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Pointwise multipliers on martingale Campanato spaces
by

Errcur Nakar (Mito) and GAKU SADASUE (Kashiwara)

Abstract. We introduce generalized Campanato spaces £, 4 on a probability space
(2, F, P), where p € [1,00) and ¢ : (0,1] — (0,00). If p =1 and ¢ = 1, then £, » = BMO.
We give a characterization of the set of all pointwise multipliers on £, 4.

1. Introduction. We consider a probability space ({2, F, P) such that
F = o(U,, Fn), where {F,}n>0 is a nondecreasing sequence of sub-o-alge-
bras of F. For the sake of simplicity, let F_1 = Fy. We suppose that every
o-algebra F,, is generated by a countable collection of atoms, where B € F,,
is called an atom (more precisely an (F,, P)-atom), if any A C B with
A € F, satisfies P(A) = P(B) or P(A) = 0. Denote by A(F,) the set of
all atoms in F,,. The expectation operator and the conditional expectation
operators relative to JF,, are denoted by E and FE,, respectively.

Let X be a normed space of F-measurable functions. We say that an
F-measurable function g is a pointwise multiplier on X if the pointwise
product fg is in X for any f € X. We denote by PWM(X') the set of all
pointwise multipliers on X'. If X’ is a Banach space, then every g € PWM(X)
is a bounded operator on X whenever X has the following property
(1.1) fao=finX (n—o0) = Hn()}: fn) = fas. (j = o0).
Actually, from we see that g is a closed operator. Therefore, g is a
bounded operator by the closed graph theorem.

It is known that PWM(L,) = Lo for p € (0,00]. More generally, if X
is a (quasi) Banach function space, then PWM(X') = Lo (see [4, [7]). For
Banach function spaces, see Kikuchi [2].

In this paper we consider pointwise multipliers on generalized Cam-
panato spaces which are not Banach function spaces in general. We always
assume that Fo = {0, 2}, that is, the operator Ej coincides with E. Then
we introduce generalized Campanato spaces L, 4 and £E>, o 88 follows:
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DEFINITION 1.1. Let p € [1,00) and ¢ be a function from (0, 1] to (0, c0).
For f € Ly, let

1 1 1/p
1.2 _ _E,fPdP) |
( ) Hf||ﬁp,¢> ig% BESX(‘P;:”) ¢(P(B)) <P(B) g‘f f| )
A3) Il =1l + IS
Define

Loo={f € Li:flle,, <o} and Ly, ={feLi:|flz <o)

If ¢(r) = r*, X € (—o0, 0), we simply denote £, 4 and £i¢ by L, » and
E; \» respectively; the latter spaces were introduced in [9].
Note that £, 4 and £E§ o coincide as sets of measurable functions. We see

that £, 4 = (Lpe, |- ”ﬁp,¢> is a seminormed space and Efw = (ﬁfwy I - Hﬁi’d))

is a normed space. Moreover, Ei é is a Banach space, but it is not a Banach

. . . ;
fgnctlon space in general. It is easy to see that £ , has the property (1.1)),
since

Il < Bl = Ef] + | ESf] < max(L, ¢W)IIFll -

For g € PWM(L! ), let

p,

ey

lgllop = sup ———"=.
20 ”f”gfw)

We also define BMO and Lip,, as follows:

DEFINITION 1.2. For ¢ = 1, denote £ 4 and ,Cq & by BMO and BMO?,

respectively. For ¢(r) = r*, a > 0, denote £ 4 and £§ ¢ by Lip, and LipEx,
respectively.
Let
Ll,O = {f el :Ef= O}
Then BMO N L1y = BMO* N Lio and Lip, N L1o = Liph N L1,. These

«

spaces coincide respectively with BMO and Lip,, defined by Weisz [12] 13],
under the assumption that every o-algebra F,, is generated by a countable
collection of atoms, see [9] for details.

