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U-filters and uniform compactification

by

Tomi Alaste (Oulu)

Abstract. We show that the uniform compactification of a uniform space (X,U) can
be considered as a space of filters on X. We apply these filters to study the LUC-com-
pactification of a topological group.

1. Introduction. The purpose of this paper is to represent the spec-
trum ∆(UC(X)) of the C∗-algebra UC(X) of all bounded, uniformly con-
tinuous, complex-valued functions on a uniform space (X,U) as a space
of U-ultrafilters. The spectrum ∆(UC(X)) is known as the uniform com-
pactification or the Samuel compactification of X (see [I]). The character-
istic property of the compact, Hausdorff topological space ∆(UC(X)) is
that the C∗-algebra of all bounded, continuous, complex-valued functions
on ∆(UC(X)) is isometrically ∗-isomorphic to the C∗-algebra UC(X). The
consideration of the Stone–Čech compactification βY of a discrete topolog-
ical space Y as the space of all ultrafilters on Y has been the main tool
in analyzing the properties of βY (see [CN]). The Stone–Čech compactifi-
cation of a completely regular topological space can be considered as the
space of all z-ultrafilters (see [GJ]). The uniform compactification and the
Stone–Čech compactification of a discrete group are the same, and ultra-
filters have been the main tool in analyzing the algebraic structure of βG
(see [HS]).

The U-ultrafilters have a similar role in the study of the uniform com-
pactification of a uniform space and the LUC-compactification of a topo-
logical group as the ultrafilters have in the study of βY and βG. In fact,
using U-ultrafilters (together with some other machinery developed in the
author’s PhD thesis [A]), among many results we have already characterized
the C∗-algebra of complex-valued functions on a locally compact, topological
group G which corresponds to the universal semigroup compactification of
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G with respect to the property that the semigroup compactification contains
a right zero element (see [AF]).

In 1997, M. Koçak and D. Strauss considered the uniform compactifi-
cation of a uniform space (X,U) as the space of so-called near ultrafilters
(see [KS]), leading to many interesting results. A near ultrafilter on X need
not be a filter on X in the ordinary sense of the word. The approach we
present in this paper differs from the one given in [KS] in an essential way,
since we do use filters. As far as we are aware, our approach is the first one
using filters. Our approach has some further advantages in describing the
properties of ∆(UC(X)). For example, we obtain a bijective correspondence
between the non-empty, closed subsets of ∆(UC(X)) and the U-filters on X,
and so we obtain a full analogue with the Stone–Čech compactification of
a discrete space. Also, in Section 5 we describe the uniform compactifica-
tion of a subspace of X using U-ultrafilters. Filters have also a central role
in [BP], where the local topological structure of the LUC-compactification
of a locally compact, topological group G is studied. However, in [BP] the
LUC-compactification is viewed as a quotient of the Stone–Čech compact-
ification βGd, where Gd denotes the group G with the discrete topology,
instead of a space of filters on G.

The paper is organized as follows: In Section 2, we gather some basic
definitions and results that we will use throughout this paper. In Section 3,
we introduce U-filters and U-ultrafilters on a uniform space (X,U) and we
give some properties of U-ultrafilters. In Section 4, we introduce the topo-
logical space γX consisting of all U-ultrafilters on X and we show that
γX is the uniform compactification of X. In Section 5, we describe the
uniform compactification of a subspace of X using U-ultrafilters. In Sec-
tion 6, we describe the semigroup operation of the LUC-compactification
of a topological group G in terms of U-ultrafilters. Furthermore, we de-
scribe those elements of the LUC-compactification which are in the min-
imal ideal of the LUC-compactification or in the closure of the minimal
ideal.

2. Preliminaries. We first remind the reader of some basic definitions.

We denote by N the set of all positive integers, that is, N = {1, 2, 3, . . .}.
Let X be a non-empty set. We denote by P(X) the set of all subsets of X.
A filter on X is a non-empty set ϕ ⊆ P(X) with the following properties:

(i) If A,B ∈ ϕ, then A ∩B ∈ ϕ.
(ii) If A ∈ ϕ and A ⊆ B ⊆ X, then B ∈ ϕ.

(iii) ∅ /∈ ϕ.

A filter base on X is a non-empty set A ⊆ P(X) such that ∅ /∈ A and,
for all sets A,B ∈ A, there exists a set C ∈ A such that C ⊆ A ∩B. If A is
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a filter base on X, then the filter ϕ on X generated by A is

ϕ = {A ⊆ X : there exists some set B ∈ A such that B ⊆ A}.
Indeed, it is easy to verify that ϕ is the smallest filter (with respect to
inclusion) on X which contains the set A. If ϕ is a filter on X, then a set
B ⊆ P(X) is a filter base for ϕ if and only if B ⊆ ϕ and, for every set A ∈ ϕ,
there exists a set B ∈ B such that B ⊆ A. In particular, if A is a filter base
on X and ϕ is the filter on X generated by A, then A is a filter base for ϕ.

