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Weakly null sequences with upper estimates
by

DANIEL FREEMAN (College Station, TX)

Abstract. We prove that if (v;) is a seminormalized basic sequence and X is a Banach
space such that every normalized weakly null sequence in X has a subsequence that is
dominated by (v;), then there exists a uniform constant C' > 1 such that every normalized
weakly null sequence in X has a subsequence that is C-dominated by (v;). This extends
a result of Knaust and Odell, who proved this for the cases in which (v;) is the standard
basis for ¢, or co.

1. Introduction. In some circumstances, local estimates give rise to
uniform global estimates. An elementary example of this is that every con-
tinuous function on a compact metric space is uniformly continuous. Uniform
estimates are especially pertinent in functional analysis, as one of the corner-
stones to the subject is the Uniform Boundedness Principle. Because uniform
estimates are always desirable, it is important to determine when they occur.
In this paper, we are concerned with uniform upper estimates of weakly null
sequences in a Banach space. Before stating precisely what we mean by this,
we give some historical context.

For each 1 < p < 0o, Johnson and Odell [JO| have constructed a Banach
space X such that every normalized weakly null sequence in X has a sub-
sequence equivalent to the standard basis for £,, and yet there is no fixed
C > 1 such that every normalized weakly null sequence in X has a subse-
quence C-equivalent to the standard basis for ¢,. A basic sequence (z;) is
equivalent to the unit vector basis for ¢, if it has both a lower and an upper
¢, estimate. That is, there exist constants C, K > 1 such that

%(Z |ai!p)1/p < Hzam < C(Zlai|p>l/p V(a;) € coo-

The examples of Johnson and Odell show that the upper constant C' and
the lower constant K cannot always both be chosen uniformly. It is some-
what surprising then that Knaust and Odell proved [KO2| that the upper
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estimate can always be chosen uniformly. Specifically, they proved that for
every Banach space X, if each normalized weakly null sequence in X has a
subsequence with an upper ¢, estimate, then there exists a constant C' > 1
such that each normalized weakly null sequence in X has a subsequence
with a C-upper £, estimate. They also proved earlier the corresponding the-
orem for upper ¢y estimates [KO1|. The standard bases for ¢,, 1 < p < oo,
and ¢y enjoy many strong properties which Knaust and Odell employ in
their papers. It is natural to ask what are necessary and sufficient properties
for a basic sequence to have in order to guarantee the uniform upper esti-
mate. In this paper we show that actually all seminormalized basic sequences
give uniform upper estimates. We make the following definition to formalize
this.

DEFINITION 1.1. Let V = (v,)22, be a seminormalized basic sequence.
A Banach space X has property Sy if every normalized weakly null sequence
(z5,) in X has a subsequence (y,,) such that for some constant C' < oo,

0 e

X has property Uy if C may be chosen uniformly. We say that (y,) has
a C-upper V-estimate (or that V C-dominates (yy,)) if (1) holds for C, and
that (yn) has an upper V-estimate (or that V' dominates (y,)) if (1) holds
for some C.

<1

oo
< C  forall (o) € coo with H Z QnUn,
n=1

Using these definitions, we can formulate the main theorem of our paper:

THEOREM 1.2. A Banach space has property Sy if and only if it has
property Uy .

Sy and Uy are isomorphic properties of V', so it is sufficient to prove The-
orem 1.2 for only normalized bimonotone basic sequences. This is because ev-
ery seminormalized basic sequence is equivalent to a normalized bimonotone
basic sequence. Indeed, if 0 < A < ||v;]| < B for all i € N, then we can define

a new norm ||| - [I| on [vi] by [[|2]l| = B~ sup,,<p, | Pzl V supen v} ()]
for all x € [v;], where Py, ., denotes the projection of [v;] onto the span
of {vp,...,um}. The norm ||| - ||| is equivalent to || - || on [v;] and (v;) is

normalized and bimonotone in the new norm.

In Section 2 we present the necessary definitions and reformulate our
main results. We break up the main proof into two parts which we give in
Sections 3 and 4. In Section 5 we give some illustrative examples which show
in particular that our result is a genuine extension of [KO2| and not just a
corollary.

For a Banach space X we use the notation Bx to mean the closed unit
ball of X and Sx to mean the unit sphere of X. If F C X we denote by [F]
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the closed linear span of F' in X. If N is a sequence in N, we denote by [N]*
the set of all infinite subsequences of N.

This paper forms a portion of the author’s doctoral dissertation, which
is being prepared at Texas A&M University under the direction of Thomas
Schlumprecht. The author thanks Dr. Schlumprecht for his invaluable help
and guidance.

2. Main results. Here we introduce the main definitions and theorems
of the paper. Many of our theorems and lemmas are direct generalizations
of corresponding results in [KO2|. We specify when we are able to follow the
same outline as a proof in [KO2]|, and also when we are able to follow a proof
exactly.

DEFINITION 2.1. Let X be a Banach space and V' = (v,)52; be a nor-
malized bimonotone basic sequence. With the exception of (ii), the following
definitions are adapted from [KO2].

(i) A sequence (z,,) in X is called a uV-sequence if ||z,| < 1 for all
n € N, (z,,) converges weakly to 0, and

| Zanazn

(z,) is called a C'-uV-sequence if

1%, anual <1

22551 anonll<TT 2y

(ii) A sequence (z,) in X is called a hereditary uV-sequence if every
subsequence of (z,,) is a uV-sequence, and is called a hereditary
C-uV-sequence if every subsequence of (x,) is a C-uV-sequence.

(iii) A sequence (xy,) in X is called an M -bad uV-sequence for a constant
M < oo if every subsequence of (x,) is a uV-sequence, and no
subsequence of (x,) is an M-uV-sequence.

(iv) An array (z}')°_; in X is called a bad uV-array if each sequence

,m=1

M), is an M -bad uV-sequence for some constants M,, with
1 J1=1 q
M,, — oo.

(v) (yf)ﬁzl is called a subarray of (xI')

e}

in—1 if there is a subsequence

(ng) of N such that every sequence (y¥)°, is a subsequence of

(vi) A bad uV-array (27)7%,—; is said to satisfy the V-array procedure
if there exists a subarray (y?) of (zI') and there exists (a,) C R
with a, < 277, for all n € N, such that the weakly null sequence
(yi) with y; :=>>7 | apy! has no uV-subsequence.
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(vil) X satisfies the V-array procedure if every bad uV-array in X sat-
isfies the V-array procedure. X satisfies the V-array procedure for
normalized bad uV-arrays if every normalized bad uV-array in X
satisfies the V-array procedure.

NOTE. A subarray of a bad uV-array is a bad uV-array. Also, a bad ul-
array satisfies the V-array procedure if and only if it has a subarray which
satisfies the V-array procedure.

Our Theorem 1.2 is now an easy corollary of the theorem below.

THEOREM 2.2. Ewvery Banach space satisfies the V-array procedure for
normalized bad uV-arrays.