We say {Fp}n>0 is regular if there exists R > 2 such that

(1.4) fn < Rfnp—1 for all nonnegative martingales f = (f,)n>0.
A function 6 : (0,1] — (0,00) is said to satisfy the doubling condition if
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there exists a constant C' > 0 such that
1 o(r
CSHE i <C forallrse (0,1] with1/2<r/s<2.
A function 0 : (0,1] — (0,00) is said to be almost increasing (resp. almost
decreasing) if there exists a constant C' > 0 such that
O(r) < CO(s) (resp.f(r)>Cl(s)) for0<r<s<l1.
Our main result is the following:

THEOREM 1.3. Let {Fp}n>0 be regular, Fo = {0,02}, p € [1,00) and
¢ :(0,1] — (0,00). Assume that ¢ satisfies the doubling condition and that

T

(1.5) S(b(t)p dt < Cro(r)P for all r € (0,1].
0

Let )

(1.6) b (r) = 1+§¢(tt)dt

Then '

PWM(L ) = Ly 4/6. N Loc
Moreover, for g € PWM(ﬁzhw), l9llop s equivalent to ||gliz, ;. + 119/ Lo -

See [, 6, [10] 1], 14] for pointwise multipliers on BMO and Campanato
spaces defined on the Euclidean space. Our basic idea comes from [I}, [10].

REMARK 1.4. (i) If ¢ satisfies the doubling condition and (L.5), then
r¢(r)P is almost increasing.

(ii) If ¢ is almost increasing, then so is ¢/ ..

(iif) Let

1 1 1/p
1.7 flle = sup sup < f—FE fde) .
(A0 Whepor =stb 2 Srpta \ Py |~ e/
Then || f[lz,, < I fllz,.» by the definitions. If qb is almost increasing, then
1 fllz,., and [|fllz, .~ are equivalent. Actually, for any A € F,, there exists
a sequence of atoms B, € A(F,), £ = 1,2,..., such that A = |J, B, and

P(A) =>,P(By). Then
§|f E fPdP =Y | |f — E.f|PdP < Z¢ (Bo)PP(Bo)| I,

¢ B,

< CPo(P(A))"P(AIfIZ, ,

This shows || fllz, , » < Clfllz, - If ¢ is not almost i 1ncreasmg, then || f|lz, .,
is not equivalent to || f]|z, , » in general (see [9]). The norm was intro-
duced in [5] for general {F), }n>0.
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Theorem [1.3 has the following two immediate corollaries:
COROLLARY 1.5. Let {F,}n>0 be regular and Fo = {0, 2}. Then
PWM(BMO¥) = £ 4 N Leo,
where Y(r) = 1/log(e/r). Moreover, for g € PWM(BMO®), ||gllop is equiv-
alent 10 ||glle,., + lgllzo.-
COROLLARY 1.6. Let {Fy,}n>0 be regular, Fo = {0, 2} and o > 0. Then
PWM(Lip%,) = Lip, N Loo.
Moreover, for g € PWM(Lip,), ||gllop is equivalent to ||g||Lip, + |19l 1. -

EXAMPLE 1.7. Let {F,}n>0, p and ¢ satisfy the assumptions of Theo-
rem [I.3] For a sequence

B()DBlD"', BnGA(fn),
let

= sin where = N ¢(P(Bn)) P(Bn—1) _
(1.8) g=sinh, where h ;¢*(P(Bn))< PB,) X XBM).

Then h is in L), 4/, (see Lemma [2.4 and Remark . Hence g € L, 4/, N
Lo, since sinf is Lipschitz continuous (see Remark . That is, g €

PWM(EEW). If ¢ = 1, then ¢(r)/¢«(r) = 1/log(e/r) and g € PWM(BMO?).

ExaMpPLE 1.8. The following function satisfies the doubling condition

and the property ([1.5)):

¢(r) = r*(log(e/r)) ™" (a € (=1/p,00), B € (—00,00)).
If « € (-1/p,0) and B € (—o0,00), then ¢, ~ ¢, that is, there exists a
positive constant C such that C~1¢(r) < ¢.(r) < Co(r) for all r € (0,1]. In
general, under the assumptions of Theorem if ¢ ~ b, then Ly 4/, =
BMO and so

PWM(L}, ;) = BMO N Lo = Loo.

