω | (xmk

) is 2n-dominated by V }. Sin
e
An is Ramsey, for all n ∈ N there exists a sequen
e (mn

i )∞i=1 = Mn ∈ [Mn−1]
ωsu
h that [Mn]ω ⊆ An or [Mn]ω ⊆ Ac

n. We 
laim that [Mn]ω ⊆ An for some
n ∈ N, in whi
h 
ase we 
ould 
hoose (yi)

∞
i=1 = (xmn

i
)∞i=1. Every subsequen
eof (yi)

∞
i=1 is then 2n-dominated by V .If our 
laim were false, we let (yn)∞n=1 = (xmn

n
)∞n=1 and (ykn

)∞n=1 be asubsequen
e of (yn)∞n=1 for whi
h there exists C < ∞ su
h that (ykn
)∞n=1 is

C-dominated by V . Let N ∈ N be su
h that 2N − 2N > C and set
li =

{

mN
i if i ≤ N ,

mki

ki
if i > N .Then (li)

∞
i=1 ∈ [MN ]ω ⊂ Ac

N , whi
h implies that some (ai)
L
i=1 ⊂ [−1, 1] existssu
h that ‖∑L

i=1 aivi‖ ≤ 1 and ‖
∑L

i=1 aixli‖ > 2N . This yields
2N <

∥

∥

∥

L
∑
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aixli
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∥

∥
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N
∑

i=1

|ai| +
∥

∥

∥

L
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i=N+1
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ki
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∥

∥

∥
≤ N +

∥

∥

∥

L
∑

i=N+1

aiyki

∥

∥

∥
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∥

∥

∥

N
∑

i=1

aiyki

∥

∥

∥
+

∥

∥

∥

L
∑

i=N+1

aiyki

∥

∥

∥
≤ 2N +

∥

∥

∥

L
∑

i=1

aiyki

∥

∥

∥
,whi
h implies

C < 2N − 2N <
∥

∥

∥

L
∑

i=1

aiyki

∥

∥

∥
.Thus (ykn

)∞n=1 being C-dominated by V is 
ontradi
ted.The following lemma is used for a given (xi) to �nd a subsequen
e (yi)and a 
onstant C ≥ 1 su
h that (vi) C-dominates every subsequen
e of (yi)and that C is approximately minimal for every subsequen
e of (yi).



84 D. FreemanLemma 2.6. Let V = (vn)∞n=1 be a normalized bimonotone basi
 se-quen
e, (xn)∞n=1 be a sequen
e in the unit ball of some Bana
h spa
e X,and an ր ∞ with a1 = 0. If every subsequen
e of (xn)∞n=1 has a further sub-sequen
e whi
h is dominated by V then there exists a subsequen
e (yn)∞n=1of (xn)∞n=1 and an N ∈ N su
h that every subsequen
e of (yn)∞n=1 is aN+1-dominated by V but not aN -dominated by V .Proof. By the previous lemma, we may assume by passing to a subse-quen
e that there exists C < ∞ su
h that every subsequen
e of (xn)∞n=1is C-dominated by V . Let M ∈ N be su
h that aM < C ≤ aM+1. For
1 ≤ n ≤ M let

An =

{

(mk) ∈ [N]ω
∣

∣

∣

∣

(xmk
)∞k=1is an+1-dominated by Vand is not an-dominated by V

}

.

Then An is Ramsey, and {An}
M
n=1 forms a �nite partition of [N]ω, whi
himplies that there exist N ≤ M and (mk) ∈ [N]ω su
h that [(mk)

∞
k=1]

ω ⊂ AN .Every subsequen
e of (yn) := (xmn) is aN+1-dominated by V and not aN -dominated by V .3. Proof of Proposition 2.3. Proposition 2.3 will be shown to followeasily from a 
hara
terization of 
ountable 
ompa
t metri
 spa
es along withtrans�nite indu
tion using the following result.Lemma 3.1. Let (Xn) be a sequen
e of Bana
h spa
es ea
h satisfying the
V-array pro
edure. Then (

∑∞
n=1 Xn)c0 satis�es the V-array pro
edure.To prove Lemma 3.1 we will need the following lemma whi
h is statedin [KO2℄ for ℓp as Lemma 3.6. The proof for general V 
losely follows itsproof.Lemma 3.2. Let (Xn) be a sequen
e of Bana
h spa
es ea
h satisfying the

V-array pro
edure and let (xn
i ) be a bad uV-array in some Bana
h spa
e X.Suppose that for all m ∈ N there is a bounded linear operator Tm : X → Xmwith ‖Tm‖ ≤ 1 su
h that (Tmxm

i )∞i=1 is an m-bad uV-sequen
e in Xm. Then
(xn

i ) satis�es the V-array pro
edure.Proof. Case 1: There exists m ∈ N and a subarray (yn
i ) of (xn

i ) su
h that
(Tmyn

i )∞i,n=1 is a bad uV-array in Xm. Then (Tmyn
i )∞i,n=1 satis�es the V-arraypro
edure be
ause Xm does. Therefore, there exists a subarray (Tmzn

i )∞i,n=1of (Tmyn
i )∞i,n=1 and (an) ⊂ R

+ with an ≤ 2−n su
h that (
∑∞

n=1 anTmzn
i )∞i=1has no uV-subsequen
e. Then (

∑∞
n=1 anzn

i )∞i=1 has no uV-subsequen
e be-
ause ‖Tm‖ ≤ 1. Therefore (yn
i )∞i,n=1 and hen
e (xn

i )∞i,n=1 satis�es the V-arraypro
edure.



Weakly null sequen
es with upper estimates 85Case 2: Case 1 is not satis�ed. Then for all m ∈ N and every subarray
(yn

i ) of (xn
i ), we see that (Tmyn

i ) is not a bad uV-array in Xm. We mayassume by passing to a subarray and using Lemma 2.5 that there exists
(Nn)∞n=1 ∈ [N]ω su
h that
(2) (xn

i )∞i=1 is a hereditary Nn-uV -sequen
e for all n ∈ N.By indu
tion we 
hoose for ea
h m∈N0 a subarray (zn
m,i)

∞
i,n=1 of (xn

i )∞i,n=1and an Mm ∈ N so that
(3) (zn

m,i)
∞
i,n=1 is a subarray of (zn

m−1,i)
∞
i,n=1 if m ≥ 1,

(4) zn
m,i = zn

m−1,i if Nn ≤ m and i ∈ N,
(5) (Tmzn

m,i)
∞
i=1 is a hereditary Mm-uV-sequen
e ∀n ∈ N if m ≥ 1.For m = 0 let (zn

0,i)
∞
i,n=1 = (xn

i )∞i,n=1. Now let m ≥ 1. For ea
h n ∈ Nsu
h that Nn ≤ m let (zn
m,i)

∞
i=1 = (zn

m−1,i)
∞
i=1 and Kn = m. For ea
h n ∈ Nsu
h that Nn > m, using Lemma 2.6, we let (zn

m,i)
∞
i=1 be a subsequen
eof (zn

m−1,i)
∞
i=1 for whi
h there exists Kn ∈ N0 su
h that (Tmzn

m,i)
∞
i=1 is a

Kn-bad uV-sequen
e and is also a hereditary (Kn + 1)-uV-sequen
e. Thesequen
e (Kn)∞n=1 is bounded be
ause otherwise we are in Case 1. Let Mm =
maxn∈N Kn + 1. This 
ompletes the indu
tion.For all n, i ∈ N we �nd by (4) that (zn

m,i)
∞
m=1 is eventually 
onstant. Let

(zn
i )∞i,n=1 = limm→∞(zn

m,i)
∞
i,n=1. Then (zn

i )∞i,n=1 is a subarray of (xn
i )∞i,n=1,and by (5),(6) (Tmzn

i )∞i=1 is a hereditary Mm-uV-sequen
e for all m, n ∈ N.We will now indu
tively 
hoose (mn) ∈ [N]ω and (an) ⊂ R
+ so that forall n ∈ N:

(Tmnzmn

i )∞i=1 is an mn-bad uV-sequen
e in Xmn ,(7)
anmn > n,(8)

n−1
∑

j=1

ajNmj
<

anmn

4
,(9)

0 < an < min
1≤k<n

{

2−n, 2−n akmk

4Mmk

}

.(10)Property (7) has been assumed in the statement of the lemma. For n = 1let a1 = 1/2 and m1 ∈ N be su
h that a1m1 > 1, so (8) is satis�ed. (9) and(10) are va
uously true for n = 1, so all 
onditions are satis�ed for n = 1.Let n > 1 and assume (aj)
n−1
j=1 and (mj)

n−1
j=1 have been 
hosen to satisfy(8), (9) and (10). Choose an > 0 small enough su
h that an <min1≤k<n{2

−n,
2−nakmk/4Mk}, thus satisfying (10). Choose mn > 0 large enough to satisfy(8) and (9). This 
ompletes the indu
tion.



