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On a problem posed by M. M. Popov

by

F. Albiac (Pamplona) and J. L. Ansorena (Logroño)

Abstract. We show that if X is a non-locally convex quasi-Banach space with a rich
dual, there exists a continuous function f : [0, 1] → X failing to have a primitive. This
answers a twenty year-old question raised by M. M. Popov in this journal.

1. Introduction. When X is a Banach space, every continuous function
f : [a, b]→ X is Riemann-integrable and the corresponding integral function

F (t) =
	t
a f is a primitive of f . The situation changes dramatically when

X is a non-locally convex F-space. Indeed, by an old result of Mazur and
Orlicz [9] we know that there exist continuous functions on [a, b] mapping
into X which fail to be Riemann-integrable and so the usual way of getting
primitives for integrable functions may break down in this setting.

It is therefore natural to ask whether every continuous function from a
compact interval of the real line into a given F-space will have a primitive.
This question was formally raised by M. M. Popov almost twenty years ago
in [10]. Two years later, in a paper of classical elegance, N. Kalton gave
a positive partial answer by showing that if X is quasi-Banach space with
trivial dual (like the spaces Lp[0, 1] for 0 < p < 1) then every continuous
function f : [a, b]→ X has a primitive [5].

In this note we analyze what happens on the opposite side of the spec-
trum. We prove that if X belongs to a wide class of quasi-Banach spaces
that includes those with separating dual, then there is a continuous function
f : [0, 1] → X failing to have a primitive. This applies in particular to the
non-existence of primitives for continuous functions mapping into the spaces
`p for 0 < p < 1, a case that was recently settled in [2].

We refer the reader to [10, 5, 2] for background and to [7, 11] for the
needed terminology and notation on quasi-Banach spaces and F-spaces.
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2. Preliminaries. Unlike for Banach spaces, the fundamental theorem
of calculus does not hold for continuous functions f : [a, b] → X mapping
into a non-locally convex quasi-Banach space (see [3]). This “pathology” mo-
tivates the study of sufficient conditions on f that guarantee its integrability,
either in the sense of Riemann or in the sense of Vogt. The construction of
the Riemann integral for F-spaces is classical and appears in [11, 10]. The
specifics on Vogt integrability can be found in [18, 8] (see also [3, Section 5]
for a fast reminder of the construction of this integral designed for p-normed
spaces). Even in the case when f is integrable, differentiating the integral

function F (t) =
	t
a f is not a trivial question. The important point to note

here is that the differentiation of functions taking values in a non-locally
convex space faces many issues from a very early stage, amongst which we
highlight the failure of the mean value property (see [1]). This fact opens the
door to the existence of functions with continuous derivative that are not
Lipschitz [2] and leads to consider the space C(1)([a, b], X). Since we make
use of this ingredient throughout, with more prominence in Section 4, the
first subsection is meant to recall the particularities of this class of functions
in the setting of quasi-Banach spaces.

Our answer in the negative to Popov’s question relies on the ability
to rig the method that we employed in [2] for constructing functions from
the unit interval of the real line into quasi-Banach spaces. §2.3 provides an
exposition of this machinery, enhanced for better performance. As it turned
out, proving the non-existence of primitives for the general case required
less effort and ended up being less technical than for functions mapping into
`p for 0 < p < 1. The simplification is due to an alternative approach that
uses the notion of galb of an F-space, a tool introduced by Turpin in 1971.
For the convenience of the reader we have gathered the main properties of
these objects in §2.2.

Here and subsequently X will be an infinite-dimensional real quasi-Ba-
nach space. Recall that a quasi-norm on X is a map ‖ · ‖ : X → [0,∞)
satisfying the axioms of a norm except for the triangle law, which is replaced
with the condition

‖x+ y‖ ≤ κ(‖x‖+ ‖y‖), ∀x, y ∈ X,

for some constant κ ≥ 1 independent of x and y. In particular, if κ = 1 we
obtain a norm. A quasi-norm ‖ · ‖ is called a p-norm (0 < p < 1) if it is
p-subadditive, that is,

‖x+ y‖p ≤ ‖x‖p + ‖y‖p, ∀x, y ∈ X.