If « € [0,00) and € (—00,00), then ¢, = ¢ and ¢(r)/d«(r) — 0 as
7 — 0. In this case £y 4/, N Loo # Loo in general (see also Remark [2.6]). In
particular, if « = 0 and 8 € (1,00), or if a € (0,00) and f € (—o0,c0), then
¢« ~ 1. In general, under the assumption of Theorem if ¢, ~ 1, then
Li¢/6, = L1,6 C Loo by Lemma [2.2] below, and so

PWM(LE ) = L1,6 1 Loo = L] .

Moreover, if ¢ is almost increasing, then we can use the John—Nirenberg
type inequality of [B, Theorem 2.9], that is,

PWM(EEJ, o) = E; o
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We can also take the function
o(r) = ro‘(log(e/r))_ﬂ(loglog(e/r))_'y (a € (—1/p, ), B,y € (—00,0)),
and so on.

Next, a martingale (f,)n>0 relative to {F,}n>0, is said to be L x-
bounded if f, € L, (n > 0) and sup,,>¢ || fallz,, < oo. Similarly, (fn)n>0 is
said to be L7 -bounded if f, € L}, (n > 0) and sup, 5 [ fu| i, < oo For

martingale theory, see [3] for example.

Let
Ly o(Fn) ={f € L1: f is Fy-measurable and ||f||z, , < oo},

ﬁzhw(]:”) ={f € L1 : f is Fy-measurable and | f| .» < oo}.
’ D,¢

Then we have the following:

THEOREM 1.9. Let {F,}n>0 be regular, Fo = {0,02}, p € [1,00) and
¢ :(0,1] = (0,00). Assume that ¢ satisfies the doubling condition and (L.5).
Let g € L1 and (gn)n>0 be its corresponding martingale with g, = Eng
(n>0). If g € PWM(EEW), then g, € PWM(E?D@(]:n)). Conversely, if
gn € PWM(EEW(]-}L)) and sup,> ||gnllop < 00, then g € PWM(EEW)'

In Section [2] we establish several lemmas in order to prove Theorem
in Section [3] We prove Theorem [1.9]in Section

To end this section, we make some conventions. Throughout this paper,
we always use C to denote a positive constant that is independent of the
main parameters involved but whose value may differ from line to line.
Constants with subscripts, such as C),, depend on the subscripts. If f < Cy,
we write f Sgor g2 fyand if f < g < f, we write f ~ g.

2. Lemmas. To prove Theorem we need several lemmas. The first
was proved in [9].

LEMMA 2.1 ([9, Lemma 3.3]). Let {F,}n>0 be regular. Then every se-

quence By>B1 D+, B,e€A(F,),
has the following property: for each n > 1,

B,=DB,1 or (1+1/R)P(B,) < P(B,_1) < RP(B,),
where R is the constant in .

For a function f € Ly and an atom B € A(F,), let

1
= — dP.
/B P(B) é{f
For a function ¢ : (0,1] — (0,00), let ¢, be defined by (1.6). If ¢ satisfies
the doubling condition, then ¢(r) < C¢.(r) for all r € (0, 1].
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LEMMA 2.2. Let {F,}n>0 be regular, Fo = {0,82}, p € [1,00) and ¢ :
(0,1] = (0,00). Assume that ¢ satisfies the doubling condition. For f € 'CEW
and B € U,,59 A(Fn),

1) 151 < Co(PEBNIS

Proof. By Lemma we can choose By, € A(]-"kj) with 0 = kg < k1 <
< ky < nsuch that By, D By, D -+ D By, = Band (1+1/R)P(By;) <
P(By, ,) < RP(By,). Then

1
|kaj _kaj71| = ‘P(Bk) S f(w) dP —

i/ B, P(Bkj—l

1
= ‘P(Bkj)Bi [f_Ek'jlf](w)dP‘

J

1 , 1/p
< <F)(Bkj)BSk‘ |f = Ek; | dP>

_ 1 » 1/p
<(mmoy, ) 1o B sror)

< OB, ) I s

Since ¢ satisfies the doubling condition,

/5 = Il <D 1B, — IBi, \<Z¢> (Bry NIfl s

jfl
m kj—l) 1
ot "
<0 Masg = § Warsi
L P(Bg;) P(B)

