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Topological reflexivity of the spaces of (α, β)-derivations
on operator algebras

by

Wu Jing and Shijie Lu (Hangzhou)

Abstract. We prove that the spaces of (α, β)-derivations on certain operator algebras
are topologically reflexive in the weak operator topology. Characterizations of automor-
phisms and (α, β)-derivations on reflexive algebras are also given.

1. Introduction and preliminaries. The study of reflexive linear sub-
spaces of the algebra B(X) of all bounded linear operators on the Banach
space X represents a very active research area in operator theory (see [8]
for a beautiful general view). The originators of this research direction are
Kadison and Larson. In [11], Kadison studied local derivations from a von
Neumann algebra R into a dual R-bimodule M. A linear map from R
into M is called a local derivation if it agrees with some derivation at each
point in the algebra (the derivations possibly varying from point to point).
This investigation was motivated by the study of the Hochschild cohomol-
ogy of operator algebras. Independently, Larson and Sourour [13] studied
local derivations of B(X); they proved that every local derivation of B(X)
is a derivation. Since then, a considerable amount of work has been done
concerning local derivations of various algebras. See, for example, [4, 5, 9,
10, 18]. In this paper, we will extend this research to a more general setting.

Let us now define our concept of topological reflexivity. Let X be a
Banach space. We denote by L(X) and B(X) the algebras of all linear and
all bounded linear operators on X respectively. Let A be a subalgebra of
B(X). Given two subsets E ⊆ L(A) and F ⊆ B(A), if τ is a vector topology
on A, we define

Locτ E = {φ ∈ L(A) : φ(A) ∈ EAτ , A ∈ A},
BLocτ F = {φ ∈ B(A) : φ(A) ∈ FAτ , A ∈ A}.

2000 Mathematics Subject Classification: 47B47, 47L75.
Key words and phrases: topological reflexivity, (α, β)-derivation, automorphism, re-

flexive algebra, von Neumann algebra.

[121]



122 W. Jing and S. J. Lu

In what follows τ ∈ {d,n, s,w}, where d,n, s,w denote the discrete, norm,
strong and weak operator topology, respectively. If E = Locτ E (resp. F =
BLocτ F), we say that E is topologically reflexive in L(A) (resp. F is topo-
logically reflexive in B(A)) in the τ -topology. In particular, if F = BLocdF ,
we always say that F is algebraically reflexive, and if F = BLocn F , we say
that F is topologically reflexive. Moreover, it is trivial that

E ⊆ Locd E ⊆ Locn E ⊆ Locs E ⊆ Locw E
and

F ⊆ BLocd F ⊆ BLocn F ⊆ BLocsF ⊆ BLocw F .
And it is obvious that topological reflexivity in the weak operator topol-
ogy implies topological reflexivity in the discrete, norm and strong operator
topologies.

In [1] Batty and Molnár investigated the topological reflexivity of the
groups of *-automorphisms and surjective isometries of B(H) in the strong
operator topology, whereH is a separable Hilbert space. Brešar and Šemrl [3]
proved that the group of automorphisms of B(H) is algebraically reflexive
in L(B(H)) provided that H is a separable and infinite-dimensional Hilbert
space, and in [15] Molnár showed that this group is topologically reflexive
in B(B(H)).

Instead of automorphisms and surjective isometries, in the present paper
we restrict our attention to the topological reflexivity of the spaces of (α, β)-
derivations of operator algebras in a Banach space. Recall that a linear map
δ of an algebra A into itself is called an (α, β)-derivation if there exist
automorphisms α and β of A such that δ(AB) = δ(A)β(B) + α(A)δ(B) for
arbitrary A and B in A (see [2]). Obviously, derivations are (1, 1)-derivations
where 1 is the identity on A. We denote by D(α,β)(A) and BD(α,β)(A) the
spaces of all (α, β)-derivations and continuous (α, β)-derivations on A. We
will show that the spaces of (α, β)-derivations on certain operator algebras
are topologically reflexive in the weak operator topology.