Let X be a non-empty set. If U, V ⊆ X ×X, then

U−1 = {(x, y) : (y, x) ∈ U}
and

U ◦ V = {(x, z) : (x, y) ∈ V and (y, z) ∈ U for some y ∈ X}.
The set U is symmetric if U = U−1. We denote U ◦U by U2. We denote the
diagonal {(x, x) : x ∈ X} of X ×X by ∆X . A uniform structure on X is a
filter U on X ×X with the following properties:

(i) If U ∈ U , then ∆X ⊆ U .
(ii) If U ∈ U , then U−1 ∈ U .
(iii) If U ∈ U , then there exists a set V ∈ U such that V 2 ⊆ U .

A uniform space is a pair (X,U), where X is a non-empty set and U is a
uniform structure on X.

Let (X,U) be a uniform space. If A ⊆ X and U ∈ U , then

U [A] = {y ∈ X : there exists x ∈ A such that (x, y) ∈ U}.
If A = {x} for some x ∈ X, then we denote U [A] simply by U [x].

A uniform structure U on a set X determines a topology on X. In
this topology, a neighborhood base of a point x ∈ X is given by the sets
U [x], where U ∈ U . We denote the C∗-algebra of all bounded, continuous,
complex-valued functions on X by C(X). In this paper, we assume that all
the topological spaces considered are Hausdorff.

A topological space X is uniformizable if and only if there exists a uni-
form structure U onX such that the topology determined by U is the original
topology of X. Every topological group G is uniformizable. In fact, there
are two natural uniform structures on G, both of which determine the topol-
ogy of G. Let e denote the identity of G and let Ne denote the filter of all
neighborhoods of e in G. For every set U ∈ Ne, define

UR = {(x, y) ∈ G×G : xy−1 ∈ U}, UL = {(x, y) ∈ G×G : x−1y ∈ U}.
The right uniform structure and the left uniform structure on G are gener-
ated by the sets {UR : U ∈ Ne} and {UL : U ∈ Ne}, respectively. A detailed
treatment of uniform structures on topological groups is given in [RD].
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Let (X,U) and (Y,V) be uniform spaces. A function f : X → Y is
uniformly continuous if and only if, for every set V ∈ V, there exists a set
U ∈ U such that (f(x), f(y)) ∈ V for every (x, y) ∈ U . We denote the
C∗-algebra of all bounded, uniformly continuous, complex-valued functions
on X by UC(X).

Finally, we recall the concept of a semigroup compactification of a topo-
logical group. A general treatment of semigroup compactifications is given
in [BJ]. A right topological semigroup is a semigroup X with a topology such
that, for every y ∈ X, the mapping x 7→ xy from X to X is continuous.
Let G be a topological group. A semigroup compactification of G is a pair
(ψ,X) such that X is a compact, right topological semigroup, ψ : G → X
is a continuous homomorphism, ψ(G) is dense in X, and x 7→ ψ(s)x is a
continuous mapping from X to X for every s ∈ G.

3. U-filters. For the rest of this paper, let (X,U) be a uniform space.
For every x ∈ X, we denote the filter of all neighborhoods of x in X by Nx.
For every subset A of X, we denote the interior of A in X by A◦.

In this section, we introduce the main object of this paper, namely U-
filters and U-ultrafilters on X, and we give some properties of U-ultrafilters.

Definition 3.1. A U-family on X is a non-empty set A ⊆ P(X) such
that, for every set A ∈ A, there exist sets B ∈ A and U ∈ U such that
U [B] ⊆ A. A U-filter on X is a filter ϕ on X such that ϕ is a U-family on X.

Remark 3.2.

(i) If ∆X ∈ U , then every filter ϕ on X is a U-filter on X.
(ii) Let A be a non-empty subset of P(X). Property (iii) of a uniform

structure implies that {U [A] : U ∈ U , A ∈ A} is a U-family on X.
(iii) Let A be a U-family on X. Let A ∈ A and pick sets B ∈ A and

U ∈ U such that U [B] ⊆ A. Then V [B] ⊆ A for every set V ∈ U
such that V ⊆ U . So, if necessary, we may assume that the given
set U ∈ U is symmetric, or satisfies U2[B] ⊆ A, etc.

(iv) If A is a filter base and a U-family on X, then the filter ϕ on X
generated by A is a U-filter on X.

(v) If ϕ is a U-filter on X and A ⊆ X, then A ∈ ϕ if and only if A◦ ∈ ϕ.

We will use the above observations with no further mention.

Every U-filter ϕ on X satisfies A◦ ∈ ϕ for every A ∈ ϕ, but we should
point out that the converse does not hold. That is, if ϕ is a filter on X such
that A◦ ∈ ϕ for every A ∈ ϕ, then ϕ is not necessarily a U-filter on X. For
example, let X = R, let A = ]0, 1[, and let ϕ be the filter on R generated
by {A}. Since A is an open subset of R, the filter ϕ has the property that
B◦ ∈ ϕ for every B ∈ ϕ. However, ϕ is not a U-family on R.
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Zorn’s Lemma implies that every U-filter on X is contained in some
maximal (with respect to inclusion) U-filter on X.

Definition 3.3. A U-ultrafilter on X is a U-filter on X which is not
properly contained in any other U-filter on X.

The following simple fact about U-ultrafilters is very useful: If p and q
are U-ultrafilters on X, then p = q if and only if p ⊆ q.