]:
{0(P(B)) = 1} f1l 5
¢
On the other hand,
ol = 1B < 11,5

Therefore, we have (2.1]). m

LEMMA 2.3. Let Fo = {0,2}, p € [1,00) and ¢ : (0,1] — (0,00). As-
sume that r¢(r)P is almost mcr@asmg For any atom B € U, >0 A(Fn), the
characteristic function xpg s in cr 0.6 and there exists a positive constant C',
independent of B, such that

(22) Il | < Clo(P(B).
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Proof. Let B € A(F,) and B’ € A(Fy). Let B; € A(F;), 0 <j <mn, be
such that B D By D --- D> B,, = B.
If K > n, then xp — Frxp = 0 and

| x5 — ExxslP dP = 0.
B/

If kK <n and B’ # By, then B'N By, = () and
| IxB — ExxslPdP = 0.
B/

Hence, we have

1 1 R
= su ) dP .
sl =m0 o1z ( P 3 e = Bows| )

k

For k < n, since r¢(r)P is almost increasing,

1 1
¢(P(Bg))? P(By) Bsk IxB — Exxsl” dP
1
~ @(P(By))*P(By)
. p
‘ {P(Bn) <1 - igki > + (P(By) - P(B) (I;Egkb }
1
~ G(P(B.))P(B,)
: p
x {P(Bn)(l - J;gk;) +(P(By) - P(Bn))(igi;t;) }

s { (-3t ) (=515 (7))
S SPBEIP  HPB

Therefore, we have

(2:3) IxBllz,, S 1/6(P(B)).
On the other hand, since r¢(r)P is almost increasing,
(24) |[Exs| = P(B) < P(B)'? £ 1/¢(P(B)).

Combining (2.3)) and (2.4)), we have (2.2). m

LEMMA 2.4. Let {Fp}n>0 be regular, Fo = {0,2}, p € [1,00) and ¢ :
(0,1] — (0,00). Assume that ¢ satisfies the doubling condition and (|1.5)).
For a sequence

By>B1 D+, Bp€A(Fn),
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let

o= = (P (i, o)
and let

k=1

Then (fn)n>0 s a martingale and is c p.o-bounded. The sum f=fo+

> peq ug converges a.s. and in L,, and Enf = f, for n > 0. Moreover,
there exist positive constants C1 and Co, independent of the sequence of
atoms, such that

26) /g, <Ci and |fa,| = Cot(P(B), n=0.

Proof. Since EpJug] = 0 for k > n, (fn)n>0 is a martingale. We show
that the sum fo + Y po; up converges in Ly. If limy_,oo P(By) > 0 then
the convergence is clear because there exists m such that B,, = B, for all
n > m. So assume that limy_, o P(By) = 0. By Lemma we can take a
sequence of integers 0 = kg < k1 < --- that satisfies
(2.7) (1+1/R)P(By;) < P(By,;_,) < RP(By;),

and Bkrl = By, if kj_1 < k < kj. In this case we can write

P(B,
o= XB, T Z (b(P(BkJ)) (((B;;)XBIC - XBk]-_1>'

1<k;<n
Note that, by Remark and [8, Lemma 7.1], the doubling condition and
(I3) imply
T

(2.8) qu(t)tl/p_l dt < Cpp(r)rt/P  for all r € (0, 1].
0
Using the doubling condition and (2.8]), we have

P(B
29 3 ¢<P<Bkj>>H1§(§;;)ka - X8, |

kj>n Ly
< Y S(PBi))(Rlxsy, iz, + Ixs, L)
kj>n
P(B;_,)
2Ry G(P(By))P(B) P <C Y | 7 dt
kj>n kj>n_ P(By,)
P(Bn)

<C | ¢t/ dt < CCup(P(Bn))P(Bn)'P.
0
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We can deduce from (2.9) that f = fo + > p—; up converges in L,. By the
martingale convergence theorem, fo+ Y p-; uy also converges almost surely.
Moreover, B, f = f, and

1 1/p
210 (5 Jir- BuPap) < COMP(B,)

For B’ € A(F,), we have

(2.11) (f = Enf)xp = {g o Eg’ 7:& ?;j

Combining (2.10) and (2.11)), we have ||f|z,, < C where C is a positive

constant independent of the sequence of atoms. Moreover, since By = {2,

[Efl = /ol = 1.
Therefore, || f[|,» < C1 where C} is a positive constant independent of the
P:¢

sequence of atoms.
We now show |fp, | > C2¢.(P(By)). On the atom B,,, we have

fo=1t Y ¢<P<Bkj>>(lﬁg:;>—1>21+; S G(P(BL,)).