Theorem 2.2 implies Theorem 1.2 because if a Banach space X has prop-
erty Sy and not Uy then there exists a normalized bad uV-array, and the
V-array procedure gives a weakly null sequence in Bx which has no uV-
subsequence. The sequence must be seminormalized, so we could pass to a
basic subsequence on which the norm of each element is essentially constant,
and then renormalize. This would give a normalized weakly null sequence
with no uV-subsequence, contradicting X being Uy .

The proof for Theorem 2.2 will be given first for the following special
case.

PROPOSITION 2.3. Let K be a countable compact metric space. Then
C(K) satisfies the V-array procedure.

The case of a general Banach space reduces to this special case by the
following proposition.

PROPOSITION 2.4. Let ('), _; be a normalized bad uV-array in o Ba-
nach space X. Then there exists a subarray (yl") of (z}') and a countable
w*-compact subset K of By, where Y := [y'|? _,, such that (y}'| k) is a bad
uV-array in C(K). 7

Theorem 2.2 is an easy consequence of Propositions 2.3 and 2.4. Note that
Proposition 2.4 is only proved for normalized bad uV-arrays. This makes the
proof a little less technical.

Before we prove anything about subarrays though, we need to first con-
sider just a single weakly null sequence. One of the many nice properties
enjoyed by the standard basis for £,, which we denote by (e;), is that (e;)
is 1l-spreading. This is the property that every subsequence of (e;) is 1-
equivalent to (e;). Spreading is of particular importance because it implies
the following two properties which are implicitly used in [KO2|:

(i) If (e;) C-dominates a sequence (x;) then (e;) C-dominates every
subsequence of (z;).
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(i) If (e;) does not C-dominate a sequence (x;) then no subsequence of
(e;) C-dominates (z;).

Throughout the paper, we will be passing to subsequences and subarrays,
so properties (i) and (ii) would be very useful for us. In our paper we have to
get by without property (ii). On the other hand, for a given sequence that
does not have property (i), we may use the following two results, which are
both easy consequences of Ramsey’s theorem (cf. [O]), and will be needed in
subsequent sections.

LEMMA 2.5. Let V = (v;)$2, be a normalized bimonotone basic sequence.
If (z4)$2, is a sequence in the unit ball of some Banach space X such that
every subsequence of (x;)°, has a further subsequence which is dominated
by V', then there exists a constant 1 < C' < oo and a subsequence (y;)°, of
(x)2, so that every subsequence of (y;)2, is C-dominated by V.

Proof. Let A, = {(my)52, € [N]* | (z,) is 2"-dominated by V'}. Since
A, is Ramsey, for all n € N there exists a sequence (m[')°, = M,, € [M, 1]
such that [M,]Y C A, or [M,]¥ C AS. We claim that [M,]* C A, for some
n € N, in which case we could choose (y;)2; = (zmp)2;. Every subsequence
of (y;)52, is then 2"-dominated by V.

If our claim were false, we let (yn)pl; = (Tmz)pey and (yg,)ne; be a
subsequence of (y,)5 ; for which there exists C' < oo such that (yg, )22, is
C-dominated by V. Let N € N be such that 2 — 2N > C and set

, {mN if i <N,

)

mF it i > N.

Then (1;)32, € [Mn]“ C AS;, which implies that some (a;)%; C [~1,1] exists
such that || % av;|| <1 and || S5, aizy,|| > 2V, This yields

L N L L
N ) ) ) )
27 < H Zalxli < Z ’al| + H A Z azl‘mllz? < N + H ‘ Z AiYk;
i=1 i=1 i=N-+1 B i=N-+1

N L L
< 2N — H Zaiyki + H Z az’yk,-H < 2N + H Zaiyki
i=1 i=N+1 i=1

which implies

i

L
C <2V —2N < HZaiyki
i=1

Thus (yg, )22, being C-dominated by V' is contradicted. m

The following lemma is used for a given (z;) to find a subsequence (y;)
and a constant C' > 1 such that (v;) C-dominates every subsequence of (y;)
and that C' is approximately minimal for every subsequence of (y;).
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LEMMA 2.6. Let V = (v,)%, be a normalized bimonotone basic se-
quence, (x5,)02, be a sequence in the unit ball of some Banach space X,
and ay, /" oo with a; = 0. If every subsequence of (xy,)72, has a further sub-
sequence which is dominated by V' then there exists a subsequence (yn)o
of (xn)22, and an N € N such that every subsequence of (yn)S>; s ant1-
domunated by V' but not an-dominated by V.

Proof. By the previous lemma, we may assume by passing to a subse-
quence that there exists C' < oo such that every subsequence of (z,)0%,
is C-dominated by V. Let M € N be such that ayy < C < apry1. For
1<n<M let

A= { ) € 1

(Tmy, )52 41S apq1-dominated by V}

and is not a,-dominated by V'

Then A, is Ramsey, and {A,} | forms a finite partition of [N]*, which
implies that there exist N < M and (my,) € [N]* such that [(mg)32,]“ C An.
Every subsequence of (y,) := (2, ) is ayti-dominated by V' and not ay-
dominated by V.

3. Proof of Proposition 2.3. Proposition 2.3 will be shown to follow
easily from a characterization of countable compact metric spaces along with
transfinite induction using the following result.

LEMMA 3.1. Let (X,,) be a sequence of Banach spaces each satisfying the
V-array procedure. Then (307 1 Xp)e, satisfies the V-array procedure.

To prove Lemma 3.1 we will need the following lemma which is stated
in [KO2| for ¢, as Lemma 3.6. The proof for general V' closely follows its
proof.

LEMMA 3.2. Let (X,,) be a sequence of Banach spaces each satisfying the
V-array procedure and let (') be a bad uV-array in some Banach space X .
Suppose that for all m € N there is a bounded linear operator T, : X — Xy,
with || T, || < 1 such that (T,x")2, is an m-bad uV-sequence in X,,. Then

(«') satisfies the V-array procedure.

Proof. CASE 1: There exists m € N and a subarray (y;*) of (') such that
(Thnyl)$o _y is a bad uV-array in X,,. Then (T,,y")$S,_; satisfies the V-array
procedu’re because X, does. Therefore, there exists a subarray (Tmz?)iojl:l
of (T1ny]')55=1 and (a,) C RT with a, < 27" such that (3777 anTn2]')2,
has no uV-subsequence. Then (37 a,2!")5°; has no uV-subsequence be-
cause ||T5, || < 1. Therefore (y;')7%,_; and hence (z7')7%,_; satisfies the V-array

(]
procedure.
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CASE 2: Case 1 is not satisfied. Then for all m € N and every subarray
(yl') of («'), we see that (T),y]') is not a bad ulV-array in X,,. We may
assume by passing to a subarray and using Lemma 2.5 that there exists
(Np)$; € [N]“ such that

(2)  (x7)72; is a hereditary N,-uV-sequence for all n € N.