Theorem 3.4. If x ∈ X, then Nx is a U-ultrafilter on X.

Proof. By Remark 3.2(ii), Nx is a U-filter on X, and so we only need
to show that Nx is a maximal U-filter on X. Suppose that Nx is properly
contained in some U-filter ϕ on X. Pick some set A ∈ ϕ \ Nx. Pick a set
B ∈ ϕ and a symmetric set U ∈ U such that U2[B] ⊆ A. Now, x /∈ U [B],
and so U [x] ∩B = ∅, in contradiction with U [x], B ∈ ϕ.

Recall that a non-empty subset A of P(X) has the finite intersection
property if and only if

⋂n
k=1Ak 6= ∅ whenever A1, . . . , An ∈ A for some

n ∈ N. We leave the proofs of the following two lemmas to the reader.

Lemma 3.5. If A is a U-family on X such that A has the finite inter-
section property, then there exists a U-ultrafilter p on X such that A ⊆ p.

Lemma 3.6. Let ϕ be a U-filter on X. If A is a subset of X such that
U [A] ∩ B 6= ∅ for every U ∈ U and every B ∈ ϕ, then there exists a
U-ultrafilter p on X such that ϕ ∪ {U [A] : U ∈ U} ⊆ p.

The following theorem follows easily from the previous two lemmas, and
so we omit the proof. The reader may compare the following theorem to
[HS, Theorem 3.6].

Theorem 3.7. If ϕ ⊆ P(X), then the following statements are equiva-
lent:

(i) ϕ is a U-ultrafilter on X.
(ii) ϕ is a U-filter on X and, if a set A ⊆ X satisfies U [A] /∈ ϕ for

some U ∈ U , then there exists a set B ∈ ϕ such that A ∩B = ∅.
(iii) ϕ is a maximal (with respect to inclusion) subset of P(X) such that

ϕ is a U-family on X and ϕ has the finite intersection property.
(iv) ϕ is a U-filter on X and, if A1, . . . An ⊆ X for some n ∈ N satisfy⋃n

k=1Ak ∈ ϕ, then there exists k ∈ {1, . . . , n} such that U [Ak] ∈ ϕ
for every U ∈ U .

(v) ϕ is a U-filter on X and, for every set A ⊆ X, either U [A] ∈ ϕ for
every U ∈ U or U [X \A] ∈ ϕ for every U ∈ U .

We finish this section with some remarks concerning the previous theo-
rem. In statement (ii), it is not enough to assume that the set A ⊆ X satisfies
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A /∈ ϕ to conclude that there exists a set B ∈ ϕ such that A∩B = ∅. For ex-
ample, let X = R and consider the U-ultrafilter ϕ = N0 on X. Put A = {0}.
Then A /∈ ϕ but A ∩ B 6= ∅ for every B ∈ ϕ. In statement (iv), we cannot
conclude that Ak ∈ ϕ for some k ∈ {1, . . . , n}. For example, let X = R,
A1 = Q, and A2 = R \Q. This also shows that the two given statements in
statement (v) are not exclusive, that is, it may happen that U [A] ∈ ϕ for
every U ∈ U and U [X \A] ∈ ϕ for every U ∈ U .

4. The topological space γX. In this section, we define a topology
on the set of all U-ultrafilters on X and we establish some properties of the
resulting space.

Definition 4.1. Define γX = {p : p is a U-ultrafilter on X}. For every

subset A of X, define Â = {p ∈ γX : A ∈ p}. For every U-filter ϕ on X,
define ϕ̂ = {p ∈ γX : ϕ ⊆ p}.

Observe that Â = Â◦ for every subset A of X.

Theorem 4.2. If ϕ and ψ are U-filters on X, then the following state-
ments hold:

(i) ϕ̂ =
⋂
A∈ϕ Â.

(ii) ϕ =
⋂
p∈ϕ̂ p.

(iii) ϕ ⊆ ψ if and only if ψ̂ ⊆ ϕ̂.

Proof. (i) This is obvious.
(ii) The inclusion ϕ ⊆

⋂
p∈ϕ̂ p is obvious, so suppose that A is a subset

of X such that A /∈ ϕ. Then A = ϕ ∪ {U [X \ A] : U ∈ U} is a U-family
on X such that A has the finite intersection property. By Lemma 3.5, there
exists an element p ∈ ϕ̂ such that U [X \ A] ∈ p for every U ∈ U . Now, it
is enough to show that A /∈ p. If A ∈ p, then there exists a set C ∈ p and
a symmetric set U ∈ U such that U [C] ⊆ A. But then U [X \ A] ∩ C = ∅,
contrary to U [X \A], C ∈ p.

(iii) This follows from statement (ii).

The set {Â : A ⊆ X} is a base for a topology on γX, and we equip γX
with this topology. We denote the closure of a subset Y of γX in γX by Y
with one exception: If A ⊆ X, then we denote the closure of Â in γX by

clγX(Â) instead of Â.
We proceed to show that γX is the uniform compactification of X. The

following definition is reasonable by Theorem 3.4.

Definition 4.3. The natural embedding e : X → γX is given by
e(x) = Nx for every x ∈ X.