86 D. FreemanBy (10), for all n ∈ N we have(11) ∞
∑

j=n+1

ajMmn <
anmn

4
.

Also by (10), aj < 2−j for all j ∈ N, so yk :=
∑∞

j=1 ajz
mj

k is a valid 
hoi
efor the V-array pro
edure. Let C > 0 and (yki
) be a subsequen
e of (yk). Weneed to show that (yki

) is not a C-uV-sequen
e. Using (8), 
hoose n ∈ N sothat anmn > 2C. Using (7) 
hoose l ∈ N and (βi)
l
i=1 ∈ B[vi]li=1

su
h that
(12) ∥

∥

∥

l
∑

i=1

βiTmnzmn

ki

∥

∥

∥
> mn.We now have

∥

∥

∥

l
∑

i=1

βiyki

∥

∥

∥
=

∥

∥

∥

l
∑

i=1

∞
∑

j=1

βiajz
mj

ki

∥

∥

∥

≥
∥

∥

∥

l
∑

i=1

∞
∑

j=n

Tmn(βiajz
mj

ki
)
∥

∥

∥

−
∥

∥

∥

l
∑

i=1

n−1
∑

j=1

βiajz
mj

ki

∥

∥

∥
sin
e ‖Tmn‖ ≤ 1

≥ an

∥

∥

∥

l
∑

i=1

βiTmnzmn

ki

∥

∥

∥
−

∞
∑

j=n+1

aj

∥

∥

∥

l
∑

i=1

βiTmnz
mj

ki

∥

∥

∥

−
n−1
∑

j=1

aj

∥

∥

∥

l
∑

i=1

βiz
mj

ki

∥

∥

∥

> anmn −
∞

∑

j=n+1

ajMmn −
n−1
∑

j=1

ajNmj
by (12), (6), and (2)

≥ anmn − anmn/4 − anmn/4 by (9) and (11)
= anmn/2 > C.Therefore, (yki

) is not a C-uV-sequen
e. (yi)
∞
i=1 =(

∑∞
j=1 ajz

mj

i )∞i=1 hasno uV-subsequen
e, so (xn
i ) satis�es the V-array pro
edure, whi
h provesLemma 3.2.Now we are prepared to give a proof of Lemma 3.1. We follow the outlineof the proof of Lemma 3.5 in [KO2℄.Proof of Lemma 3.1. Let (xn

i ) be a bad uV-array in X = (
∑

Xn)c0 and
Rm : X → Xm be the natural proje
tions.



Weakly null sequen
es with upper estimates 87Claim. For all M < ∞ there exist n, m ∈ N and a subsequen
e (yi)
∞
i=1of (xn

i )∞i=1 su
h that (Rmyi)
∞
i=1 is an M -bad uV-sequen
e.Assuming the Claim, we 
an �nd (Nn)∞n=1 ∈ [N]ω, (m(n))∞n=1 ⊂ N, andsubsequen
es (yn

i )∞i=1 of (xNn

i )∞i=1 su
h that (Rm(n)y
n
i )∞i=1 is an n-bad uV-sequen
e for all n ∈ N. By passing to a subsequen
e, we may assume eitherthat m(n) = m is 
onstant, or that (m(n))∞n=1 ∈ [N]ω. If m(n) = m, then

(Rmyn
i )∞n,i=1 is a bad uV-array in Xm. Then (Rmyn

i )∞n,i=1 satis�es the V-arraypro
edure, and thus (yn
i )∞n,i=1 satis�es the V-array pro
edure. If (m(n))∞n=1 ∈

[N]ω, let Tn := Rm(n)|[yr
i ]∞i,r=1

and apply Lemma 3.2 to the array (yn
i )∞i,n=1 to�nish the proof.To prove the Claim, we assume it is false: there exists M < ∞ su
h thatfor all m, n ∈ N every subsequen
e of (xn

i )∞i=1 
ontains a further subsequen
e
(yi)

∞
i=1 su
h that (Rmyi)

∞
i=1 is an M -uV-sequen
e.By Ramsey's theorem, for any n ∈ N and m ∈ N every subsequen
eof (xn

i )∞i=1 
ontains a further subsequen
e (yi)
∞
i=1 su
h that (Rmyi)

∞
i=1 is ahereditary M -uV-sequen
e. Fix n ∈ N su
h that (xn

i )∞i=1 is an (M + 3)-bad uV-sequen
e. We now 
onstru
t a nested 
olle
tion of subsequen
es
{(yk,i)

∞
i=1}

∞
k=0 of (xn

i )∞i=1 (where (y0,i)
∞
i=1 = (xn

i )∞i=1) as well as (mi) ∈ [N]ωso that for all k ∈ N we have
sup

m>mk

‖Rmyk−1,k‖ ≤ 2−k,(13)
(yk,i)

∞
i=1 is a subsequen
e of (yk−1,i)

∞
i=1,(14)

(Rmyk,i)
∞
i=1 is a hereditary M -uV-sequen
e ∀m ≤ mk.(15)For k = 1 we 
hoose m1 ∈ N su
h that supm>m1

‖Rmy0,1‖ ≤ 2−1. Passto a subsequen
e (y1,i)
∞
i=1 of (y0,i)

∞
i=1 su
h that (Rmy1,i)

∞
i=1 is a hereditary

M -uV-sequen
e for all m ≤ m1.For k > 1, given mk−1 ∈ N and a sequen
e (yk−1,i)
∞
i=1, 
hoose mk > mk−1so that supm>mk

‖Rmyk−1,k‖ ≤ 2−k, thus satisfying (13). Let (yk,i)
∞
i=1 be asubsequen
e of (yk−1,i)

∞
i=1 so that (Rmyk,i)

∞
i=1 is a hereditary M -uV-sequen
efor all m ≤ mk, thus satisfying (14) and (15). This 
ompletes the indu
tion.We de�ne yk = yk−1,k for all k ∈ N. By (14), (yk,i)

k
i=1 ∪ (yi)

∞
i=k+1 is asubsequen
e of (yk,i)

∞
i=1. Therefore, (15) shows that

(16) (vi)
∞
i=k+1 M -dominates (Rmyqi

)∞i=k+1 ∀m ≤ mk, (qi) ∈ [N]ω, k ∈ N.Sin
e (xn
i )∞i=1 is an (M + 3)-bad uV-sequen
e, there exists (αi) ∈ B[V ]su
h that(17) ∥

∥

∥

∞
∑

i=1

αiyi

∥

∥

∥
> M + 3.