By induction we choose for each m € Ny a subarray (z7,, ;)75,—1 of (27')55,—
and an M, € N so that

(3) (Z:Ln Z)?O’n 1 is a SUba‘rra‘y of ( Zm—1 Z)Z ;n=1 if m > 17

(4) 2y, =2z) if N, <mandié€N,

m,i m—1,:

(5)  (Tmzpi)i2y is a hereditary M,,-uV-sequence Vn € N if m > 1.

For m = 0 let (27,)55,-1 = (27)75,=1- Now let m > 1. For each n € N
such that N,, < m let (2 mz)fol = (zm_l )2, and K, = m. For each n € N
such that N, > m, using Lemma 2.6, ‘we let (z1m.1)721 be a subsequence
of (zp,_1,)i2, for Whlch there exists K, € Ny such that (Tnzy, )2y s a
K,-bad uV- sequence and is also a hereditary (K, + 1)-uV-sequence. The
sequence (K,,)>°  is bounded because otherwise we are in Case 1. Let M,
max,eN K, + 1. This completes the induction.

For all n,i € N we find by (4) that (z7, ;);7—; is eventually constant. Let
(2 )7m=1 = limm—oo(zy, ;)55=1- Then (27)7,_; is a subarray of (z7)75,_;.

and by (5),
(6) (Tmzi')i2, is a hereditary M,,-uV-sequence for all m,n € N.

We will now inductively choose (m,,) € [N]* and (a,) C R so that for
all n € N:

7 Ty 2)2. is an my,-bad uV-sequence in X, ,
nTe i=1 n

(8) AnMy, > N,

n—1 AT
(9) Z a;j Ny, < n4 n

j=1

. — —n ATy

10 27", 27" .
( ) 0< On < lg}flgn{ ’ 4.7\47,“C }

Property (7) has been assumed in the statement of the lemma. For n = 1
let a; = 1/2 and m; € N be such that a;m; > 1, so (8) is satisfied. (9) and
(10) are vacuously true for n = 1 so all conditions are satisfied for n = 1.

Let n > 1 and assume (a])] 1 and (m )”:_11 have been chosen to satisfy
(8), (9) and (10). Choose a,, > 0 small enough such that a, <minj<;<,{27",
27 "agmy /4 My}, thus satisfying (10). Choose m,, > 0 large enough to satisfy
(8) and (9). This completes the induction.
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By (10), for all n € N we have

o0
anm
(11) Z a; My, < "4 n
j=n+1
Also by (10), a; < 277 for all j € N, so y := > e a;z,” is a valid choice

for the V-array procedure. Let C' > 0 and (yg,) be a subsequence of (y;). We
need to show that (yg,) is not a C-uV-sequence. Using (8), choose n € N so
that a,m, > 2C. Using (7) choose | € N and (3;)}_, € B,y such that

l
(12) H ZﬁiTngZZ" > my,.
i=1
We now have
l I oo
|3 ] = [ 3 At
i=1 i=1 j=1
I oo
> (| 303 T (Bias )|
i=1 j=n
I n-1
— H ZZﬂiaszZjH since || Ty, || <1
i=1 j=1
l 0o l
2 o S AT - 3 o St
i=1 j=n+1 i=1
n—1 l
D) aed
j=1 i=1
oo n—1
> anmn — Y @My, =Y ajNp, by (12), (6), and (2)
j=n+1 j=1
> apMmy, — apmp /4 — apmy /4 by (9) and (11)
=a,m,/2 > C.

Therefore, (yg,) is not a C-uV-sequence. (y;)5°, :(Z?il a;z; )%, has
no uV-subsequence, so (x7') satisfies the V-array procedure, which proves

Lemma 3.2. =

Now we are prepared to give a proof of Lemma 3.1. We follow the outline
of the proof of Lemma 3.5 in [KOZ2|.

Proof of Lemma 3.1. Let (x]') be a bad uV-array in X = (3 X,,)¢, and
R,, : X — X,, be the natural projections.
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CLAIM. For all M < oo there exist n,m € N and a subsequence (y;)2,
of (z1)52, such that (Rpyy;)2, is an M-bad uV-sequence.

Assuming the Claim, we can find (N,), € [N]¥, (m(n))72; C N, and
subsequences (y;')°; of (fo”)fil such that (R, )2, is an n-bad uV-
sequence for all n € N. By passing to a subsequence, we may assume either
that m(n) = m is constant, or that (m(n))s2; € [N]*. If m(n) = m, then
(Rmyl)se._q is a bad uV-array in X,,. Then (R,y")o%_; satisfies the V-array
procedure, and thus (ylr)oo._, satisfies the V-array procedure. If (m(n))pe, €
N]“, let T,, := Rm(n)“yﬂio’o;:l and apply Lemma 3.2 to the array (y;)95,-; to
finish the proof.

To prove the Claim, we assume it is false: there exists M < oo such that
for all m,n € N every subsequence of (2]')°; contains a further subsequence
(yi)$2, such that (Ryy;)52; is an M-uV-sequence.

By Ramsey’s theorem, for any n € N and m € N every subsequence
of (z]")72, contains a further subsequence (y;)7°; such that (R,,y;)72, is a
hereditary M-uV-sequence. Fix n € N such that (z')2, is an (M + 3)-
bad uV-sequence. We now construct a nested collection of subsequences
[() 21 12 of (2, (where (y0) 2, = (7)32,) as well as (m;) € [NJ*
so that for all £ € N we have

(13) sup || Rmyr-11] <277,
m>my
(14) (Yk,i)i= is a subsequence of (Yr—1,)i=1,
(15) (RmYk,i)izy is a hereditary M-uV-sequence Ym < my,.

For k = 1 we choose m; € N such that sup,,~,, [[Rmyo,1| < 27!. Pass
to a subsequence (y14)5°; of (y04)52, such that (Rpy1,)72, is a hereditary
M-uV-sequence for all m < m;.

For k > 1, given my_1 € N and a sequence (y;_1;)72,, choose my > my_;
so that sup,,~,, [[Rmye—1,kl < 27, thus satisfying (13). Let (y4;)32; be a
subsequence of (yr—1,)52; so that (Ry,yk,:)i2; is a hereditary M-uV-sequence
for all m < my, thus satisfying (14) and (15). This completes the induction.

We define y, = yg_1 for all k € N. By (14), (yx:)¥, U (Yi)Zpyq Is @
subsequence of (y;);2;. Therefore, (15) shows that

(16)  (vi)ipy1 M-dominates (Rpnyq,)iopy1 Vm < my, (¢;) € [N]*, k€ N.

Since ()72, is an (M + 3)-bad uV-sequence, there exists (a;) € By
such that

=1
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For all k£ € N and m € (m;—1,m;] (with mg = 0) we have

00 k—1 e
|3 Bleay)|| < laal 1Bl + | Bmlcng)ll + || 3 Rnligs)
i=1 i=1

i=k+1

k—1 00
<> 21+ H D iRmyi| by (13)
i=1 i=k+1
<1+1+M by (16),
which implies
[o¢] (o]
HZaiyi = sup HZRm(aiyi) ‘ <M +2.
i=1 meNT i

This contradicts (17), so the Claim, and hence Lemma 3.1, is proved. =

The proof for Proposition 2.3 now follows in exactly the same way as in

[KO2).