Note that, if A ⊆ X and x ∈ X, then e(x) ∈ Â if and only if x ∈ A◦.
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Theorem 4.4. The mapping e : X → γX is an embedding and e(X) is
dense in γX.

Proof. Since X is Hausdorff, the mapping e is injective. If A ⊆ X, then
e−1(Â) = A◦, and so e is continuous. If A is an open subset of X, then

e(A) = Â∩ e(X), and so e is an embedding. If A is a subset of X such that

Â 6= ∅, then e(x) ∈ Â for every x ∈ A◦, and so e(X) is dense in γX.

Corollary 4.5. If X is compact, then e : X → γX is a homeomor-
phism.

By Theorem 4.4, we may (and will) consider X as a subspace of γX. So,
for every x ∈ X, we denote e(x) simply by x. In particular, if A ⊆ X, then
we denote e(A) by A.

We leave the proofs of the following three statements to the reader.

Lemma 4.6. Let A ⊆ X and let p ∈ γX. The following statements are
equivalent:

(i) p ∈ A.
(ii) A ∩B 6= ∅ for every B ∈ p.

(iii) U [A] ∈ p for every U ∈ U .

In particular, p ∈ A for every A ∈ p.

Corollary 4.7. If A,B ⊆ X, then U [A] ∩ U [B] 6= ∅ for every U ∈ U
if and only if A ∩B 6= ∅.

Lemma 4.8. If A ⊆ X, then the following statements hold:

(i) X̂ \A = γX \A.

(ii) If A is an open subset of X, then clγX(Â) = A.

The next theorem and its proof were suggested to us by the referee.
Instead of giving direct proofs to Theorems 4.10 and 4.11 below, we can
use the following correspondence between U-ultrafilters and near ultrafilters
and apply the existing results in [KS]. As in [KS], X̃ denotes the space of
all near ultrafilters.

Theorem 4.9. Let p ∈ γX and let ξ ∈ X̃. The following statements
hold:

(i) The set B = {U [A] : U ∈ U , A ∈ ξ} is a filter base on X. The filter
u(ξ) on X generated by B is a U-ultrafilter.

(ii) The set n(p) = {A ⊆ X : U [A] ∈ p for every U ∈ U} is a near
ultrafilter on X.

(iii) The mapping p 7→ n(p) from γX to X̃ is a homeomorphism.

Proof. (i) Clearly, u(ξ) is a U-filter on X. To see that u(ξ) is a U-
ultrafilter on X, suppose that ϕ is a U-filter on X which properly contains
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u(ξ). Pick some set A ∈ ϕ \ u(ξ). Pick sets B ∈ ϕ and U ∈ U such that
U [B] ⊆ A. Now, B /∈ ξ, and so there exist n ∈ N and sets A1, . . . , An ∈ ξ and
V ∈ U such that B ∩

⋂n
k=1 V [Ak] = ∅. Since B ∈ ϕ and

⋂n
k=1 V [Ak] ∈ u(ξ),

this contradicts our assumption.
(ii) Clearly, n(p) has the near finite intersection property. To see that

n(p) is a near ultrafilter on X, let A be a subset of X such that A /∈ n(p).
Pick a symmetric set U ∈ U such that U3[A] /∈ p. By Lemma 3.6, there
exists a set B ∈ p such that U2[A] ∩ B = ∅. Since p ⊆ n(p), the set
{A} ∪ n(p) does not have the near finite intersection property, thus proving
the claim.

(iii) The fact that the given mapping is bijective follows from the equality
u(n(p)) = p for every p ∈ γX. The inclusion u(n(p)) ⊆ p is obvious, so let
A ∈ p. Pick sets B ∈ p and U ∈ U such that U [B] ⊆ A. Now, B ∈ n(p), so
U [B] ∈ u(n(p)), and so A ∈ u(n(p)), as required.

If A ⊆ X and p ∈ γX, then n(p) ∈ CA (see [KS, p. 97]) if and only if
p ∈ A by Lemma 4.6. Statement (i) of Lemma 4.8 shows that the sets A,
where A ⊆ X, form a base for the closed sets of γX. Therefore, the given
mapping is a homeomorphism.

The following two theorems follow immediately from statement (iii) of
the previous theorem, [KS, Theorem 6], and [KS, Theorem 8].

Theorem 4.10. The space γX is a compact, Hausdorff space.

In the following theorem, we denote the natural embeddings from X to
γX and from Y to γY by eX and eY , respectively.

Theorem 4.11. If (Y,V) is a uniform space and f : X → Y is a uni-
formly continuous function, then there exists a unique continuous function
f̂ : γX → γY such that f̂ ◦ eX = eY ◦ f .

If f ∈ UC(X), then Theorem 4.11 and Corollary 4.5 imply that f extends

to γX. We denote this extension by f̂ .
The next theorem shows that γX is the uniform compactification of X.

It can be established using the correspondence suggested by the referee and
[KS, Theorem 10], where the Stone–Weierstrass Theorem was necessary in
the proof. Since our arguments do not use the Stone–Weierstrass Theorem
but rely on the properties of U-filters, we feel that they are worth presenting.