Before proceeding, let us fix some notation. In what follows we denote by
X a fixed complex Banach space. The usual notation Lat E will stand for the
lattice of invariant subspaces for a subset E ⊆ B(X), and AlgL will denote
the algebra of bounded linear operators leaving invariant every member of a
family L of subspaces. E is reflexive if E = ref E , where ref E = {T ∈ B(X) :
Tx ∈ [Ex], x ∈ X} and [·] denotes the norm closure.

For a lattice L of subspaces of X, if N ∈ L, we denote
∨{M ∈ L :

N 6⊆M} by N− and
∧{M ∈ L : M 6⊆ N} by N+.

For a subset S ⊆ X, S⊥ = {f ∈ X∗ : f(S) = {0}}, where X∗ is the
dual space of X; if x ∈ X and f ∈ X∗, the rank one operator u 7→ f(u)x is
denoted by x⊗ f . If M is a subspace of X and T ∈ B(X), the restriction of
T to M is denoted by T |M .



Spaces of (α, β)-derivations on operator algebras 123

Let φ be an automorphism of an algebra A. It is easy to see that φ pre-
serves idempotents in both directions. Moreover, if A contains the identity I,
and we let P⊥ = I − P for every idempotent P ∈ A, then φ(P )⊥ = φ(P⊥).

The following lemma will be used repeatedly.

Lemma 1.1 ([14]). Let L be a subspace lattice. Then x ⊗ f ∈ AlgL if
and only if there exists an element L ∈ L such that x ∈ L and f ∈ (L−)⊥.

2. Topological reflexivity of the spaces of (α, β)-derivations of
operator algebras. We begin with the following key lemma.

Lemma 2.1. Let A be a subalgebra of B(X) containing the identity op-
erator I, and α, β be automorphisms of A. If δ ∈ Locw D(α,β)(A), then

δ(PAQ) = δ(PA)β(Q) + α(P )δ(AQ)− α(P )δ(A)β(Q)

for every A ∈ A and any idempotents P and Q in A.

Proof. Given A ∈ A and two idempotents P,Q ∈ A, there exists {δn} ⊆
D(α,β)(A) (depending on PAQ) such that {δn(PAQ)} converges to δ(PAQ)
in the weak operator topology, i.e. for arbitrary x ∈ X and f ∈ X∗,

f [(δn(PAQ)− δ(PAQ))x]→ 0 (n→∞).

But

δn(PAQ) = δn(PA)β(Q) + α(PA)δn(Q) = δn(PA)β(Q) + α(P )α(A)δn(Q).

Thus, for any x ∈ Ker β(Q) and f ∈ {Rangα(P )}⊥, we have

f [(δn(PAQ)− δ(PAQ))x] = −f(δ(PAQ)x)→ 0 (n→∞).

This shows that f(δ(PAQ)x) = 0 for x ∈ Ker β(Q) and f ∈ {Rangα(P )}⊥.
Hence α(P )⊥δ(PAQ)β(Q)⊥ = 0, or equivalently, α(P⊥)δ(PAQ)β(Q)⊥ = 0.

Furthermore,

δ(PAQ)β(Q)⊥ − α(P )δ(AQ)β(Q)⊥

= [δ(PAQ)− α(P )δ(AQ)]β(Q)⊥

= [(α(P )⊥δ(PAQ) + α(P )δ(PAQ))

− (α(P )δ(P⊥AQ) + α(P )δ(PAQ))]β(Q)⊥

= α(P )⊥δ(PAQ)β(Q)⊥ − α(P )δ(P⊥AQ)β(Q)⊥ = 0,

that is,
δ(PAQ)β(Q)⊥ = α(P )δ(AQ)β(Q)⊥.