Proof of Proposition 2.3. If K is a countable compact metric space then
there is a countable limit ordinal « such that C(K) is isomorphic to C(«)
(see |BP]). Thus if the V-array procedure fails for C'(K), then there is a first
limit ordinal « such that the V-array procedure fails for C(a). If « is the
first infinite ordinal then C(«) is isomorphic to ¢y and satisfies the V-array
procedure. Otherwise, we can find a sequence 3, < « of limit ordinals such
that C(«) is isomorphic to (D> C(8n))c,- Thus C(«) satisfies the V-array
procedure by Lemma 3.1. =

4. Proof of Proposition 2.4. The proof of Theorem 2.2 will be com-
plete once we have proven Proposition 2.4. To make notation easier, we now
consider the triangulated version (z]')1<p<i<oco Of the square array (z])5° _;.
The benefit of using a triangular array is that a natural sequential order can
be put on a triangular array. As the following proposition shows, we can then

pass to a basic sequence in that order.

LEMMA 4.1. For all € > 0, a triangular bad uV-array (x}')n,<; admits a
triangular subarray (yr*)n<i which is basic in its lexicographical order (where
i is the first letter and n is the second letter), and its basis constant is not
greater than 1+ €. In other words, y%,y%,y%,y%,yg,yg’,yi, ... 18 a basic se-
quence.

Proof. The proof is an easy adaptation of the proof that a weakly null
sequence has a basic subsequence.

The following lemma shows that we need to prove Proposition 2.4 only
for triangular arrays.
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LEMMA 4.2. A square array satisfies the V-array procedure if and only if
its triangulated version does.

Proof. If (y )m 1 1s a subarray of (zI")%° _; then (y")i<n<i<oo i a tri-
angular subarray of (1) 1<n<i<oo- Also, if (g?)1§n§i<oo is a triangular sub-
array of (2')1<n<i<oo then (y')1<n<i<oco may be extended to a subarray of
(2])59=1 by letting (y")i<n = (2" )icn, Where (my) € [N]* is such that
(yM)s2, C (x™)2, for all n € N.

We now show that applying the V-array procedure to (y}')S,_; and
(Y )1<n<i<oo yields sequences which either both satisfy the V—arrz;,y proce-
dure or both fail the V-array procedure. For all n € N let 0 < |ay,| < 277,

z; = Z;Zl anyi, and y; = Y0 oyt For all m € N if (5;)52) € By then

HZm Zﬂzyz —HZ@ ol

=1+
<Zy@\ Z ]an]<22 <.
n=1+1

Thus sup,,ey || Yoty Bizil] = oo if and only if sup,,cy || doit; Bivil| = oo,
which implies the claim. =

n

We now assume that the given bad uV-array (z}') is labeled triangularly
and that it is a bimonotone basic sequence in its lexicographical order. This
assumption is valid because the properties of “being a bad uV-array” and
“satisfying the V-array procedure” are invariant under isomorphisms. We
also assume that (z]') is normalized.

The following theorem is our main tool used to construct the subarray

(2
(y7") of (z7') and the countable w*-compact set K C By,nj for Proposition 2.4.
THEOREM 4.3. Assume that (z]")1<n<i is a normalized triangular array
in X such that for everyn € N the sequence (x]')32, is weakly converging to 0.
Let V = (v;) be a normalized basic sequence and let (Cy,) C [0,00) and e > 0.

Then (x}') has a triangular subarray (y;') with the following property:

For all m,s € N and all m < my < --- <my all (aj);_4 € By with
122521 aym, || = Cn there is a g € (2+€)BX* and (Bj);_, € By so
that

(18) Zﬁ,g (ym.) > Ch,

(19) g(y]m/) = 0 whenever m' < j and j & {mq,...,ms}.

If we also assume that (')1<n<i is a bimonotone basic sequence in its lex-
icographical order then there exists (j;) € [N]“ so that we may choose the
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subarray (yl') by setting yl' = x?l for all n < i. In this case we have the
above conclusion for some g € (1+ €)By~.

Proof. After passing to a subarray using Lemma 4.1 we can assume that
(«7) is a basic sequence in its lexicographical order and that its basis constant
does not exceed the value 1+ e. We first renorm Z = [2]] by a norm ||| - |||
in the standard way so that |z|| < [||z]|| < (2 + 2¢)||z|| and so that (z])
is bimonotone in Z. We can therefore assume that (z]') is a bimonotone
basis and need to show the claim of Theorem 4.3 for (1 + €)Bx~ instead of

Let (e) C (0,1) with Y77, kep < e/4. By induction on k € Ny we
choose i € N and a sequence Ly € [N]*, and define yjt = xl’; for m < k and
m < j < k so that the following conditions are satisfied:

(i) ip =minL;_1 <minLg and L; C Ly_q,ifk>1 (Lo = N)
(ii) For all s,t € Ny, all 1 <m <k, allm <m; <--- <mys <k and
lo <ly <---<lyin Ly, if there is an f € Bx» with

S t
(20) D o flym) + Y ajpsf (@) = Cpy for some ()5 € By
j=1 j=1

(21)  then there exists g € Bx+ such that

(2) 51 Big(im )+ 2521 Bi+sg(af?) = Cn for some (6357 € By,
(b) \g(y}”l)| <gjiftm' <kand je{m, ... k}\{mi,...,ms},
(¢) lg(a™)| < epgr if m' <k+1

(in the case s = 0 condition (b) is defined to be vacuous; also note
that in (c) we allow m’ =k + 1).

We first note for (i;) € [N]* that (27 )n<; is a subsequence of (27 )n<; in
their lexicographic orders. Thus (27 )n<; is a bimonotone basic sequence in
its lexicographic order.

For k = 0, if f € Bx~ satisfies (20) then g = P[’;? 7oo)f satisfies (21) by
our bimonotonicity assumption. '

Assume k > 1 and that we have chosen i1 < -+ < i_1. We let i}, =
minL;_q.

Fix an infinite M C Ly_1 \ {ix}, a positive integer m < k, an integer
0 <s<k—m+1, and positive integers m < mq < --- < mg < k, and define

A= A(m,s, (mj)i,) = ﬂ A,  where

teNp
if (m;)j_, and (lj)§'=0 satisfy (20)}
then they also satisfy (21) .

4y — {(z»;*’o e [(M]*
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For t € N the set A; is closed as a subset of 2V in the product topology,
thus A is closed, and thus Ramsey. We will show that there is an infinite
L C M so that [L]¥ C A. Once we have verified that claim we can finish
our induction step by applying that argument successively to all choices of
m<k,0<s<kand m<m <---<mg <k, as there are only finitely
many.

Assume our claim is wrong and, using Ramsey’s theorem, we could find
an L = (lj);'il so that [L]* N A = (.