88 D. FreemanFor all k ∈ N and m ∈ (mi−1, mi] (with m0 = 0) we have
∥

∥

∥

∞
∑

i=1

Rm(αiyi)
∥

∥

∥
≤

k−1
∑

i=1

|αi| ‖Rmyi‖ + ‖Rm(αkyk)‖ +
∥

∥

∥

∞
∑

i=k+1

Rm(αiyi)
∥

∥

∥

≤
k−1
∑

i=1

2−i + 1 +
∥

∥

∥

∞
∑

i=k+1

αiRmyi

∥

∥

∥
by (13)

≤ 1 + 1 + M by (16),whi
h implies
∥

∥

∥

∞
∑

i=1

αiyi

∥

∥

∥
= sup

m∈N

∥

∥

∥

∞
∑

i=1

Rm(αiyi)
∥

∥

∥
≤ M + 2.This 
ontradi
ts (17), so the Claim, and hen
e Lemma 3.1, is proved.The proof for Proposition 2.3 now follows in exa
tly the same way as in[KO2℄.Proof of Proposition 2.3. If K is a 
ountable 
ompa
t metri
 spa
e thenthere is a 
ountable limit ordinal α su
h that C(K) is isomorphi
 to C(α)(see [BP℄). Thus if the V-array pro
edure fails for C(K), then there is a �rstlimit ordinal α su
h that the V-array pro
edure fails for C(α). If α is the�rst in�nite ordinal then C(α) is isomorphi
 to c0 and satis�es the V-arraypro
edure. Otherwise, we 
an �nd a sequen
e βn < α of limit ordinals su
hthat C(α) is isomorphi
 to (

∑

C(βn))c0 . Thus C(α) satis�es the V-arraypro
edure by Lemma 3.1.4. Proof of Proposition 2.4. The proof of Theorem 2.2 will be 
om-plete on
e we have proven Proposition 2.4. To make notation easier, we now
onsider the triangulated version (xn
i )1≤n≤i<∞ of the square array (xn

i )∞i,n=1.The bene�t of using a triangular array is that a natural sequential order 
anbe put on a triangular array. As the following proposition shows, we 
an thenpass to a basi
 sequen
e in that order.Lemma 4.1. For all ε > 0, a triangular bad uV-array (xn
i )n≤i admits atriangular subarray (yn

i )n≤i whi
h is basi
 in its lexi
ographi
al order (wherei is the �rst letter and n is the se
ond letter), and its basis 
onstant is notgreater than 1 + ε. In other words , y1
1 , y

1
2, y

2
2 , y

1
3, y

2
3, y

3
3 , y

1
4, . . . is a basi
 se-quen
e.Proof. The proof is an easy adaptation of the proof that a weakly nullsequen
e has a basi
 subsequen
e.The following lemma shows that we need to prove Proposition 2.4 onlyfor triangular arrays.



Weakly null sequen
es with upper estimates 89Lemma 4.2. A square array satis�es the V-array pro
edure if and only ifits triangulated version does.Proof. If (yn
i )∞i,n=1 is a subarray of (xn

i )∞i,n=1 then (yn
i )1≤n≤i<∞ is a tri-angular subarray of (xn

i )1≤n≤i<∞. Also, if (yn
i )1≤n≤i<∞ is a triangular sub-array of (xn

i )1≤n≤i<∞ then (yn
i )1≤n≤i<∞ may be extended to a subarray of

(xn
i )∞i,n=1 by letting (yn

i )i<n = (xmn

i )i<n, where (mn) ∈ [N]ω is su
h that
(yn

i )∞i=1 ⊂ (xmn

i )∞i=1 for all n ∈ N.We now show that applying the V-array pro
edure to (yn
i )∞i,n=1 and

(yn
i )1≤n≤i<∞ yields sequen
es whi
h either both satisfy the V-array pro
e-dure or both fail the V-array pro
edure. For all n ∈ N let 0 ≤ |αn| ≤ 2−n,

zi =
∑i

n=1 αnyn
i , and yi =

∑∞
n=1 αnyn

i . For all m ∈ N if (βi)
∞
i=1 ∈ B[V ] then

∥

∥

∥

m
∑

i=1

βizi −
m

∑

i=1

βiyi

∥

∥

∥
=

∥

∥

∥

m
∑

i=1

βi

∞
∑

n=i+1

αnyn
i

∥

∥

∥

≤
m

∑

i=1

|βi|
∞

∑

n=i+1

|αn| ≤
m

∑

i=1

2−i < 1.

Thus supm∈N ‖
∑m

i=1 βizi‖ = ∞ if and only if supm∈N ‖
∑m

i=1 βiyi‖ = ∞,whi
h implies the 
laim.We now assume that the given bad uV-array (xn
i ) is labeled triangularlyand that it is a bimonotone basi
 sequen
e in its lexi
ographi
al order. Thisassumption is valid be
ause the properties of �being a bad uV-array� and�satisfying the V-array pro
edure� are invariant under isomorphisms. Wealso assume that (xn

i ) is normalized.The following theorem is our main tool used to 
onstru
t the subarray
(yn

i ) of (xn
i ) and the 
ountable w∗-
ompa
t set K ⊂ B[yn

i ] for Proposition 2.4.Theorem 4.3. Assume that (xn
i )1≤n≤i is a normalized triangular arrayin X su
h that for every n ∈ N the sequen
e (xn

i )∞i=1 is weakly 
onverging to 0.Let V = (vi) be a normalized basi
 sequen
e and let (Cn) ⊂ [0,∞) and ε > 0.Then (xn
i ) has a triangular subarray (yn

i ) with the following property :For all m, s ∈ N and all m ≤ m1 < · · · < ms all (αj)
s
j=1 ∈ BV with

‖
∑s

j=1 αjy
m
mj

‖ ≥ Cn there is a g ∈ (2 + ε)BX∗ and (βj)
s
j=1 ∈ BV sothat

s
∑

j=1

βjg(ym
mj

) ≥ Cn,(18)
g(ym′

j ) = 0 whenever m′ ≤ j and j 6∈ {m1, . . . , ms}.(19)If we also assume that (xn
i )1≤n≤i is a bimonotone basi
 sequen
e in its lex-i
ographi
al order then there exists (ji) ∈ [N]ω so that we may 
hoose the



90 D. Freemansubarray (yn
i ) by setting yn

i = xn
ji

for all n ≤ i. In this 
ase we have theabove 
on
lusion for some g ∈ (1 + ε)BY ∗ .Proof. After passing to a subarray using Lemma 4.1 we 
an assume that
(xn

i ) is a basi
 sequen
e in its lexi
ographi
al order and that its basis 
onstantdoes not ex
eed the value 1 + ε. We �rst renorm Z = [xn
i ] by a norm ||| · |||in the standard way so that ‖z‖ ≤ |||z||| ≤ (2 + 2ε)‖z‖ and so that (xn

i )is bimonotone in Z. We 
an therefore assume that (xn
i ) is a bimonotonebasis and need to show the 
laim of Theorem 4.3 for (1 + ε)BX∗ instead of

(2 + ε)BX∗ .Let (εk) ⊂ (0, 1) with ∑∞
k=1 kεk < ε/4. By indu
tion on k ∈ N0 we
hoose ik ∈ N and a sequen
e Lk ∈ [N]ω, and de�ne ym

j = xm
ij
for m ≤ k and

m ≤ j ≤ k so that the following 
onditions are satis�ed:(i) ik = minLk−1 < minLk and Lk ⊂ Lk−1, if k ≥ 1 (L0 = N).(ii) For all s, t ∈ N0, all 1 ≤ m ≤ k, all m ≤ m1 < · · · < ms ≤ k and
l0 < l1 < · · · < lt in Lk, if there is an f ∈ BX∗ with

(20)
s

∑

j=1

αjf(ym
mj

) +
t

∑

j=1

αj+sf(xm
lj ) ≥ Cm for some (αj)

s+t
j=1 ∈ B[V ]

(21) then there exists g ∈ BX∗ su
h that(a) ∑s
j=1 βjg(ym

mj
)+

∑t
j=1 βj+sg(xm

lj
) ≥ Cm for some (βj)

s+t
j=1 ∈ B[V ],(b) |g(ym′

j )| < εj if m′ ≤ k and j ∈ {m′, . . . , k} \ {m1, . . . , ms},(
) |g(xm′

l0
)| < εk+1 if m′ ≤ k + 1(in the 
ase s = 0 
ondition (b) is de�ned to be va
uous; also notethat in (
) we allow m′ = k + 1).We �rst note for (ij) ∈ [N]ω that (xn

ij
)n≤j is a subsequen
e of (xn

j )n≤j intheir lexi
ographi
 orders. Thus (xn
ij
)n≤j is a bimonotone basi
 sequen
e inits lexi
ographi
 order.For k = 0, if f ∈ BX∗ satis�es (20) then g = P ∗