In this case X is said to be a p-convex quasi-Banach space (p-Banach space
for short). Although what follows applies to functions f : [a, b]→ X defined
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on any compact interval [a, b] of the real line, without loss of generality and
for the sake of simplicity we will work on the unit interval I = [0, 1].

2.1. The space C(1)(I,X) when X is quasi-Banach. Following Kal-
ton [5], we will denote by C(1)(I,X) the space of all functions F : I → X
for which there exists f : I → X such that the function S(F, f) : I2 → X
defined by

S(F, f)(s, t) =


F (s)− F (t)

s− t
for s 6= t,

f(t) for t = s,

is continuous. It is straightforward to verify that C(1)(I,X) is a quasi-Banach
space under the quasi-norm

‖F‖C1 = ‖F (0)‖+ sup
0≤s<t≤1

‖F (t)− F (s)‖
t− s

.

Clearly, if F and f are as above it follows that F is differentiable, f is
continuous, and F ′(t) = f(t) for all t ∈ I.

We are aware that this notation can be misleading since, in contrast to
the case when X is a Banach space, the space of continuously differentiable
functions from I into a quasi-Banach spaceX is contained in but not equal to
C(1)(I,X). Indeed, a function in C(1)(I,X) in particular is Lipschitz on I, but
as the authors showed in [2, Theorem 4.1] there are differentiable functions
with continuous derivative mapping from I into a quasi-Banach space which
fail to be Lipschitz!

Kalton brought into play the space C(1)(I,X) to give a positive partial
answer to Popov’s question by proving that if X is a quasi-Banach space
with trivial dual then every continuous function f : I → X has a primitive
that belongs to C(1)(I,X).

2.2. A brief account on galbs of F-spaces. The notion of galb was
introduced and developed by Turpin in a series of papers (cf. [14, 15]) and
a monograph ([13]) in the early 1970’s. In this subsection we touch only a
few aspects of the theory and summarize without proofs the properties that
are relevant to our work.

Suppose that X is an F-space. The galb of X, here denoted by G(X), is
defined to be the vector space of all sequences (λk)

∞
k=1 of real numbers that

have the following topological property: for any 0-neighborhood U there is
another 0-neighborhood V so that (xk)

N
k=1 ∈ VN implies

∑N
k=1 λkxk ∈ U . In

other words, (λk)
∞
k=1 belongs to G(X) if and only if the linear operator from

c00(X) (endowed with the topology of uniform convergence) into X given
by (xk)

∞
k=1 7→

∑∞
k=1 λkxk is continuous.

With the help of the closed graph theorem we can identify the members
(λk)

∞
k=1 ∈ G(X) by checking either of the following equivalent statements:
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(i) The series
∑∞

k=1 λkxk converges in X for any (xk)
∞
k=1 ∈ c0(X).

(ii) The linear operator Tα : c0(X)→ X given by (xk)
∞
k=1 7→

∑∞
k=1 λkxk

is well-defined and continuous.

Now, thanks to this characterization it is easily seen that if X is a locally
bounded F-space (i.e., a quasi-Banach space) then so is G(X) with the quasi-
norm given by

‖(λk)∞k=1‖G = sup
{∥∥∥ N∑

k=1

λkxk

∥∥∥ : N ∈ N, (xk)
N
k=1 ∈ X with ‖xk‖ ≤ 1

}
= sup

{∥∥∥ ∞∑
k=1

λkxk

∥∥∥ : (xk)
∞
k=1 ∈ c0(X)

}
= ‖Tα‖.

In general, the galb of an F-space X cannot be expected to have a structure
of F-space. This might have motivated Turpin to investigate this concept
in the more general category of espaces vectoriels à convergence, in his own
terminology. Nevertheless, thanks to validity of the uniform boundedness
principle and the closed graph theorem, if E is a subspace of G(X) that can
be endowed with a structure of F-space, then the mapping

E × c0(X)→ X, ((λk)
∞
k=1, (xk)

∞
k=1) 7→

∞∑
k=1

λkxk,

is well-defined, bilinear, and continuous.

Examples and elementary properties

(a) Suppose that X and Y are F-spaces. If X is a subspace of Y then
G(Y ) ⊆ G(X).