Let n € N be fixed, and let p € {1,...,n}. Then L®) = {lp,lng1, ...} is
not in A and we can choose ¢,, € Ny, (a;-‘);’:{s and f, € Bx- so that (20) is
satisfied (for (Ip41,...,{14¢) replacing (1, ...,1;) and [, replacing ly) but for
no (8;)5h € Byy) does condition (21) hold. By choosing ¢, to be minimal

j=1
7?)?";{8 and f,, independent of p.

so that (20) is satisfied, we can have t,, (o)’
We now show that there is a g, € Bx satistying (a) and (b) of (21).
Let k' = max{m —1 < i <k |i¢g{my,....ms}. If K < m then

{my,...,ms} = {K'+1,k' +2,...,k} and by our assumed bimonotonicity

Gn = P[Zﬁﬂm)f" € BY satisfies (a) and (b) of (21). If &’ > mlet 0 < s’ < s

such that my < --- < my < k', and apply the ¥ — 1 step of the induction

hypothesis to f, (a?)z’:{‘s, m < m; < -+ < mg (replacing m < m; <
< mg),and K < K +1< - < mg < lpp1 < -+ < Iy, (replacing

ly, < lp4y1 < -+ <l,) to obtain a functional g, € Bx+ which satisfies (a)
and (b) of (21).

Since g, cannot satisfy all three conditions of (21) (for any choice of
1 < p < n), we deduce that ]gn(x;:pﬂ > ep41 for some choice of m, €
{1,...,k+1}.

Let g be a w* cluster point of (g, )nen. As the set {1,...,k+ 1} is finite,
for all p € Ny we have |g(x;:p)| > g1 for some my, € {1,...,k+ 1}. This
implies there exists 1 <m < k+ 1 such that [g(2]")| > ¢ for infinitely many
p € N. This is a contradiction with the sequence (:Ul”:)fil being weakly null.
Our claim is verified, and we are able to fulfill the induction hypothesis.

The conclusion of our theorem now follows by the following perturba-
tion argument. If we have n < 43 < --- < i; and (aj)?zl € By with
[y ajy;"|| = Cp, then there exists f € Bx« so that > o f(yl) =
Cp. Our construction gives an h € Bx+ with 25:1 ozjh(y?j) > C, and
\h(y)| <ejif m < gand j € {m',....k}\ {i1,...,ig}. Because (y') is
bimonotone, we may assume that h(y]) = 0 for all i > n with i > i,.
We perturb & by small multiples of the biorthogonal functionals of (y!") to
achieve g € X* with g(y!') = h(y}") for i € {i1,...,i4} and g(y}*) = 0 for
i & {i1,...,1q}. Thus g satisfies (18) and (19). All that remains is to check
that g € (1 + ¢)Bx+. Because (y/') is normalized and bimonotone, we can
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estimate ||g|| as follows:

ig—1
. €
lgll < NIl +llg =Rl < T+ jej < L+ =
j=1

We are now prepared to give the proof of Proposition 2.4. We follow the
same outline as the proof given in [KO2| for Proposition 3.4.

Proof of Proposition 2.4. Let (z') be a normalized bad uV-array in X
and let M, for n € N, be chosen so that the sequence (z')°, is an M,-bad
uV-sequence and lim,,_.o, M,, = co. By Lemma 4.2 we just need to consider
the triangular array (z'),<;. By passing to a subarray using Lemma 4.1 and
then renorming, we may assume that (z}'),<; is a normalized bimonotone
basic sequence in its lexicographical order.

We apply Theorem 4.3 for € = 1 and (C),) = (M,,) to obtain a subarray
(y!")n<i that satisfies conditions (18) and (19). Moreover, (y') in its lexi-

cographical order is a subsequence of (z!') in its lexicographical order, and
M52, for all

(2
thus is bimonotone. Furthermore, (y]')?2,, is a subsequence of (]
n € N. We write Y = [y] <.

Let F(n) be a finite (1/2n2")-net in [—2, 2] which contains the points 0,
—2, and 2. Whenever we have a functional g € 2Bx~ which satisfies condi-
tions (18) and (19) we may perturb g by small multiples of the biorthogonal
functions of (y}")n<; to obtain f € 3Bx+ which satisfies (18), (19), and the

following new condition:

(22) f(yi') € F(n) foralln <i.

We now start the construction of K. Let Y = [y'],<; and m € N. We define
m <k <--- <k,

Ly =S (K1, kg) | 128 auyl| < My for all (o) € By,

1>, aiyyr|| > My, for some (o;) € By

It is important to note that if (k;) € [N]“ and k; > m then there is a unique

q € N such that (ki,...,kq) € Lp,.

Whenever k = (k1,...,kq) € Ly, an application of Theorem 4.3 and
then perturbation gives a functional f € 3By which satisfies conditions
(18), (19), and (22). In particular, Y31, f(auy;’) > My, for some (a;) € By.
We denote f/3 by f;: and let, for any n € N,

K, ={QLf;|meN, ke Ly}

Here @, denotes the natural norm 1 projection from Y onto [(y!")]1<n<i<m-
Finally, we define

K = GKnu{o}.



Weakly null sequences with upper estimates 93

We first show that (y} ’K)n<1 is a bad uV-array as an array in Cp(K).
Fix an ng € N. Then (y;°)32, is an Mpy,-bad uV-sequence. Consequently,

[e.o]

given a subsequence (y,°)?2; of (y;°)72,,, we have ko= (ki,.. . kg) € Ly,
for some ¢ € N. By (22), f;z = Qy1f; and thus fr € K, C K. Now,

i1 frlaiy®) > My, /3 for some (a;) € By, and so (y;°|k)72,, is an
(My,/3)-bad sequence in Cy,(K), thus proving that (y'|x)n<; is a bad uV-
array.

i=ng

K is obviously a countable subset of By=. Since Y is separable, K is
w*-metrizable. Thus we need to show that K is a w*-closed subset of By
in order to finish the proof.

Let (g;) C K and assume that (g;) converges w* to some g € By~. We
have to show that g € K. Every g; is of the form Q;‘n] ij for some m; € N,

Ej € Ly;, and some n; € N.

By passing to a subsequence of (g;), we may assume that either n; — oo
as j — 00, or there is an n € N such that n; = n for all j € N. We will start
with the first alternative. Let ¢; be the first element of Ej. Since i; > n;, we
have i; — oo. Also, ij (y?) = 0 for all n <4 < i;. Thus fﬁj — 0 in the w*
topology as j — 00,50 g =0 € K.

From now on we assume that there is an n € N such that Ej e L,
for all j € N. Since L, is relatively sequentially compact as a subspace of
{0,1} endowed with the product topology, we may assume by passing to
a subsequence of (g;) that l;j — k for some k € Ly, the closure of L, in
{0, 1},

We now show that k is finite. Suppose to the contrary that k = (ki)2,.
Ask € L, for all r € N there exists N, € N such that ki = (k1y. ..k,

li,...,ls) for some ly,...,ls for all j > N,. Because Ej € L,, we have
k1 > n, which implies that there exists ¢ € N such that (kq,...,kq) € Ly.
By uniqueness, L, does not contain any sequence extending (ki,...,kq).
Therefore, ENq+1 = (k1,...,kgy1,0l1,...,1s) & Ly, a contradiction.