[xn
l1

,∞)f satis�es (21) byour bimonotoni
ity assumption.Assume k ≥ 1 and that we have 
hosen i1 < · · · < ik−1. We let ik =
minLk−1.Fix an in�nite M ⊂ Lk−1 \ {ik}, a positive integer m ≤ k, an integer
0 ≤ s ≤ k−m+1, and positive integers m ≤ m1 < · · · < ms ≤ k, and de�ne

A = A(m, s, (mj)
s
j=1) =

⋂

t∈N0

At, where
At =

{

(lj)
∞
j=0 ∈ [M ]ω

∣

∣

∣

∣

if (mj)
s
j=1 and (lj)

t
j=0 satisfy (20)then they also satisfy (21) }

.
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es with upper estimates 91For t ∈ N the set At is 
losed as a subset of 2N in the produ
t topology,thus A is 
losed, and thus Ramsey. We will show that there is an in�nite
L ⊂ M so that [L]ω ⊂ A. On
e we have veri�ed that 
laim we 
an �nishour indu
tion step by applying that argument su

essively to all 
hoi
es of
m ≤ k, 0 ≤ s ≤ k and m ≤ m1 < · · · < ms ≤ k, as there are only �nitelymany.Assume our 
laim is wrong and, using Ramsey's theorem, we 
ould �ndan L = (lj)

∞
j=1 so that [L]ω ∩ A = ∅.Let n ∈ N be �xed, and let p ∈ {1, . . . , n}. Then L(p) = {lp, ln+1, . . .} isnot in A and we 
an 
hoose tn ∈ N0, (αn

j )tn+s
j=1 and fn ∈ BX∗ so that (20) issatis�ed (for (ln+1, . . . , ll+t) repla
ing (l1, . . . , lt) and lp repla
ing l0) but forno (βj)

s+tn
j=1 ∈ B[V ] does 
ondition (21) hold. By 
hoosing tn to be minimalso that (20) is satis�ed, we 
an have tn, (αn

j )tn+s
j=1 and fn independent of p.We now show that there is a gn ∈ BX satisfying (a) and (b) of (21).Let k′ = max

{

m − 1 ≤ i ≤ k | i 6∈ {m1, . . . , ms}
}. If k′ ≤ m then

{m1, . . . , ms} = {k′ + 1, k′ + 2, . . . , k} and by our assumed bimonotoni
ity
gn := P ∗

[ym
k′+1

,∞)fn ∈ B∗
X satis�es (a) and (b) of (21). If k′ > m let 0 ≤ s′ ≤ ssu
h that m1 < · · · < ms′ < k′, and apply the k′ − 1 step of the indu
tionhypothesis to fn, (αn

j )tn+s
j=1 , m ≤ m1 < · · · < ms′ (repla
ing m ≤ m1 <

· · · < ms), and k′ < k′ + 1 < · · · < ms < ln+1 < · · · < ltn (repla
ing
lp < ln+1 < · · · < ltn) to obtain a fun
tional gn ∈ BX∗ whi
h satis�es (a)and (b) of (21).Sin
e gn 
annot satisfy all three 
onditions of (21) (for any 
hoi
e of
1 ≤ p ≤ n), we dedu
e that |gn(x

mp

lp
)| ≥ εk+1 for some 
hoi
e of mp ∈

{1, . . . , k + 1}.Let g be a w∗ 
luster point of (gn)n∈N. As the set {1, . . . , k + 1} is �nite,for all p ∈ N0 we have |g(x
mp

lp
)| ≥ εk+1 for some mp ∈ {1, . . . , k + 1}. Thisimplies there exists 1 ≤ m ≤ k + 1 su
h that |g(xm

lp
)| ≥ ε for in�nitely many

p ∈ N. This is a 
ontradi
tion with the sequen
e (xm
li

)∞i=1 being weakly null.Our 
laim is veri�ed, and we are able to ful�ll the indu
tion hypothesis.The 
on
lusion of our theorem now follows by the following perturba-tion argument. If we have n ≤ i1 < · · · < iq and (αj)
q
j=1 ∈ BV with

‖
∑q

j=1 αjy
n
ij
‖ ≥ Cn, then there exists f ∈ BX∗ so that ∑q

j=1 αjf(yn
ij
) ≥

Cn. Our 
onstru
tion gives an h ∈ BX∗ with ∑q
j=1 αjh(yn

ij
) ≥ Cn and

|h(ym
j )| < εj if m ≤ q and j ∈ {m′, . . . , k} \ {i1, . . . , iq}. Be
ause (yn

i ) isbimonotone, we may assume that h(yn
i ) = 0 for all i ≥ n with i > iq.We perturb h by small multiples of the biorthogonal fun
tionals of (yn

i ) toa
hieve g ∈ X∗ with g(yn
i ) = h(yn

i ) for i ∈ {i1, . . . , iq} and g(yn
i ) = 0 for

i 6∈ {i1, . . . , iq}. Thus g satis�es (18) and (19). All that remains is to 
he
kthat g ∈ (1 + ε)BX∗ . Be
ause (yn
i ) is normalized and bimonotone, we 
an



92 D. Freemanestimate ‖g‖ as follows:
‖g‖ ≤ ‖h‖ + ‖g − h‖ ≤ 1 +

iq−1
∑

j=1

jεj < 1 +
ε

4
.We are now prepared to give the proof of Proposition 2.4. We follow thesame outline as the proof given in [KO2℄ for Proposition 3.4.Proof of Proposition 2.4. Let (xn

i ) be a normalized bad uV-array in Xand let Mn, for n ∈ N, be 
hosen so that the sequen
e (xn
i )∞i=n is an Mn-bad

uV-sequen
e and limn→∞ Mn = ∞. By Lemma 4.2 we just need to 
onsiderthe triangular array (xn
i )n≤i. By passing to a subarray using Lemma 4.1 andthen renorming, we may assume that (xn

i )n≤i is a normalized bimonotonebasi
 sequen
e in its lexi
ographi
al order.We apply Theorem 4.3 for ε = 1 and (Cn) = (Mn) to obtain a subarray
(yn

i )n≤i that satis�es 
onditions (18) and (19). Moreover, (yn
i ) in its lexi-
ographi
al order is a subsequen
e of (xn

i ) in its lexi
ographi
al order, andthus is bimonotone. Furthermore, (yn
i )∞i=n is a subsequen
e of (xn

i )∞i=n for all
n ∈ N. We write Y = [yn

i ]n≤i.Let F (n) be a �nite (1/2n2n)-net in [−2, 2] whi
h 
ontains the points 0,
−2, and 2. Whenever we have a fun
tional g ∈ 2BX∗ whi
h satis�es 
ondi-tions (18) and (19) we may perturb g by small multiples of the biorthogonalfun
tions of (yn

i )n≤i to obtain f ∈ 3BX∗ whi
h satis�es (18), (19), and thefollowing new 
ondition:(22) f(yn
i ) ∈ F (n) for all n ≤ i.We now start the 
onstru
tion of K. Let Y = [yn

i ]n≤i and m ∈ N. We de�ne
Lm =











(k1, . . . , kq)

∣

∣

∣

∣

∣

∣

∣

m ≤ k1 < · · · < kq,

‖
∑q−1

i=1 αiy
m
ki
‖ ≤ Mm for all (αi) ∈ BV ,

‖
∑q

i=1 αiy
m
ki
‖ > Mm for some (αi) ∈ BV











.