Theorem 4.12. The mapping f 7→ f̂ is an isometric ∗-isomorphism
from UC(X) to C(γX).

Proof. We show that the given mapping is surjective and leave the rest
of the proof to reader. Let g ∈ C(γX) and let f denote the restriction of

g to X. Now, f̂ = g, and so it is enough to show that f ∈ UC(X). Let
r > 0. For every p ∈ γX, pick an open subset Ap of X such that Ap ∈ p
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and |f̂(q) − f̂(q′)| ≤ r for all q, q′ ∈ Âp. For every p ∈ γX, pick an open
subset Bp of X and a set Up ∈ U such that Bp ∈ p and Up[Bp] ⊆ Ap. Pick

n ∈ N and p1, . . . , pn ∈ γX such that γX ⊆
⋃n
k=1 B̂pk . Put U =

⋂n
k=1 Upk

and let (x, y) ∈ U . Pick k ∈ {1, . . . , n} such that x ∈ Bpk . Now, y ∈ U [Bpk ],
so x, y ∈ Apk , and hence |f(x)− f(y)| ≤ r, thus finishing the proof.

We finish this section by showing that U-filters can be used to describe
the topology of γX.

Definition 4.13. Define ϕ =
⋂
A∈ϕA for every U-filter ϕ on X.

Note that ϕ is a non-empty, closed subset of γX.

Theorem 4.14. If ϕ is a U-filter on X, then ϕ̂ = ϕ.

Proof. The inclusion ϕ̂ ⊆ ϕ is obvious, so let p ∈ ϕ. Let A ∈ ϕ and pick
sets B ∈ ϕ and U ∈ U such that U [B] ⊆ A. Since p ∈ B, we have U [B] ∈ p
by Lemma 4.6, and so A ∈ p. Therefore, ϕ ⊆ p, as required.

Theorem 4.15. If C is a non-empty, closed subset of γX, then there
exists a unique U-filter ϕ on X such that ϕ̂ = C.

Proof. Let C be a non-empty, closed subset of γX. Put ϕ =
⋂
p∈C p.

Clearly, ϕ is a filter on X. Let us first show that ϕ is a U-family on X,
hence, a U-filter on X. Let A ∈ ϕ. If p ∈ C, then A ∈ p, and so there exist
sets Bp ∈ p and Up ∈ U such that Up[Bp] ⊆ A. Now, {B̂p : p ∈ C} is an
open cover of C, and so there exist n ∈ N and p1, . . . , pn ∈ C such that
C ⊆

⋃n
k=1 B̂pk . Put U =

⋂n
k=1 Upk and B =

⋃n
k=1Bpk . Then B ∈ p for

every p ∈ C, and so B ∈ ϕ. Since U [B] ⊆ A, the set ϕ is a U-family on X.
Next, let us show that ϕ̂ = C. The inclusion C ⊆ ϕ̂ is obvious, so

suppose that q ∈ γX \ C. Then there exists an open subset A of X such

that A ∈ q and Â ∩ C = ∅. For every p ∈ C, there exists a set Bp ∈ p such
that A ∩ Bp = ∅. As above, there exist n ∈ N and p1, . . . , pn ∈ C such that
B :=

⋃n
k=1Bpk ∈ p for every p ∈ C, and so B ∈ ϕ. Now, A ∩B = ∅, and so

q /∈ ϕ̂, as required.
The uniqueness of ϕ follows from Theorem 4.2(iii).

5. Uniform compactifications of subspaces. In this section, we use
U-filters on X to describe the uniform compactification of a subspace of X.

If Y is a subspace of X, then Y is uniformizable. Indeed, the induced
uniform structure UY = {(Y ×Y )∩U : U ∈ U} on Y determines the relative
topology of Y . We always assume that the uniform structure on a subspace
of X is given by the induced uniform structure.

Definition 5.1. Let ϕ be a U-filter on X. A non-empty subset Y of
X is a ϕ-subset of X if and only if A ∩ Y 6= ∅ for every A ∈ ϕ. If Y is a
ϕ-subset of X, define ϕY = {A ∩ Y : A ∈ ϕ}.
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Note that if ϕ is a U-filter on X, and Y is a ϕ-subset of X, then ϕY is
a filter on Y .

We use the following observation repeatedly in the following proofs: Let
Y be a subspace of X, and let A ⊆ Y , let U ∈ U , and UY = (Y × Y ) ∩ U .
Then UY [A] = U [A] ∩ Y .

Lemma 5.2. Let ϕ be a U-filter on X and let Y ⊆ X. Then Y is a
ϕ-subset of X if and only if Y ∩ ϕ 6= ∅. In particular, if p ∈ γX, then Y is
a p-subset of X if and only if p ∈ Y .

Proof. If Y is a ϕ-subset of X, then
⋂
B∈ϕY

B =
⋂
A∈ϕA ∩ Y 6= ∅.

Clearly,
⋂
A∈ϕ Y ∩A ⊆ Y ∩ϕ, and so Y ∩ϕ 6= ∅. Suppose now that Y is not

a ϕ-subset of X. Pick a set B ∈ ϕ and a symmetric set U ∈ U such that
U2[B] ∩ Y = ∅. Then B ∩ Y = ∅ by Corollary 4.7. Since B ∈ ϕ, we have
ϕ ⊆ B, and so Y ∩ ϕ = ∅.