Since By is w*-sequentially compact, we may assume that ij converges
w* to some f € Byx. We claim that f € K. To prove this we first show that
Qff € K for all m € N. By (19) and (22) the set {Q:fnfEJ (y) | 7 €N,
1 < n < i} has only finitely many elements. Since Q:fnfEJ —Qr,fasj— 00
we obtain Q:”Lfié] = Q. f for j € N large enough. In particular, Q},f € K.
Next let ¢ = max k. Since Ej — Kk and k is finite, we have Q7 f = f and thus
fekK.

Now we show that g € K. By passmg again to a subsequence of (g;) we

can assume that either m; > max k for all J € N, or there exists m < maxk
such that m; = m for all j € N. If the first case occurs, then g; = mj I
J
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converges w* to f, and hence g = f € K. If the second case occurs, then
g5 = Q. fi converges w* to Qy, f, and hence g = Q7. f € K. =
J

5. Examples. In previous sections, we introduced for any seminormal-
ized basic sequence (v;) the property Uy,,), and then proved that if a Banach
space X is Uy,,) then there exists a constant C' > 1 such that X is C-Uy,,).
As Knaust and Odell proved that result for the cases in which (v;) is the
standard basis for ¢y or £, with 1 < p < 0o, we need to show that our result
is not a corollary of theirs. For example, if (v;) is a basis for £, & ¢, with
1 < ¢ < p < oo which consists of the union of the standard bases for £, and
¢4 then a Banach space is Uy,,) or C-U(,, if and only if X is Uy, or C-Uy,
respectively. Thus the result for this particular (v;) follows from [KO2|. We
make this idea more formal by defining the following equivalence relation:

DEFINITION 5.1. If (v;) and (w;) are normalized basic sequences then we
write (v;) ~u (w;) (or (vi) ~cu (w;)) if each reflexive Banach space is Uy,
(or C-U(,,)) if and only if it is Up,,) (or C-Uly,)).

We define the equivalence relation strictly in terms of reflexive spaces to
avoid the unpleasant case of £1. Because ¢1 does not contain any normalized
weakly null sequence, /1 is trivially Uy,,) for every (v;). This is counter to
the spirit of what it means for a space to be U(,,). By considering reflexive
spaces, we avoid £1, and we also make the propositions included in this section
formally stronger. Reflexive spaces are also especially nice when considering
properties of weakly null sequences because the unit ball of a reflexive space
is weakly sequentially compact. That is, every sequence in the unit ball of a
reflexive space has a weakly convergent subsequence.

In order to show that our result is not a corollary of the theorem of
Knaust and Odell, we give an example of a basic sequence (v;) such that
(vi) v (e;) where (e;) is the standard basis for ¢ or £, with 1 < p < oo.
To this end we consider a basis (v;) for a reflexive Banach space X with
the property that £, is not U, for any 1 < p < oo, but that X is Uy,
and not Uy,. In particular, we will be interested in the dual of the following
space.

DEFINITION 5.2. Tsirelson’s space, T', is the completion of cog under the
norm satisfying the implicit relation

1 n
]l = ll#]loo v sup 5 2 I Ei@)ll.
nEN, (E,)ZL:IC[N}W,TZSE& <<E’n =1
(t;) is the unit vector basis of T" and (t}) are the biorthogonal functionals
to (tz)
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Tsirelson constructed the dual of T as the first example of a Banach
space which does not contain ¢q or ¢, for any 1 < p < oo |T|. Though we
are more interested in T and (¢7), we use the implicit definition of T" (which
was formulated by Figiel and Johnson in [FJ]) as it is nice to work with. The
properties of () that will be most useful for us are that (¢J) dominates all
of its normalized block bases, and has a spreading model equivalent to the
standard basis for ¢y. The sequences (¢;) and (¢}) have the further interesting
property of being block stable. Casazza, Johnson, and Tzafriri showed in
[CJT] that (¢;) has the property that if (x;) is a normalized block basis
of (¢;) then (x;) is equivalent to (t,,) where n; € supp(x;) for all i € N. The
corresponding statement for (¢I) follows from the result for (¢;). As we have
defined T', but wish to know about sequences in T, we need the following
proposition which relates sequences in a space to sequences in its dual.

PROPOSITION 5.3. If (v;) and (x;) are normalized basic sequences, then:

(1) (vi) dominates (x;) if and only if (v}) is dominated by (z7).

(ii) If (v;) is unconditional, then (v;) dominates all of its normalized
block bases if and only if (v}) is dominated by all of its normalized
block bases.

Proof. Without loss of generality we may assume that (v;) and (z;) are
bimonotone. We assume that (v;) C-dominates (x;) and let (a;) € cpo. Be-
cause (v;) is bimonotone, there exists (b;) € coo such that > a;v] (> bjv;) =
II>" a;vf|| and |3 bivi|]| = 1. We have

Zaixf .

H Zaivf = Zaibi = Zam?(waO < C‘

Thus (v]) is C-dominated by (z}). The converse is true by duality in the
sense that we replace the roles of (v;) and (z;) by (z}) and (v]) respectively.
We find that (27*) is equivalent to (z;) and (v*) is equivalent to (v;) and
thus the converse follows and hence (i) is proven.

After possibly renorming, we may assume that (v;) is 1-unconditional.
For the first direction in (ii), we assume that (v;) C-dominates all of its
normalized block bases. Let a; € cop and (w]) be a normalized block basis
of (v}). As (v;) is bimonotone, there exists a normalized block basis (w;)
of (v;) be such that w}(w;) = d;5. Let © € Sy,,) be such that ) av](x) =
1> a;vf|. We now have

H Za“}: = Zaw;*(x) = Zaiwf Zv;(x)wj
< || a3 v @y
< CH Zaiwff H Zv;(a:)v]H = C’H Zaiw;“ .

Thus (v}) is C-dominated by (w}), and we have proven the first direction.
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For the converse, assume that (v}) is C-dominated by all of its normalized
block bases. Let (a;) € coo and (w;) be a normalized block basis of (v;). There
exists f € By« such that (> a;w;) = |3 a;w;l|. Choose (ky) € [N]* such
that supp(wn) [kn, kn+1) for all n € N. There is a normalized block basis
(fi) of (v}) and (b;) € cop such that f = > b; fi and supp(fn) C [kn, kn+1) for
all n € N As (v;) is 1-unconditional, we may assume that a;, b;, f;(w;) > 0.
This gives Y a;b; fi(w;) < > a;b;, as fi(w;) < 1. We now have

HZa,w, (Zb fz)(Zaiwi) < (wa}‘)(Zam) < CHZaivi _

Hence,(v;) C-dominates (w;) and (ii) is proven. =

We will use Proposition 5.3 together with some basic properties of (¢;)
to prove the following proposition.