It is important to note that if (ki) ∈ [N]ω and k1 ≥ m then there is a unique
q ∈ N su
h that (k1, . . . , kq) ∈ Lm.Whenever ~k = (k1, . . . , kq) ∈ Lm, an appli
ation of Theorem 4.3 andthen perturbation gives a fun
tional f ∈ 3BY ∗ whi
h satis�es 
onditions(18), (19), and (22). In parti
ular, ∑q

i=1 f(αiy
m
ki

) > Mm for some (αi) ∈ BV .We denote f/3 by f~k
and let, for any n ∈ N,
Kn = {Q∗

mf~k
| m ∈ N, ~k ∈ Ln}.Here Qm denotes the natural norm 1 proje
tion from Y onto [(yn

i )]1≤n≤i≤m.Finally, we de�ne
K =

∞
⋃

n=1

Kn ∪ {0}.
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es with upper estimates 93We �rst show that (yn
i |K)n≤i is a bad uV-array as an array in Cb(K).Fix an n0 ∈ N. Then (yn0

i )∞i=n0
is an Mn0

-bad uV-sequen
e. Consequently,given a subsequen
e (yn0

ki
)∞i=1 of (yn0

i )∞i=n0
we have ~k := (k1, . . . , kq) ∈ Ln0for some q ∈ N. By (22), f~k

= Q∗
q+1f~k

and thus f~k
∈ Kn0

⊂ K. Now,
∑q

i=1 f~k
(αiy

n0

ki
) > Mn0

/3 for some (αi) ∈ BV , and so (yn0

i |K)∞i=n0
is an

(Mn0
/3)-bad sequen
e in Cb(K), thus proving that (yn

i |K)n≤i is a bad uV-array.
K is obviously a 
ountable subset of BY ∗ . Sin
e Y is separable, K is

w∗-metrizable. Thus we need to show that K is a w∗-
losed subset of BY ∗in order to �nish the proof.Let (gj) ⊂ K and assume that (gj) 
onverges w∗ to some g ∈ BY ∗ . Wehave to show that g ∈ K. Every gj is of the form Q∗
mj

f~kj
for some mj ∈ N,

~kj ∈ Lnj
, and some nj ∈ N.By passing to a subsequen
e of (gj), we may assume that either nj → ∞as j → ∞, or there is an n ∈ N su
h that nj = n for all j ∈ N. We will startwith the �rst alternative. Let ij be the �rst element of ~kj . Sin
e ij ≥ nj , wehave ij → ∞. Also, f~kj

(yn
i ) = 0 for all n ≤ i < ij. Thus f~kj

→ 0 in the w∗topology as j → ∞, so g = 0 ∈ K.From now on we assume that there is an n ∈ N su
h that ~kj ∈ Lnfor all j ∈ N. Sin
e Ln is relatively sequentially 
ompa
t as a subspa
e of
{0, 1}N endowed with the produ
t topology, we may assume by passing toa subsequen
e of (gj) that ~kj → ~k for some ~k ∈ Ln, the 
losure of Ln in
{0, 1}N.We now show that ~k is �nite. Suppose to the 
ontrary that ~k = (ki)

∞
i=1.As ~k ∈ Ln, for all r ∈ N there exists Nr ∈ N su
h that ~kj = (k1, . . . , kr,

l1, . . . , ls) for some l1, . . . , ls for all j ≥ Nr. Be
ause ~kj ∈ Ln, we have
k1 ≥ n, whi
h implies that there exists q ∈ N su
h that (k1, . . . , kq) ∈ Ln.By uniqueness, Ln does not 
ontain any sequen
e extending (k1, . . . , kq).Therefore, ~kNq+1

= (k1, . . . , kq+1, l1, . . . , ls) 6∈ Ln, a 
ontradi
tion.Sin
e BY ∗ is w∗-sequentially 
ompa
t, we may assume that f~kj

onverges

w∗ to some f ∈ BY ∗ . We 
laim that f ∈ K. To prove this we �rst show that
Q∗

mf ∈ K for all m ∈ N. By (19) and (22) the set {Q∗
mf~kj

(yn
i ) | j ∈ N,

1 ≤ n ≤ i} has only �nitely many elements. Sin
e Q∗
mf~kj

→ Q∗
mf as j → ∞we obtain Q∗

mf~kj
= Q∗

mf for j ∈ N large enough. In parti
ular, Q∗
mf ∈ K.Next let q = max~k. Sin
e ~kj → ~k and ~k is �nite, we have Q∗

qf = f and thus
f ∈ K.Now we show that g ∈ K. By passing again to a subsequen
e of (gj) we
an assume that either mj ≥ max~k for all j ∈ N, or there exists m < max~ksu
h that mj = m for all j ∈ N. If the �rst 
ase o

urs, then gj = Q∗

mj
f~kj
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onverges w∗ to f , and hen
e g = f ∈ K. If the se
ond 
ase o

urs, then
gj = Q∗

mf~kj

onverges w∗ to Q∗

mf , and hen
e g = Q∗
mf ∈ K.

5. Examples. In previous se
tions, we introdu
ed for any seminormal-ized basi
 sequen
e (vi) the property U(vi), and then proved that if a Bana
hspa
e X is U(vi) then there exists a 
onstant C ≥ 1 su
h that X is C-U(vi).As Knaust and Odell proved that result for the 
ases in whi
h (vi) is thestandard basis for c0 or ℓp with 1 ≤ p < ∞, we need to show that our resultis not a 
orollary of theirs. For example, if (vi) is a basis for ℓp ⊕ ℓq with
1 < q < p < ∞ whi
h 
onsists of the union of the standard bases for ℓp and
ℓq then a Bana
h spa
e is U(vi) or C-U(vi) if and only if X is Uℓp

or C-Uℓprespe
tively. Thus the result for this parti
ular (vi) follows from [KO2℄. Wemake this idea more formal by de�ning the following equivalen
e relation:Definition 5.1. If (vi) and (wi) are normalized basi
 sequen
es then wewrite (vi) ∼U (wi) (or (vi) ∼CU (wi)) if ea
h re�exive Bana
h spa
e is U(vi)(or C-U(vi)) if and only if it is U(wi) (or C-U(wi)).We de�ne the equivalen
e relation stri
tly in terms of re�exive spa
es toavoid the unpleasant 
ase of ℓ1. Be
ause ℓ1 does not 
ontain any normalizedweakly null sequen
e, ℓ1 is trivially U(vi) for every (vi). This is 
ounter tothe spirit of what it means for a spa
e to be U(vi). By 
onsidering re�exivespa
es, we avoid ℓ1, and we also make the propositions in
luded in this se
tionformally stronger. Re�exive spa
es are also espe
ially ni
e when 
onsideringproperties of weakly null sequen
es be
ause the unit ball of a re�exive spa
eis weakly sequentially 
ompa
t. That is, every sequen
e in the unit ball of are�exive spa
e has a weakly 
onvergent subsequen
e.In order to show that our result is not a 
orollary of the theorem ofKnaust and Odell, we give an example of a basi
 sequen
e (vi) su
h that
(vi) 6∼U (ei) where (ei) is the standard basis for c0 or ℓp with 1 ≤ p < ∞.To this end we 
onsider a basis (vi) for a re�exive Bana
h spa
e X withthe property that ℓp is not U(vi) for any 1 < p < ∞, but that X is U(vi)and not Uc0 . In parti
ular, we will be interested in the dual of the followingspa
e.Definition 5.2. Tsirelson's spa
e, T , is the 
ompletion of c00 under thenorm satisfying the impli
it relation

‖x‖ = ‖x‖∞ ∨ sup
n∈N, (Ei)n

i=1
⊂[N]ω, n≤E1<···<En

1

2

n
∑

i=1

‖Ei(x)‖.