1<k;<n 1<k;<n
Therefore,
1
an = ’ fn dp‘
ol = By )
P(Bk,;_,)
1 Tt
>1+ 4 > o(PBr)~1+ > ) 4y
1Sk‘j§7’b lékjfn P(Bk])
1
t
—1+ | Mu—spm)
P(By)

That is, |fp, | > Ca¢«(P(B,)) where C5 is a positive constant independent
of the sequence of atoms. m

REMARK 2.5. From the proof of Lemma [2.4] we see that, for
o0 n
(2.12) h=> up, ho=0, hyo=)» wu (n>1),
k=1 k=1

his in L, 4 and (hn)n>0 is its corresponding martingale with h, = E,h
(n>0).
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REMARK 2.6. Let (§2, F, P) be as follows:
2=10,1), AF,)={L;j=[j2"(G+1)2"):5=0,1,...,2" — 1},
Fn=0(A(Fn)), F= G(U ]:n), P = the Lebesgue measure.

If ¢(r) =1/log(e/r), then h in (2.12) is unbounded. Actually,

1
:72 —
b 1+klog2( XBy = XBia):
and
h §n ! ! B.\ B
= - On .
S 1+klog2 1+ (n+1)log2 m P

REMARK 2.7. If F': C — C is Lipschitz continuous, that is,
|[F'(21) — F(22)| < Clz1 — 22|, 21,220 €C,
then, for B € F,,

VIF(f) = EnlF ()] dP < 2C | |f — Enf| dP.
B B

Actually,

[E(f) = F(Enf)|dP + | [F(Enf) — En[F(f)]| dP

S S
B B
=\ |F(f) = F(Enf)|dP + \ | E[F(Enf) — F(f)]|dP
B B
2 <2

<2\ |F(f) - F(Enf)|dP < S\f Eyf| dP.
B

LEMMA 2.8. Let p € [1,00) and ¢ : (0,1] — (0,00). Suppose f € L, 4
and g € Loo. Then fg € L, 4 if and only if

_ sl _( )”p
. F = — E,gPdP .
213 Firg) =swp s ooy pay 19— Bl <

In this case,

(2.14) \F(f.9) = fglle, o] <20 flle, 9/l

Proof. Let f € L, and g € L. Let B € A(F,). Since E, f = fp on B,
we can use the same method as in [6l, Lemma 3.5] to obtain
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1/P 1 1/P
(2.15) \( {19l fg!de> —\fBr(P(B)Ug—Engrde)
B B

1/p
( Bl \pdp) < 26(PBIS e, 9]

Therefore, fg € L, 4 if and only if F'(f,g) < co. In this case, we can deduce
(2.14) from (2.15). =

LEMMA 2.9. Let {F,}n>0 be reqular, Fo = {0,102}, p € [1,00) and ¢ :
(0,1] — (0,00). Assume that ro(r)P is almost increasing and that ¢ satisfies
the doubling condition. If g € PWM(EI;#)), then g € Los and ||g|L. <
Cllgllop for some positive constant C independent of g.

Proof. Let g € PWM([,E) »)- Since the constant function 1 is in Ef) 4> the
pointwise product g =g -1 1is in cr e which implies g € L;. Then

Ellgl) < Ellg — Egl] + | Egl < max(L, ¢(1)llgllzs < llgllopltlzs = llgllop-

Since {Fy }n>0 is regular, we also have E,g € Lo
Enllgl] < REp-[lg]] < --- < R"Eol|g]] = R"E[|g]].

Next we shall show that there exists a positive constant C' such that
lgllL. < Cllgllop- Then we will have the conclusion. Let B € A(F,) such
that |gg| > ||EngllL., /2. By Lemma [2.1] there exists B’ € A(F,/) with
B C B’ such that (1+1/R)P(B) < P(B ) < RP(B). Then

1/p
HQXBHL? Z P( (P ‘gXB — E, [gXB”P dP)
1 » 1/p
¢(P(B")) <P B/\B loxs — Ewlgxsll dp)
1 1 » 1/p
~ o(P(B) <P(B’) } [EwllEnglxs]] dP>

B/\B

Since |[EnglxB| = |98XB| > [|Engll Lo XB/2, We have

1EngllLo \" ( P(B)\ p(
B/S\B\En'[[Eng]xBdePZ ( 5 ) <P(B,)> P(B'\ B).