Theorem 5.3. Let ϕ be a U-filter on X and let Y be a ϕ-subset of X.
The following statements hold:

(i) ϕY is a UY -filter on Y .
(ii) If ϕ is a U-ultrafilter on X, then ϕY is a UY -ultrafilter on Y .

Proof. (i) This is obvious.
(ii) Suppose that ϕ = p for some p ∈ γX. We apply statement (ii) of

Theorem 3.7 to show that pY is a UY -ultrafilter on Y . So, suppose that
B ⊆ Y satisfies UY [B] /∈ pY for some UY ∈ UY . Pick U ∈ U such that
UY = (Y × Y ) ∩ U . Now, U [B] /∈ p, and so there exists a set C ∈ p such
that B ∩ C = ∅. Since C ∩ Y ∈ pY , the statement follows.

Theorem 5.4. Let Y be a subspace of X and let ϕ be a UY -filter on Y .
The following statements hold:

(i) A = {U [A] : U ∈ U , A ∈ ϕ} is a U-family and a filter base on X.
(ii) If ψ is the U-filter on X generated by A, then Y is a ψ-subset of

X and ψY = ϕ.
(iii) If ϕ is a UY -ultrafilter on Y , then ψ is a U-ultrafilter on X and

ψ ∈ Y .

Proof. (i) This is obvious.
(ii) Let ψ be the U-filter on X generated by A. First, U [Y ] ∈ ψ for every

U ∈ U , so Y is a p-subset of X for every p ∈ ψ̂ by Lemma 4.6, and so Y
is a ψ-subset of X by Theorem 4.2(ii). The inclusion ψY ⊆ ϕ is obvious, so
let A ∈ ϕ. Pick sets B ∈ ϕ and UY ∈ UY such that UY [B] ⊆ A. Pick a set
U ∈ U such that UY = (Y × Y ) ∩ U . Then U [B] ∩ Y ⊆ A. Here, U [B] ∈ ψ,
and so A ∈ ψY , as required.

(iii) Suppose that ϕ is a UY -ultrafilter on Y . We apply statement (iv)
of Theorem 3.7 to show that ψ is a U-ultrafilter on X. So, suppose that
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A1, . . . , An ⊆ X for some n ∈ N satisfy
⋃n
k=1Ak ∈ ψ. Pick k ∈ {1, . . . , n}

such that UY [Ak ∩ Y ] ∈ ϕ for every UY ∈ UY . Now, U2[Ak] ∈ ψ for every
U ∈ U , as required. Since U [Y ] ∈ ψ for every U ∈ U , we have ψ ∈ Y .

The assertion of the next theorem that γY and Y are homeomorphic is
also given in [KS].

Theorem 5.5. If Y is a subspace of X, then the mapping F : Y → γY
given by F (p) = pY is a homeomorphism.

Proof. First, F is well-defined by Lemma 5.2 and Theorem 5.3(ii). Also,
F is surjective by Theorem 5.4, and so it is enough to show that F is injective
and continuous. We leave the details to the reader.

In the following corollary, we put clγY (ϕY ) =
⋂
A∈ϕY

clγY (A), where
clγY (A) denotes the closure of a subset A of Y in γY .

Corollary 5.6. Let Y be a subspace of X and let ϕ be a U-filter on X
such that Y is a ϕ-subset of X. Then Y ∩ϕ is homeomorphic to the subspace
clγY (ϕY ) of γY .

Proof. We claim that the mapping F : Y ∩ ϕ → clγY (ϕY ) given by
F (p) = pY is a homeomorphism. First, if p ∈ Y ∩ϕ, then ϕ ⊆ p by Theorem
4.14, and so ϕY ⊆ pY . Therefore, F (p) ∈ clγY (ϕY ), again by Theorem 4.14.
By Theorem 5.5, we need only show that F is surjective. Let q ∈ clγY (ϕY ).
By Theorem 5.5, there exists p ∈ Y such that pY = q. Hence, we only need
to show that p ∈ ϕ.

Suppose that p /∈ ϕ. Pick a set A ∈ ϕ such that p /∈ A. By Lemma 4.6,
there exists a set U ∈ U such that U [A] /∈ p. By Theorem 3.7(ii), there
exists a set B ∈ p such that A∩B = ∅. But now, ϕY and pY contain disjoint
elements, and so pY /∈ clγY (ϕY ), a contradiction.

We now obtain the following result, originally due to M. Katětov. The
norm in the following corollary is the supremum-norm.

Corollary 5.7. Let Y be a subspace of X. If a function f : Y → R is
bounded and uniformly continuous, then there exists a real-valued function
F ∈ UC(X) such that f(y) = F (y) for every y ∈ Y and ‖f‖ = ‖F‖.

Proof. Let f : Y → R be as above. By Theorems 4.11 and 5.5, there
exists a continuous function g : Y → R which extends f such that ‖f‖ = ‖g‖.
The statement follows from Tietze’s Theorem and Theorem 4.12.