(ti) is the unit ve
tor basis of T and (t∗i ) are the biorthogonal fun
tionalsto (ti).
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onstru
ted the dual of T as the �rst example of a Bana
hspa
e whi
h does not 
ontain c0 or ℓp for any 1 ≤ p < ∞ [T℄. Though weare more interested in T ∗ and (t∗i ), we use the impli
it de�nition of T (whi
hwas formulated by Figiel and Johnson in [FJ℄) as it is ni
e to work with. Theproperties of (t∗i ) that will be most useful for us are that (t∗i ) dominates allof its normalized blo
k bases, and has a spreading model equivalent to thestandard basis for c0. The sequen
es (ti) and (t∗i ) have the further interestingproperty of being blo
k stable. Casazza, Johnson, and Tzafriri showed in[CJT℄ that (ti) has the property that if (xi) is a normalized blo
k basisof (ti) then (xi) is equivalent to (tni
) where ni ∈ supp(xi) for all i ∈ N. The
orresponding statement for (t∗i ) follows from the result for (ti). As we havede�ned T , but wish to know about sequen
es in T ∗, we need the followingproposition whi
h relates sequen
es in a spa
e to sequen
es in its dual.Proposition 5.3. If (vi) and (xi) are normalized basi
 sequen
es, then:(i) (vi) dominates (xi) if and only if (v∗i ) is dominated by (x∗

i ).(ii) If (vi) is un
onditional , then (vi) dominates all of its normalizedblo
k bases if and only if (v∗i ) is dominated by all of its normalizedblo
k bases.Proof. Without loss of generality we may assume that (vi) and (xi) arebimonotone. We assume that (vi) C-dominates (xi) and let (ai) ∈ c00. Be-
ause (vi) is bimonotone, there exists (bi) ∈ c00 su
h that ∑

aiv
∗
i (

∑

bivi) =
‖
∑

aiv
∗
i ‖ and ‖

∑

bivi‖ = 1. We have
∥

∥

∥

∑

aiv
∗
i

∥

∥

∥
=

∑

aibi =
∑

aix
∗
i

(

∑

bixi

)

≤ C
∥

∥

∥

∑

aix
∗
i

∥

∥

∥
.Thus (v∗i ) is C-dominated by (x∗

i ). The 
onverse is true by duality in thesense that we repla
e the roles of (vi) and (xi) by (x∗
i ) and (v∗i ) respe
tively.We �nd that (x∗∗

i ) is equivalent to (xi) and (v∗∗i ) is equivalent to (vi) andthus the 
onverse follows and hen
e (i) is proven.After possibly renorming, we may assume that (vi) is 1-un
onditional.For the �rst dire
tion in (ii), we assume that (vi) C-dominates all of itsnormalized blo
k bases. Let ai ∈ c00 and (w∗
i ) be a normalized blo
k basisof (v∗i ). As (vi) is bimonotone, there exists a normalized blo
k basis (wi)of (vi) be su
h that w∗

i (wj) = δij . Let x ∈ S[vi] be su
h that ∑

aiv
∗
i (x) =

‖
∑

aiv
∗
i ‖. We now have

∥

∥

∥

∑

aiv
∗
i

∥

∥

∥
=

∑

aiv
∗
i (x) =

∑

aiw
∗
i

∑

v∗j (x)wj

≤
∥

∥

∥

∑

aiw
∗
i

∥

∥

∥

∥

∥

∥

∑

v∗j (x)wj

∥

∥

∥

≤ C
∥

∥

∥

∑

aiw
∗
i

∥

∥

∥

∥

∥

∥

∑

v∗j (x)vj

∥

∥

∥
= C

∥

∥

∥

∑

aiw
∗
i

∥

∥

∥
.Thus (v∗i ) is C-dominated by (w∗

i ), and we have proven the �rst dire
tion.
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onverse, assume that (v∗i ) is C-dominated by all of its normalizedblo
k bases. Let (ai) ∈ c00 and (wi) be a normalized blo
k basis of (vi). Thereexists f ∈ B[vi]∗ su
h that f(
∑

aiwi) = ‖
∑

aiwi‖. Choose (kn) ∈ [N]ω su
hthat supp(wn) ⊂ [kn, kn+1) for all n ∈ N. There is a normalized blo
k basis
(fi) of (v∗i ) and (bi) ∈ c00 su
h that f =

∑

bifi and supp(fn) ⊂ [kn, kn+1) forall n ∈ N. As (vi) is 1-un
onditional, we may assume that ai, bi, fi(wi) ≥ 0.This gives ∑

aibifi(wi) ≤
∑

aibi, as fi(wi) ≤ 1. We now have
∥

∥

∥

∑

aiwi

∥

∥

∥
=

(

∑

bifi

)(

∑

aiwi

)

≤
(

∑

biv
∗
i

)(

∑

aivi

)

≤ C
∥

∥

∥

∑

aivi

∥

∥

∥
.Hen
e,(vi) C-dominates (wi) and (ii) is proven.We will use Proposition 5.3 together with some basi
 properties of (ti)to prove the following proposition.Proposition 5.4. (t∗i ) 6∼U (ei), where (ei) is the standard basis for c0or ℓp for 1 ≤ p < ∞.Proof. It easily follows from the de�nition that (ti) is an un
onditionalnormalized basi
 sequen
e and that (ti) is dominated by ea
h of its nor-malized blo
k bases. Also, the spreading model for (ti) is isomorphi
 to thestandard ℓ1 basis. By Proposition 5.3, (t∗i ) is an un
onditional basi
 sequen
ethat dominates all of its blo
k bases and has its spreading model isomorphi
to the standard basis for c0. Furthermore, T ∗ is re�exive be
ause (t∗i ) is un-
onditional and T ∗ does not 
ontain an isomorphi
 
opy of c0 or ℓ1. As (t∗i )has the standard basis for c0 as its spreading model, ℓp is not U(t∗i ) for all

1 < p < ∞. Therefore (t∗i ) 6∼U ℓp for all 1 ≤ p < ∞. As (t∗i ) dominates allof its normalized blo
k bases and every normalized weakly null sequen
e in
T ∗ has a subsequen
e equivalent to a normalized blo
k basis of (t∗i ), it fol-lows T ∗ is U(t∗i ). Sin
e T ∗ does not 
ontain c0 isomorphi
ally, T ∗ is not Uc0 .Therefore, (t∗i ) 6∼U c0.We have shown that (t∗i ) 6∼ (ei) where (ei) is the usual basis for c0 or
ℓp for 1 ≤ p < ∞, but we 
an a
tually show something mu
h stronger thanthis. One of the main properties of ℓp used in [KO2℄ is that ℓp is subsym-metri
. If for ea
h basi
 sequen
e (vi) there existed a 
onstant C ≥ 1 and asubsymmetri
 basi
 sequen
e (wi) su
h that (vi) ∼CU (wi) then a
tually the�rst half of [KO2℄ would apply to all basi
 sequen
es without 
hanging any-thing. The following example shows in parti
ular that this is not true evenfor the weaker 
ondition of spreading (the property that all subsequen
es areequivalent).Proposition 5.5. If (vi) is a normalized spreading basi
 sequen
e, then
(vi) 6∼U (t∗i ).In general, it 
an be fairly di�
ult to 
he
k if a Bana
h spa
e is U(vi), asevery normalized weakly null sequen
e in the spa
e needs to be 
he
ked. In
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ontrast to this, it is very easy to 
he
k if T ∗ is U(vi). This is be
ause (ti) isdominated by all of its blo
k bases, and thus by Proposition 5.3, T ∗ is U(vi)if and only if (vi) dominates a subsequen
e of (t∗i ). In proving Proposition5.5 we will 
arry this idea further by 
onsidering a 
lass of spa
es ea
h ofwhi
h has a subsymmetri
 basis (ei) su
h that (ei) is dominated by all ofits normalized blo
k bases. The additional 
ondition of subsymmetry impliesthat [e∗i ] is U(vi) if and only if (vi) dominates (e∗i ). Hen
e, we need to 
he
konly one sequen
e instead of all weakly null sequen
es in [e∗i ].We 
onsider generalizations of the spa
es introdu
ed by S
hlumpre
ht[S℄ as the �rst known arbitrarily distortable Bana
h spa
es. We put lessrestri
tion on the fun
tion f given in the following proposition, but we alsoinfer less about the 
orresponding Bana
h spa
e. The te
hniques from [S℄are used to prove the following proposition.Proposition 5.6. Let f : N → [1,∞) in
rease to ∞, f(1) = 1 < f(2),and limn→∞ n/f(n) = ∞. If X is de�ned as the 
losure of c00 under thenorm ‖ · ‖ whi
h satis�es the impli
it relation
‖x‖ = ‖x‖∞ ∨ sup