(b) Suppose 0 < p ≤ 1. Then X is p-convex if and only if `p ⊆ G(X). In
particular, if G(X) = `p then X cannot be q-convex for any p < q.

(c) If X is locally convex then G(X) = `1. In particular G(R) = `1.
(d) G(X) ⊆ `1 for any F-space X.
(e) Let 0 < p ≤ 1. Suppose X is a p-convex quasi-Banach space such

that `p embeds into X. Then G(X) = `p. For instance, G(`p) =
G(Lp[0, 1]) = G(Hp) = `p.

(f) If X is a quasi-Banach space, there exists 0 < p ≤ 1 such that
`p ⊆ G(X) (and so X is p-convex). This is essentially a restatement
of the Aoki–Rolewicz theorem [4, 12].

(g) Suppose |λk| ≤ |µk| for all k and (µk)
∞
k=1 ∈ G(X). Then (λk)

∞
k=1 ∈

G(X).
(h) If (λk)

∞
k=1 is a rearrangement of (µk)

∞
k=1 ∈ G(X) then (λk)

∞
k=1 ∈

G(X).
(i) There are F-spaces X with essentially trivial galb, i.e., G(X) = c00.

For instance, G(L0[0, 1]) = c00.
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(j) For any quasi-Banach space X, G(G(X)) = G(X).
(k) Let X be a quasi-Banach space. If (λk)

∞
k=1 ∈ G(X) and (xk)

∞
k=1

in X are such that
∑∞

k=1 λkxk converges to some x ∈ X then ‖x‖ ≤
‖(λk)‖G supk∈N ‖xk‖.

Roughly speaking, in view of (b), it could be said that the galb of an
F-space is a measure of its convexity, in the sense that it tells us how far the
space is from being locally convex.

2.3. Tailoring functions from I = [0, 1] into a quasi-Banach space.
Let τ = (tk)

∞
k=1 be an increasing sequence of scalars contained in (0, 1)

tending to 1. With t0 = 0, let us denote the interval [tk−1, tk) by Ik and
its length by λk, i.e., λk = |Ik| = tk − tk−1. This way we can write [0, 1) =⊔∞
k=1 Ik (disjoint union). For each k ∈ N let fIk : I → R be the non-negative

piecewise linear function supported on Ik having a node at the midpoint
of Ik, ck = (tk + tk−1)/2, with fIk(ck) = 2 and fIk(tk−1) = fIk(tk) = 0,

fIk(t) =


4

tk − tk−1
(t− tk−1) if t ∈ [tk−1, ck),

4

tk − tk−1
(t− tk) if t ∈ [ck, tk),

0, otherwise.

Let x = (xk)
∞
k=1 be a sequence of vectors in a quasi-Banach space X.

We define the function f = f(τ,x) : I → X as

(2.1) f(t) =

{
fIk(t)xk if t ∈ Ik,
0 if t = 1.

Note that f is continuous and Riemann-integrable on [0, 1) since for each
s < 1 the set f([0, s]) is a finite-dimensional subspace of X. Let F = F (τ,x)
be the corresponding integral function on [0, 1),

(2.2) F (t) =

t�

0

f(u) du.

The following lemma is a version of [2, Proposition 2.1] that has been
customized to fit our current needs.

Lemma 2.1. For a given pair (τ,x) we have the following:

(i) The function f = f(τ,x) : I → X is continuous at 1, hence contin-
uous on I, if and only if xk → 0.

(ii) F = F (τ,x) can be extended continuously to I if and only if the
series

∑∞
k=1 λkxk converges in X.

(iii) F ∈ C(1)(I,X) if and only if
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(2.3) lim
m,n→∞

‖
∑

m+1≤k≤n λkxk‖∑
m+1≤k≤n λk

= lim
m,n→∞

‖
∑

m+1≤k≤n λkxk‖
tn − tm

= 0.

Proof. We assume, by Aoki–Rolewicz’s theorem, that X is p-convex for
some 0 < p ≤ 1. Statements (i) and (ii) were proved in [2], so only (iii) needs
a proof.