Similarly we have

δ(PAQ⊥)β(Q) = α(P )δ(AQ⊥)β(Q).
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Therefore we obtain

δ(PAQ)− α(P )δ(AQ) = (δ(PAQ)− α(P )δ(AQ))β(Q)⊥

+ (δ(PAQ)− α(P )δ(AQ))β(Q)

= (δ(PAQ)− α(P )δ(AQ))β(Q)

= [(δ(PA)− δ(PAQ⊥))

− (α(P )δ(A)− α(P )δ(AQ⊥))]β(Q)

= δ(PA)β(Q)− α(P )δ(A)β(Q)

+ (α(P )δ(AQ⊥)β(Q)− δ(PAQ⊥)β(Q))

= δ(PA)β(Q)− α(P )δ(A)β(Q).

Now we prove our first theorem.

Theorem 2.2. Let M be a von Neumann algebra on a Hilbert space H,
and α, β be automorphisms of M. Then BD(α,β)(M) is topologically re-
flexive in B(M) in the weak operator topology.

Proof. Let δ ∈BLocw D(α,β)(M). It is not difficult to show that δ(I) = 0.
By Lemma 2.1, we obtain δ(PQ) = δ(P )β(Q) + α(P )δ(Q) for any idempo-
tents P and Q in M. Now the assertion follows easily from the fact that
every automorphism of M is continuous and the linear span of all idempo-
tents of M is norm dense in M.

In particular, we have Kadison’s famous result.

Corollary 2.3 ([11]). Every norm continuous local derivation on a von
Neumann algebra is a derivation.

By Lemma 2.1, we also have the following.

Theorem 2.4. Let M be a properly infinite von Neumann algebra on
an infinite-dimensional Hilbert space H, and α, β be automorphisms of M.
Then D(α,β)(M) is topologically reflexive in L(M) in the weak operator
topology.

Proof. Notice that every operator in a properly infinite von Neumann
algebra on an infinite-dimensional Hilbert space H is the sum of five idem-
potents in M [17, Theorem 4].

Now we begin to investigate the topological reflexivity of the spaces of
(α, β)-derivations of reflexive operator algebras on a Banach space.

Lemma 2.5. Let A ⊆ B(X) be an arbitrary reflexive algebra and N ∈
LatA. If N 6⊆ N−, then

(1) for f ∈ X∗, if x⊗ f ∈ A for any x ∈ N , then f ∈ (N−)⊥;
(2) for x ∈ X, if x⊗ f ∈ A for any f ∈ (N−)⊥, then x ∈ N .
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Proof. (1) Suppose that f 6∈ (N−)⊥. Then there exists y ∈ N− such that
f(y) 6= 0. Choose x ∈ N \ N−. Then x ⊗ f ∈ A, hence x ⊗ f(N−) ⊆ N−,
and so x⊗ f(y) = f(y)x ∈ N−, a contradiction.

(2) Choose y ∈ N and f ∈ (N−)⊥ such that f(y) 6= 0. Since x⊗ f ∈ A,
we have x⊗ f(N) ⊆ N . Furthermore, x⊗ f(y) = f(y)x ∈ N , i.e. x ∈ N .

In what follows B will be a reflexive algebra on a Banach space X such
that both 0+ 6= 0 and X− 6= X in LatB.

Lemma 2.6. For T ∈ B,

(1) if RT = 0 for every rank one operator R ∈ B of the form x⊗ f with
x ∈ 0+ and f ∈ X∗, then T = 0;

(2) if TR = 0 for every rank one operator R ∈ B of the form x⊗ f with
x ∈ X and f ∈ (X−)⊥, then T = 0.

The proof is straightforward so we omit it.