m≥2, E1<···<Em

1

f(m)

m
∑

j=1

‖Ej(x)‖ for all x ∈ c00,then X is re�exive.Proof. Let (en) denote the standard basis for c00. It is straightforward toshow that the norm ‖ · ‖ as given in the statement of the proposition exists,as well as that (en) is a normalized, 1-subsymmetri
 and 1-un
onditionalbasis for X. Furthermore, (en) is 1-dominated by all of its normalized blo
kbases. We will prove that X is re�exive by showing that (en) is boundedly
omplete and shrinking.We �rst prove that (en) is boundedly 
omplete. As (en) is un
onditional,if (en) is not boundedly 
omplete then it has some normalized blo
k basiswhi
h is equivalent to the standard c0 basis. However, (en) is 1-dominatedby all its normalized blo
k bases, so (en) is also equivalent to the stan-dard c0 basis. Hen
e supN∈N ‖
∑N

n=1 en‖ < ∞. This 
ontradi
ts the fa
t that
‖
∑N

n=1 en‖ ≥ N/f(N) → ∞. Thus (en) is boundedly 
omplete.We now assume that (en) is not shrinking. As (en) is un
onditional, ithas a normalized blo
k basis (xn) whi
h is equivalent to the standard basisfor ℓ1. We will use James' blo
king lemma [J℄ to show that this leads to a
ontradi
tion. In one of its more basi
 forms, James' blo
king lemma statesthat if (xn) is equivalent to the standard basis for ℓ1 and ε > 0 then (xn) hasa normalized blo
k basis whi
h is (1 + ε)-equivalent to the standard basisfor ℓ1. Let 0 < ε < 1
2(f(2)−1). By passing to a normalized blo
k basis usingJames' blo
king lemma, we may assume that (xn) is (1 + ε)-equivalent tothe standard basis for ℓ1, and thus any normalized blo
k basis of (xn) will
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hthat ∑∞
n=1 εn < ε.We denote by ‖ · ‖m the norm on X whi
h satis�es

‖x‖m = sup
E1<···<Em

1

f(m)

m
∑

j=1

‖Ej(x)‖ for all x ∈ c00.We will 
onstru
t by indu
tion on n ∈ N a normalized blo
k basis (yi) of (xi)su
h that for all m ∈ N we have(23) if ‖yj‖m > εj for some 1 ≤ j < n, then ‖yn‖m <
1 + εn

f(m)
.For n = 1 we let y1 = x1, and note that (23) is va
uously satis�ed.We now assume that we are given n ≥ 1 and a �nite blo
k sequen
e

(yi)
n
i=1 of (xi) whi
h satis�es (23). We have

lim
m→∞

‖yi‖m ≤ lim
m→∞

# supp(yi)

f(m)
= 0(where supp(yi) denotes the support of yi). Thus, there exists N > supp(yn)su
h that ‖yi‖m < εi for all 1 ≤ i ≤ n and all m ≥ N . Using James' blo
k-ing lemma, we blo
k (xi)

∞
i=N into (zi)

∞
i=1 su
h that (zi)

∞
i=1 is (1 + εn+1/3)-equivalent to the standard ℓ1 basis. Let M ≥ 6N/εn+1 and de�ne

yn+1 =
1

‖
∑M

i=1 zi‖

M
∑

i=1

zi.Let m ∈ N be su
h that ‖yj‖m > εj for some 1 ≤ j ≤ n. By our 
hoi
e of
N ∈ N, we have m < N . There exist disjoint intervals E1 < · · · < Em in Nand integers 1 = k0 ≤ k1 ≤ · · · ≤ km su
h that

f(m)‖yn+1‖m =
1

‖
∑M

i=1 zi‖

m
∑

i=1

∥

∥

∥
Ei

ki
∑

j=ki−1

zj

∥

∥

∥

≤
1 + εn+1/3

M

m
∑

i=1

(

‖Eizki−1
‖ +

∥

∥

∥

ki−1
∑

j=ki−1+1

zj

∥

∥

∥
+ ‖Eizki

‖
)

≤
1 + εn+1/3

M
(M + 2m) < (1 + εn+1/3)(1 + 2N/M)

≤ (1 + εn+1/3)(1 + εn+1/3) < 1 + εn+1.Hen
e, the indu
tion hypothesis is satis�ed.We now show that property (23) leads to a 
ontradi
tion with (yi) being
(1 + ε)-equivalent to the standard ℓ1 basis. Let n ∈ N. For some m ≥ 2 wehave ‖

∑n
i=1 yi/n‖ = ‖

∑n
i=1 yi/n‖m. By (23) there exists 1 ≤ j ≤ n + 1 su
hthat ‖yi‖m < εi for all 1 ≤ i < j and f(m)‖yi‖m < 1 + εi for all j < i ≤ n.
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∥

∥

∥

∥

n
∑

i=1

yi

n

∥

∥

∥

∥

=

∥

∥

∥

∥

n
∑

i=1

yi

n

∥

∥

∥

∥

m

≤
1

n

j−1
∑

i=1

‖yi‖m +
1

n
‖yj‖m +

1

n

n
∑

i=j+1

‖yi‖m

<
1

n

j−1
∑

i=1

εi +
1

n
+

1

nf(m)

n
∑

i=j+1

1 + εi <
ε

n
+

1

n
+

1

f(2)
+

ε

nf(2)

<
ε

n
+

1

n
+

1

1 + 2ε
+

ε

n(1 + 2ε)
.Thus infn∈N ‖

∑n
i=1 yi/n‖< 1/(1+2ε). This 
ontradi
ts the fa
t that (yi) is

(1+ε)-equivalent to the standard ℓ1 basis. Hen
e (ei) is shrinking, and X isre�exive.Using the re�exive spa
es presented in Proposition 5.6, we 
an prove thefollowing lemma. Proposition 5.5 will then follow easily.Lemma 5.7. If (vi) is a 1-suppression un
onditional normalized basi
sequen
e su
h that (vki
) dominates (vi) for all (ki) ∈ [N]ω and (vi) is notequivalent to the unit ve
tor basis for c0, then there exists a re�exive Bana
hspa
e X whi
h is U(vi) and not U(t∗i ).Proof. There exists K ≥ 1 su
h that (vki

) K-dominates (vi) for all (ki) ∈
[N]ω. We de�ne 〈·〉 to be the norm on (vi) determined by

〈

∑

i∈N

aiv
∗
i

〉

= sup
(ki)∈[N]ω

∥

∥

∥

∑

i∈N

aiv
∗
ki

∥

∥

∥
for all (ai) ∈ c00,where (v∗i ) is the sequen
e of biorthogonal fun
tionals to (vi). The norm 〈·〉is K-equivalent to the original norm ‖ · ‖. Furthermore, under the new norm

(vki
) 1-dominates (vi) for all (ki) ∈ [N]ω. Thus after possibly renorming, wemay assume that K=1.Let ε > 0 and εi ց 0 be su
h that ∏

(1 − εi)
−1 < 1 + ε. Sin
e (vi) isun
onditional and is not equivalent to the unit ve
tor basis of c0, there exists