Suppose that F ∈ C(1)(I,X). By construction, it has to be the case that
F ′(t) = f(t) for all t ∈ I. Then

lim
m,n→∞

∑n
k=m+1 λkxk∑n
k=m+1 λk

= lim
m,n→∞

F (tn)− F (tm)

tn − tm
= lim

m,n→∞
S(F, f)(tn, tm)

= S(F, f)(1, 1) = f(1) = 0.

Conversely, suppose that (2.3) holds. Since
∑

k λk is a Cauchy series, so is∑
k λkxk, hence it converges. Defining F (1) =

∑
k λkxk, we see that F is

continuous on I. To prove that S(F, f) is continuous it suffices to show that

lim
t,s→1−

s>t

F (s)− F (t)

s− t
= 0.

For any ε > 0 there exists N ∈ N such that for all n > m ≥ N ,

‖
∑

m+1≤k≤n λkxk‖∑
m+1≤k≤n λk

=
‖
∑

m+1≤k≤n λkxk‖
tn − tm

≤ ε

31/p−1
and ‖xn‖ ≤

ε

31/p−1
.

Given s > t ≥ tN−1 we have s ∈ In, t ∈ Im for some n ≥ m ≥ N . Then

‖F (s)− F (t)‖p

(s− t)p

≤ ‖F (s)− F (tn)‖p + ‖F (tn)− F (tm)‖p + ‖F (tm)− F (t)‖p

(s− t)p

=
‖xn‖p(

	s
tn
fIn(u) du)p + ‖

∑n
k=m+1 λkxk‖p + ‖xm‖p(

	tm
t fIm(u) du)p

(s− t)p

≤ 3p−1εp(tm − t)p + 3p−1εp(tn − tm)p + 3p−1εp(s− tn)p

(s− t)p
≤ εp.

3. An answer in the negative to Popov’s question. The question
of Popov whether every continuous function f : I → X mapping into a
non-locally convex F-space has a primitive ([10, p. 206]) was tackled by
Kalton in [5] in terms of the surjectivity of the operator

D : C(1)(I,X)→ C(I,X), F 7→ D(f) = F ′,

and was given a definite form as an intrinsic property of the space X by
the authors in [2]. They defined a quasi-Banach space X to be a P-space
(or to have property (P)) if every continuous function f : I → X has a
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primitive, and proved that no `p-space has property (P) when 0 < p < 1. In
this section we extend this result by showing that, in fact, no quasi-Banach
space with separating dual does. The strategy is different. It depends on
the next proposition, which will also lead us to the classical Mazur–Orlicz
theorem [9] via an alternative path.

Proposition 3.1. Let X be a non-locally convex quasi-Banach space.
Then there exist continuous functions f : I → X and F : [0, 1) → X such
that

(a) F is differentiable at every t ∈ [0, 1) with F ′(t) = f(t), but
(b) F does not admit a continuous extension to I.

Proof. Since X is not locally convex, property (b) in §2.2 yields the
existence of a sequence (λk)

∞
k=1 ∈ `1 \ G(X), so that the series

∑∞
k=1 λkxk

does not converge in X for some sequence of vectors x = (xk)
∞
k=1 in c0(X).

Without loss of generality we assume λk > 0 for all k and
∑∞

k=1 λk = 1.

Define τ = (tn)∞n=1 by tn =
∑n

k=1 λk, so that tn − tn−1 = λn. Now, we
feed the function-tailoring machine described in §2.3 with the pair (τ,x)
to manufacture f = f(τ,x) and F = F (τ,x) with the desired properties,
namely, f is continuous on [0, 1] and F is continuous on [0, 1) but cannot
be continuously extended to I. Note that F is differentiable on [0, 1) with
derivative F ′(t) = f(t) at every t ∈ [0, 1).

Corollary 3.2 (Mazur–Orlicz). Let X be a non-locally convex quasi-
Banach space. Then there exists a continuous function f : I → X which is
Riemann-integrable on [0, 1 − ε] for every ε > 0 but fails to be Riemann-
integrable on I.