Hence,

o Bl
¢ 2R(R+ 1)1/p<;5(P(B’))'

(2.16) HgXBHgi
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Using (2.16)), Lemma and the doubling condition on ¢, we have
1Bnglr.. < 2R(R+ 1) P6(P(B)lgxsl :

smmﬂgggsmmp

Therefore,
19/ Lo = sup || Engllr.. < Cllgllop- =
n>0

3. Proof of Theorem [1.3l. We first show that
(3.1) Lpg/e. NLe C PWM(Ch s) and |gllop < C(llgllz, /s +19llL0)-

Let g € £, 4/, N Lo and f € L’u . Let F(f,g) be as in Lemma Then,
by the definition of F(f,g) and Lemma -,

P9 <CUSlg Nl e, < o

Therefore, by Lemma we have fg € L, 4 and

(32) 1 gllc,s < Clifllzs llglle, o, + 2 F 1z, o 90 Lo
On the other hand,
(3.3) B9l < gl IS < llgll o max(L, () 5 |

Combining (3.2)) and (3.3)), we obtain ({3.1]).

We now show the converse, that is,
(34) PWM(L ) C Lygip. Moo and |lgllz, , .. + 9. < Clgllop-
Let g € PWM(ﬁh s)- By Lemma we have g € Lo and ||g|1., < C’||g||op.
f

Let B € A(F,). We take Bj € A(F;) with B,, = B such that By D B; D -
Let f be the function descrlbed in Lemma Then, combining Lemmas

and 2.8 we obtain

1/p
P (1 g )

o(P(B) \PB) |
‘fB’ 1 - p Hr
< gy (g S~ aP) < Pt

< 79l + 2l Flle, < lglopllflle | +2Cglloplfllc,,
S lglopll £l gz < Callglion.

Therefore, we have (3.4]).



Pointwise multipliers on martingale Campanato spaces 99

4. Proof of Theorem [1.9} To prove Theorem [I.9 we use the following
proposition. It can be shown in the same way as [9, Proposition 2.2] which
deals with the case ¢(r) = r*, A € (—00,0).

PROPOSITION 4.1. Let 1 < p < oo and ¢ : (0,1] — (0,00). Let f € L,
and (fn)n>0 be its corresponding martingale with f, = E,f (n > 0).

(i) If f € Ly g, then (fn)n>0 is Ly g-bounded and

1flle,. = sup [ fnll, o

Conversely, if (fn)n>0 15 £p7¢-b0unded, then f € L, 4 and

£l < sup [ frllzyq-

(ii) If f € ﬁ:i,dﬂ then (fn)n>0 is Efw—bounded and

> su
715, 2 99 1l s

Conversely, if (fn)n>0 1S EE) ¢—bounded, then f € Liqs and

<su
Hf”gi’(b = n;g anHﬁ?mﬁ

REMARK 4.2. In general, for f € £, 4N L1 (resp. f € E; ¢), its corre-
sponding martingale (fy,)n>0 with f, = E, f does not always converge to f
in £, 4 (resp. Eh )- See [9, Remark 3.7] for the case ¢(r) = .

Proof of Theorem . Let g € PWM(C s) and [ € Ei¢(fn). Then,
using Proposition [4.1], we have

E =||E < <
1Enlg)fls | = IEnloflgs | < oSl < llopllfIL s

Therefore, Eng € PWM(LL ,(F,)).

Conversely, assume FE,g € PVVM(Eu ¢(]~"n)) and sup,,>¢ || Engllop < oo.
Then, using Proposition [£.1] and Theorem we have

1911z, 46, T 119l Lo < sup ||Eng||ﬁp,¢/¢* +sup | Engllr. S Sup HEngHOp < 00,
n>0 n>0

Using Theorem again, we obtain g € PVVM(E}“7 s
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