PROPOSITION 5.4. (t¥) +u (e;), where (e;) is the standard basis for cy
or £y for 1 <p < oo.

Proof. 1t easily follows from the definition that (¢;) is an unconditional
normalized basic sequence and that (¢;) is dominated by each of its nor-
malized block bases. Also, the spreading model for (¢;) is isomorphic to the
standard ¢, basis. By Proposition 5.3, () is an unconditional basic sequence
that dominates all of its block bases and has its spreading model isomorphic
to the standard basis for ¢o. Furthermore, T* is reflexive because (¢}) is un-
conditional and T™* does not contain an isomorphic copy of ¢ or ¢1. As (t7)
has the standard basis for ¢y as its spreading model, ¢, is not U(t*) for all
1 < p < oo. Therefore (t}) oy ¢, for all 1 < p < oco. As (t)) dominates all
of its normalized block bases and every normalized weakly null sequence in
T* has a subsequence equivalent to a normalized block basis of (t}), it fol-
lows T™ is Uz)- Since T* does not contain ¢y isomorphically, 7* is not Ul,.
Therefore, (t}) #u co. =

We have shown that (tf) o (e;) where (e;) is the usual basis for ¢y or
£, for 1 < p < oo, but we can actually show something much stronger than
this. One of the main properties of £, used in [KO2| is that ¢, is subsym-
metric. If for each basic sequence (v;) there existed a constant C' > 1 and a
subsymmetric basic sequence (w;) such that (v;) ~cp (w;) then actually the
first half of [KO2] would apply to all basic sequences without changing any-
thing. The following example shows in particular that this is not true even
for the weaker condition of spreading (the property that all subsequences are
equivalent).

PROPOSITION 5.5. If (v;) is a normalized spreading basic sequence, then
(vi) v (£).

In general, it can be fairly difficult to check if a Banach space is Uy,,), as
every normalized weakly null sequence in the space needs to be checked. In
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contrast to this, it is very easy to check if T is U(,,). This is because (t;) is
dominated by all of its block bases, and thus by Proposition 5.3, T* is Uy,,)
if and only if (v;) dominates a subsequence of (t7). In proving Proposition
5.5 we will carry this idea further by considering a class of spaces each of
which has a subsymmetric basis (e;) such that (e;) is dominated by all of
its normalized block bases. The additional condition of subsymmetry implies
that [ef] is U(y,) if and only if (v;) dominates (e]). Hence, we need to check
only one sequence instead of all weakly null sequences in [e]].

We consider generalizations of the spaces introduced by Schlumprecht
[S] as the first known arbitrarily distortable Banach spaces. We put less
restriction on the function f given in the following proposition, but we also
infer less about the corresponding Banach space. The techniques from [S]
are used to prove the following proposition.

PROPOSITION 5.6. Let f : N — [1,00) increase to oo, f(1) =1 < f(2),
and lim,_oon/f(n) = oco. If X is defined as the closure of cop under the
norm || - || which satisfies the implicit relation

m>2, E1<-<Epm

1 m
2]l = |lz]loo V sup W jzz:l |Ej(z)||  for all x € coo,

then X is reflexive.

Proof. Let (ey) denote the standard basis for cy. It is straightforward to
show that the norm || - || as given in the statement of the proposition exists,
as well as that (e,) is a normalized, 1-subsymmetric and 1-unconditional
basis for X. Furthermore, (e,) is 1-dominated by all of its normalized block
bases. We will prove that X is reflexive by showing that (e,) is boundedly
complete and shrinking.

We first prove that (e,) is boundedly complete. As (e,,) is unconditional,
if (e,) is not boundedly complete then it has some normalized block basis
which is equivalent to the standard ¢y basis. However, (e,) is 1-dominated
by all its normalized block bases, so (ey) is also equivalent to the stan-
dard ¢o basis. Hence sup yey |30, en|| < co. This contradicts the fact that
HZT]YZI enl| > N/f(N) — oo. Thus (ey,,) is boundedly complete.

We now assume that (e,) is not shrinking. As (e,) is unconditional, it
has a normalized block basis (z,) which is equivalent to the standard basis
for ¢1. We will use James’ blocking lemma [J]| to show that this leads to a
contradiction. In one of its more basic forms, James’ blocking lemma states
that if (x,,) is equivalent to the standard basis for ¢; and € > 0 then (x,,) has
a normalized block basis which is (1 + ¢)-equivalent to the standard basis
for /1. Let 0 < e < %(f(Q) —1). By passing to a normalized block basis using
James’ blocking lemma, we may assume that (z,) is (1 + £)-equivalent to
the standard basis for 1, and thus any normalized block basis of (x,) will
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also be (1 4 €)-equivalent to the standard basis for ¢;. Let €, > 0 be such
that Y 2 ep, <e.
We denote by || - ||, the norm on X which satisfies

1 m
|z]lm = sup ——— |E;(z)|| for all z € cgp.
" 2R, Fom 215

We will construct by induction on n € N a normalized block basis (y;) of (x;)
such that for all m € N we have

1+e,

f(m) -

For n =1 we let y; = x1, and note that (23) is vacuously satisfied.

We now assume that we are given n > 1 and a finite block sequence
(yi)i—; of (x;) which satisfies (23). We have

lim [yl < Jim # supp(vi)
(where supp(y;) denotes the support of y;). Thus, there exists N > supp(yn)
such that ||yi||m < &; for all 1 <i < n and all m > N. Using James’ block-
ing lemma, we block (z;)$2 5 into (2;)9; such that (2)$2, is (1 + ept1/3)-
equivalent to the standard ¢; basis. Let M > 6N /e, 1 and define

(23) if ||y;l|m > € for some 1 < j < n, then |y,|/m <
=0

1 M
o= — 3,
HZz‘:l ZZH i=1
Let m € N be such that ||y;||., > ¢; for some 1 < j < n. By our choice of
N € N, we have m < N. There exist disjoint intervals F; < --- < E,, in N
and integers 1 = kg < k1 < --- < k;;, such that

T TP O

] kz 1
1
14+ éent1/3 -
< —HES (1Bl + H 4| + 1Bzl
=1 ] kz 1+1
14+¢ 3
< #1/ (M +2m) < (1 +en41/3)(1 +2N/M)

A

>~ (1 +5n+1/3)(1 +5n+1/3) <1 +5n+1-

Hence, the induction hypothesis is satisfied.

We now show that property (23) leads to a contradiction with (y;) being
(1 + €)-equivalent to the standard ¢; basis. Let n € N. For some m > 2 we
have |30 vi/nll = >0 ¥i/nllm- By (23) there exists 1 < j <n+ 1 such
that ||yil|m < e; for all 1 <i < j and f(m)||yil|lm < 1+¢&; for all j <i <mn.
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We have
n n j—1 n
Yi Yi 1 1 1
D3t B PO IEED DM EE T MR S oy v
i=1 i=1 m i=1 i=j+1
Jj—1 n
1 1 € 1 1 €
<= g+ —+ l+e<—+—+—+
n&" T nf(m) ; LRI W
e 1 1 €
<=+

n ﬁ+ 1+25+n(1—|—25)'
Thus inf,en [|> i yi/n| <1/(1+2¢). This contradicts the fact that (y;) is

(1+¢)-equivalent to the standard ¢; basis. Hence (e;) is shrinking, and X is
reflexive. m

Using the reflexive spaces presented in Proposition 5.6, we can prove the
following lemma. Proposition 5.5 will then follow easily.