Remark 5.8. Recall that a subset Y of X is uniformly discrete if and
only if there exists a set U ∈ U such that U [x] ∩ U [y] = ∅ for all distinct
x, y ∈ Y . In this case, γY is the Stone–Čech compactification βY of Y .
Theorem 5.5 implies the following statements. Theorem 5.9 is a well-known
result and Theorem 5.10 is given in [KS].
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Theorem 5.9. If Y is a uniformly discrete subset of X, then Y is hom-
eomorphic to the Stone–Čech compactification βY of Y .

Theorem 5.10. If X is not totally bounded, then γX contains a hom-
eomorphic copy of βN.

6. LUC-compactification of a topological group. Throughout this
section, let G be a (not necessarily locally compact) topological group and
let e denote the identity of G. We consider the right uniform structure on
G and we denote the space γG by GLUC .

The proof of the following theorem uses similar arguments to those in
the proofs of [KS, Theorem 14] and [KS, Theorem 17].

Theorem 6.1. The group operation of G can be extended to GLUC in
such a way that GLUC is a semigroup compactification of G. Furthermore,
this operation on GLUC is jointly continuous on G×GLUC.

We denote the product (given by the previous theorem) of p, q ∈ GLUC
simply by pq. For every s ∈ G and for every q ∈ GLUC , define the mappings
λs : GLUC → GLUC and ρq : GLUC → GLUC by λs(p) = sp and ρq(p) = pq
for every p ∈ GLUC . We recall that these mappings are continuous.

Definition 6.2. For every subset A of G and for every p ∈ GLUC , define

Ωp(A) = {s ∈ G : s−1A ∈ p}.
Lemma 6.3. Let A ⊆ G, let s ∈ G, and let p, q ∈ GLUC. The following

statements hold:

(i) A ∈ sq if and only if s−1A ∈ q.
(ii) Ωp(A) is an open subset of G.

(iii) If p ∈ clGLUC(ŝ
−1A), then sp ∈ clGLUC(Â).

(iv) If A ∈ pq, then Ωq(A) ∈ p.

(v) If p ∈ clGLUC(Ω̂q(A)), then pq ∈ clGLUC(Â).

Proof. (i) This is obvious.
(ii) If s ∈ Ωp(A), then there exists an open subset B of G such that

s ∈ B and ρp(B̂) ⊆ Â. Now, B ⊆ Ωp(A), thus proving the claim.

(iii) Suppose that p ∈ clGLUC(ŝ
−1A). If B ∈ sp, then ŝ−1B◦∩ ŝ−1A◦ 6= ∅,

so s−1B◦ ∩ s−1A◦ 6= ∅, and so B◦ ∩ A◦ 6= ∅. Therefore, B̂ ∩ Â 6= ∅, thus
proving the claim.

(iv) Suppose that A ∈ pq. Pick an open subset B of G such that B ∈ p
and ρq(B̂) ⊆ Â. Now, B ⊆ Ωq(A), and so Ωq(A) ∈ p.

(v) Suppose that pq /∈ clGLUC(Â). Pick an open subset B of G such that
B ∈ pq and A◦ ∩ B = ∅. Now, Ωq(A) = Ωq(A

◦). Also, it is easy to verify
that Ωq(C ∩ D) = Ωq(C) ∩ Ωq(D) for all subsets C and D of G. Since
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B ∈ pq, we have Ωq(B) ∈ p by statement (iv). Since A◦ ∩ B = ∅, we have

Ωq(A) ∩Ωq(B) = ∅. Therefore, p /∈ clGLUC(Ω̂q(A)).

We finish this paper by characterizing those points of GLUC which are
in the minimal ideal of GLUC or in its closure. We denote the minimal ideal
by K. In what follows, we apply the fact that K is the union of all minimal
left ideals of GLUC (see [HS, p. 34]).

Analogues of the theorems given below are given in [TR] for more general
semigroup compactifications. However, the approach given in [TR] does not
use filters, but certain equivalence classes of z-filters instead.

Definition 6.4. A subset A of G is syndetic if and only if there exists
a finite subset F of G such that G =

⋃
s∈F s

−1A.

Theorem 6.5. If p∈GLUC, then the following statements are equivalent:

(i) p ∈ K.
(ii) If A ∈ p, then Ωp(A) is syndetic.

(iii) If q ∈ GLUC, then p ∈ GLUCqp.

Proof. (i)⇒(ii). Suppose that p ∈ K. Let A ∈ p. Let L be the minimal
left ideal of GLUC such that p ∈ L. If q ∈ L, then L = GLUCq = Gq, and
so Â ∩ Gq 6= ∅. Pick some s ∈ G such that sq ∈ Â. Then s−1A ∈ q by
Lemma 6.3(i). So, for every element q ∈ L, there exists an element s ∈ G
such that s−1A ∈ q. Hence, L ⊆

⋃
s∈F ŝ

−1A for some finite subset F of G.
To see that Ωp(A) is syndetic, let t ∈ G. Since tp ∈ L, there exists some

s ∈ F such that s−1A ∈ tp. Now, t−1s−1A = (st)−1A ∈ p, so st ∈ Ωp(A),
and so t ∈ s−1Ωp(A) for some s ∈ F .