Lemma 2.7. Given a nonzero T ∈ B, the following statements are equiv-
alent :

(1) T is of rank one;
(2) for all operators A and B in B, ATB = 0 implies either AT = 0 or

TB = 0;
(3) for all rank one operators R1 and R2 in B, R1TR2 = 0 implies either

R1T = 0 or TR2 = 0;
(4) for all rank one operators R1 and R2 in B of the forms R1 = x⊗ f

with x ∈ 0+ and f ∈ X∗, R2 = y ⊗ g with y ∈ X and g ∈ (X−)⊥,
R1TR2 = 0 implies either R1T = 0 or TR2 = 0.

Proof. We only show (4)⇒(1). It suffices to show that Tu and Tv are
linearly dependent for arbitrary u, v ∈ X.

Since T 6= 0, by Lemma 2.6, there exists a rank one operatorR= x⊗f ∈B
with x ∈ 0+ and f ∈ X∗ such that RT 6= 0. Then RTu and RTv are linearly
dependent since RT is of rank one, and so there exist scalars λ and µ, not
both zero, such that RT (λu + µv) = λRTu + µRTv = 0. For nonzero
g ∈ (X−)⊥ we have (λu+ µv)⊗ g ∈ B and

RT ((λu+ µv)⊗ g) = (RT (λu+ µv))⊗ g = 0.

But RT 6= 0, so T (λu+µv)⊗g = 0, which in turn implies λ(Tu)+µ(Tv) = 0,
and so Tu and Tv are linearly dependent.

Hence we can easily obtain the following.

Corollary 2.8. Every automorphism of B preserves rank one opera-
tors in both directions.
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For x ∈ 0+ and f ∈ (X−)⊥, let Lx = {x⊗h : h ∈ X∗} and Rf = {u⊗f :
u ∈ X}. It is obvious that both Lx and Rf are subspaces of B consisting of
rank one operators.

Lemma 2.9. Let φ : B → B be an automorphism. Then

(1) for each x ∈ 0+, there exists y ∈ 0+ such that φ(Lx) = Ly;
(2) for each f ∈ (X−)⊥, there exists g ∈ (X−)⊥ such that φ(Rf ) = Rg.

Proof. We only prove (1).
For two arbitrary linearly independent h1 and h2 in X∗, using Corol-

lary 2.8, let φ(x⊗h1) = y1⊗g1 and φ(x⊗h2) = y2⊗g2. Now φ(x⊗(h1+h2)) =
y1 ⊗ g1 + y2 ⊗ g2 has rank one, so either y1 and y2 are linearly dependent
or g1 and g2 are, but they are not linearly dependent simultaneously. Hence
either there exists y ∈ X such that φ(Lx) ⊆ {y ⊗ h ∈ B : h ∈ X∗}, or there
is g ∈ X∗ such that φ(Lx) ⊆ {u⊗ g ∈ B : u ∈ X}.

For the case of φ(Lx) ⊆ {y ⊗ h ∈ B : h ∈ X∗}, we have

Claim 1. φ(Lx) = {y ⊗ h ∈ B : h ∈ X∗}.
Assume to the contrary that there exists y⊗h0 ∈ B, but y⊗h0 6∈ φ(Lx).

Since φ preserves rank one operators in both directions, let φ(u⊗g) = y⊗h0.
Then u and x are linearly independent. Choose g1 ∈ X∗ such that g1 and g
are linearly independent and let φ(x⊗g1) = y⊗h1. Then φ(x⊗g1 +u⊗g) is
of rank two since x⊗ g1 +u⊗ g is of rank two. However, φ(x⊗ g1 +u⊗ g) =
y ⊗ h1 + y ⊗ h0 is of rank one, a contradiction.

Claim 2. φ(Lx) = {y ⊗ h : h ∈ X∗}.
Assume that φ(Lx) is a proper subspace of {y⊗h : h ∈ X∗}. By Claim 1,

there is y ⊗ h2 6∈ B. Choose nonzero v ∈ 0+. Then v ⊗ h2 ∈ B. Suppose
φ(w ⊗ k) = v ⊗ h2. It follows that y and v are linearly independent. Let
φ(x ⊗ k) = y ⊗ h3. Then h3 and h2 are also linearly independent. Hence
φ(x⊗k+w⊗k) = y⊗h3 +v⊗h2 has rank two. This leads to a contradiction
with the fact that φ(x⊗ k + w ⊗ k) is a rank one operator.