Proof. Let f and F be the functions in Proposition 3.1. Since, by the
construction of f , the set f([0, s]) is a finite-dimensional subspace of X for
every s < 1, it follows that f is Riemann-integrable on [0, s]. Suppose the
function f were Riemann-integrable on I. Then an appeal to [10, Propo-

sition 1.2] would show that G(t) =
	t
0 f(s) ds is (uniformly) continuous on

[0, 1]. But G([0, s]) maps into a finite-dimensional subspace of X for each
s < 1, and so it is differentiable on [0, 1) with G′ = F ′ on [0, 1). This implies
G(t) = F (t) for all t ∈ [0, 1) so that F would admit a continuous extension
to I, a contradiction.

Remark 3.3. The same argument shows that f fails to be integrable in
the sense of Vogt on I.

In [6], Kalton introduced the notion of core of a quasi-Banach space X
as the largest subspace of X with trivial dual. Note that if X∗ separates
the points of X then core(X) = {0}, so the following theorem applies to
quasi-Banach spaces with separating dual.
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Theorem 3.4. Let X be a non-locally convex quasi-Banach space with
null core. Then there exists a continuous function f : [0, 1] → X failing to
have a primitive.

Proof. Pick out functions f and F as in Proposition 3.1. Suppose there
exists a differentiable function G : I → X such that G′(t) = f(t) for all t ∈ I.
Then (F − G)′(t) = 0 for all t ∈ [0, 1). Now, the fact that core(X) = {0}
yields F (t) = G(t) + C for all t ∈ [0, 1), where C is some constant (see
[2, Lemma 3.1]). Hence, F admits a continuous extension to I, a contradic-
tion.

4. An application to integration theory in quasi-Banach spaces.
In [18] Vogt introduced a concept of integrability quite different from that
of Riemann. Let (Ω,Σ, µ) be a measure space and X be a p-Banach space.
A function f : Ω → X is said to be integrable in the sense of Vogt, and we
write f ∈ L1

V (µ,X) (also, f ∈ L1
V (I,X) when µ is the Lebesgue measure on

a subset I ⊆ Rd) if f admits an expression of the following guise:

(4.1) f(t) =
∞∑
n=1

xnfn(t) a.e. t ∈ I,

where x = (xn)∞n=1 in X and f = (fn)∞n=1 in L1(µ,R) satisfy the condition

(4.2) N(x, f) =
∞∑
n=1

‖xn‖p‖fn‖p1 <∞.

The space L1
V (µ,X) equipped with the gauge

‖f‖1,V = inf{N(x, f)1/p : (4.1) and (4.2) hold}
is a p-Banach space. Moreover, for E ∈ Σ the expression

∞∑
n=1

xn
�

E

fn dµ

does not depend on the decomposition (4.1) chosen for f , and so it is con-
sistent to define the Vogt integral of f on E as

�

E

f dµ =
∞∑
n=1

xn
�

E

fn dµ.

The crucial fact in the work of Vogt is the possibility to identify isometrically
L1
V (µ,X) with the completion of the tensor product X ⊗L1(µ,R) endowed

with the quasi-norm

‖Φ‖ = inf
{( N∑

n=1

‖xn‖p‖fn‖p1
)1/p

: Φ =

N∑
n=1

xn ⊗ fn, N ∈ N
}
.
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In their search for sufficient conditions of integrability in the sense of
Vogt for functions taking values in F-spaces, Turpin and Waelbroeck [16, 17]
dealt with spaces of functions of the form C(r)(U,X), where U is an open
set of the Euclidean space Rn and 0 < r < ∞. Although we will not en-
tertain a discussion concerning these spaces, it is perhaps worth mentioning
that the authors defined the corresponding class C(r)(I,X) in their study
of sufficient conditions for Riemann integrability ([3]), and that the space
C(1)(I,X) introduced in Section 2.1 happens to be a member under disguise
of that class. For our purposes, in this section it suffices to recall that if
f ∈ C(1)(I,X), where X is a quasi-Banach space with separating dual, and
f ′ is Riemann-integrable on I then Barrow’s rule holds, i.e.,

b�

a

f ′(u) du = f(b)− f(a).

The hypothesis that f ′ is Riemann-integrable on I is not redundant, as the
following theorem shows. However, increasing the smoothness degree of f
by imposing that f belongs to C(r)(I,X) with r > (p + 1)/p does the trick
(see [3] for more details).