LEMMA 5.7. If (v;) is a 1-suppression unconditional normalized basic
sequence such that (vg,) dominates (v;) for all (k;) € [N]* and (v;) is not
equivalent to the unit vector basis for cq, then there exists a reflexive Banach
space X which is U,y and not Ugr)-

Proof. There exists K > 1 such that (vg,) K-dominates (v;) for all (k;) €
[N]“. We define (-) to be the norm on (v;) determined by

<Zaw;*> = sup Zaw};H for all (a;) € coo,

ieN (ki) EN 5N

where (v}

*) is the sequence of biorthogonal functionals to (v;). The norm (-)
is K-equivalent to the original norm || - ||. Furthermore, under the new norm
(vg,) 1-dominates (v;) for all (k;) € [N]¥. Thus after possibly renorming, we
may assume that K=1.

Let € > 0 and &; \, 0 be such that [J(1 —&;)~! < 1+ e. Since (v;) is
unconditional and is not equivalent to the unit vector basis of cg, there exists

(Ng) € [N]¥ such that for all k € N we have Nj, > k? and

Ny
(24) H Zw

We define the function f: N — [1,00) by

kE+1

Ek+1

>

1 i =1,
fn)=¢1/1—¢e1) ifl<n<Ng,
k+1 if N, <n < Ngyq for ke N.
We denote by ||| - ||| the norm on cyg determined by the following implicit

relation:
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z||| = ||z sup Ej( for all = € cqp.
Izl = llzlloc v os SO ) ZIH )|l

The completion of c¢pp under the norm H| ||| is denoted by X, and its
standard basis is denoted by (e;). We have Ny > k2, which implies that
limy o0 k/f(k) = 0o and hence X is reflexive by Proposition 5.5.

We now show by induction on k& € N that if (ai)i\ﬁl € cgp then

k 1 Ny, N
) (72 I e 2 5 e
1= 1= 1=

For k£ =1, we have

1 Ny Ny Ny
eq ] > 1> ¥
e DIUT EDWILES WL
Thus (25) is satisfied. Now we assume that £ € N and that (25) holds for k.

Let (az)ikal C R be such that [|>;" k“ a;vf|| = 1. There exists (5;); ’““
C R such that > Bia; =|>_ Bivil| =1. Let I={jeN||Bj| < ext1/(k+ 1)}
If > icrlail >k + 1 then

N1 1
I we] > m Xl =1 = [Xani
i=1 i€l
and we are done. Therefore we assume that ), ; |a;| <k + 1, and thus

Ek 1
Zﬁlal > + |a’l’ < Ef+1-

el ze[
We let {ji}gicl = I¢, and claim that /¢ < Nj. Indeed, if we assume to the
contrary that §I1¢ > Ny, then
Ert1 k+1

Ny
5k+1
12 Hzﬁ] Vis|| 2 HZﬁﬁvl = k—i—lHZUZ E+1 epyr
i=1

The first 1nequahty is due to (v;) being 1-suppression unconditional, and the
second to (v;) being 1-dominated by (vj,). Thus we have a contradiction and
our claim that §7¢ < Nj is proven. Now

1=Y Biai=>)_ Biai+ Y B
I I
pe e
< Eg41 T+ HZ ajl.v;-‘iH < Epy1 + HZ ajiv;‘
i=1 i=1
Eoy g1e
< €41+ H‘ a;,€;
<en+ (775 ) [ S we

k

1 Niq1
< Ekt1 t (H 1—5-)‘” Z a;€;
i=1 v i=1

by induction hypothesis

by 1-subsymmetry.



Weakly null sequences with upper estimates 101

The last inequality gives

k+1 1 Nigy1
v (25 )l X o
=1 i=1
Thus the induction hypothesis is satisfied.

We see that (e;) dominates (v)), and hence (v;) dominates (e}). As (e])
is subsymmetric and dominates all its block bases, [e]] is U(,,). Since (e}) is
weakly null and is not equivalent to the unit vector basis of ¢y, we deduce
that [ef] is not Upz). =

)

The proof of Proposition 5.5 now follows easily.

Proof of Proposition 5.5. Let (v;) be a normalized C-spreading basic
sequence. Because (v;) is spreading, Rosenthal’s ¢; theorem implies that (v;)
must be either equivalent to the standard basis for £1, or weakly Cauchy. In
the first case, it is obvious that (v;) %y (t]) as every Banach space is Uy, .
Thus we assume that (v;) is weakly Cauchy. The difference sequence defined
by (w;) = (vi—1 —v9;) is weakly null. (w;) is weakly null and spreading, and
is thus unconditional. For all (a;) € cgg we have

< 2C H Z a;V;

H Zaiwi < H Zawziqu + H Zaivgi

Thus, (v;) dominates (w;). If (w;) is not equivalent to the standard basis for
co then, by Lemma 5.7, there exists a Banach space which is U,,,) and hence
U(v,), but is not Ugs). If (w;) is equivalent to the standard basis for ¢y then

n n
sup H Z(—l)”*lvi = sup H Z wj
"=l "=l

However, sup,, [|> ;- (—1)"t;. || = oo for all (k;) € [N]*. Thus T is not Uy,
and (vi) v (£7).

We also considered the question: “Does there exist a basic sequence (v;)
such that (v;) ¢y (w;) for any unconditional (w;)?”. This is a much harder
question, which is currently open. Neither the summing basis for ¢y nor the
standard basis for James’ space give a solution, as these are covered by the
following proposition:

< Q.

PROPOSITION 5.8. If (v;) is a basic sequence such that sup,cy||> i €ivil|
< D for some (g;) € {—1,1} and constant D < oo, then (v;) ~y co.

Proof. Let X be a C-Uy Banach space, and let (z;) € Sx be weakly null.
By Ramsey’s theorem, we may assume by passing to a subsequence that (v;)
C-dominates every subsequence of (z;). By a theorem of John Elton [E], there
exists K < oo and a subsequence (y;) of (z;) such that if (a;)32; € [—1,1]N
and I C {i | |a;| = 1} is finite then ||>°; a;iys|| < K sup,en | iy €iyil|. Thus
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for all A € [N]<“ we have

H 5 EiYi
i€A

As this is true for all A € [N]<¥, (y;) is equivalent to the unit vector ba-
sis of c¢g. Every normalized weakly null sequence in X has a subsequence
equivalent to cp, so X is U,. =

< KCD.

n
< Ksup Hzezyz
=1

n
< KC'sup HZ €V
neN i—

neN
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