(Nk) ∈ [N]ω su
h that for all k ∈ N we have Nk ≥ k2 and(24) ∥

∥

∥

Nk
∑

i=1

vi

∥

∥

∥
>

k + 1

εk+1
.We de�ne the fun
tion f : N → [1,∞) by

f(n) =







1 if n = 1,
1/(1 − ε1) if 1 < n ≤ N1,
k + 1 if Nk < n ≤ Nk+1 for k ∈ N.We denote by ||| · ||| the norm on c00 determined by the following impli
itrelation:
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|||x||| = ‖x‖∞ ∨ sup

m≥2, E1<···<Em

1

f(m)

m
∑

j=1

|||Ej(x)||| for all x ∈ c00.The 
ompletion of c00 under the norm ||| · ||| is denoted by X, and itsstandard basis is denoted by (ei). We have Nk > k2, whi
h implies that
limk→∞ k/f(k) = ∞ and hen
e X is re�exive by Proposition 5.5.We now show by indu
tion on k ∈ N that if (ai)

Nk

i=1 ∈ c00 then(25) ( k
∏

i=1

1

1 − εi

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

Nk
∑

i=1

aiei

∣

∣

∣

∣

∣

∣

∣

∣

∣
≥

∥

∥

∥

Nk
∑

i=1

aiv
∗
i

∥

∥

∥
.For k = 1, we have

1

1 − ε1

∣

∣

∣

∣

∣

∣

∣

∣

∣

N1
∑

i=1

aiei

∣

∣

∣

∣

∣

∣

∣

∣

∣
≥

N1
∑

i=1

|ai| ≥
∥

∥

∥

N1
∑

i=1

aiv
∗
i

∥

∥

∥
.Thus (25) is satis�ed. Now we assume that k ∈ N and that (25) holds for k.Let (ai)

Nk+1

i=1 ⊂ R be su
h that ‖∑Nk+1

i=1 aiv
∗
i ‖ = 1. There exists (βi)

Nk+1

1=1

⊂ R su
h that ∑

βiai =‖
∑

βivi‖=1. Let I ={j ∈N | |βj| < εk+1/(k + 1)}.If ∑

i∈I |ai| ≥ k + 1 then
∣

∣

∣

∣

∣

∣

∣

∣

∣

Nk+1
∑

i=1

aiei

∣

∣

∣

∣

∣

∣

∣

∣

∣
≥

1

k + 1

∑

i∈I

|ai| ≥ 1 =
∥

∥

∥

∑

aiv
∗
i

∥

∥

∥and we are done. Therefore we assume that ∑

i∈I |ai| < k + 1, and thus
∑

i∈I

βiai ≤
∑

i∈I

εk+1

k + 1
|ai| < εk+1.We let {ji}

♯Ic

i=1 = Ic, and 
laim that ♯Ic ≤ Nk. Indeed, if we assume to the
ontrary that ♯Ic > Nk, then
1 ≥

∥

∥

∥

♯Ic

∑

i=1

βji
vji

∥

∥

∥
≥

∥

∥

∥

♯Ic

∑

i=1

βji
vi

∥

∥

∥
≥

εk+1

k + 1

∥

∥

∥

Nk
∑

i=1

vi

∥

∥

∥
>

εk+1

k + 1

k + 1

εk+1
= 1.The �rst inequality is due to (vi) being 1-suppression un
onditional, and these
ond to (vi) being 1-dominated by (vji

). Thus we have a 
ontradi
tion andour 
laim that ♯Ic ≤ Nk is proven. Now
1 =

∑

βiai =
∑

I

βiai +
∑

Ic

βiai

< εk+1 +
∥

∥

∥

♯Ic

∑

i=1

aji
v∗ji

∥

∥

∥
≤ εk+1 +

∥

∥

∥

♯Ic

∑

i=1

aji
v∗i

∥

∥

∥

≤ εk+1 +

( k
∏

i=1

1

1 − εi

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

♯Ic

∑

i=1

aji
ei

∣

∣

∣

∣

∣

∣

∣

∣

∣
by indu
tion hypothesis

≤ εk+1 +

( k
∏

i=1

1

1 − εi

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

Nk+1
∑

i=1

aiei

∣

∣

∣

∣

∣

∣

∣

∣

∣
by 1-subsymmetry.



Weakly null sequen
es with upper estimates 101The last inequality gives
1 ≤

( k+1
∏

i=1

1

1 − εi

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

Nk+1
∑

i=1

aiei

∣

∣

∣

∣

∣

∣

∣

∣

∣
.Thus the indu
tion hypothesis is satis�ed.We see that (ei) dominates (v∗i ), and hen
e (vi) dominates (e∗i ). As (e∗i )is subsymmetri
 and dominates all its blo
k bases, [e∗i ] is U(vi). Sin
e (e∗i ) isweakly null and is not equivalent to the unit ve
tor basis of c0, we dedu
ethat [e∗i ] is not U(t∗i ).The proof of Proposition 5.5 now follows easily.Proof of Proposition 5.5. Let (vi) be a normalized C-spreading basi
sequen
e. Be
ause (vi) is spreading, Rosenthal's ℓ1 theorem implies that (vi)must be either equivalent to the standard basis for ℓ1, or weakly Cau
hy. Inthe �rst 
ase, it is obvious that (vi) 6∼U (t∗i ) as every Bana
h spa
e is Uℓ1 .Thus we assume that (vi) is weakly Cau
hy. The di�eren
e sequen
e de�nedby (wi) = (v2i−1−v2i) is weakly null. (wi) is weakly null and spreading, andis thus un
onditional. For all (ai) ∈ c00 we have

∥

∥

∥

∑

aiwi

∥

∥

∥
≤

∥

∥

∥

∑

aiv2i−1

∥

∥

∥
+

∥

∥

∥

∑

aiv2i

∥

∥

∥
≤ 2C

∥

∥

∥

∑

aivi

∥

∥

∥
.Thus, (vi) dominates (wi). If (wi) is not equivalent to the standard basis for

c0 then, by Lemma 5.7, there exists a Bana
h spa
e whi
h is U(wi) and hen
e
U(vi), but is not U(t∗i ). If (wi) is equivalent to the standard basis for c0 then

sup
n

∥

∥

∥

n
∑

i=1

(−1)n−1vi

∥

∥

∥
= sup

n

∥

∥

∥

n
∑

i=1

wi

∥

∥

∥
< ∞.However, supn ‖

∑n
i=1(−1)nt∗ki

‖ = ∞ for all (ki) ∈ [N]ω. Thus T ∗ is not U(vi),and (vi) 6∼U (t∗i ).We also 
onsidered the question: �Does there exist a basi
 sequen
e (vi)su
h that (vi) 6∼U (wi) for any un
onditional (wi)?�. This is a mu
h harderquestion, whi
h is 
urrently open. Neither the summing basis for c0 nor thestandard basis for James' spa
e give a solution, as these are 
overed by thefollowing proposition:Proposition 5.8. If (vi) is a basi
 sequen
e su
h that supn∈N‖
∑n

i=1εivi‖
< D for some (εi) ∈ {−1, 1}N and 
onstant D < ∞, then (vi) ∼U c0.Proof. Let X be a C-UV Bana
h spa
e, and let (xi) ∈ SX be weakly null.By Ramsey's theorem, we may assume by passing to a subsequen
e that (vi)
C-dominates every subsequen
e of (xi). By a theorem of John Elton [E℄, thereexists K < ∞ and a subsequen
e (yi) of (xi) su
h that if (ai)

∞
i=1 ∈ [−1, 1]Nand I ⊂ {i | |ai| = 1} is �nite then ‖

∑

I aiyi‖ ≤ K supn∈N ‖
∑n

i=1 εiyi‖. Thus



102 D. Freemanfor all A ∈ [N]<ω we have
∥

∥

∥

∑

i∈A

εiyi

∥

∥

∥
≤ K sup

n∈N

∥

∥

∥

n
∑

i=1

εiyi

∥

∥

∥
≤ KC sup

n∈N

∥

∥

∥

n
∑

i=1

εivi

∥

∥

∥
< KCD.As this is true for all A ∈ [N ]<ω, (yi) is equivalent to the unit ve
tor ba-sis of c0. Every normalized weakly null sequen
e in X has a subsequen
eequivalent to c0, so X is Uc0 .
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