We have shown that φ(Lx) = {y ⊗ h : h ∈ X∗} ⊆ B; by Lemma 2.5,
y ∈ 0+ and so φ(Lx) = Ly.

For the case of φ(Lx) ⊆ {u ⊗ g ∈ B : u ∈ X}, we can prove that
φ(Lx) = Rg similarly.

We now show that φ(Lx) = Rg cannot occur. Otherwise, choose two
linearly independent functionals h1 and h2 in X∗ with h1(x) 6= 0. Suppose
φ(x ⊗ h1) = y1 ⊗ g and φ(x ⊗ h2) = y2 ⊗ g. Then φ(x ⊗ h1 · x ⊗ h2) =
h1(x)φ(x ⊗ h2) = h1(x)y2 ⊗ g. On the other hand, φ(x ⊗ h1 · x ⊗ h2) =
y1 ⊗ g · y2 ⊗ g = g(y2)y1 ⊗ g, hence y1 and y2 are linearly dependent, which
contradicts the fact that h1 and h2 are linearly independent.

Now we are in a position to prove our main result.
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Theorem 2.10. Let B be a reflexive algebra on a Banach space X such
that both 0+ 6= 0 and X− 6= X in LatB. Then D(α,β)(B) is topologically
reflexive in L(B) in the weak operator topology.

Proof. We only need to show that Locw D(α,β)(B) ⊆ D(α,β)(B).
Let δ ∈ Locw D(α,β)(B). Then δ(I) = 0. By Lemma 2.1, δ(PQ) =

δ(P )β(Q) + α(P )δ(Q) for any idempotents P,Q ∈ B.
To show that δ(AB) = δ(A)β(B) + α(A)δ(B) for every A,B ∈ B, we

divide the proof into several steps.

Step 1. For any rank one operators P,Q ∈ B, where P = x ⊗ f with
x ∈ 0+ and f ∈ X∗, Q = y ⊗ g with y ∈ X and g ∈ (X−)⊥, we have

δ(PQ) = δ(P )β(Q) + α(P )δ(Q).

Case 1. If f(x) 6= 0 and g(y) 6= 0, since both P ′ = P/f(x) and Q′ =
Q/g(y) are rank one idempotents, the conclusion follows by the linearity
of δ.

Case 2. Suppose one of f(x), g(y) is 0, say f(x) = 0 and g(y) 6= 0.
Choose f ′ ∈ X∗ such that (f + f ′)(x) = f ′(x) 6= 0. Then by Case 1,

δ(PQ) = δ(x⊗ (f + f ′) · y ⊗ g)− δ(x⊗ f ′ · y ⊗ g)

= δ(x⊗ (f + f ′))β(y ⊗ g) + α(x⊗ (f + f ′))δ(y ⊗ g)

− δ(x⊗ f ′)β(y ⊗ g)− α(x⊗ f ′)δ(y ⊗ g)

= δ(x⊗ f)β(y ⊗ g) + α(x⊗ f)δ(y ⊗ g)

= δ(P )β(Q) + α(P )δ(Q).

Case 3. If both f(x) and g(y) are 0, choose f ′ ∈ X∗ and y′ ∈ X such
that (f + f ′)(x) = f ′(x) 6= 0 and g(y + y′) = g(y′) 6= 0. The conclusion
follows by the same argument as in Case 2.

Step 2. For each A ∈ B and any rank one operator Q ∈ B, we have

δ(AQ) = δ(A)β(Q) + α(A)δ(Q)

where Q = y ⊗ g with y ∈ X and g ∈ (X−)⊥.