Theorem 4.1. Let X be a non-locally convex quasi-Banach space. Then
there exists G ∈ C(1)(I,X) so that G′ is neither Riemann-integrable nor
integrable in the sense of Vogt on I.

Proof. Assume that X is p-convex for some 0 < p < 1. Consider, as in
the proof of Proposition 3.1, (λk)

∞
k=1, and x = (xk)

∞
k=1 ∈ c0(X) such that

λk > 0 for all k,
∑∞

k=1 λk = 1, and the series
∑∞

k=1 λkxk does not converge.
With t0 = s0 = 0, define τ = (tn)∞n=1, σ = (sn)∞n=1 and y = (yk)

∞
k=1 by

tn =

n∑
k=1

λk,

sn =

{
1
2(t(n−1)/2 + t(n+1)/2) if n is odd,

tn/2 if n is even,

yn =

{
x(n+1)/2 if n is odd,

−xn/2 if n is even.

Define µn = sn − sn−1. We have tn − tn−1 = λn and µn = 1
2λb(n+1)/2c.

We feed again the function-tailoring machine described in §2.3 with the
pair (σ,y). Let g = f(σ,y) and G = F (σ,y). We have

∑
m+1≤k≤n

µkyk =


0 if m and n are both even,

µnxn if n is odd and m is even,

−µm+1xm+1 if n is even and m is odd,

µnxn − µm+1xm+1 if m and n are both odd.
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In any case,

‖
∑

m+1≤k≤n µkyk‖∑
m+1≤k≤n µk

≤ 21/p−1
µn‖xn‖+ µm+1‖xm+1‖∑

m+1≤k≤n µk

≤ 21/p−1 max{‖xm+1‖, ‖xn‖}
m,n→∞−−−−−→ 0.

Appealing to Lemma 2.1(iii) we get G ∈ C(1)(I,X).
Suppose that G′ = g is integrable in the sense of Vogt on I. Consider

the set

Ω =
∞⋃
n=1

[s2n−2, s2n−1)

equipped with the measure µ given by µ(A) = 2|A|. Let h = g|Ω. Obviously,
h is integrable in the sense of Vogt on the measure space (Ω,µ). Notice that
the bijective mapping φ : [0, 1)→ Ω given by

φ(t) =
t+ tn−1

2
, t ∈ [tn−1, tn),

is measure-preserving. Hence, h ◦ φ is integrable in the sense of Vogt on
[0, 1). Moreover, it is easy to check that h ◦ φ = f(τ,x). But, in view of
Remark 3.3, f(τ,x) is not integrable in the sense of Vogt, and we reach a
contradiction.

Let us assume now that g is Riemann-integrable on I. Then
	1
0 g =∑∞

k=1 µkyk = 0. Fix any ε > 0 (for instance, ε = 1). There exists δ > 0
such that

‖σ(g, π)‖ < (2p − 1)1/pε

for all Riemann sums σ(f, π) of f associated with a partition π of I with
diameter at most δ. Let N ∈ N be such that 1− tN < δ. Since

∑∞
k=1 λkxk is

not a Cauchy series, there exist N ≤ m < n such that ‖
∑n

k=m+1 λkxk‖ ≥ ε.
Now, since

	tm
0 g =

∑2m
k=0 µkyk = 0, we can pick a Riemann sum σ(g, π1)

associated with a partition of [0, tm],

π1 = {0 = a0 < · · · < al−1 < al < · · · < aL = tm},
of diameter at most δ, such that ‖σ(g, π1)‖ ≤ ε. Consider the partition

π = {a0 < · · · < al < · · · < aL = tm < · · · < tk < · · · < tn < 1},
and the Riemann sum

σ(g, π) = σ(g, π1) +

( n∑
k=m+1

g

(
3

4
tk−1 +

1

4
tk

)
(tk − tk−1)

)
+ g(tn+1)(1− tn).

We observe that the diameter of π is at most δ and that

σ(g, π) = σ(g, π1) + 2

n∑
k=m+1

λkxk.
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But ∥∥∥σ(g, π1) + 2
n∑

k=m+1

λkxk

∥∥∥p ≥ 2pεp − εp,

a contradiction.
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