(ii)⇒(iii). Suppose that the set Ωp(A) is syndetic for every set A ∈ p.
Suppose also that there exists some element q ∈ GLUC such that p /∈ GLUCqp.
Since GLUC is a regular topological space, there exists a set A ∈ p such that
clGLUC(Â) ∩ GLUCpq = ∅. By assumption, there exists a finite subset F of

G such that G =
⋃
t∈F t

−1Ωp(A). Pick t ∈ F such that q ∈ t−1Ωp(A).

By Lemmas 6.3(ii) and 4.8(ii), we have q ∈ clGLUC(
̂t−1Ωp(A)), and so

tq ∈ clGLUC(Ω̂p(A)) by Lemma 6.3(iii). Therefore, tqp ∈ clGLUC(Â) by Lem-
ma 6.3(v), a contradiction.

(iii) This is obvious.

Definition 6.6. A subset A ofG is piecewise syndetic if and only if there
exists a finite subset F of G such that the set {s−1(

⋃
t∈F t

−1A) : s ∈ G} has
the finite intersection property.

Theorem 6.7. Let A ⊆ G. The following statements hold:

(i) If Â ∩K 6= ∅, then A is piecewise syndetic.

(ii) If A is open and piecewise syndetic, then clGLUC(Â) ∩K 6= ∅.
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Proof. (i) Suppose that p ∈ Â∩K. By Theorem 6.5, there exists a finite
subset F of G such that G =

⋃
t∈F t

−1Ωp(A). Let s ∈ G and pick t ∈ F
such that s ∈ t−1Ωp(A). Then ts ∈ Ωp(A), and so (ts)−1A = s−1(t−1A) ∈ p.
Therefore, s−1(

⋃
t∈F t

−1A) ∈ p for every s ∈ G, and so A is piecewise
syndetic.

(ii) Suppose that A is open and piecewise syndetic. Pick a finite subset F
of G such that the set {s−1(

⋃
t∈F t

−1A) : s ∈ G} has the finite intersection
property. Put B =

⋃
t∈F t

−1A and A = {Us−1B : U ∈ Ne, s ∈ G}. Here, B
is an open subset of G and A is a U-family on G such that A has the finite
intersection property. By Lemma 3.5, there exists an element p ∈ GLUC such
that A ⊆ p.

For a while, fix s ∈ G. Since Us−1B ∈ p for every U ∈ Ne, we have

p ∈ s−1B by Lemma 4.6, so p ∈ clGLUC(ŝ
−1B) by Lemma 4.8(ii), and hence

sp ∈ clGLUC(B̂) by Lemma 6.3(iii). Since s ∈ G was arbitrary, we obtain

GLUCp ⊆ clGLUC(B̂). Here, GLUCp is a left ideal of GLUC , and so we may

pick some element q ∈ K ∩GLUCp. Since q ∈ clGLUC(B̂), we have B ∩C 6= ∅
for every C ∈ q. By the definition of the set B, we may assume that there
exists an element t ∈ F such that t−1A ∩ C 6= ∅ for every C ∈ q. Now,

q ∈ clGLUC(t̂
−1A) by Lemmas 4.6 and 4.8(ii), and so tq ∈ clGLUC(Â) by

Lemma 6.3(iii). Since q ∈ K, we have tq ∈ K, and so K ∩ clGLUC(Â) 6= ∅.
The following corollary is now obvious.

Corollary 6.8. If p ∈ GLUC, then p ∈ K if and only if every set A ∈ p
is piecewise syndetic.

Definition 6.9. A subset A of G is central if and only if there exists
an idempotent e ∈ K such that A ∈ e.

Theorem 6.10. Let A ⊆ G. The implications (i)⇒(ii)⇒(iii)⇒(iv) hold
for the following statements:

(i) Â ∩K 6= ∅.
(ii) The set {s ∈ G : s−1A is central} is syndetic.

(iii) There exists some s ∈ G such that s−1A is central.
(iv) A is piecewise syndetic.

Proof. (i)⇒(ii). Suppose that p ∈ Â∩K. Let L be the minimal left ideal
of GLUC such that p ∈ L. Pick an idempotent e ∈ L. Now, A ∈ p = pe, so
Ωe(A) ∈ p by Lemma 6.3(iv), and so there exists some element s ∈ G such
that s−1A ∈ e. Since e ∈ K, we have G =

⋃
t∈F t

−1Ωe(s
−1A) for some finite

subset F of G by Theorem 6.5. Let B = {s ∈ G : s−1A is central}. Now, it
is enough to show that G =

⋃
u∈sF u

−1B. But if v ∈ G, then there exists an
element t ∈ F such that tv ∈ Ωe(s−1A), so (tv)−1s−1A = (stv)−1A ∈ e, and
thus stv ∈ B. Hence, v ∈ t−1s−1B = (st)−1B, as required.
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(ii)⇒(iii). A syndetic subset of G is not empty.
(iii)⇒(iv). Suppose that there exists an element s ∈ G such that s−1A

is central. Pick an idempotent e ∈ K such that s−1A ∈ e, that is, A ∈ se.
Since se ∈ K, the set A is piecewise syndetic by Theorem 6.7(i).
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