For any rank one operator P ∈ B of the form x ⊗ f with x ∈ 0+ and
f ∈ X∗, by using an argument similar to that used in Step 1, we find that
the assertion of Lemma 2.1 holds for each A ∈ B and any rank one operators
P,Q ∈ B, where P = x⊗ f with x ∈ 0+ and f ∈ X∗, Q = y⊗ g with y ∈ X
and g ∈ (X−)⊥.

On the other hand, by Step 1,

δ(PAQ) = δ(PA ·Q) = δ(PA)β(Q) + α(PA)δ(Q).

Hence
α(P )δ(AQ) = α(P )δ(A)β(Q) + α(P )α(A)δ(Q),
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and Lemmas 2.9 and 2.6 yield

δ(AQ) = δ(A)β(Q) + α(A)δ(Q).

Step 3. For any A,B ∈ B, we have

δ(AB) = δ(A)β(B) + α(A)δ(B),

i.e. δ is an (α, β)-derivation.

For each rank one operator Q = y ⊗ g ∈ A with y ∈ X and g ∈ (X−)⊥,
by Step 2,

δ(ABQ) = δ(AB)β(Q) + α(AB)δ(Q).

On the other hand, also by Step 2,

δ(ABQ) = δ(A ·BQ) = δ(A)β(B)β(Q) + α(A)δ(BQ)

= δ(A)β(B)β(Q) + α(A)δ(B)β(Q) + α(AB)δ(Q).

Thus δ(AB)β(Q) = δ(A)β(B)β(Q) + α(A)δ(B)β(Q).
Again by Lemmas 2.9 and 2.6, we obtain the assertion.

Corollary 2.10. If N is a nest on X such that both 0+ 6= 0 and
X− 6= X in N , then the space of all (α, β)-derivations of the nest algebra
AlgN is topologically reflexive in L(AlgN ) in the weak operator topology.

For the spaces of (α, β)-derivations of standard algebras we have:

Corollary 2.11. If A is a standard operator algebra in X with identity
operator I, then the space of all (α, β)-derivations of A is topologically
reflexive in L(A) in the weak operator topology.

In particular, we have

Corollary 2.12. The set of all (α, β)-derivations of B(X) is topolog-
ically reflexive in L(B(X)) in the weak operator topology.

The following result is well known.

Corollary 2.13 ([13]). Every local derivation of B(X) is a derivation.

3. Automorphisms and (α, β)-derivations of reflexive algebras.
In this section B will be a reflexive algebra in a Banach space X such that
both 0+ 6= 0 and X− 6= X in LatB. The main purpose of this section is to
characterise the (α, β)-derivations of B. To this end, we need to characterise
the automorphisms of B first. So we begin with

Theorem 3.1. Every automorphism of B is spatial.

Proof. Let φ : B → B be an automorphism. By Lemma 2.9, for each
x ∈ 0+ there exists yx ∈ 0+ such that φ(Lx) = Lyx .

Thus for arbitrary x⊗h ∈ Lx we have φ(x⊗h) = yx⊗gh. Now we define
two mappings A1 : 0+ → 0+ and Bx1 : X∗ → X∗ by x 7→ yx and h 7→ gh
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respectively. Then both A1 and Bx1 are linear bijective maps since φ is an
automorphism.

We claim that Bx1 is independent of x. To see this, for arbitrary y ∈ 0+

and h ∈ X∗, suppose that φ(y ⊗ h) = A1y ⊗By1h.
If x and y are linearly independent, let φ((x+y)⊗h) = A1(x+y)⊗Bx+y

1 h.
Then

A1(x+ y)⊗Bx+y
1 h = A1x⊗Bx1h+ A1y ⊗By1h

and so A1x⊗(Bx1−Bx+y
1 )h = A1y⊗(Bx+y

1 −By1 )h. Since x and y are linearly
independent and A1 is a linear bijective map, we obtain Bx1 = Bx+y

1 = By1 .
If x and y are linearly dependent, suppose that y= λx. We have φ(y⊗h)

= λφ(x ⊗ h) = λA1x ⊗ Bx1h, thus A1y ⊗ By1h = λA1x ⊗ Bx1h, and so
Bx1h = By1h for every h ∈ X∗.

Thus Bx1 is independent of x and we write simply B1 instead of Bx1 . Then
for every x⊗ f with x ∈ 0+ and f ∈ X∗ we have

φ(x⊗ f) = A1x⊗B1f.

Again by Lemma 2.9, for each g ∈ (X−)⊥ there is hg ∈ (X−)⊥ such that
φ(Rg) = Rhg , and so for arbitrary y ⊗ g ∈ Rg we have φ(y ⊗ g) = uy ⊗ hg.

We can now define two linear bijective mappings Ag2 : X → X and
B2 : (X−)⊥ → (X−)⊥ by y 7→ uy and g 7→ hg respectively. Similarly we can
verify that Ag2 is independent of g and so we denote it by A2. Hence for any
y ⊗ g with y ∈ X and g ∈ (X−)⊥ we have

φ(y ⊗ g) = A2x⊗B2g.

In particular, for arbitrary x⊗ f with x ∈ 0+ and f ∈ (X−)⊥ we have

φ(x⊗ f) = A1x⊗B1f = A2x⊗B2f.

Thus there exists a nonzero scalar µx such that A2x = µxA1x and B1f =
µxB2f . By a similar argument we can show that µx is independent of x,
and so we have a nonzero scalar µ such that A2x = µA1x and B1f = µB2f .
In other words, A2|0+ = µA1 and B1|(X−)⊥ = µB2.

Let A = A2 and B = µ−1B1. Then

φ(x⊗ f) = Ax⊗Bf
where x ∈ 0+ and f ∈ X∗ or x ∈ X and f ∈ (X−)⊥.

For arbitrary x ∈ X, f ∈ (X−)⊥ and T ∈ B, we have

φ(Tx⊗ f) = φ(T )φ(x⊗ f) = φ(T )Ax⊗Bf.
On the other hand, φ(Tx⊗f) = ATx⊗Bf , and we arrive at φ(T )Ax = ATx
for any x ∈ X, that is, φ(T )A = AT , and so φ(T ) = ATA−1 for all T ∈ B.

It is straightforward to see that A has a closed graph and hence is
bounded.
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Theorem 3.2. Let δ : B → B be an (α, β)-derivation. Then there exists
A ∈ B(X) such that

δ(T ) = Aβ(T )− α(T )A, ∀T ∈ B.
Proof. By Theorem 3.1, suppose that there exists B ∈ B(X) such that

β(T ) = BTB−1 for all T ∈ B. Choose x0 ∈ X and f0 ∈ (X−)⊥ so that
f0(x0) = 1. Then x⊗ f0 ∈ B for every x ∈ X. Define a map A : X → X by

Ax = δ(B−1x⊗ f0)Bx0.

Then A is linear. For arbitrary T ∈ B, we have

δ(Tx⊗ f0) = δ(T )β(x⊗ f0) + α(T )δ(x⊗ f0).

Equivalently,

δ(B−1BTx⊗ f0) = δ(T )Bx⊗ f0B
−1 + α(T )δ(B−1Bx⊗ f0).

Furthermore,

δ(B−1BTx⊗ f0)B = δ(T )Bx⊗ f0 + α(T )δ(B−1Bx⊗ f0)B.

Applying both operators in this equation to x0, we obtain ABTx = δ(T )Bx
+ α(T )ABx. This is true for every x ∈ X, so ABT = δ(T )B + α(T )AB,
hence ABTB−1 = δ(T ) + α(T )A, i.e. δ(T ) = Aβ(T )− α(T )A.

It is easy to verify that A has a closed graph and hence is bounded; we
leave this to the reader.
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